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The elephant in the room of materials chemistry is that all
materials inherently have defects and impurities. Defects

can tremendously influence a material’s functional properties
by deteriorating the performance in some samples, enhancing
performance in others, or occasionally contributing to entirely
new functionality. A classic example is the presence of intrinsic
surface oxygen vacancies (defects) on metal oxide photo-
catalysts such as TiO2.

1−3 These surface oxygen vacancies are
vital for effectively binding reactant molecules and facilitating
charge transfer, boosting activity.2,4 Similar charge trapping
defects also enable applications in luminescent materials.5

Persistent luminescence phosphors, for example, require the
same defects to trap electrons in the excited state, which are
eventually slowly released through thermal activation. This
defect-related emission process gives rise to the famous glow-
in-the-dark property of SrAl2O4:Eu2+,Dy3+ found in emergency
signs and children’s toys.6,7 Mitigating these same defects in
phosphors enables their application in LED lighting and
display applications.8 Targeting and controlling specific
(point) defect formation and concentrations is clearly
indispensable for obtaining desired functionalities.
Unfortunately, unless defects are the focus of a research

project, most scientists and engineers gloss over their impact
for one main reason�they are incredibly difficult to identify,
characterize, and understand how they contribute to ensemble-
level sample properties. In this editorial, we highlight this
“defect challenge”, emphasizing that it can only be solved
through a cross-cutting research effort supported by computa-
tional and experimentalists alike. It will require new techniques
in high-throughput computing, data science, and, most
importantly, spectroscopy at the single-particle level. Further
adopting FAIR (Findable, Accessible, Interoperable, and
Reusable) principles9 and thinking about how large data sets
are shared and archived will play a vital role in making use of
ultrarich (in information and actual costs) data sets that are
currently being under-utilized.
Significant effort is going into establishing new approaches

to study defects with the hope of closing this gap.
Developments in computational modeling have started to
unlock a fundamental understanding of how defects influence a
material’s properties. Density functional theory (DFT), for
example, has provided insight into the defect energy levels and
their role in semiconducting and insulating materials like
SrAl2O4:Eu2+ to understand how intrinsic defects enable its
famous persistent luminescence.10 Advanced computational
methods have since been developed to more accurately
represent the local structure of materials containing point

defects, ensuring the lowest energy geometries are modeled.11

Similar progress has been made in considering multiple defects,
defect clustering, and defect dynamics,12,13 while machine
learning force fields in molecular dynamics are gaining
popularity for capturing the materials chemistry of larger
systems, although the ability for molecular dynamics (MD) to
capture defect physics is still limited. Efforts to automate this
computational process are also furthering the ability to study
the impact of defects on an array of systems, leading to new
crystal−chemical connections that can be used to manipulate a
material’s physical properties. One setback, however, is that
these calculations require computationally expensive hybrid
functionals to account for charge localization, making it
intractable to perform these calculations on a diverse number
of systems. Despite this reality, there is still potential for
tremendous impact as computational techniques and power
continue to improve in their ability to model complex materials
with multiple defect types.
Computation has indeed made it possible to capture defect

physics more accurately than ever. Yet, current approaches
mostly use static supercell models with isolated defects that do
not accurately reflect “real” materials. In reality, a single sample
containing billions of TiO2 or SrAl2O4:Eu2+,Dy3+ particles may
include individual defects that produce both desirable and
undesirable properties, depending on the type and distribution
at the single-particle level. This activity heterogeneity effect is
also beautifully demonstrated in Pt nanocatalysts. They can
exhibit order-of-magnitude variations in single-particle activ-
ity,14 even though the nanocatalysts are nominally identical
and were made at the same time in the same reactor. Recent
high-resolution 3D electron microscopy measurements have
shown that the Pt atom positions vary from particle to
particle.15 The particle-dependent atomic positions cause
varying amounts of strain near domain boundaries, dislocation
edges, and surface sites, which are strongly linked to the
particle-dependent catalytic activity. The devil is in the
(synthetic) details�how atoms assemble to form particles
influences their individual properties and function. Such
observations present a significant challenge for the materials
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chemistry community: Can we control defect types and
locations within particles to unlock extraordinary function?
Researchers wanting to “defect engineer” often do not have

the necessary tools, time, and/or massive data and image
analysis capabilities to amass defect statistics (types and
locations) across order-of-magnitude length scales, from the
atomic-level to surface facets, to particle morphologies, to
particle−particle interfaces, and eventually the ensemble-level.
The community needs to know the atomic-level chemical and
physical makeup of particle subpopulations within a sample
batch and how the heterogeneous distribution of particles
contributes to ensemble-level behavior before they can even
begin to engineer desired physical properties. Doing so will
finally enable the community to explain performance variations
among devices constructed by different laboratories, even
though they were constructed from nominally identical
materials. Still, we are a long way from this capability.
Progress is being made, though. The first challenge is simply

finding the defects in a bulk material. Considerable advances
have been made in experimentally visualizing defects in
particles using techniques like transmission electron micros-
copy (TEM). An inevitable limitation of TEM is that even
though the atom-scale resolution afforded by today’s best
microscopes enables resolving structural features on picometer
length scales, such a hyper-localized image usually does not
represent bulk properties. How often do publications show
micrographs of a single feature or a small subset of particles
imaged by scanning electron microscopy (SEM) while
claiming the data represents the bulk samples? This may be
because analysis methods are historically time-consuming and
expensive and often focus on highlighting the “best” (defect-
free) result. Recent efforts have focused on automating this
process; methods include automated electron microscopes,
data collection, and data processing, which have expedited
micrograph acquisition rates, expanding the analysis beyond
tens or hundreds of nanoparticles by orders of magnitude.16

Regrettably, the ability to image a complete micrometer-sized
particle that makes up functional materials today remains
impracticable.
Single-particle imaging techniques are emerging to address

this gap.17,18 Sweeping across an entire particle and identifying
specific functional “hot spots” within a sample provides
information on higher activity regions compared to inactive
parts of a particle.19 These results can be correlated with
defect-rich regions in a complete particle, ultimately revealing
performance limitations in properties like photocatalysis20 and
Li-ion transport.21 Similar techniques could be applied to
inorganic phosphors to identify portions of the samples with
high photoluminescence efficiency relative to the “dead spots”
in the sample.
Nevertheless, a drawback of current characterization

techniques is that they are limited to a small number of
particles, making it challenging to connect defect imaging back
to their synthetic origin. However, potential solutions are on
the horizon. One promising approach involves merging single-
particle imaging with in situ spectroscopy and microscopy
characterization tools. Together, these data offer a compre-
hensive understanding of defect distribution within entire
particles. In the future, combining flow synthesis setups
(especially in nanoparticle preparation) with these same
characterization methods could allow researchers to analyze a
large number of particles in real time. This comprehensive
analysis would provide insights into particle nucleation,

growth, size distributions, shape, crystallinity, and, importantly,
defect identification and quantification. Researchers can then
establish optimal synthesis−property−defect relationships by
varying flow synthesis conditions during data collection.
However, it is essential to note that the vast amount of data
generated by these experiments would require significant
modifications to experimental setups and incorporating data
science techniques to manage and interpret the information
effectively.
Applying convolutional neural networks and deep learning

architectures will be a key advance for researchers to
automatically identify and characterize intricate micrograph
features, such as particle morphology, crystal defects, or
interfacial structures.22 Supervised learning algorithms can be
trained to classify different materials or phases, helping
automatically identify and quantify defect locations within
complex microstructures. On the other hand, unsupervised
learning techniques enable the discovery of previously
unknown patterns or relationships, uncovering subtle varia-
tions in composition, structure, or morphology. These same
techniques can be used to analyze the >terabytes of data likely
to be generated when single particle analysis techniques are
combined with flow nanoparticle synthesis, f inally paving the
way for a deeper understanding of a material’s behavior and
structure−property relationships.
Even if these data-driven techniques are adapted to the high-

throughput analysis of bulk particle properties, connecting
these data back to the synthesis to yield improved materials
will remain challenging. Materials synthesis is multifaceted and
influenced by temperature, pressure, solvents, and precursors
(and their purity), among other variables. Data-driven
materials chemistry has been touted to utilize the tremendous
amount of data generated by these various imaging techniques
as machine learning inputs. Researchers now have the unique
ability to use explainable AI or interpret machine learning
models to extract information from these high-dimensional
algorithms. However, many of these methods only provide a
surface-level analysis of the features controlling the model
output. There is no guarantee that the information from a
SHAP (SHapley Additive exPlanations) or feature importance
analysis will provide reliable experimental insight. This is not a
limitation for image or defect analysis in materials chemistry
but a broader scientific need with significant potential to
transform materials synthesis, processing, and the resulting
physical properties.
Most importantly, the massive scale of the defect problem

requires the production and exchange of large data sets
between researchers. Frameworks for sharing computational
and, to a lesser extent, experimental data sets are reasonably
mature and widely accessed today. Adding information related
to the influence of defects would be a reasonable and helpful
extension. However, sharing more expansive data sets related
to single particle imaging is not currently being done in any
organized way. When combined with the metadata, the
considerable amount of data generated by these experiments
will likely require dedicated hardware and creative ways to
share information. Currently, data are commonly shared
through repositories like FigShare, but these are limited to
20 GB, and although multiple TB can also be stored, it is
costly. Then the question arises: What happens when faculty
members decide they no longer want to cover that cost?
Government-supported repositories may be a better option,
but what happens to the data when funding priorities change?
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Further, it is necessary to access the algorithms and codes that
produced and analyzed the data. Today’s convention is to
upload codes through repositories like GitHub, which is a great
start. However, code maintenance and proper version control,
among many other issues, are required to keep everything
functioning. These questions must be addressed across the
chemistry and materials fields, where data-intensive research is
growing dramatically. However, it may be even more vital for
areas with tremendously large data sets like single-particle
fluorescence microscopy, where the raw images from a single
paper exceeded 1 TB and the processed data (in the form of a
MATLAB workspace file) is 50 GB.19 This is just one paper
that only studied 37 individual particles and did not include
the atomic-level characterization of each particle. The bottom
line is that “getting to the bottom” will require massive data
generation and storage solutions.
At the end of the day, defects cannot and should not be

ignored in materials chemistry. They are pivotal as they
significantly influence functional properties with implications
spanning all modern technologies. State-of-the-art DFT
calculations and imaging techniques, including 3D electron
microscopy and high-resolution transmission electron micros-
copy, have emerged as powerful tools for defect identification.
However, these predominantly local analysis methods must
readily provide a complete picture of defect distributions
within bulk samples or large particles. Fortunately, there is an
opportunity to expand beyond traditional materials chemistry
by combining flow synthesis with electron microscopy
techniques and single-particle imaging methods;23 real-time
observations and analysis of nanoparticle synthesis can be
achieved to reveal the optimal synthesis parameters that
control defect formation. AI must also be adapted to analyze
these data and establish robust correlations between image
features and physical properties. Of course, sharing these
tremendously large data sets and models following the FAIR
principles will be a challenge. Doing this, however, is a
worthwhile endeavor to eventually bridge the gap between
synthetic processes, experimental data, and data science,
although it will require developments in both hardware and
software. Overcoming these challenges will yield profound
insights into defect distributions, material behavior, and the
design of enhanced functional materials.

Justin Sambur orcid.org/0000-0002-8457-4946
Jakoah Brgoch orcid.org/0000-0002-1406-1352

■ AUTHOR INFORMATION
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.chemmater.3c01817

Notes
Views expressed in this editorial are those of the authors and
not necessarily the views of the ACS.
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
JB would like to thank Dr. Shruti Hariyani for valuable
feedback on the manuscript and Prof. David Scanlon and Seán
Kavanagh for helpful discussion, as well as the National
Science Foundation (DMR-1847701) for supporting this work.
JBS acknowledges support from Ensembles of Photosynthetic
Nanoreactors (EPN), an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science
(DE-SC0023431).

■ REFERENCES
(1) Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective
TiO2 with oxygen vacancies: synthesis, properties and photocatalytic
applications. Nanoscale 2013, 5 (9), 3601−3614.
(2) Thompson, T. L.; Yates, J. T. TiO2-based Photocatalysis:
Surface Defects, Oxygen and Charge Transfer. Top. Catal. 2005, 35
(3), 197−210.
(3) Pacchioni, G. Oxygen Vacancy: The Invisible Agent on Oxide
Surfaces. ChemPhysChem 2003, 4 (10), 1041−1047.
(4) Schaub, R.; Thostrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard,
I.; Nørskov, J. K.; Besenbacher, F. Oxygen Vacancies as Active Sites
for Water Dissociation on Rutile TiO2. Phys. Rev. Lett. 2001, 87 (26),
No. 266104.
(5) Ho, Y.-C.; Hoque, M. N. F.; Stoneham, E.; Warzywoda, J.;
Dallas, T.; Fan, Z. Reduction of Oxygen Vacancy Related Traps in
TiO2 and the Impacts on Hybrid Perovskite Solar Cells. J. Phys.
Chem. C 2017, 121 (43), 23939−23946.
(6) Xu, J.; Tanabe, S. Persistent luminescence instead of
phosphorescence: History, mechanism, and perspective. J. Lumin.
2019, 205, 581−620.
(7) Huang, K.; Le, N.; Wang, J. S.; Huang, L.; Zeng, L.; Xu, W.-C.;
Li, Z.; Li, Y.; Han, G. Designing Next Generation of Persistent
Luminescence: Recent Advances in Uniform Persistent Luminescence
Nanoparticles. Adv. Mater. 2022, 34 (14), No. 2107962.
(8) Linderälv, C.; Åberg, D.; Erhart, P. Luminescence Quenching via
Deep Defect States: A Recombination Pathway via Oxygen Vacancies
in Ce-Doped YAG. Chem. Mater. 2021, 33 (1), 73−80.
(9) Wilkinson, M. D.; Dumontier, M.; Aalbersberg, I. J.; Appleton,
G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos,
L. B.; Bourne, P. E.; Bouwman, J.; Brookes, A. J.; Clark, T.; Crosas,
M.; Dillo, I.; Dumon, O.; Edmunds, S.; Evelo, C. T.; Finkers, R.;
Gonzalez-Beltran, A.; Gray, A. J. G.; Groth, P.; Goble, C.; Grethe, J.
S.; Heringa, J.; ’t Hoen, P. A. C.; Hooft, R.; Kuhn, T.; Kok, R.; Kok, J.;
Lusher, S. J.; Martone, M. E.; Mons, A.; Packer, A. L.; Persson, B.;
Rocca-Serra, P.; Roos, M.; van Schaik, R.; Sansone, S.-A.; Schultes, E.;
Sengstag, T.; Slater, T.; Strawn, G.; Swertz, M. A.; Thompson, M.;
van der Lei, J.; van Mulligen, E.; Velterop, J.; Waagmeester, A.;
Wittenburg, P.; Wolstencroft, K.; Zhao, J.; Mons, B. The FAIR
Guiding Principles for scientific data management and stewardship.
Scientific Data 2016, 3 (1), 160018.
(10) Finley, E.; Mansouri Tehrani, A.; Brgoch, J. Intrinsic Defects
Drive Persistent Luminescence in Monoclinic SrAl2O4:Eu2+. J. Phys.
Chem. C 2018, 122 (28), 16309−16314.
(11) Mosquera-Lois, I.; Kavanagh, S. R.; Walsh, A.; Scanlon, D. O.
Identifying the ground state structures of point defects in solids. npj
Computational Materials 2023, 9 (1), 25.
(12) Cen, J.; Zhu, B.; Kavanagh, S. R.; Squires, A. G.; Scanlon, D. O.
Cation disorder dominates the defect chemistry of high-voltage
LiMn1.5Ni0.5O4 (LMNO) spinel cathodes. J. Mater. Chem. A 2023,
11 (25), 13353−13370.
(13) Krajewska, C. J.; Kavanagh, S. R.; Zhang, L.; Kubicki, D. J.;
Dey, K.; Gałkowski, K.; Grey, C. P.; Stranks, S. D.; Walsh, A.;
Scanlon, D. O.; Palgrave, R. G. Enhanced visible light absorption in
layered Cs3Bi2Br9 through mixed-valence Sn(ii)/Sn(iv) doping.
Chemical Science 2021, 12 (44), 14686−14699.
(14) Han, K. S.; Liu, G.; Zhou, X.; Medina, R. E.; Chen, P. How
Does a Single Pt Nano-catalyst Behave in Two Different Reactions? A
Single-Molecule Study. Nano Lett. 2012, 12 (3), 1253−1259.
(15) Kim, B. H.; Heo, J.; Kim, S.; Reboul, C. F.; Chun, H.; Kang, D.;
Bae, H.; Hyun, H.; Lim, J.; Lee, H.; Han, B.; Hyeon, T.; Alivisatos, A.
P.; Ercius, P.; Elmlund, H.; Park, J. Critical differences in 3D atomic
structure of individual ligand-protected nanocrystals in solution.
Science 2020, 368 (6486), 60−67.
(16) Schorb, M.; Haberbosch, I.; Hagen, W. J. H.; Schwab, Y.;
Mastronarde, D. N. Software tools for automated transmission
electron microscopy. Nat. Methods 2019, 16 (6), 471−477.
(17) Xu, X.; Valavanis, D.; Ciocci, P.; Confederat, S.; Marcuccio, F.;
Lemineur, J.-F.; Actis, P.; Kanoufi, F.; Unwin, P. R. The New Era of

Chemistry of Materials pubs.acs.org/cm Editorial

https://doi.org/10.1021/acs.chemmater.3c01817
Chem. Mater. 2023, 35, 7351−7354

7353

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Justin+Sambur"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Justin+Sambur"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8457-4946
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jakoah+Brgoch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jakoah+Brgoch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1406-1352
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Justin+Sambur"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jakoah+Brgoch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c01817?ref=pdf
https://doi.org/10.1039/c3nr00476g
https://doi.org/10.1039/c3nr00476g
https://doi.org/10.1039/c3nr00476g
https://doi.org/10.1007/s11244-005-3825-1
https://doi.org/10.1007/s11244-005-3825-1
https://doi.org/10.1002/cphc.200300835
https://doi.org/10.1002/cphc.200300835
https://doi.org/10.1103/PhysRevLett.87.266104
https://doi.org/10.1103/PhysRevLett.87.266104
https://doi.org/10.1021/acs.jpcc.7b08384?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.7b08384?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jlumin.2018.09.047
https://doi.org/10.1016/j.jlumin.2018.09.047
https://doi.org/10.1002/adma.202107962
https://doi.org/10.1002/adma.202107962
https://doi.org/10.1002/adma.202107962
https://doi.org/10.1021/acs.chemmater.0c02449?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c02449?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c02449?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1021/acs.jpcc.8b04378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b04378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41524-023-00973-1
https://doi.org/10.1039/D3TA00532A
https://doi.org/10.1039/D3TA00532A
https://doi.org/10.1039/D1SC03775G
https://doi.org/10.1039/D1SC03775G
https://doi.org/10.1021/nl203677b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl203677b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl203677b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.aax3233
https://doi.org/10.1126/science.aax3233
https://doi.org/10.1038/s41592-019-0396-9
https://doi.org/10.1038/s41592-019-0396-9
https://doi.org/10.1021/acs.analchem.2c05105?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.3c01817?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


High-Throughput Nanoelectrochemistry. Anal. Chem. 2023, 95 (1),
319−356.
(18) Baker, L. A. Perspective and Prospectus on Single-Entity
Electrochemistry. J. Am. Chem. Soc. 2018, 140 (46), 15549−15559.
(19) Sambur, J. B.; Chen, T.-Y.; Choudhary, E.; Chen, G.; Nissen, E.
J.; Thomas, E. M.; Zou, N.; Chen, P. Sub-particle reaction and
photocurrent mapping to optimize catalyst-modified photoanodes.
Nature 2016, 530 (7588), 77−80.
(20) Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.;
Liu, Y.; Zhao, Y.; Pang, S.; An, H.; Ni, C.; Zhou, P.; Han, K.; Fan, F.;
Li, C. Spatiotemporal imaging of charge transfer in photocatalyst
particles. Nature 2022, 610 (7931), 296−301.
(21) Merryweather, A. J.; Schnedermann, C.; Jacquet, Q.; Grey, C.
P.; Rao, A. Operando optical tracking of single-particle ion dynamics
in batteries. Nature 2021, 594 (7864), 522−528.
(22) Kalinin, S. V.; Ophus, C.; Voyles, P. M.; Erni, R.; Kepaptsoglou,
D.; Grillo, V.; Lupini, A. R.; Oxley, M. P.; Schwenker, E.; Chan, M. K.
Y.; Etheridge, J.; Li, X.; Han, G. G. D.; Ziatdinov, M.; Shibata, N.;
Pennycook, S. J. Machine learning in scanning transmission electron
microscopy. Nature Reviews Methods Primers 2022, 2 (1), 11.
(23) Wang, L.; Schmid, M.; Sambur, J. B. Single nanoparticle
photoelectrochemistry: What is next? J. Chem. Phys. 2019, 151 (18),
180901 DOI: 10.1063/1.5124710.

Chemistry of Materials pubs.acs.org/cm Editorial

https://doi.org/10.1021/acs.chemmater.3c01817
Chem. Mater. 2023, 35, 7351−7354

7354

https://doi.org/10.1021/acs.analchem.2c05105?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature16534
https://doi.org/10.1038/nature16534
https://doi.org/10.1038/s41586-022-05183-1
https://doi.org/10.1038/s41586-022-05183-1
https://doi.org/10.1038/s41586-021-03584-2
https://doi.org/10.1038/s41586-021-03584-2
https://doi.org/10.1038/s43586-022-00095-w
https://doi.org/10.1038/s43586-022-00095-w
https://doi.org/10.1063/1.5124710
https://doi.org/10.1063/1.5124710
https://doi.org/10.1063/1.5124710?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.3c01817?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

