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ABSTRACT: Exceptional molecules and materials with one or more extraordinary properties are both technologically valuable and
fundamentally interesting, because they often involve new physical phenomena or new compositions that defy expectations.
Historically, exceptionality has been achieved through serendipity, but recently, machine learning (ML) and automated
experimentation have been widely proposed to accelerate target identification and synthesis planning. In this Perspective, we argue
that the data-driven methods commonly used today are well-suited for optimization but not for the realization of new exceptional
materials or molecules. Finding such outliers should be possible using ML, but only by shifting away from using traditional ML
approaches that tweak the composition, crystal structure, or reaction pathway. We highlight case studies of high-Tc oxide
superconductors and superhard materials to demonstrate the challenges of ML-guided discovery and discuss the limitations of
automation for this task. We then provide six recommendations for the development of ML methods capable of exceptional
materials discovery: (i) Avoid the tyranny of the middle and focus on extrema; (ii) When data are limited, qualitative predictions
that provide direction are more valuable than interpolative accuracy; (iii) Sample what can be made and how to make it and defer
optimization; (iv) Create room (and look) for the unexpected while pursuing your goal; (v) Try to fill-in-the-blanks of input and
output space; (vi) Do not confuse human understanding with model interpretability. We conclude with a description of how these
recommendations can be integrated into automated discovery workflows, which should enable the discovery of exceptional
molecules and materials.

I. INTRODUCTION
Machine learning (ML) is contributing to many areas of
chemistry and materials research, as diverse as solar cells,1

photoresist,2 high-entropy alloys,3 drug design4,5 and formula-
tion6 discovery, and biomedical polymers.7 Many introductory
texts8−10 and review articles11−15 provide tutorials and
explications of applications of ML to chemistry and materials
(and scientific discovery more generally16). However, these
applications have been demonstrated mainly in the context of
incremental improvements and optimization. Incremental does
not mean easy, and ML optimizations are often in high-
dimensional spaces that would have otherwise required months
or years of traditional experimentation to achieve the same
results.17−20 However, transformative discoveries have seldom
been achieved by this approach.
In this perspective, we suggest that there are fundamental

limitations hindering the application of ML to the discovery of
exceptional materials that shift the research paradigm (in the
Kuhnian sense21). We highlight some current state-of-the-art
examples in ML, iterative optimization, and high-throughput/
autonomous experimentation approaches. We also focus on
limitations of using these methods with regards to exceptional
materials discovery by considering historical challenges in high-
Tc superconductor and superhard materials discovery, and how
existing ML methods have contributed to these efforts. We then
provide six recommended research directions for ML that
address this challenge. Finally, we conclude with a vision of a

future materials research process implementing these research
directions.

II. THE CHALLENGE OF THE EXCEPTIONAL
II.A.What is Exceptional?Wedefine an exceptional material

ormolecule as one that enables new scientific exploration because
it is out of the prior distribution of properties, composition, or
application. These are black swan events�unpredicted surprises
that have a significant effect on the field but are only rationalized
only after the first observation.22 For example, the discovery of
high-Tc cuprate superconductors rejected the conventional
wisdom of condensed matter physics; even though the initial Tc
was not exceptionally high, it achieved modest values with an
unusual composition and had a synthetic toolbox that allowed
for further exploration which would rapidly transform the field
(vide inf ra). Similarly, organic chemistry has had numerous
scientific discoveries that have gone against deep-seated
textbook notions, transforming our molecular control and
greatly enhancing our synthetic toolbox.23
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Many technologies require materials that can withstand
coupled extremes, such as simultaneous mechanical, thermal,
radiation, and corrosive attack for next-generation nuclear
reactors15,24 or simultaneous high photoconversion efficiency
and mechanical durability for photovoltaics.25 Exceptionality
may thus comprise not just one, but a constellation of potentially
mutually exclusive properties.15,26 These trade-offs can be purely
empirical trends observed within a materials class, for example,
expressed as Ashby plots (solid mechanics) or Robeson plots (in
membrane separation materials); in this case, exceptionality is
merely a novel observation. Alternatively, the trade-offs may be
first-order approximations to the underlying rigorous theoretical
relationships, such as the Wiedemann−Franz proportionality of
electrical and thermal conductivity. An exceptional thermo-
electric material requires simultaneously high electrical con-
ductivity and low thermal conductivity and thus violating the
underlying physical assumptions that contraindicate these
relationships. This is a distinct problem from multiobjective
optimization,27−29 discussed in Section III.C.
Genuine surprise would not be possible or necessary if we

already had an adequate sample of all possible materials.
However, an empirical analysis suggests that humans have barely
scratched the surface of possible compositions. If one considers
only stoichiometric quaternary solid-state inorganic compounds
satisfying conservative valency and electronegativity constraints,
there are approximately 1010 compositions,32 greatly exceeding
the 105 compounds in the entire Inorganic Crystal Structure
Database (ICSD). Similar estimates exist for the chemical space
of synthesizable organic molecules.33 The reported number of
new structures deposited in the ICSD shows exponential growth
(Figure 1a),30 and thermodynamic stability network calculations
indicating an increasing trend in the discovery rate of new
materials.34 “Interesting” materials are often not distributed
evenly across parameter space. For example, an investigation of
possible high-entropy alloys found wide disparities in compound
space group (Figure 1b).31 Even knowledge of what materials
can be made is limited, as many observed materials are
metastable,35 and computational thermochemistry data sets
have biased distributions of formation energies for different
structure types.36 Furthermore, nearly all experimental and
computational data consider low-pressure systems, yet chemical
bonding and periodic trends are radically different at high
pressures relevant to materials under extreme conditions.37

There remains plenty of room to discover new materials and
molecules, and we are far from the regime of pure interpolation.
II.B. Why is Finding an Exceptional Compound

Difficult? Finding an exceptional compound is intrinsically a
low probability event, as the compositions and combination of
synthesis and processing conditions needed to produce them are
rare and unique. But rarity alone is not the problem. Consider a
golf course: the probability of a randomly placed ball occupying
the hole is small, yet golfers regularly guide the ball to the hole
with (ideally) a few attempts by taking advantage of the
landscape and “reading” its many properties. Similarly, research
problems are easy if there exists a clear gradient toward the goal
(by analogy, this may arise from the inherent topography which
causes balls to roll toward the hole or the golfer’s mental map of
the course). It is harder if there are many traps where gradient-
based heuristics fail. More formally, mathematicians have
devised many ways to characterize the ease and difficulty of
finding optima on high-dimensional response surfaces. For
example, cases where the inputs are continuous can be
characterized in terms of smoothness (the number of continuous

derivatives a function has over its domain) and convexity
(continuous functions where values at the midpoint of every
interval do not exceed the values of the function at its end
point).38 Cases where the inputs are discrete can be
characterized in terms of elementariness (those which can be
realized as an eigenvector of the Laplacian of the neighborhood
diagraph).39 Whether the inputs are discrete or continuous, the
underlying idea is to characterize functions for which local
information gathered from stepwise changes can find optima
efficiently.38,40 Practical algorithms can efficiently find solutions
even when the response surface only approximately obeys these
criteria.
Empirically, many successful materials ML problems are

approximately smooth and convex response surfaces, with a
broad basin of attraction toward a few local optima,41 like the
schematic example plotted in Figure 2a. Thus, it is unsurprising
that ML-based approaches for representing the landscape can be
successful, and iterative optimization is an efficient strategy. In
contrast, exceptional materials are often comprised of much
harder “needle in a haystack” problems,42 where the response
surface behaves as shown in Figure 2b. The response function is
no longer smooth, and any approximate information about a
local environment is no longer a good guide for the behavior of
new candidates. A mathematician would precondition the
problem into a more suitable form, but experimental scientists

Figure 1. (a) Structure entries in the ICSD and Materials Project as a
function of time, plotted on a logarithmic scale, adapted from ref 30. (b)
Space group frequency for high-entropy alloys, adapted from ref 31.
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typically lack prior knowledge about the nature of the response
function needed to apply an a priori transformation. Acquiring
more data about the system (either by physics-based simulation
or by high-throughput experimentation) or improving the
nature of the search process is one of the few solutions.

III. THE STATE OF CURRENT MACHINE LEARNING
APPROACHES

III.A. Computational Property Screening and Early ML.
Multiagency funding efforts like theMaterials Genome Initiative
(MGI),6 and similar efforts worldwide,44 were premised on
combining physics-based computation, data resources, and
high-throughput experimentation to provide more data and
accelerate the discovery of new materials. Many early efforts
used high-throughput density functional theory (DFT)

calculations to create databases (e.g., Materials Project,
AFLOW, OQMD, etc.). To expedite this process, researchers
began using ML to perform preliminary regressions or make
classification predictions to screen known crystal structure
databases for materials with superb properties.45 The efforts
have since expanded dramatically using experimental data sets,
autonomous experimentation, multitask, and transfer learning,
among numerous other approaches. New tools, such as large-
language model (LLM)-based code generators, eliminate
technical barriers for nonexperts to perform routine data
analysis tasks.46 Surprisingly, general purpose LLMs can even
be used to directly predict molecular and material properties
using small amounts of example data.47 But while predictions are
numerous, experimental validation is quite rare.45 Nevertheless,
in nearly every example, the ML predictions are modest
improvements of known systems rather than new state-of-the-
art transformative materials.

III.B. ML as an Experimental Optimization Tool. Many
current demonstrations of ML for chemistry and materials are
essentially optimizations of the composition, reaction conditions,
and processing conditions to maximize or minimize a desired
property. ML is used as a low-cost proxy for experimental
input−output relationships. For example, the design of catalysts
for chemical reactions has involved performing density func-
tional theory (DFT) calculations to determine the optimal
catalyst composition and reaction conditions. MLmodels can be
trained on these data to accelerate the screening process, thereby
reducing the time it takes to map the response surface and
achieve the desired result.48 Incorporating model uncertainty
with the predicted outcome enables an algorithmic guide to
achieve the experimental goal. One classic illustrative example
comes from the seminal 2016 work of Nikolaev et al. on ML-
optimized carbon nanotube growth in an autonomous system.49

A random forest model trained on a small initial data set served
as a proxy for the dependence of observed nanotube growth rate
as a function of laser heating and the partial pressures of four
gases. Active learning methods were used to sample uncertain
new experimental conditions, and the algorithm was then
employed to select the optimal set of input parameters to rapidly
achieve the desired growth rate. Other illustrative ML-enhanced
materials optimization examples include nanocrystal growth and
optical properties in a microfluidic system,50 mechanical
properties of 3d-printed structures,51 crystal growth condi-
tions,52−54 halide alloy stability,20,55 and superconductivity.56

See refs 45 and 57 for more comprehensive reviews.
Limitations of data-driven strategies have been noted in the

literature, with the need for more data or higher-quality data
being stressed.58 Algorithmic performance can also depend on
the initial data set (the “cold start” problem), and available data
sets often exhibit sampling biases.59 This problem can be
partially mitigated by adding additional constraints to maximize
the explored input space54 or by incorporating human expertise
in the loop.60 While previous research articles have bench-
marked computational methods and metrics for this task,61,62

and a recent perspective discussed types of machine-learning
guided iterative experimentation toward this goal,15 a more
critical view of the field is that regardless of the accuracy
produced by these methods, they will not generate the materials
necessary to enable paradigm shifts.
ML-based organic (retro)synthesis prediction and planning

face similar issues.2,63 There is tremendous power (and
computational complexity) associated with selecting a sequence
of known reactions into a new arrangement. This presents an

Figure 2. Iterative versus exceptional materials. (a) Previous work has
focused on optimizations on smooth, convex response surfaces; (b)
Exceptional material properties are often characterized by very sharp
discontinuities as composition and reaction conditions are changed.
Adapted from ref 41.
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immense combinatorial challenge where ML-derived heuristics
can make the problem tractable,64,65 with recent reviews
discussing these efforts.66,67 Although it has been suggested
that deep-learning-based template-free methods can propose
genuinely inventive new reactions,68 performance can be poor
outside the training set (even for undergraduate textbook
reactions69) and predictions often reflect the most common
reactions in the training set rather than optimal reactions.70

Increasingly these make use of LLMs, which some AI
researchers characterize as “stochastic parrots” because of a
tendency to generate outputs that merely have the same
statistical local structure as the training corpus (and thus
perpetuate or amplify training set bias) without incorporating
long-term structure or meaning.71 However, empirical evidence
suggests that suitably trained LLMs can learn meaningful
internal representations of a variety of problems.72,73 Within the
context of chemistry, there is evidence that transformer-based
LLMs models learn relevant atom mapping rules, implying that
the learned representations are physically meaningful.68 Yet the
problem of optimizing the reaction conditions and stoichiome-
tries remains. The tremendous technical challenges and practical
benefits of this are immense�as demonstrated by exciting
recent work on the optimization of heteroaryl Suzuki−Miyaura
reactions74 and reviewed more comprehensively in ref 75. But
again, this is in the domain of incremental optimization.
III.C. High-throughput Experimentation and Autono-

mous Operation to Discover Exceptional Compounds.
The importance of high throughput experimentation (HTE) for
data generation that will enable materials discovery has a long
history.76−79 Increasingly, this takes the form of closed-loop
autonomous research systems or “self-driving laborato-
ries57,80−82 like the ARES system49 mentioned above. Whether
fully autonomous or not, each step in the workflow of design,
synthesis, characterization, and optimization (also referred as
design/build/test/learn) can be accelerated by incorporating
ML tools.83

The synergies between ML and HTE are illustrated with a
simple statistical model depicted schematically in Figure 3a. The
probability that at least one successful material results from an
ensemble of N independent trials, each of which has a success
probability p, is 1 − (1 − p)N. HTE increases N and ML
increases p. As depicted in Figure 3b, these have a
complementary effect on the overall probability of success and
one can compensate for a lower value of p by increasing N and
vice versa. Autonomy generalizes this in several ways: First, p is
no longer constant, but ideally increases as a function of time as
new data is acquired to improve the model, i.e., dp/dt is positive.
The improvement is problem-dependent; at best, iterative active
learning requires only a logarithm of the number of experiments
required by random sampling, but at worst may require the full
number of sample points.84 Empirical materials science studies
have observed that poorly implemented active learning can
decrease p.85 The need for model updates in active learning can
also interfere with parallelization of N. Second, autonomy
reduces the delay between data acquisition and use of the
improved model to acquire the next experiment; this is
analogous to compounding interest more frequently. Third,
these systems increase the volume and quality of experimental
(meta)data, which facilitates its use for ML. By eliminating
(unrecorded) human variations, automated processing can
potentially improve the reproducibility of experiments, thus
increasing the signal-to-noise ratio in the data set. Such
unrecorded unintentional variations in background conditions

are also minimized by performing more experiments in a shorter
span of time.
Although HTE is an essential enabling technology for

discovering exceptional materials, it is not enough. A historical
analogy is provided by combinatorial chemistry in drug
discovery.86 The lack of clinical successes from initial high-
throughput synthesis in the 1980s suggests that merely
increasing the N is insufficient. The incorporation of computa-
tional chemistry methods and informatics modeling in the 1990s
increased p needed for success. Ultimately, p depends on how
the problem is framed and determines where we look. Section V
describes paths toward ML models that increase p for
exceptional materials, rather than being limited to local
optimizations.

III.D. Limitations of Pareto-front Multiobjective Opti-
mization Strategies. For many applications, exceptionality
requires not just a single property but a balance of multiple,
possibly conflicting, objectives. When the objectives do not have
an intrinsic priority, there is no single “best” solution but rather a

Figure 3. (a) The probability of at least one success in an experimental
campaign can be increased by using ML to increase the probability that
an experiment is successful, (increasing p), or by making more attempts
(increasing N); (b) Contours showing the probability of at least one
success, as a function of changing p and N. Increasing p and N has a
synergistic effect, but a large value of one can compensate for a smaller
value of the other.
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set of optimal solutions, described in terms of a Pareto
f rontier15,26 (and ref 38 pp. 177−184), depicted schematically
in Figure 4. Multiobjective optimization methods attempt to

move the Pareto front forward, and have been applied recently
across materials science ranging from solid-state battery
electrolytes87 to magnetic high-entropy alloys3 to additive
manufacturing28 to polymer design,88 and recent reviews discuss
multiobjective optimization for organic molecules89 and
chemical reaction optimization.75

A wide variety of methodologies focus on different aspects of
the problem; for example Chimera27 handles constrained design
spaces, and ε-PA88 uses active learning to identify Pareto points
in fewer evaluations. The strengths and limitations are nicely
illustrated by a recent study which optimized the combustion
synthesis (fuel source, fuel-to-oxidizer ratio, precursor solution
concentration, and annealing temperature) of metal thin films to
simultaneously maximize the film’s conductivity and minimize
the combustion temperature using a self-driving laboratory.90

The differential expected hypervolume improvement (qEHVI)
algorithm91 employed allows monitoring of the exploration
progress; in this study the normalized hypervolumes increase
smoothly as the property response is explored, indicating
stepwise advances. This type of stepwise, continual advances of
an objective that balance trade-offs does not lend itself to the
necessary “leaps-and-bounds” advances required for transforma-
tional discoveries and may have difficulty scaling.

IV. CASE STUDIES IN THE DISCOVERY OF
EXCEPTIONAL MATERIALS

To illustrate how exceptional materials are discovered with and
without ML, we present two case studies: the discovery of High-
Tc superconductors and superhard materials. In addition to
allowing us to review applications and limitations of current ML
tools, it provides concrete examples upon which to base our
subsequent recommendations.

IV.A. Case Study: Serendipity and the Discovery of
High-Tc Superconductors. Unexpected outcomes or appli-
cations are often the first step in scientific discovery.92 The
history of high-Tc superconductors illustrates the role of
serendipity in exceptional material discovery. Research in
superconductivity, from its initial report in 191193 to 1986,
was dominated by metallic systems.94 Conventional wisdom
suggested that superconductors should be metallic, have high
symmetries and electronic densities of state, and be structurally
unstable or metastable, leading to a focus on vanadium and
niobium alloys. However, investigation of systems for which
BCS theory95 did not work, such as intermetallics96 and Chevrel
phases,97 motivated wider exploration, even if their critical
temperatures were modest.
Parallel efforts in the early 1980s were critically important for

the emergence of cuprate perovskite high temperature super-
conductors. First, Raveau,98,99 Poeppelmeier,100,101 and Tho-
mas102,103 were developing a synthetic toolbox to control oxygen
stoichiometries in perovskites, enabling mixed valencies that are
critical to the existence of superconductivity in perovskites.
Second, the broad investigations led to the observation of
superconductivity in a series of nonmetallic systems pre-1986
oxides,104 including NbO105 (which contains square planes,
much like all cuprate superconductors), spinels (LiTi2O4),

106 a
series of perovskite adjacent tungsten bronzes,107 Ba(Pb1−xBix)-
O3,

108 and even the perovskite SrTiO3.
109

Reports of oxide superconductors intrigued Bednorz and
Müller, coupled with both Raveau’s synthetic advances and
discovery of metallic conductivity in a copper-containing oxygen
deficient perovskite,110 inspired their discovery of super-
conductivity in the LaBaCuO systems (Tc = 28 K).111 Ceramics
are generally insulators, but this anomalous case provided a new
solution to an established problem via an unexpected route. The
initial announcement motivated a decade of incremental
optimization, during which superconductivity above the
temperature of liquid nitrogten was quickly achieved in an
YBaCuO oxide,112 as well as the discovery of the reigning
HgBaCaCuO cuprate superconductor.113

Could ML models have assisted in this discovery?
Undoubtedly, ML can help optimize materials once examples
are known. For example, Pogue et al. recently used anMLmodel
trained on >16,000 compounds in an iterative fashion to guide
the synthesis of new superconductors, and found a new Zr−In−
Ni superconductor with modest Tc = 9 K, as well as
rediscovering a few known superconductors not in their training
set.56 But if one only had experimental knowledge of pre-1986
superconductors, would ML predict the existence of high Tc
cuprates? The answer appears to be “no”. In 1988, Villars and
Phillips performed what would now be called feature selection
and clustering using the known data of approximately 60 high-Tc
materials (including YBaCuO); however, their analysis (Figure
2 in their paper) does not predict BaCaCuO,114 and it is unclear
to what extent many other materials would be false positives.
Three decades later, Stanev et al. used the SuperCon database of

Figure 4. Pareto front is a plot of optimal solutions for a multiobjective
optimization problem. The x-axis represents one objective, and the y-
axis represents another objective. Points on the plot are Pareto-optimal
solutions, with no other solutions better in both objectives. The Pareto
front connects all these solutions and shows trade-offs between
objectives. Points above the front are dominated by at least one other
solution, while points on the front are nondominated. The Pareto front
moves forward with each iteration making it a useful tool for decision-
making and optimization, but not for identifying exceptional cases.
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over 16,000 compounds to train random forest models for
predicting theTc based solely on composition.115 While they did
not consider a time-separated holdout, Figure 4b in ref 115
shows that a model trained on low-Tc (primarily pre-1986)
materials predicts all cuprates as erroneously low-Tc. (The
failure to extrapolate could be a consequence of using a random
forest model.) On the other hand, their results suggest that a few
initial discoveries suffice for ML to identify other examples;
indeed, once cuprates are included in the training data set, they
comprise the vast majority of candidate superconductors.
Meredig et al. also observed that ML models trained without
cuprate examples predict cuprates to be below-average super-
conductor116 (see Figure 2 in ref 116). Alternatively, Ling et al.
usedML to quantify the uncertainty ofTc (rather than predict its
value); iterative sampling materials guided by maximum
uncertainty found high-Tc superconductors (including cup-
rates) in about a third of the experiments required by a random
search.117 These previous ML studies may have focused too
narrowly on superconductivity; perhaps a broader study of
metallic conductivity (rather than limiting to superconductiv-
ity), informed by earlier reports of metallic conductivity in
LaSrCuO, would have served as the bridge from classical BCS
superconductors to these new compounds.118 Overall, this
supports the claims made in Section III: existingML approaches
can assist materials optimization but do not identify new
exceptional materials.
IV.B. Case Study: Machine Learning and the Discovery

of Superhard Materials. Similar strengths and limitations of
the current ML apply to the discovery of superhard materials,
defined as those having Vickers hardness (Hv) exceeding 40
GPa. Diamond is the hardest known naturally occurring
substance (Hv ≈ 100 GPa), and significant efforts have gone
into making synthetic diamonds. In 1954, scientists at General
Electric (GE) Research Laboratory developed the first approach
involving the subjecting of graphite to intense heat and pressure
using a diamond press. GE continued to refine the process
through inventions in the 1970s like high-pressure, high-
temperature (HPHT) synthesis, which subject a carbon source

to extreme pressure and heat in the presence of a metal catalyst.
HPHT synthesis allowed GE to create larger, higher-quality
diamonds more efficiently than ever before. The company began
selling synthetic diamonds for use in industrial applications such
as cutting tools and abrasives. At a similar time (1957), synthesis
efforts were also focused on making isostructural, isoelectronic
cubic boron nitride (c-BN) using high-pressure, high-temper-
ature synthesis. Superhard c-BN’s unique properties, including
its extreme hardness (HV≈ 60GPa) and thermal stability, make
it an ideal material for use in ferrous cutting tools, grinding
wheels, and other industrial applications. Today, c-BN is used
extensively in aerospace, automotive, and manufacturing
industries. Given the tremendous application space, it is no
surprise that researchers have expended significant effort, with
only moderate success, trying to emulate these properties.
However, it has not been easy. An analysis by Brgoch and co-

workers provides insight into why so few superhard materials
have been identified. They constructed a boosted machine
learning regression model capable of predicting Vickers
hardness. Using this model to predict the hardness of more
than 60,000 inorganic compounds in Pearson’s Crystal Data set
revealed that only 0.1% of known crystalline compounds surpass
the superhard threshold at 0.5 N applied load, and only 0.01%
meet this criterion at 5N applied load.119 Not only is
superhardness rare, the total data set of experimentally hardness
measurements is relatively small (about 500 unique composi-
tions).119,120 Moreover, the data set is biased to low hardness
values and certain compositions (such as boron-containing
compounds) are disproportionately present in this limited
training data,119 attributable to the same types of anthropogenic
research biases observed in other experimental materials data
sets.59

The limited experimental data might suggest that physics-
based simulations could be a more appropriate path toward
materials discovery. However, atomistic DFT is unable to
directly calculate the hardness as it is a property that involves
multiple length-scales exceeding what can be achieved by direct
simulation. One could instead use properties that are readily

Figure 5. Six recommendations for research toward machine learning for exceptional materials.
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calculated by DFT (such as bulk and sheer moduli) as either
initial selection criteria120 or as inputs to semiempirical
expressions for hardness.121 Researchers have further paired
these methods with crystal structure prediction algorithms
(USPEX,122 CALYPSO,123 XtalOpt124) to predict new
promising superhard compounds. ML can also be used to
expand the search space enabled by DFT calculations.120 These
physically motivated models provide some guidance but are
generally worse at quantitative hardness predictions than direct
ML methods.119,121 ML models are accurate enough to be used
to screen for interesting compounds in the Sc−Os−B phase
space as a demonstration of their quantitively accuracy. The
model captured hardness changes in a solid solution system
(Sc2−xYx)OsB6 and the highly disordered borosilicide,
YB41.2Si1.42. Additionally, Sc2OsB6 was determined to be nearly
superhard (Hv ≈ 38 GPa). Nevertheless, the hardness values of
these systems fall far from diamond or c-BN.
A more recent approach to the problem embraces the rarity of

superhardness by treating it as an unsupervised anomaly
detection problem.125 In this work, an autoencoder model was
trained to find low-dimensional latent representations of the
crystal structure. Compounds with anomalous bonding motifs
will be poorly described in this learned representation, and this
can be used to identify anomalous structures for further
investigation. While such structural anomalies do not directly
indicate superhardness, the hypothesis is that these materials
often contain unusual bonding motifs, which is substantiated by
an empirical correlation between reconstruction error and
superhardness. The methodology could be expanded to include
a generative approach that can predict new crystal structures
where the loss function (reconstruction error) is maximized and
premised on the previous correlation, having a correspondingly
higher hardness. Nevertheless, there is no guarantee that any
combination of elements in any given crystal structure would
surpass diamond as the hardest single-phase material.

V. RECOMMENDATIONS TOWARD ML FOR
EXCEPTIONAL MATERIALS

There is no single “scientific method”, and scientific advances
often involve rejecting established norms.126 In that spirit of
epistemological anarchism, we offer six maxims for guiding the
research community, depicted schematically in Figure 5. While
these recommendations focus primarily on experimental
discovery, many are equally applicable to autonomous computa-
tional discovery.127 When possible, we illustrate these points
with applications in chemistry andmaterials science, but inmany
cases, we draw instead upon examples from finance, ocean-
ography, computer science, and evolutionary biology.
V.A. Avoid the tyranny of the middle and focus on

extrema. By definition, there are less training data at the
extremes, resulting in greater model uncertainty associated with
those regions. Typical metrics for ML training and evaluation
emphasize performance on an average over the data, but this will
be dominated by typical materials rather than exceptional
extrema. Common ML metrics (accuracy, R2, etc.) do not
express the intended goal when in the presence of such outcome
imbalances,128 nor do they measure an algorithm’s ability to
guide iterative discovery.62 Solving this problem may simply
correspond to choosing different loss functions when training
ML models. A possible analogy is to the use of Conditional
Value at Risk (CVaR)�expected loss in the worst q%of cases�
in portfolio optimization,129 which corresponds to a 1-norm of q
% largest magnitude entries.130 Alternatively, it may require

modifications to existing algorithms. Typical reinforcement
learning (RL) formulations maximize cumulative reward rather
than the best possible result found.131 Alternative problem
formulations, such as the Max-k-arm bandit model,132 better
align with the goals of scientific discovery, as demonstrated with
in silico numerical experiments of exploring molecular SMILES
strings to maximize the boiling point and other thermophysical
properties described by an empirical proxy.131 In the context of
Bayesian optimization type strategies, an appropriate approach
is the output-weighted optimal sampling introduced by
Blanchard and Sapsis and co-workers,133−135 which has been
recently applied to extreme event discovery in epidemiological
models, rogue waves, and structure mechanics.136

V.B. When data are limited, qualitative prediction of
direction to the goal is more valuable than (interpola-
tive) accuracy. If you are blindfolded, it is better to know the
approximate direction to the goal than to know the exact distance
to the goal. Focusing on accuracy in the early stages can be
detrimental; for example, Random Forest models tuned to
maximize only cross-validation accuracy may produce low-
quality models.116,137 But collecting just any data results in the
“tyranny of the middle” problem discussed above. Rather, we
want simple qualitative models that guide extrapolation (and
data collection efforts) to collect relevant data, rather than
quantitative interpolative accuracy. Do not build a perfect model
with limited data�the important thing is to collect more data,
and the right data. An example of the importance of direction
over accuracy exists in the initial reports of YBaCuO. Chu and
co-worker’s initial report of superconductivity at 93 K contained
neither the formula nor structure of the new phase.112,138 This
report did, however, provide more than enough direction for
solid-state chemists and ceramists to quickly identify the phase
in question and initiate a decade of intense research.
The evolution of astronomy from Ptolomy to Kepler provides

an insightful historical analogy. Kepler’s model was neither more
accurate nor significantly simpler than Ptolomy’s.139 Kepler
himself noted in the introduction to Astronomia Nova “the
[models] are for practical purposes equivalent to a hair’s
breadth, and produce the same results.”140 Mathematically, the
system is underdetermined, as the limited set of data can be fit by
an arbitrarily complex model. The strength of Kepler’s model
was the ability to extract qualitative hypotheses about individual
planets and sufficient quantitative accuracy to guide observa-
tion.141 Specifically, Kepler’s model contained a latent
hypothesis that Venus should have phases, and enabled
sufficiently accurate calculations to direct Galileo’s experimental
observations disproving the Ptolemaic model.142 Ruling out the
Tychonic model required improved instrumentation and data
collection to enable the observation of stellar aberration,143

analogous to HTE for exceptional materials discovery.
The general strategy for underdetermined problems is to

introduce a priori constraints. Classically, this was done by
devising physical models in terms of the relevant variables and
the admissible functional forms of their interactions. Physics-
based computer simulations serve a similar role,127 although the
examples above indicate their limits for exceptional materi-
als.58,121 We focus purely on data-driven approaches. Strategies
of physics-informed machine learning144−146 are one approach for
this problem. A recent application of this approach to
determining the structure of oxide glasses is described by
Bødker et al.147 However, this is less applicable to exceptional
materials which involve new physics precluded by using existing
models as constraints (e.g., using BCS theory95 to inform your
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ML model will hinder discovering cuprate superconductors).
Feature selection corresponds to an implied constraint that only a
small subset of the input variables determine the system
performance. The identified features are combined with simple
models to make predictions. Some examples include the
aforementioned synthesis of superhard materials,120 but other
examples include discovery of antimicrobial conjugated
oligoelectrolytes148 and perovskite crystal growth modifying
additives.149 Once hypothetically relevant features correlated to
the output are selected, relatively simple models can be
constructed to make extrapolations. Even simple linear models
can be quite effective for this purpose.128 The features
themselves need not have an interpretable relationship to the
property being studied (vide inf ra); they merely serve as a proxy
for guiding the experiment selection. There is also no reason to
restrict consideration to a predefined ML-model function type.
More broadly, symbolic regression corresponds to the ansatz that
a relatively simple combination of mathematical functions
describes the behavior. There are a variety of applications of
symbolic regression methods to problems in chemistry150 and
materials science.151,152 In practice, symbolic regression is often
combined with various feature selectionmethods, with examples
including VS-SISSO153 and transformer-based approaches for
symbolic regression.154

Emphasizing the qualitative direction has consequences for
the design of HTE systems. Early stage validation might
emphasize rapid (but potentially noisy) experimental methods
rather than the types of rigorous methods used in subsequent
stages of research in the interest of increasing coverage. This also
suggests the need for appropriate data sharing and interoper-
ability formats (such as the specification of experiments) to
facilitate the handoff between high- and low-throughput
synthesis and characterization processes, especially when they
occur in different laboratories. On the other hand, many
historical examples of exceptional material discoveries resulted
from comprehensive characterizations which were unnecessary
to the immediate goals of the project, but which nonetheless
revealed an unanticipated outcome.92 For example, conductivity
measurements in the LaBaCuO system revealed metallic
behavior, foreshadowing Bednorz and Müller’s discovery. This
suggests measuring asmany different properties as possible, even
if not directly related to the current research theme, and storing
the results in public databases to allow for retroactive retrieval of
surprises or the use in training ML models for different
properties.
V.C. Sample what can be made and how to make it �

defer optimization. As it is impossible to exhaustively
enumerate all of the possibilities in these problems, one must
instead sample the possibilities, which corresponds to the task of
generative ML; methods and applications of generative ML to
chemical problems have very recently been reviewed in ref 155.
We advocate that these methods be used to cast a wide net. As
noted by Herbert Simon, finding a global optimum to real-world
problems often requires an intractable amount of time, effort,
and computation, but finding a solution that satisf ices�i.e., is
feasible and meets or exceeds a baseline aspiration level�is
often tractable.156,157 This is marked in the case of combinatorial
optimizations�like those involved in materials discovery, in
which the number of possibilities grows exponentially in the
problem variables, each of which must be checked. In these
cases, we argue that merely sampling the solutions to find a
satisfactory solution should be our goal. Evolutionary theory
suggests that introducing high levels of selection pressure

restricts the scope and direction of exploration to a small
neighborhood near high fitness individuals, and in turn delays or
prevents innovation by inhibiting a series of slightly deleterious
intermediate steps that are needed to find new optima.158 For
this reason, a collection of satisfactory solutions can be more
useful for our purpose than a few highly optimized examples.
To be more than a theoretical curiosity, it must be possible to

synthesize the material. This may be subdivided into the
question of whether the material can exist (i.e., fundamental
thermodynamic constraints) and how it can be brought into
existence (the sequence of practical operations and feasibility of
required conditions). The former is partially addressed by the
plethora of ML models for predicting ground state thermo-
chemistry, along with a proper accounting for metastability.35

The latter is partially addressed by ML approaches that use
natural language processing on the literature to extract
experiment plans (for training) and then generate plans based
on that data.159 (A parallel discussion of these ideas as they apply
to organic and medicinal chemistry can be found in refs 155 and
160.)
More broadly, one can think of two extreme versions of this

task. At one extreme, synthesizability is applied as a filter to a list
of generated candidates. For example, usingMLmodels to make
predictions of superhardness, then applying a formation energy
filter to identify the feasible compositions.119 At the other
extreme, synthesizability is imposed to generate candidates by
enumerating (or defining) a state space of experimentally
feasible composition and process conditions points and then
allowing property prediction models to select within them. A
more efficient approach would combine these extremes to avoid
the need to evaluate candidates that are ultimately discarded by
the subsequent process. This might range from including
physics-based symmetry contraints,161 directly incorporating a
learned formation energy constraint into the generative
process,162 or by restricting the generating samples to obey
compositional “grammatical” rules.163 The combination of
empirical synthetic accessibility metrics, fragment- and syn-
thesis-based constraints, and forward and reverse synthesis
prediction to constrain generative models for drug design160 can
serve as a model for materials chemists. Fundamentally, the
limits of synthesizability are defined in terms of the operational
capabilities of the autonomous experiment system and what
actually happens in the lab. Thus, an extreme version is simply to
allow an algorithm to guide the HTE system directly. An
example of this approach is a genetic algorithm optimization of
gold nanoparticle synthesis experimental parameters to match a
specified UV/vis spectra.164

The important thing is that the ML model leads to samples in
the right neighborhood. One framework is similarity-based
kernel learning, in which one can define a cost function
associated with acquiring a desired (but difficult) data point
versus several similar (but more easily acquired) data points, and
then use a model trained on the local environment to infer the
desired point.165 The ease of acquisition can be computed by
combining materials, labor, and time constraints.166 Another
framework is provided by the Multidimensional Archive of
Phenotypic Elites (MAP-Elites) algorithm, an evolutionary
algorithm used in reinforcement learning, which samples and
stores multiple candidate solutions (“elites”) on a grid to
preserve a diverse set of characteristics for possible solution.167

Zooming-based Bayesian optimizations have a similar alter-
nation between global sampling and local optimization.41 This is
also reminiscent of Lev́y flight models of animal foraging
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behavior, in which the search process is characterized as a
random walk with a heavy-tailed distribution of step sizes, and
which in practice looks like local exploration in a region
interspersed by large jumps to new regions.168

V.D. Create room (and look) for the unexpected while
pursuing your goal. Scientists are trained to minimize
variance in their laboratory procedures. There is even a new
ACS journal, Precision Chemistry,169 focused upon this goal. In
contrast, we advocate the opposite approach�Max Delbruck’s
principle of limited sloppiness: “If you are too sloppy, then you
never get reproducible results, and then you never can draw any
conclusions. But if you are just a little sloppy, then when you see
something startling you...nail it down.”92 Epsilon-greedy
approaches in reinforcement learning provide a theoretical
justification170�one should mostly take the putative most
profitable action, but also allocate some fraction of effort to
random new actions in case they are better. This is synergistic
with our previous recommendation to avoid premature
optimization. Sloppiness can be active (e.g., adding randomness
to materials experiment plans59 or using an additional cost
function to experiment generation that maximizes experiment
diversity54) or passive (e.g., taking advantage of uncontrolled
changes in laboratory temperature and humidity as natural
experiments171). Variations in parameter values (“micro-
sloppiness”) are more easily achieved, but less likely to lead to
large improvements; variations in reagent identity or steps
(“macro-sloppiness”) typically must be deliberately pro-
grammed.
Despite advocating for deliberately “sloppy” reaction designs,

we emphasize that this requires the complete data capture of
what actually transpired. HTE provides a natural synergy, as it
enables complete, machine-readable data collection of meta-
data and “failed” experiments which might not otherwise be
recorded, but which are essential for ML training.172

Furthermore, allowing for sloppier outcomes might simplify
the design tolerances when constructing an HTE system.14

Once the data are collected, ML methods for anomaly detection
enable automated serendipity. The role of structural anomaly
detection in the discovery of superhard materials was discussed
in Section IV.B,125 and similar opportunities have been
discussed for computer-vision-based scanning electron micros-
copy characterizations173 and surface-enhanced Raman.174 The
simplest form may be detecting whether an unexpected change
has occurred in one or more spectra, a strategy used to discover
new organic synthesis reactions.175,176 Coupling the observation
of change in the spectra to neural network models of molecular
structure has been used to steer the experimentation toward less
predictable reactions.177

Data reuse and sharing can also enable finding unexpected
trends within and between laboratories by data sharing.178

There are many examples of scientific serendipity, in which a
prior solution (for example, a compound that was made and
characterized for a different purpose) is found to solve a later
problem because of some new insight.92 For example, lead
titanate was proposed as a stable photocathode for dye
sensitized solar cells based on band structure similarity to
known photocathodes.179 Requirements by funders and
publishers around FAIR (findable, accessible, interoperable,
reusable)180,181 and TRUE (Transparent, Reproducible, Usable
by others, Extensible)182 data practices can help create such a
resource for retroactive discovery.
V.E. Try to fill-in-the-blanks of input and output space.

There is a great opportunity to developMLmethods that enable

untargeted search.92 Closely related is the importance of
uncertainty quantification: fill in the portions of the map with
the greatest uncertainty. The obvious way to frame this is in
terms of the types of inputs (e.g., compositions and structure)
that have not been observed before. Identifying where these gaps
exist can be done by using databases, such as the identification of
compositional gaps in the Materials Projects database discussed
in Section III and Figure 3b. Proactively, a strategy is to identify
these unexplored compositions, use constraints (such as ML-
based formation enthalpy estimators of stability) to determine
which compositions are feasible, and then target experimental
searches to fill in those blanks.183 For example, the synthesis of
many high-temperature cuprate superconductors was guided by
the Goldschmidt tolerance factor184 which enables the
determination of feasible compositions likely to result in the
formation of a perovskite. This, coupled with the solid-state
literature and nascent Inorganic Crystal Structure Database,185

resulted in a host of experiments targeted at potential novel
materials that were both feasible and unreported. More recently,
ML-based approaches have been applied to better explore the
space of cuprate-like compounds.186,187 However, even simple
database queries and linear regressions (combined with DFT
estimates of stability) suffice to identify potential compounds
that fill-in the gaps in the distribution of observed apical and in-
plane Cu−O distance distributions for this class of com-
pounds.188

Alternatively, one can focus on previously unobserved
outcomes. The information entropy of the observed property
distribution can be useful for identifying outcome imbalances,
and active learning used to prioritize new samples to correct
these imbalances, recently demonstrated in the context of
formation energy/structure biases of intermetallic com-
pounds.36 To understand how properties are coupled to one
another, it might even be useful to fill in equally rare
contraindicated regions with undesirable trade-offs (“anti-
exceptional materials”). Learning general ways to reach arbitrary
outputs can serve as waypoints to the desired solution. An
extreme version of this approach explicitly rejects objective-
based search, and focuses solely on output novelty.189 Empirical
evidence suggests that novelty-only strategies (which ignore any
type of fitness objective function) can be highly effective in
complex environments, such as video games.190 Random goal
exploration algorithms191,192 select a random target defined in
the space of possible outcomes and then infer the necessary
inputs needed to achieve that goal. The process can be repeated
iteratively until the target is reached, refining the model’s
knowledge of the input−output relationships. These methods
have been demonstrated in the context of identifying novel
protocell lipid formulations.193 Blending the distinction
between input- and outcome-oriented approaches, the diversity
is all you need reinforcement learning strategy suggests
simultaneously optimizing for novel outcomes and synthetic
paths (inputs), without imposing other types of fitness objective
functions.194 Regardless of the specific optimization strategy,
appropriate data sharing (vide supra) is a prerequisite for
identifying the underexplored input and output spaces.

V.F. Do not confuse human understanding andmodel
interpretability. Is knowledge more than a merely true
belief?195 Suppose you have an oracle (e.g., an LLM-based
chemical property predictor47) that tells you where you can get
lucky�does it matter how the prediction is made, provided you
can verify the outcome? Once the initial discovery is validated
experimentally, the traditional scientific method can be
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unleashed to understand the underlying causes systematically.
We saw this pattern in the case study of high-Tc superconductors
discussed previously, and there is no reason to hold ML-assisted
discoveries to a higher standard. Essentially, we argue that the
initial discovery stage should prioritize a form of reliabilism
(defining knowledge as a reliably formed true belief), with an
emphasis placed on knowledge-how (in contrast to knowledge-
that). This neither requires an explanation of the workings of an
arbitrary black-box ML model, nor is it recognizable as
constituting a proper “scientific” explanation, whatever “ex-
planation” means in practice.126

Leo Breiman famously contrasted model culture, which uses
data to estimate the values of physically meaningful parameters,
against algorithm culture (what we would now call ML) which
views model parameters as meaningless apart from prediction
quality.77 The confusion between these two cultures leads to
misapplication and misinterpretation about the scope of
explainable AI (XAI) methods for communicating the inner
workings of ML algorithms to humans. For a very recent review
of trends in this field more broadly, see ref 196; for reviews of
interpretable and explainable methods applied specifically to
materials science, see refs 197−201. XAI is motivated by the

desire to have the right answer justified by acceptable reasons,
but in practice common XAI methods can be misleading; Lei et
al. provide a case study of the limitations of SHAP and ensemble
feature importance measures in experimental materials science
problems.137 At best, XAI methods generate low-dimensional
descriptions of how the model outputs behave based on changes
to the inputs. That is, they indicate only features correlated to
the model’s output, with no claim of physical meaning or
causality. Determining whether these features are meaningful
requires human input. Practically speaking, XAImethodsmay be
unnecessary for the initial discovery of exceptional materials.
Model explainability in these early stages is unnecessary because
the models will be based on limited data and thus prone to
overfitting and oversimplification. Moreover, the most appro-
priate models for initial discovery�for both interpretability and
extrapolation�may be the types of feature-selected linear
models discussed above,128 obviating the need for more
sophisticated black-box model interpretability methods. In
fact, empirical studies have found XAI detrimental in uncertain
environments, as humans are more likely to reject helpful
recommendations because of overconfidence in their trouble-
shooting abilities.202 In many cases, automatic identification of

Figure 6. (a) Block diagram of typical autonomous workflow; (b) Block diagram of an autonomous workflow oriented toward exceptional materials.
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anomalies (vide supra) for review by a human operator suffices as
long as the anomalies are rare. The human scientist can then
invoke their own reasoning, statistical evidence, or other forms
of investigation to study the problem.
ML can certainly also play a role in building scientific

understanding af ter the initial discovery of an exceptional
material. Most scientists associate science with a knowledge of
causes.203 This can be automated by modern causal influence
methods204 which have recently been applied to catalysis205 and
scanning probe microscopy.206−208 Ultimately, causal explan-
ations must go beyond merely the brute details of the
experiments (such as the input settings on a particular
instrument) and draw upon deeper semantic relationships
underlying structure, property, processing, and characterization
encoded in an explicit and machine-readable way. Ideally, this
information is incorporated into interoperable knowledge
graphs that would allow scientists (and automated inference
engines) to operate on fully linked concepts and data
instances.209 In contrast to the statistical inference methods
that constitute most of the applications of ML, semantic
representations allow for logical inferences characteristic of
symbolic AI (so-called “good old fashioned AI”) en vogue during
the 1950s−1990s.210 Progress toward semantic representations
of chemistry and materials data and their applications are
discussed in refs 209, 211, and 212.
Even without model interpretability or causal explanations,

merely having access to “superhuman” AI improves human
decision-making. The board game Go provides a case study:
Human decision quality remained roughly constant and human
decision novelty decreased in the 60 years of tournament data
preceding AlphaGo, but access to AlphaGo increased human
decision quality and novelty by inspiring players to depart from
traditional strategies.213 This suggests the novelty-enhancing
recommendations suggested above may suffice to improve
human scientific understanding, even without model explain-
ability, per se.

VI. CONCLUSION: INTEGRATED WORKFLOWS FOR
EXCEPTIONAL MATERIAL DISCOVERY

Traditional “manual” and autonomous materials discovery is
based on a synthesize, characterize, learn, plan loop, depicted
schematically in Figure 6a. (Similar process loops, with slightly
different names, occur in a variety of scientific fields and the
automation thereof, as discussed in ref 83.) Existing ML
approaches accelerate this process by assisting in various
optimization subtasks,14 such as fine-tuning of synthesis and
testing operations when dealing with new precursors, reducing
the need for skilled labor in operating tools. For example,
characterization can be accelerated by automating spectral
interpretation200 and efficiently planning sample character-
ization campaigns.214 ML can extract additional information
from existing spectroscopy and microscopy methods.215,216 As
discussed in Section III.B, existing ML approaches excel at a
variety of research-related optimization tasks.
How might the workflow change to discover exceptional

materials? A schematic is depicted in Figure 6b. As discussed in
Section III.C, it is necessary to increase both p (corresponding to
the learn and plan phases) and N (corresponding to synthesize
and characterize). Section V presents examples and suggestions
of how new types of ML can increase p. Given the low
probability of exceptional materials, one might introduce an
intermediate constrain phase to limit the possibilities. While this
may include the types of thermodynamic and synthetic

feasibility determination methods discussed in Section V, it is
potentially broader in scope. For example, Liu et al. described
how to merge human observation of sample quality into an ML
acquisition function using soft constraints,20 and Zubarev et al.
recently described software to assist in eliciting human expertise
about prioritization, level-of-knowledge, and risk assessments
used as input to ML-assisted discovery of new photoacid
generator for EUV lithography.217

Given the rarity of exceptional materials, it is also crucial to
increase N, the number of unique material compositions tested
per unit time by HTE methods, as discussed in Section III.C.
Broadly, this can be accomplished by either automating existing
laboratory processes or developing new types of miniaturized
processes. An extreme version of the former is a mobile robotic
arm that uses the same equipment as a human chemist,218 but it
might consist of a dedicated “ChemPU” device219,220 or a
collection of modified equipment orchestrated by a central
sample management system.221 This has the advantage of using
well-understood synthesis and characterization techniques but
limits opportunities for acceleration and scaling. Alternatively,
new types of miniaturized and high-throughput synthesis and
characterization methods�e.g., microfluidics systems,222,223

direct writing from liquid precursors,224,225 combinatorial
deposition of sample libraries,226 and atomic scale dip-pen
nanolithography227,228�can potentially increase N by orders of
magnitude, but introduce doubt whether the resulting products
are representative bulk samples. (Given their novelty, the design
of the devices themselves is a subject for traditional ML-based
optimization.229) Faster synthesis makes characterization the
rate-limiting step, requiring a shift to faster optical or electrical
proxy measurements. For example, computer-imaging-based
methods can be used as a fast proxy for indenter-based hardness
measurements, within certain bounds of materials composition
and accuracy.230 The open challenge is to define the limits
within which proxies are valid or fail and how to dispatch the
discovery process across these different types of modalities.
Research efforts demonstrating equivalence between standard
and novel synthesis and characterization techniques would
initially take the form of explicit trust building experiments
conducted on both sets of instruments but ideally could also be
automated. At the level of understanding, this might take the
form of knowledge-graph approaches to represent semantic
relationships between the results of different types of methods
applied to a sample.209

Finally, at the level of planning and coordination between
these different types of modalities, the use of LLM-based
intelligent agents can be used to direct guide more purpose-
driven planning and design tools, and automate aspects of the
reasoning process across multiple facilities with different
capabilities.231,232 Putting these recommendations into the
form of an integrated workflow should better enable the
discovery of exceptional materials.
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