—— it @et +
- [-.I|||1_!_'*1|_=||--.I RALER
@l‘]lllll'll

é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

DChannel: Accelerating Mobile Applications With
Parallel High-bandwidth and Low-latency Channels

William Sentosa, University of Illinois Urbana-Champaign;
Balakrishnan Chandrasekaran, Vrije Universiteit Amsterdam;
P. Brighten Godfrey, University of lllinois Urbana-Champaign and VMware;
Haitham Hassanieh, EPFL; Bruce Maggs, Duke University and Emerald Innovations

https://www.usenix.org/conference/nsdi23/presentation/sentosa

This paper is included in the
Proceedings of the 20th USENIX Symposium on
Networked Systems Design and Implementation.

April 17-19, 2023 * Boston, MA, USA
978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc Ellall aeals
) &yisillg pglal
'g King Abdullah University of

Science and Technology

DChannel: Accelerating Mobile Applications With
Parallel High-bandwidth and Low-latency Channels

William Sentosa®, Balakrishnan Chandrasekaran®, P. Brighten Godfrey**, Haitham Hassanieh®, Bruce Maggs*
*UIUC, VU Amsterdam, *VMware, °EPFL, *Duke University and Emerald Innovations

Abstract

Interactive mobile applications like web browsing and gam-
ing are known to benefit significantly from low latency net-
working, as applications communicate with cloud servers and
other users’ devices. Emerging mobile channel standards have
not met these needs: 5G’s general-purpose eMBB channel
has much higher bandwidth than 4G but empirically offers
little improvement for common latency-sensitive applications,
while its ultra-low-latency URLLC channel is targeted at only
specific applications with very low bandwidth requirements.

We explore a different direction for wireless channel de-
sign to address the fundamental bandwidth-latency tradeoff:
utilizing two channels — one high bandwidth, one low la-
tency — simultaneously to improve performance of common
Internet applications. We design DChannel, a fine-grained
packet-steering scheme that takes advantage of these parallel
channels to transparently improve application performance.
With 5G channels, our trace-driven and live network experi-
ments show that even though URLLC offers just 1% of the
bandwidth of eMBB, using both channels can improve web
page load time and responsiveness of common mobile apps by
16-40% compared to using exclusively eMBB. This approach
may provide service providers important incentives to make
low latency channels available for widespread use.

1 Introduction

Low latency is critical to interactive applications such as web
browsing, virtual and augmented reality, and cloud gaming.
For web applications, even an increase of 100 ms latency can
resultin as much as 1% revenue loss, as noted by Amazon [21].
Emerging VR, AR, and cloud gaming applications also rely
on low latency to deliver a seamless user experience. For
instance, VR requires 20 ms or lower latency to avoid any
simulator sickness [19].

Current mobile broadband, serving general Internet appli-
cations such as web browsing and video streaming, have not
yet delivered consistent low latency performance, in part due
to the inherent trade-off between latency and bandwidth [22].
One approach is to provide two separate channels (or ser-
vices) — one optimizing for bandwidth, the other optimizing
for latency — with different types of user applications assigned
to them. 5G NR follows this pattern with its enhanced mo-
bile broadband (eMBB) and ultra-reliable and low-latency
communication (URLLC) channels. eMBB, which serves
general-purpose Internet use, is heavily focused on delivering
gigabit bandwidth. This channel will be useful for streaming

media but offers little to no improvement for latency-sensitive
applications, such as web browsing [34,35, 50]. Experimen-
tally, web page load time in existing 5SG deployments, even in
close-to-ideal circumstances (a stationary device and a chan-
nel with little utilization), is similar to 4G for pages smaller
than 3 MB in size and about 19% faster than 4G for pages
larger than 3 MB [34]. This is due to 5G eMBB having 28 ms
or larger latency, broadly similar to 4G [34]. Our measure-
ments of 5G mmWave showed similar results, at around 22
ms in ideal conditions.

Meanwhile, 5G URLLC promises an exciting capability
of very low latency, in the range of 2 to 10 ms [6], but com-
promises severely on bandwidth, making it unsuitable for
common mobile applications. Our experiments emulating
web browsing (the most widely used mobile application [44],
and far from the most bandwidth-intensive application) over
URLLC with 2 Mbps bandwidth show web page load times
would be 5.87x worse than with eMBB. Hence, neither using
URLLC alone nor using eMBB alone provides good perfor-
mance. As the latency-bandwidth trade-off is fundamental,
this separation between a high bandwidth channel (HBC)
and a low latency channel (LLC) is likely to persist; 6G, for
example, is also expected to include both [54].

We believe, however, that the availability of two channels
offers an opportunity to deal with the fundamental latency-
bandwidth tradeoff in a new way, beyond simple static as-
signment of an application to a single channel. Specifically,
we argue that by using high bandwidth and low latency chan-
nels in parallel on mobile devices, significant performance
and user experience improvements are possible for latency-
sensitive applications. Here, we explore this hypothesis for
the case of web browsing and web-based mobile applications.

Mapping an application’s traffic to HBC and LLC is diffi-
cult since we have to use LLC’s bandwidth very selectively.
Indeed, the main deployed transport-layer mechanism to com-
bine multiple channels, MPTCP [49], assumes two interfaces
that are each of significant bandwidth, with the goal of ag-
gregating that bandwidth or supporting failover. LLC’s band-
width, however, is a rounding error compared to HBC’s. Other
works — particularly Socket Intents [42] and TAPS [38] — ex-
ploit multi-access connectivity through application-level in-
put, which we prefer to avoid to ease deployment and expand
relevance to other applications in the future; therefore we
expect new mechanisms are necessary.

To solve these problems, we design DChannel, a system
that leverages parallel channels to improve the performance
of mobile applications. DChannel comprises two modules

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 419

running at either end of the channels — namely, in the mobile
device OS and in a gateway device operated by the service
provider. Central to the approach is a packet steering scheme
that operates at the network layer (i.e., IP packets) without
requiring any application input. Such fine-grained, per-packet
decisions (as opposed to, for example, HTTP object-level
steering) are key to making effective use of the limited LLC
bandwidth. To decide which packets are worth accelerating,
since LLC bandwidth is extremely limited, DChannel treats
the channel as an expensive resource and calculates the ben-
efit and cost of utilizing the LLC for each packet. Finally,
since the parallel channels could occasionally confuse the
transport layer with out-of-order delivery, DChannel employs
a reordering buffer in the mobile device and gateway.

To evaluate our design with a concrete scenario, we lever-
age 5G’s eMBB and URLLC as our HBC and LLC. We eval-
uate the benefit of DChannel in our experimental testbed (§4).
Our testbed includes a prototype that can capture and steer
application traffic, and a high-fidelity trace-driven network
emulator that emulates cellular network latency variability
and delay caused by radio resource control (RRC) state tran-
sitions [41]. We gather two types of real 5G eMBB traces —
mmWave and lowband — in three different scenarios: station-
ary, low mobility, and high mobility. Our evaluations cover
popular web applications such as web browsing and Android
mobile applications. Using the testbed, we evaluate our packet
steering scheme and compare it with prior approaches such
as MPTCP [2] and ASAP [29]. We also evaluate DChannel
in live 5G eMBB networks. Our key findings are as follows:

* DChannel, which requires little per-connection state and
no application knowledge, yields superior performance
compared to the other evaluated schemes—object-level
steering, static packet-size-based steering, as well as
prior work, MPTCP and ASAP [29], which used multiple
channels in other settings.

* Compared with exclusively utilizing the eMBB, allo-
cating a modest bandwidth of 2 Mbps to URLLC al-
lows DChannel to improve web page load time (PLT).
Under conditions that are ideal for eMBB (a stationary
client with a line of sight to the base station and full
signal strength), DChannel reduces PLT by 20% and
33% in 5G mmWave and low-band settings, respectively.
Under more challenging mobile conditions, DChannel
improves PLT by 37% and 42% in 5G mmWave and
low-band, respectively.

* In addition to web browsing, we evaluated three Android
mobile apps in a live environment and find DChannel
improves apps responsiveness by 16% on average.

* Somewhat surprisingly, DChannel improves sustained
throughput in our mobile 5G setting by roughly 10% — a
useful side benefit of accelerating the TCP control loop
in dynamic environments.

Finally, we discuss deployment strategies, challenges, and
future opportunities. We believe our basic techniques can
apply to a variety of latency-sensitive applications, and open
new opportunities for app developers and cellular providers.

2 Background and Motivation
2.1 Channels in 5G

5G wireless networks are designed to support applications
with very different service level requirements. The 5G stan-
dard known as New Radio (NR) specifies three service mod-
els: (1) enhanced mobile broadband (eMBB) for standard
high-data-rate Internet and mobile connectivity, (2) ultra-
reliable low-latency communication (URLLC) for mission-
critical and latency-sensitive applications, and (3) massive
machine-type communications (mMTC) for large-scale [oT
deployments. We describe eMBB and URLLC in more depth.

(1) Enhanced Mobile Broadband: This service focuses on
providing high-data-rate mobile access. It is considered an
upgrade to 4G mobile broadband that will satisfy the ever-
increasing demand for mobile and wireless data. 5G eMBB
can operate either at the low-frequency bands below 6 GHz
which we refer to as low-band or the high-frequency bands
around 28 GHz/39 GHz which we refer to as millimeter wave
(mmWave). The mmWave bands are a key new technology in
5G as they offer 10x the bandwidth that is currently available
to 4G LTE networks [4], enabling user throughput of around
1 Gbps [15].

Providers like Verizon, AT&T, and T-Mobile have already
deployed both the low-band and mmWave 5G in several major
US cities, including Chicago, Atlanta, New York, and Los An-
geles [9—-11,34]. A recent measurement study on commercial
mmWave 5G networks in the US shows TCP throughput of
up to 2 Gbps for download and 60 Mbps for upload, with a
mean RTT of 28 ms measured between the client and the first-
hop edge server right outside the cellular network core [34].
The measurements were performed, however, in conditions
favorable to mmWave such as line-of-sight, no mobility, and
few clients.

eMBB latency is expected to be higher as the number of
users increases and as users move. This is because radio
access networks (RANs) operating in the mmWave bands
use very directional beams to compensate for high signal
attenuation, making them vulnerable to blockage and mobil-
ity. High data rate communication is possible only when the
RAN access point aligns its beam towards the user [27]. This
process, commonly referred to as beam alignment, can intro-
duce significant delays, especially when users are moving,
which requires the access point to keep realigning the beam
of each user [23, 27]. Furthermore, the user or other obstacles
can easily block the beam, leading to unreliable and incon-
sistent performance both in terms of changes in throughput
and highly variable RTT [3,32,34]. Our own experiments in
Chicago also confirm this and show that the RTT can vary sig-

420 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

nificantly even for stationary clients and is further exacerbated
while walking or driving. This is because 5G eMBB mainly
optimizes for high data rates, focusing less on reliability and
low latency.

(2) Ultra-Reliable Low-Latency Communication: Unlike
eMBB, this channel focuses on providing highly reliable, very
low latency communication at the cost of limited throughput.
It aims to support mission-critical and emerging applications
with stringent latency and reliability requirements such as self-
driving cars, factory automation, and remote surgery. While
the URLLC channel is yet to be deployed in practice, the
standard specifies a target 0.5 ms air latency between the
client and the RAN (1 ms RTT) with 99.999% reliability for
small packets (e.g. 32 to 250 bytes) [15]. It also specifies
a target end-to-end latency (from a client to a destination
typically right outside the cellular network core) of 2 to 10 ms
with throughput ranging between 0.4 to 16 Mbps depending
on the underlying application [6]. URLLC is expected to
operate in the sub-6 GHz frequency bands (e.g. 700 MHz
or 4 GHz) and operators are expected to use network slicing
to provide dedicated resources to URLLC clients in order
to guarantee consistent performance in terms of latency and
reliability across both the radio access network (RAN) and
the cellular core [6]. Finally, client access to the URLLC
channel will be controlled by the network operators. The
access control network slicing mechanisms, however, are left
to the operators’ own implementations [8].

2.2 Web browsing traffic

While we evaluate several applications, web browsing is the
major focus of this work and serves as a running example.

A single web page may contain tens to hundreds of rel-
atively small-sized web objects distributed across multiple
servers and domains. Consequently, web browsing traffic is
characterized by its often short and bursty flows. A study
across Alexa Top 200 pages found that the median number
of objects in a page is 30, while the median object size is
17 KB [48]. Fetching these web objects translates to many
HTTP request-and-response interactions across many short
flows. The browser fires a page load event when it finishes
rendering a page, which is used to determine Page Load Time
(PLT), a performance metric for web browsing. Although PLT
has some shortcomings, the alternatives are not free from is-
sues, and PLT is most widely used. PLT is typically dominated
by DNS lookup, connection establishment, and TCP conver-
gence time—which require little throughput but are highly
dependent on RTT. Prior work also showed that increasing
TCP throughput beyond ~ 16 Mbps offers little improvement
in PLT [45].

Of course, web page loading is affected by client CPU and
server delay, in addition to network delay. Prior work found
that 35% of the PLT is spent in client-side computations [47].
But the above characteristics, combined with the fact that
mobile CPUs have been getting increasingly powerful [26],

Packet core
gateway

Base Core |
station | | network I

User equipment Internet

(el[{312 | DChannel client
app

IP packet

1 Y App
S|l [HBC ;'_';'_':_" server
L
= p packetl.ii.é.lr...l ______

Figure 1: The overview of DChannel. It has two main com-
ponents: packet steerer that steers application traffic to LLC
and HBC, and reordering buffer that reorders packets coming
from LLC.

7
|

Virtual Reordering
interface buffer

still suggest that network latency plays an important part in
mobile web performance. Moreover, a significant portion of
network latency lies in the “last mile” connection of the cellu-
lar network. Many other mobile apps also rely on HTTP-based
interaction with cloud services, resulting in similar network
performance requirements.

3 DChannel Design
3.1 High-Level Architecture

To steer application traffic in both uplink and downlink chan-
nels, there will be two main components, one in the mobile
client device and one in the mobile core network (Figure 1).

On the client, applications interact with the network
through a network interface as usual. In our prototype, this
is a special virtual TUN interface designated for traffic that
should utilize both the HBC and LLC. The client-side agent
captures outgoing packets on this interface and implements
an algorithm to steer traffic between the two channels. The
agent also captures incoming traffic on both channels and
merges it into the virtual interface, after buffering it as needed
to reorder packets (§3.6).

The proxy-side agent performs symmetric functions using
the same algorithms — steering traffic headed towards the
client, and merging and reordering traffic outbound to the
Internet. This agent runs in the service provider’s network,
on a gateway at the point where the separate HBC and LLC
channels begin. The exact location of the proxy-side agent
may depend on the service provider’s internal architectural
choices; note that it is not necessarily located at the RAN
base station, because the LLC’s latency optimizations may
extend into the packet core (e.g., for prioritized queuing and
routing) [5].

The next subsections detail how we design the steering
component, in several steps, as it is the more complex compo-
nent. After that, we describe the reordering buffer.

3.2 Steering Granularity

To build the packet steering module, we begin with the ques-
tion of the granularity, and corresponding layer, at which
steering should occur. We considered splitting at two dif-
ferent layers: the application layer and the network layer.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 421

Application-layer splitting refers to steering application re-
quests and responses to the appropriate channels. In the con-
text of web browsing, this approach translates to requesting
and delivering web objects (in the form of HTTP requests)
on either LLC or HBC. Application-layer splitting is broadly
similar to Socket Intents [42].

Object-level splitting may benefit from application-level
knowledge about web objects, which vary in size and priority.
Since LLC is bandwidth constrained, LLC can only deliver
small objects faster than HBC.! Web pages have complex de-
pendency structures, and certain objects can be on the critical
path for web page loading. These critical-path objects need
not necessarily be small in size. Small objects might have
low priorities such that accelerating them will not improve
load time and thus would waste LLC bandwidth. In contrast,
high-priority objects can be large such that sending those to
LLC will be slower than HBC. Application-level input could
help distinguish between these cases.

But object-level splitting has two drawbacks. First, we want
to avoid requiring application input, which creates deploy-
ment hurdles and extra work for developers. Second, it misses
opportunities for latency improvement. A web object that’s
not small enough to be sent over LLC will still involve small
and latency-sensitive DNS lookups, TCP connection estab-
lishment, TLS handshaking, and ACKs. Accelerating this traf-
fic could significantly reduce object delivery time. We later
demonstrate (§5.3) that object-level splitting is less effective
than finer-grained packet-level steering.

Steering packets at the network layer (e.g., IP datagrams)
comes with its own challenges, however. First, we do not have
any application-level insight into the flow: we do not neces-
sarily know how packet-level acceleration affects application-
level acceleration, so we will need a careful steering heuristic.
Second, even if we identify the packets to accelerate, sending
packets within a flow across two different channels might
result in the packets arriving out-of-order, confusing TCP. To
address this issue, we will introduce a small reordering buffer
(ROB) at the endpoints. The following subsections discuss
these components of the design.

3.3 Packet Steering Intuition

Define a “message” as a sequence of one or more packets
such that the receiving endpoint can take some useful action
after receiving the full message. For example, an individual
SYN or ACK is a message (because the transport layer can
act on it), and an HTTP request or a full response spread
across multiple packets is a message (because the application
may be able to process the request, display an object to the
user, etc.). In contrast, an individual data packet belonging to
a large HTTP request/response is not a message on its own
and would not be worth accelerating individually since we

'If URLLC is assigned a capacity of 2 Mbps (=250 bytes per ms) and
its RTT is ~15 ms less than that of eMBB, any object of size larger than
3.75 KB are likely to be delivered faster on eMBB.

need to accelerate the whole sequence of packets to finish the
message.

Ideally, we would like to accelerate the delivery of mes-
sages, especially those that are most valuable to accelerate,
within the bandwidth constraints of the LLC. This suggests a
cost-rewards calculation weighing the benefit of accelerating
a message against the cost of utilizing the meager bandwidth
of the LLC which might be better spent on other messages.

A direct, exact cost-rewards calculation is infeasible since
DChannel running at the network layer lacks full knowledge
of message boundaries (in the application’s data stream), as
well as the relative value of messages to the receiver’s trans-
port layer or application. This leads us to begin with a permis-
sive assumption: any packet might be a message boundary and
we will optimistically consider accelerating it. Nevertheless,
even operating transparently at the network layer, DChannel
does have certain information about rewards and costs that
will help it distinguish among packets.

First, the benefit of steering a packet to the LLC depends on
how much its arrival time would improve, if at all, compared
to using the HBC. This depends on packet size, current output
queue lengths for both channels (which are locally observ-
able), and latency of both channels (which can be estimated).
In addition, the vast majority of applications utilize TCP or
other transport that delivers messages in order.> This means
that for a message inside packet P;, delivery of the message
to the application (as opposed to the delivery of P; to the
receiving host) will depend not only on the arrival time of P;,
but also on the arrival time of packets Py, ..., P;—1 (which can
also be estimated). For example, suppose P,_; was sent over
the HBC, and P; is ready to send immediately after. If P, is
also sent over HBC, the pair will arrive at about the same time.
If P; is sent over LLC, it will very likely arrive much sooner,
but will end up waiting for P,_; before it can be delivered to
the application, meaning sending over the LLC is likely not
useful in this case.

Second, the cost of utilizing LLC resources will depend on
the packet length and how much the LLC will be in demand
for other messages in the near future. The latter is not perfectly
known, but current or recent outgoing LLC queue depths
provide some signal.

The net effect of the above considerations is that packets
should tend to get steered to the LLC when they are smaller,
and when they are more isolated in time as individual packets
or members of short packet sequences. This corresponds well
with the intuition of prioritizing acceleration of control mes-
sages or small application-level messages. We now proceed
to describe how we realize this cost-rewards approach.

3.4 Rewards and Cost

Problem statement. The packet steering algorithm is pre-
sented with a sequence of packets and needs to decide if each

2Some don’t, of course, but our goal in this work is to develop generic
packet steering, leaving application-specialized schemes for the future.

422 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

packet P, should be sent via LLC or HBC. We let Py, ..., P,
denote the sequence of packets in a single end-to-end flow (by
which we mean a unidirectional transport layer connection,
which may contain multiple messages).

Rewards. At the packet level, the objective is to minimize
the packet completion time C,, defined as the time by which all
packets Py, ..., P, would arrive at the receiver. This captures
the intuition (§3.3) that any P, might be a useful message
to accelerate on its own, but it wouldn’t be delivered to the
application until prior packets are also delivered. The benefit
of sending a packet P, via LLC is thus the reduction of C,
if P, is sent via LLC (denoted C, ;;¢), compared to when
it is sent via HBC (denoted C, ypc). Thus, we calculate the
rewards for sending P, via LLC as: R(P,) = Cp,r.r.c — Cu HBC-

To calculate the above, we first need to estimate the de-
livery time D for a packet that depends on the channel/link?
propagation delay Dprop;ix and bandwidth By, packet size,
and the link’s queue size Qy;, at time ¢, . The Qyinr counts
the number of bytes that have been enqueued for transmis-
sion through a /ink but have not yet been transmitted out the
interface. Delivery time for P, on a certain /ink is thus:

Diink(Pn) = Dpropiink + (size(Pn) + Quink (ta)) /Brink -~ (1)

The packet completion time for P, (C,) should also account
for completion times of Py through P,_; (i.e., C,,—1) since
P, may arrive at the receiver before P,_1, especially if P, is
sent over LLC and P,_; was sent over HBC. Thus, we can
calculate (C, jink) as:

Colink = max(Cn_l, (tn + Diink (Pn))) 2

Note that Dprop;,; are nondeterministic, comprising dy-
namic channel delay and any congestion along the channel’s
path, and will thus have to be estimated. We return to this
later.

Cost. The cost of sending a packet to the LLC comes from
the increased utilization of LLC. Intuitively, the cost should
increase with the added queueing delay that a packet arriving
very soon after P, would experience, i.e., size(P,)/Bjj.. The
cost should also be higher if the LLC is currently more highly
utilized so that its limited capacity is reserved for higher-
reward packets. We use a heuristic that captures this by adding
these two effects; specifically, we compute the cost (or fare
F) of putting P, on LLC as:

F(Pn) = (SiZe(Pn) + Qllc(tn))/Bllc (3)

Note that to be more precise, we should compute the differ-
ence in costs of putting the packet on LLC vs. HBC. But as the
HBC bandwidth is dramatically higher, its cost is negligible
and we omit it for simplicity.

3We use these terms interchangeably for convenience. Note, however, the
LLC channel may involve acceleration in the WAN in addition to the RAN,
so it actually may span multiple physical links.

Comparing rewards and cost. At a high level, we want to
steer packets to LLC when the rewards outweigh the costs, but
comparing them involves a tradeoff: the benefit is immediate
to packet P,, whereas the cost affects possible subsequent
packets which may not appear. We introduce a parameter o
to capture this, so that we will send a packet to LLC when:
R(P,) > OF (P,).

Calibrating o. If we set o too low, a flow may aggressively
send packets to LLC so that it will deny resources to another
flow in a multi-flow application. If we set it too high, we can
be too conservative in utilizing the fast LLC. To find a good
o and determine how sensitive performance is to its value,
we conduct experiments with web browsing across different
alpha values. We load 40 web pages from our corpus over
different o values and pick o with the best Page Load Time
(PLT) result on average. We use our testbed (§5.1) and apply
the packet steering over HBC and LLC. For LLC, we use 5G
NR URLLC as a reference where the RTT and bandwidth
is 5ms and 2 Mbps. For HBC, we vary its RTT while fixing
bandwidth at 200 Mbps.

The detailed results are in §A.2. In summary, the results
confirm that setting o too low or high has suboptimal per-
formance. The best value for HBC RTT of 20 ms to 60 ms is
0.75. This RTT range covers most cases of 5G eMBB. As the
RTT increases to 80 ms and higher, oo = 1 is slightly better.
The difference, however, is less than 1%. We use oo = 0.75
for all subsequent experiments.

Note on design. The steering approach described here is
not an optimal choice derived from a model — it is a heuristic,
particularly the calculation of cost and calibration of «, in part
since some of the relevant information (like the application-
level importance of a particular packet) is unavailable. How-
ever: (1) we find the heuristic does perform well in realis-
tic environments, (2) even if poor decisions do occur, they
lead only to suboptimal performance, rather than a correct-
ness problem, and (3) performance is not very sensitive to
the exact value of a. In particular, even with o0 = 0 — which
corresponds to the greedy strategy, where each packet uses
LLC whenever it expects a reward for itself — there is still a
very good PLT improvement, within 5% or less of the best o.
That said, this problem could be interesting to formalize in
the future, perhaps as an online algorithm that could provide
worst-case guarantees, or using queueing-theoretic tools.

3.5 The Packet Steering Algorithm

Putting together the above pieces, the complete steering algo-
rithm is shown in Algorithm 1 in Appendix A.1. To make a
decision, the algorithm requires (1) packet size, (2) current
LLC queue size, (3) LLC bandwidth, and (4) latency of both
LLC and HBC. The LLC bandwidth is controlled (assigned
by the operator) so it is known, and (1) is directly observable.

LLC queue size (2) may directly be observable at the client,
assuming its NIC is limited to the LLC bandwidth. But the
proxy may have a higher local NIC rate. The proxy, therefore,

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 423

tracks outgoing traffic per user and computes what the queue
depth would be if the NIC had been limited. Depending on
the service provider’s admission control policy, the rate could
alternately be explicitly limited at the proxy. Client can also
apply similar approach if (2) is not directly observable.

Latency (4) has to be estimated. To do this, we perform pe-
riodic handshakes (e.g., in every 500 ms in our use case). The
handshakes consist of four steps, all with UDP packets: (1) the
client agent sends a special packet we call a “D-SYN” to the
proxy agent using both HBC and LLC. (2) The proxy agent
upon seeing a D-SYN responds with “D-SYN/ACK” packets
sent across both HBC and LLC. (3) The client agent receives
the D-SYN/ACK packets, updates the base RTT value for
both channels based on the difference between D-SYN/ACK
receive time and D-SYN release time, and replies with “D-
ACK” packets sent across both channels. (4) The proxy agent
receives the D-ACK packets and updates the base RTT value
for both channels. We use the minimum RTT value for the
measurement. As we will see in the evaluation (§5), very
rough latency estimates are sufficient.

The algorithm requires maintaining per-flow state, specifi-
cally to store C,,_1, the estimated completion time of the most
recent previous packet. The proxy also stores per-user state
for its queue depth calculation.

3.6 Reordering buffers at the endpoints
Splitting packets across asymmetric paths (particularly with a
latency differential, as there is for LLC vs HBC) can cause out-
of-order packet delivery, which can be harmful to application
performance. In particular, TCP uses out-of-order packets as
a signal of congestion, potentially causing retransmissions
and a drop in sending rate. To solve this problem, we adopt a
reordering buffer (ROB) in the receiving direction of each of
our agents, to buffer packets arriving only from LL.C. Note
that we only buffer packets arrived from LLC as we only
want to handle packet reordering caused by sending packets
through the faster LLC and not to solve reordering caused by
external factors such as wireless losses.

To avoid unbounded buffering delay if the previous packet
was lost, the ROB also releases packets after a timeout. Ideally,
the timeout should equal the latency of HBC, but because the
latency of HBC can be variable and hard to track, we use a
conservative 100 ms timeout. We evaluate the effectiveness
of this timeout value under random packet loss in §5.

4 Prototype and Experimental Setup

Our experiments involve a client representing a mobile end-
user application (e.g., a web browser) fetching content from
a web or content server. Both the client and server endpoints
have access to two interfaces, one representing the high-
bandwidth channel (HBC) and the other the low-latency chan-
nel (LLC). In the case of 5G, HBC and LLC map to eMBB
and URLLC, respectively. Depending on the experiment con-
ditions, the interfaces may be real or emulated. We masked

the two interfaces at the endpoints, however, using a smart
DChannel virtual interface implemented on top of a TUN de-
vice; the client and server use only this virtual interface to
send and receive data. Our DChannel prototype then performs
endpoint-transparent (and application-agnostic) steering of
traffic.

We developed a DChannel prototype and packaged it as
a UNIX shell, similar to the shells in Mahimahi [36]. The
shell captures all outgoing traffic from any unmodified ap-
plication running within it and tunnels them to our DChan-
nel implementation; it processes incoming traffic in a simi-
lar application-transparent manner, so both the steering and
buffering modules of DChannel are used. Our DChannel pro-
totype attaches additional metadata (sequence number and
flow ID) prior to transmission to assist the receiver in reorder-
ing packets and strips this before delivering to the application.
We used our own metadata header as a convenience, but in a
real implementation, this could be avoided by looking inside
the layer 4 header.

We evaluated the performance of DChannel using this pro-
totype under two settings. The first is a live setting where
we used the actual 5G NR eMBB channel as HBC. The sec-
ond setting, in contrast, is one where we emulated the eMBB
channel based on traces that we gathered from an actual 5G
eMBB channel. In both settings, since URLLC is not yet
commercially available, we emulated its “expected” behav-
ior (based on the 5G specification [6]) using a low-latency,
bandwidth-limited wired Ethernet connection.

4.1 Live-eMBB Setting

In this setting, DChannel steers traffic over two real interfaces
(Fig. 2): One interface is tethered with a 5G phone for provid-
ing access to a live eMBB channel, while another is connected
to a low-latency bandwidth-limited Ethernet connection for
emulating the URLLC channel. Packets transmitted over the
5G eMBB channel traverse the core network of the mobile
provider before exiting via the packet gateway (i.e., mobile
path) and then one or more ASes in the public Internet (i.e.,
Internet path) to reach our server. Data sent over the Ethernet
interface, in contrast, traverse a traditional ISP and then one
or more ASes to reach the server. On the server side, DChan-
nel receives all the packets from both the interfaces, reorders
them (if required), and then delivers them to the server-side
application via the TUN device.

We used Ethernet and not WiFi for emulating URLLC,
since the channel is expected to provide high reliability
(> 0.9999) [8]. We capped the bandwidth of this link us-
ing netem to emulate the low bandwidth of URLLC. Since
the client must remain physically plugged in to a wired net-
work for emulating URLLC, this setting allows us to study
performance only in stationary conditions.

4.2 Emulated-eMBB Setting
To evaluate DChannel under a wide variety of scenarios,
specifically those including client mobility, we used trace-

424 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

N
Dse Server
Client Mobile ISP
usB

tethering

H Ethernet
DCh_a with capped
client | pandwidth

Figure 2: In our live 5G eMBB testbed, the client has two
paths to the server: One path over a tethered connection to
a 5G phone for utilizing the eMBB channel, and the other
through a bandwidth-capped connection over Ethernet, for
emulating the URLLC channel.

driven emulations. Below, we describe how we captured the
network (latency and bandwidth) traces of the 5G eMBB chan-
nel under stationary and low-to-moderate mobility scenarios
and used them in our emulations.

4.2.1 Collecting network traces

To capture the temporal variability of mobile networks, we
measured both the latency and throughput of the eMBB chan-
nel over time.

Latency traces. We measured the latency of the eMBB
channel by periodically sending probes (UDP packets) from
the client to the server. We set the probing period to 15ms to
force the UE radio to remain always in “active” mode and
generate only a small amount of probe traffic to avoid queuing.
Our measurements capture the latency imposed by the base
station and core network, since our server was always in close
proximity to the client (i.e., less than 150 miles), minimizing
the Internet-path latency. Our traceoutes from the client to
the server, although not shown in the paper, also confirmed
that the latency between the client and the server was very
close to the latency between the client and the packet gateway.
Bandwidth traces. We measured the throughput across time
of both uplink and downlink channels by saturating them with
MTU-sized UDP packets. Since TCP cannot reliably saturate
the highly variable cellular uplink and downlink concurrently,
we used an overestimated fixed sending rate to always fill the
queue. First, we measured the maximum supported upload
and download UDP throughput using existing tools such as
iperf. Then, we sent traffic at this maximum rate from both
endpoints. Finally, we used the actual packets received over
time by the endpoints to estimate the uplink and downlink
capacities.

Measuring both latency and bandwidth. A key challenge
in measuring both latency and bandwidth simultaneously is
avoiding interference: bandwidth-intensive operations can sat-
urate the link and fill the queue, thereby inflating the latency.
Since cellular networks use per-user queues, we addressed this
challenge by measuring latency and bandwidth from separate
devices. When using two separate devices, we did not see any
perceivable interference for measurements on 5G low-band,
although we observed them on 5G mmWave. Specifically, we

observed inflation in latency if a nearby device was uploading
data at more than 5 Mbps using mmWave.* For 5G mmWave,
we measured, hence, only the downlink throughput over time;
we set the uplink bandwidth to a single, fixed rate of 60 Mbps.

The accuracy of temporal variations in latency matters most
for our trace-driven emulations, since the main applications
that we use in our evaluations, web browsing and mobile apps,
are latency-sensitive. The performance of such applications
crucially depends on TCP-related configurations (e.g., initial
congestion window) and network latency (or RTT) rather than
on available bandwidth, particularly when the bandwidth is
more than 16 Mbps [45]. Our approach to estimating band-
widths, therefore, is adequate for our evaluations.

4.2.2 Emulating the traces

In the emulated-eMBB setting, we run both the client and
the server on the same machine. DChannel then steers traffic
between them over two virtual interfaces, emulated using an
extended version of Mahimahi [36]. Specifically, we extended
Mahimahi’s delay shell to vary the eMBB channel latency
over time, based on a trace generated from a real 5G deploy-
ment. The modified delay shell accepts a trace comprising
a “timeline” of RTT values and halves each value to derive
the individual uplink and downlink latency timelines. The
shell then assigns per-packet latency by choosing an uplink or
downlink latency by matching the time a packet arrives at the
interface against the timelines. Since the trace-file granular-
ity is one RTT sample per 15 ms, we use linear interpolation
for assigning RTTs arriving between two samples. Similarly,
we emulated URLLC with a propagation delay of 5 ms and
bandwidth of 2Mbps, unless noted otherwise.

Mobile applications’ traffic (especially web browsing) is
typically bursty in nature and contains periods of inactiv-
ity. To preserve energy during idle periods, UEs switch to a
low-power (or “sleep”) state, which supports discontinuous re-
ception (DRX). The transition to the low-power state depends
on an inactivity timer that we observed (through probing [35])
to be around 30 ms for 5G mmWave; once the device enters
this state, it will “wake up” periodically (every 40 ms). When
emulating the latency traces, we therefore also estimate the
radio power states of the device (based on its activity) and
take into account any additional latency the state transitions
may impose. A packet that arrives 20 ms after the UE enters
the sleep state, for instance, will experience an additional
20 ms delay before it is processed. This delay, however, is not
incurred on the uplink. For 5G low-band, we set the inactivity
timer to 100 ms and wake-up interval to 20 ms.

For the bandwidth emulation, we extended Mahimahi’s
link shell to emulate a time-varying bandwidth that changes
every second. To emulate a link of capacity 60 Mbps at time

4Low-band uses OFDMA so multiple devices can communicate at the
same time and the latency is not inflated, while mmWave uses single carrier
modulation, where multiple devices must take turns transmitting and the
antenna must switch its beam pattern.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 425

Table 1: Characteristics of network traces gathered from actual 5G deployments at different locations and under different
conditions. ‘p50° and ‘p98’ refer to the 50th and 98th percentiles, and ‘CV’ refers to the coefficient of variation.

Trace name Span RTT (ms) Mean b. Description
(mins.) | min. p50 p98 mean Ccv | /] (Mbps)
mmWave-Stationary 60 18 22 106 29.88 0.77 60/140 UE was in a building in the downtown Chicago, placed
(MM-S) near a window with a base station in line of sight.
mmWave-Walking 56 16 22 120 30.32 098 60/110 UE was held by user walking in downtown area of
(MM-W) Chicago.
mmWave-Driving 18 18 40 236 56.15 0.96 60/100 Phone was with a user driving through the downtown
(MM-D) area of Chicago at low to moderate driving speeds.
LowBand-Stationary 60 34 40 132 4520 0.50 26/93 Phone was located in a building in a university campus.
(LB-S) It was placed near a window with full signal strength.
LowBand-Walking 53 32 52 156 5894 0.50 21/63 Phone held by user walking in a university campus.
(LB-W)
LowBand-Driving 23 34 54 202 6884 0.62 15/57 Phone was with a user driving near a university campus.
(LB-D)

n seconds, for instance, this extended link shell will release
7.5 KB per millisecond. In our emulation tests, we also used
a FIFO (drop-tail) queue, and we set the buffer to 800 MTU-
sized packets.

5 Evaluation

We evaluated DChannel using 5G eMBB and URLLC as
HBC and LLC, respectively. We ran the client (e.g., a web
browser) on a laptop, unless otherwise mentioned. The laptop
had 16 GB RAM, 512 GB SSD, and an Intel Core i7 processor
running Ubuntu 20.04 (Focal Fossa).

5.1 Testbed Configuration

In the live-eMBB setting, we tethered the laptop with a Google
Pixel 5 phone using USB (refer Fig. 2). We ran the live exper-
iments from two locations: UIUC campus with access to 5G
low-band and the Chicago downtown area for 5G mmWave
access. We emulated the URLLC link between the client
and server using a wired (Ethernet) link and configured it
based on URLLC end-to-end specification and use-cases [6].
The emulated link provides 5 ms RTT between the client and
the network gateway and has 2 Mbps capacity. At the 5G
mmWave test site, however, the wired link only provided a
minimum latency of 8 ms for the URLLC emulation.

We also collected latency and bandwidth traces (summa-
rized in Tab. 1) at the two test locations under three mobil-
ity conditions: stationary, walking, and driving. All traces
were collected using Google Pixel 5 phones with Verizon 5G.
Though mmWave offers lower latency (for eMBB) than low-
band, it also experiences higher variance than low-band, even
when the UE was stationary. This inconsistency in perfor-
mance becomes even worse under mobility. Low-band offers
a stable, albeit relatively higher, RTT than mmWave. We ran
all the components, i.e., the client, DChannel’s modules, and
the server, on the laptop in the emulated-eMBB setting, and
used the traces (in Table 1) for emulating the eMBB channel.

5.2 Application use cases

We evaluated DChannel on 5G under a wide variety of net-
work conditions to highlight its benefits for web browsing
and web-based mobile (Android) applications. We supple-
mented these experiments with a bulk-download application
for demonstrating DChannel’s merits for long (i.e., bandwidth-
intensive) flows.
Web browsing. To measure the improvements brought
about by DChannel for web browsing, we first fetched a set of
200 web pages of “popular” websites, selected uniformly at
random from the Hispar corpus [16]. The sample comprised
40% of landing and 60% of internal pages from 200 websites.
The median web page size and the number of objects are
3.7MB and 60, while the 95th percentile are 11.8 MB and
168. When fetching these pages, we recorded all the HTTP
requests and responses using mitmproxy [1]. Then we used
a version of Mahimahi with HTTP/2 support [53] to serve
the responses from our server. While recording the pages, we
also estimated the server response time for each request by
subtracting the time-to-first-byte (TTFB) from the client-to-
server RTT. We used the server-response times to emulate
server-side processing delays during the replays.

We used an unmodified Chromium browser spawned within
a DChannel shell to fetch the pages from our server. We
cleared the browser and DNS caches prior to each fetch and
used the default Linux congestion control, TCP CUBIC, un-
less noted otherwise, for all web-browsing experiments. We
measured the page-load time (PLT), based on the onLoad
event [37] in each experiment, on each fetch. In the live-
eMBB setting, we first used the DCHANNEL scheme to fetch
a page and repeated that page fetch in quick succession using
a different scheme. We calculated the difference in PLT be-
tween the different schemes and repeat the fetch five times
to compute the mean difference in PLTs. In the emulated-
eMBB setting, we picked a random sub-sequence from a
trace for each page fetch. Given a page, we used the same
sub-sequence for measuring the PLT across different schemes

426 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

N
o
|

= DChannel
B8 Best-pkt-size
301 =3 Asap

B Obj-steering
ESE MPTCP
EE All-URLLC

ES
<
N
o
©
0

-
o
!

2R
— I~
< m
00—
O
— O

:

% Imprv. over ALL-eMBB
N
o

o
!

T
mm-s mm-w mm-d

Ib-s Ib-w Ib-d

Figure 3: DChannel offers at least 20% lower PLT compared to that of All-eMBB, and it performs better than all other schemes.
MPTCP’s PLTs are 17% to 118% worse than when using a single eMBB channel across all traces.

and computed the difference in PLTs. We used the mean of
the PLT differences across five trials, with each using a ran-
dom sub-sequence of the trace, for comparing and contrasting
the different schemes.

Mobile application. We downloaded three popular Android
applications from the Google play store, one each from three
categories: social (Reddit), shopping (eBay), and news (CNN).
We ran the applications on the phone (Google Pixel 5), but
tunneled all network traffic to a DChannel shell running on our
laptop. We then used the DChannel to steer the traffic over the
appropriate channels. We evaluated the mobile applications
only under the emulated-eMBB setting. Note that this setup
may underestimate the performance improvements because
of the additional overheads in tunneling the traffic from the
phone to the laptop. We measured the RTT from our laptop to
the application server to be 12 to 30 ms, which is significant
given that our emulated URLLC and eMBB RTT can go as
low as 5ms and 16 ms.

To evaluate application performance, we calculated the
interaction response time (IRT) [40]. IRT measures the time
elapsed between when a user performs an interaction to when
the end screen for that interaction is completely rendered.
We automated user interactions with AndroidViewClient [13]
and cleared application caches within each trial. We recorded
the phone screen using FFmpeg [14] during each interaction
and identified when the screen stopped changing visually
using scenecut-extractor [12]. Since we do not control
the servers used by the application, we repeated the interaction
experiments with DChannel and other schemes, one after the
other, in quick succession. We used the median IRT across
ten trials to compare the performance of different schemes.
Bulk download. The setup for this use case is similar to
that for web browsing. We simply used curl as the client to
download a file hosted in our (Mahimabhi) server and repeated
the download five times.

5.3 Comparing steering schemes

We compared the PLT of DChannel’s DCHANNEL scheme
with that of five other schemes across multiple scenarios (us-
ing the traces in Tab. 1) in the emulated-eMBB setting.

Table 2: Comparing the performance of DChannel with All-
eMBB and All-URLLC when fetching the (182 KB) landing
page of amazon. com.

Perf. metric All- All- DChannel

eMBB URLLC
DNS lookup (ms) 44 8 8
TCP connect (ms) 42 6 6
TLS connect (ms) 53 30 30
Object transfer (ms) 209 809 144
Total load time (ms) 349 853 189

The other schemes are as follows. AlI-URLLC steers all
traffic over URLLC. Obj-steering requests web objects (re-
quests and responses) on URLLC whenever its fetching time
is smaller than eMBB. Best-pkt-size steers packets whose
size is lower than the best predefined threshold to URLLC.
MPTCP uses the two channels concurrently, by running the
Linux kernel implementation of MPTCP [2] with the default
configuration. ASAP [29] was designed for satellite networks.
It diverts traffic from satellite links (or eMBB in our case)
to 3G or 4G (or URLLC) since the latter has lower latency
with a higher cost per byte than the former. ASAP code is not
publicly available, so we used our in-house version.

Fig. 3 compares the relative difference in PLT of each
scheme compared to that obtained when only using eMBB
(i.e., All-eMBB). DChannel offers the best performance un-
der all network conditions in our emulations. In stationary
scenarios (MM-S and LB-S), it improves PLT by about 20%
when using 5G mmWave and 35% with 5G low-band. These
improvements in 5G mmWave and low-band correspond to
absolute reductions in PLTs of about 290 ms and 642 ms, re-
spectively, compared to the All-eMBB scheme. Per Fig. 3,
DChannel’s performance increases in scenarios that involve
UE mobility (MM-W, MM-D, LB-W, and LB-D). The PLT
improvements are higher for low-band than mmWave since
the former exhibits higher latency than mmWave (refer Tab. 1).
We examined the relation between DChannel’s performance
and eMBB latency in detail in §A.3.1.

Where do DChannel’s gains come from? To illustrate the an-

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 427

amazon.com

swer to this question, we used curl to fetch the landing page
(i.e., the root document, “/”’) of amazon.com in the emulated-
eMBB setting (40 ms RTT and 200 Mbps) without any server-
side response delay. DChannel performs better than not only
all-eMBB, but also all-URLLC (Tab. 2). While URLLC has
lower latency than eMBB, it also has a significantly lower
bandwidth than eMBB. We identified three key sources of
performance gains by analyzing DChannel’s per-packet deci-
sions. DChannel steers three types of packets over URLLC:
(1) DNS packets; (2) control packets (e.g., SYN and client-
to-server ACK packets); and (3) small data packets. Sending
DNS and SYN packets over URLLC reduces DNS lookup and
TCP connection-setup times, and accelerating ACK packets
reduces the object transfer time. The last category includes
small data transfers such as the TLS client-key exchange and
HTTP requests.

Packet vs. web objects steering. Obj-steering performs
HTTP request and response on URLLC when the web ob-
ject size is small such that it will finish faster than eMBB.
The scheme only offers slight improvement to PLT (2-14%).
This is because not all small objects are critical. In fact, we
found out that only 14% of small web objects have VeryHigh
priority [25].

DChannel vs. static packet-size-based steering. Best-pkt-
size steers individual IP packets whose size is smaller than the
best static threshold to URLLC, and the reordering buffer will
reorder any out-of-order packets. To find the best threshold,
we performed web page load experiments for each trace with
five different (size) thresholds: 250, 500, 750, 1000, 1250, and
1400 bytes. We found 750 bytes and 1000 bytes give the best-
averaged result (across the stationary, walking, and driving
scenarios) for mmWave and Low-Band traces, respectively.

DChannel shows an overall better improvement than best-
pkt-size across different network conditions, albeit best-pkt-
size offers similar improvements in stationary traces. In sta-
tionary traces, network latency is more predictable, and static
decisions might suffice. When the network conditions are
more variable, such as in the driving scenario, however, the
static decisions do not suffice. DChannel observes network
conditions, as they evolve, and estimates URLLC channel
usage to make steering decisions dynamically. DChannel will
not steer small packets to URLLC, for instance, if the channel
is already congested. Note that these results are overly gener-
ous to best-pkt-size, for comparison purposes: the best size is
selected in retrospect after running on the test scenarios. In
reality, determining a single packet size threshold would be
complicated: it depends on application traffic patterns as well
as network conditions.

Is MPTCP not designed to exploit multiple channels?
MPTCP works at the transport layer, and in general, it load-
balances application traffic among the available paths and
aggregates their throughput. In our evaluations, MPTCP per-
forms worse (by inflating PLTs between 16% and 66% across

Table 3: The p50 and (p95) of the avg. and max. buffer sizes
(in bytes) when loading 200 web pages under MM-S and LB-
D traces.

MM-S LB-D
Proxy UE Proxy UE

Avg buffer 2 12 14 130
size (d) | (15,7) | (63.5) | 96) | (2638)
Max buffer | 392 944 757 2848
size (b) | (1122) | (2597) | (2375) | (15521)

different conditions®) than simply using only the eMBB path.
This poor performance stems from MPTCP’s default sched-
uler (minRTT), which prefers the path with the smallest esti-
mated RTT. This scheduler thus infers that URLLC is better
than eMBB and diverts traffic to URLLC until experiencing
congestion. DChannel, unlike MPTCP, works at the network
layer such that it allows steering data packets on eMBB and
ACK packets on URLLC. MPTCP cannot perform such
packet-level steering, since it results in each path having a
separate data-ACK loop, which MPTCP cannot support.

DChannel vs ASAP. ASAP identifies the different phases
of a web transaction (e.g., TLS handshake and HTTP request)
and accelerates packets of latency-sensitive phases. It accel-
erates, for instance, TLS/SSL handshake as well as HTTP
request traffic, but leaves HTTP responses to eMBB. ASAP
performs better than all other schemes except DChannel. It
falls behind DChannel, however, because of its static heuris-
tics (e.g., accelerate all HTTP requests). HTTP requests are
typically, but not always, small. A user uploading a photo,
for instance, is one example where the assumption fails to
hold. ASAP also encounters problems when the user browses
complex internal pages that push some data to the server.

In the above experiments, we emulated URLLC based on
the 5G standard. We found, however, that DChannel contin-
ues to offer significant PLT improvements even if URLLC
latency is doubled or tripled or when URLLC latency changes
over time (§A.3.2). DChannel offers good performance even
in situations we cannot accurately estimate the eMBB RTT
(§A.3.4), which is crucial for calculating rewards and cost
(§3.4). We also examined DChannel’s performance under dif-
ferent URLLC bandwidths in §A.3.3. Finally, we evaluated
DChannel’s rewards calculation accuracy in §A.4

5.4 Live 5G Experiments

We repeated the web-page fetches (similar to those in §5.3)
over both the live-eMBB and emulated-eMBB settings.
We then compared the relative improvements in PLTs
brought about by DChannel across these settings, for both
5G mmWave and Low-Band (Fig. 4). In conclusion, the
PLT improvements are quite similar between the live and

SWe clipped the bottom of the Y-axis in Fig. 3 to focus on performance
gains.

428 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

amazon.com

60

S
= A Mean
S 507 Median
£ 40+
¢
3 30 A
Q 20+
£ 10
5
a 0-
E —10- mmWw.
ave mmWave Low-Band Low-Band

real emulated real emulated

Figure 4: Comparison of relative PLT improvements in live-
eMBB and emulated-eMBB settings®.

emulated-eMBB settings, albeit the mean PLTs in the former
are higher than those in the latter. The mean PLT for the All-
eMBB scheme in the live-eMBB setting for 5G Low-Band is
1718 ms, while that in the emulated-eMBB setting is 1522 ms.
The high mean PLTs in the emulated-eMBB settings could
be due in part to the limitations of the setup. The emula-
tions do not capture all eMBB network characteristics such
as out-of-order delivery. Moreover, the web server is hosted
on dedicated hardware in the live-eMBB setting, whereas in
the emulated-eMBB setting it runs on the same laptop as the
client. These minor setup differences, however, do not affect
our claims concerning the relative performance improvements
(which are similar across the two settings).

5.5 [Evaluating the reordering buffer

We evaluated the effectiveness of the reordering buffer (ROB)
by comparing the web browsing performance of DChannel
with and without the buffer. Along with the other experiments,
this evaluation uses the default TCP CUBIC, which is sen-
sitive to in-order packet delivery. Fig. 5 shows that without
the buffer, the mean PLT improvement is decreased by up to
40% (in LB-D). Overall, DChannel without the buffer will be
worse when the gap between eMBB and URLLC latency in-
creases (implied in the figure as DChannel without the buffer
is performing much worse in 5G Low-Band than mmWave)
because DChannel will be more aggressive in offloading pack-
ets to URLLC, causing more out of order packets.

If ROB is implemented only on the UE (downlink), PLT
improvement is only reduced by 2%. The decrease in PLT
improvement is because DChannel tends to offload most web
browsing uplink traffic to URLLC as the client requests are
generally small such that minimal out-of-order persists. Our
buffer analysis in Tab. 3 confirms that DChannel proxy does
not use the buffer as frequently as the DChannel client (UE).
Tab. 3 also shows that ROB requires only little memory as we
do not have to buffer much URLLC traffic.

DChannel under random packet drop. Since ROB holds
packets from URLLC for a fixed (100 ms) timeout when they
are not in order, DChannel may suffer when packet loss hap-
pens as it may delay the packet loss signal, which can happen
under certain conditions (§3.6). To evaluate this effect, we

5The mean PLT improvements of mmWave is lower than what we reported
on MM-S in Fig.3 because we used 8 ms of URLLC RTT (rather than 5 ms).

| EEE UE+proxy
A UE-only
BN no-buffer

N
o

N w
o o
! !

% Imprv. over All-eMBB
=
o

0-

mm-s mm-w mm-d Ib-s |lb-w Ib-d

Figure 5: Adding reorder buffer to DChannel significantly
improves web page load time.

Table 4: PLT under different random packet drop rates.

Loss All-eMBB (ms) DCHANNEL (ms)
MM-S MM-D MM-S MM-D
0.0% 1108 1899 883 (20%) 1096 (42%)
0.1% 1203 1963 1011 (16%) 1311 (34%)
1.0% 2643 3421 2502 (5%) 3072 (10%)

investigated DChannel performance under stationary and driv-
ing traces in the case of random packet drops. We applied
a stochastic packet drop in the uplink and downlink chan-
nels with packets being dropped in both eMBB and URLLC.
This reflects the case where packet drops happen on the
Internet path. Note that SG eMBB generally exhibits low
packet loss rates with the 99th percentile being 1.2% [34].
Per Tab. 4, DChannel is quite resilient to random packet loss,
offering better performance than All-eMBB even under high
loss rates. We also investigated the interplay between DChan-
nel and latency-based congestion control algorithms in Ap-
pendix A.3.5.

5.6 Bulk download performance

Although our primary focus is latency-sensitive applications,
we also evaluated how DChannel performed for a bandwidth-
intensive use—bulk HTTP transfer of a file. Fig. 6 shows the
download time for various file sizes using the mmWave driv-
ing (MM-D) trace. As expected, DChannel gets the largest
improvement for small objects. But interestingly, DChannel
also usefully improves large object download. This is be-
cause all control packets including TCP ACKs are acceler-
ated in URLLC, which reduces the control loop delay, helping
the transport layer adapt to bandwidth changes more quickly.
Specifically, we found DChannel resulted in better utilization
of the available eMBB throughput by ~ 10% when there are
large throughput variations (e.g., in the driving scenario).

5.7 Mobile application performance

Fig. 7 shows the application response time improvement of
DChannel across three common user interactions that require
communication to the server. On average, DChannel improves
the response times of application launch (15%), query search-
ing (12%), and information (e.g., product or news) loading
(21%). It is unsurprising that query searching gives lower im-
provement since it incurs higher server-side delay. The overall

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 429

80 1 I DChannel
Z3 all-urllc

601

404

. lLlLLLL

o -/26‘ %, Sp, %
")/ﬁt?o'f‘o'f‘OO s Mo ", ", S

Load time imprv. over all-eMBB (%)

Figure 6: Download time improvement of variable-sized data
under HTTP. The experiment used the MM-D trace with the
buffer set to 800 packets (= 2x trace BDP).

81 mmm launch app HEE load info ¥Z2 DChannel
3 searchinfo [all-embb

111

mm-s mm-d

Mean IRT (s)
EN o

N

Figure 7: Android mobile application interaction response
time (IRT) of All-eMBB and DChannel when performing three
different tasks. We averaged the result from three applications.

mobile apps improvement is lower than the web browsing in
part to our experimental setup (§5.2).

6 Discussions and Future Work

Deployment for SG networks: DChannel requires cellu-
lar operator support, to allow URLLC for non-critical traffic
and to perform stateful packet steering. However, operators
may omit some of the DChannel implementations to make
deployment easier, such as eliminating the reordering buffer
(ROB) on the core gateway since DChannel shows only mi-
nor performance degradation without ROB in the proxy-side
(§5.5). DChannel stateful packet steering may not be simple
to implement especially when there are multiple gateways.
We leave this to future work.

URLLC scalability: The number of users that can send gen-
eral traffic to URLLC is an important matter which deserves
to be evaluated quantitatively in the future. At the time of writ-
ing, URLLC is not yet deployed in public. However, based on
the white paper [7], URLLC is targeted to support a relatively
high connection density with modest per-user bandwidth. For
instance, one of the URLLC use cases (discrete automation)
requires a user-experienced data rate of 10 Mbps, traffic den-
sity of 1 Tbps/km?, connection density of 100,000/km?, and
max end-to-end latency of 10ms. Thus, the 2 Mbps maximum
bandwidth per user for general application traffic used in our
experiments is still reasonable based on others’ proposed use
cases for URLLC, even in a dense urban area.

Disrupting URLLC native traffic: URLLC is primarily built

to serve latency-sensitive critical applications. To ensure we
do not compromise the performance of these applications, the
network operator can limit the per-user bandwidth and even
choose to deprioritize non-critical packets as our approach
does not require 99.999% reliability and is resilient to small
increases in URLLC latency (§A.3.2).

Resource contention among applications: Multiple applica-
tions inside a user device may compete to use URLLC. We
can regulate them using prioritization. One simple approach
is to prioritize applications running in the foreground since
mobile phone users are typically single-tasking.

Incentives for operators: While URLLC targets critical
applications, it is up to the network providers to open URLLC
for general mobile applications like web browsing. This is
possible as 5G chipsets are typically designed to support
multiple bands including the sub-6GHz bands for URLLC [6].
Expanding URLLC applications can encourage providers to
foster a faster and broader deployment of URLLC as it brings
a smoother experience to their major customers — mobile
phone users; especially as the current market for URLLC
applications like self-driving cars and remote surgery is still
in its infancy.

Emulation uncertainty: The real URLLC performance
might not match our emulated URLLC that follows the 5G
NR white paper. However, we have performed several exper-
iments to show the robustness of DChannel under variable
URLLC conditions. Emulating the real behavior of a cellu-
lar network (eMBB) is also a known hard problem [51], and
our approach of using two phones to capture both eMBB la-
tency and bandwidth might not be perfect. We have compared
DChannel performance with the emulated eMBB and live
eMBB in stationary conditions and conclude that DChannel
offers the same performance benefit (§5.4). However, we have
not yet evaluated DChannel under non-stationary live eMBB
due to the environment limitation (§4.1).

Other applications: LLC and HBC combination can also
properly support applications from different domains that
require high bandwidth and low latency, something that can-
not be satisfied by utilizing a single channel. For instance,
cloud gaming, which allows users to play games from remote
servers, requires high bandwidth to stream content and low
latency to remain responsive to user input. Since these appli-
cations can be vastly different than web browsing, a superior
steering scheme may exist. We plan to analyze them further
to determine an effective way of leveraging LL.C and HBC.
Beyond mobile networks: Our insights may apply to other
LLC and HBC combinations with analogous bandwidth and
latency trade-offs. Examples include quality of service (QoS)
differentiation providing separate latency- and bandwidth-
optimized services [17,39]; and routing traffic among mul-
tiple ISPs where one is more expensive but provides better
latency, as may happen with very low Earth orbit satellite-
based [24] or specialty [18] ISPs. To achieve the optimum
cost-to-performance ratio, we can route only the latency-

430 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

sensitive traffic to the low-latency ISP.

Future wireless design: The 5G URLLC is only equipped
with limited user bandwidth, and hence it is not suitable to
serve general application traffic. The bandwidth is severely
compromised because it needs to provide both low latency
and very high reliability (99.999%). However, general appli-
cations do not need the almost-perfect reliability that URLLC
guarantees. Future wireless networks (such as 6G) may recon-
sider this trade-off and provide a low-latency channel with
somewhat greater bandwidth and somewhat lower reliability.

7 Related work

There have been multiple works that try to exploit the multi-
access connectivity on the client.

Application layer multipath: Socket Intents [42] and In-
tentional networking [28] both expose custom APIs to ap-
plications and offer OS-level support for managing multiple
interfaces. Both of them regulate application traffic based on
application-specific information. Our work, in contrast, does
not require application inputs or modifications, although in
the future we might consider giving input to the steerer to
support more specific applications.

Transport layer multipath: There are already numerous
efforts to design multipath transport protocols such as R-
MTP [33], pTCP [30], mTCP [52], SCTP multihoming [31],
and MPTCP [49]. These protocols deliver application traf-
fic through multiple paths to achieve better throughput and
reliability. Due to the bandwidth aggregation focus, multi-
path transport protocols give notable benefits to long-flow
dominated applications but not to short-flow dominated ap-
plications such as web browsing [20]. Our approach works
transparently with single-path transport protocols (e.g., TCP
and UDP).

Network layer multipath: Tsao and Sivakumar [46] pro-
posed a super aggregation concept where TCP can achieve
better WiFi throughput by selectively steering packets to 3G.
ASAP [29] steers network packets over satellite ISP and lower-
latency terrestrial networks to improve HTTPS. We compared
DChannel against ASAP in our evaluation and found that
DChannel is better for eMBB and URLLC pairs as it benefits
from finer-grained decisions.

An early version of DChannel was presented in [43]. This
work comes with a new and better-performing packet steering
algorithm, a more robust evaluation with real-world traces
and live 5G eMBB, and new use cases including mobile apps
and bulk transfer.

Acknowledgements

We thanked the anonymous reviewers and our shepherd Fadel
Adib for their valuable inputs. This work was supported by
a gift from T-Mobile and NSF CNS Awards 1763742 and
1763841.

References

[1] mitmproxy. https://mitmproxy.org/. [Last ac-

cessed on April 18, 2022].

[2] Multipath TCP in the Linux Kernel v0.94. http://www.
multipath-tcp.org, March 2018. [Last accessed on
June 16, 2020].

[3] MWC: Are Your 5 Fingers Blocking Your 5G?
https://www.eetimes.com/mwc-are-your-5-
fingers-blocking-your-5g/, February 2018. [Last
accessed on June 24, 2020.

[4] 3GPP Release 15. https://www.3gpp.org/release—
15, April 2019. [Last accessed on May 24, 2020].

[5] 3GPP TR 23.725 version 16.2.0 Release 16.
https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.
aspx?specificationId=3453, June 2019. [Last
accessed on January 20, 2022].

[6] 3GPP TR 38.824 Release 16. https://www.3gpp.
org/release-16, March 2019. [Last accessed on June
16, 2020].

[7] 3GPP TS 22.261 version 15.7.0 Release 15. https://
www.etsi.org/deliver/etsi_TS/122200_122299/
122261/15.07.00_60/ts_122261v150700p.pdf,
March 2019. [Last accessed on January 20, 2021].

[8] 3GPP Release 16 Description; Summary of Rel-16 Work
Items. https://www.3gpp.org/release-16, March
2020. [Last accessed on June 16, 2020].

[9] AT&T: 5G Coverage Map. https://www.att.com/
5g/coverage-map/, 2020. [Last accessed on June 13,
2020].

[10] T-Mobile: The Only Nationwide 5G Network Cover-
age Map. https://www.t-mobile.com/coverage/
5g-coverage-map, 2020. [Last accessed on June 13,
2020].

[11] Verizon: 5G Coverage Map. https://www.verizon.
com/5g/coverage-map/, 2020. [Last accessed on June
13, 2020].

[12] Scenecut extractor. https://github.com/slhck/
scenecut-extractor, December 2021. [Last accessed
on April 15, 2022].

[13] AndroidViewClient. https://github.com/
dtmilano/AndroidViewClient, March 2022. [Last
accessed on April 15, 2022].

[14] FFmpeg. https://ffmpeg.org/, January 2022. [Last
accessed on April 15, 2022].

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 431

https://mitmproxy.org/
http://www.multipath-tcp.org
http://www.multipath-tcp.org
https://www.eetimes.com/mwc-are-your-5-fingers-blocking-your-5g/
https://www.eetimes.com/mwc-are-your-5-fingers-blocking-your-5g/
https://www.3gpp.org/release-15
https://www.3gpp.org/release-15
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://www.3gpp.org/release-16
https://www.3gpp.org/release-16
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.3gpp.org/release-16
https://www.att.com/5g/coverage-map/
https://www.att.com/5g/coverage-map/
https://www.t-mobile.com/coverage/5g-coverage-map
https://www.t-mobile.com/coverage/5g-coverage-map
https://www.verizon.com/5g/coverage-map/
https://www.verizon.com/5g/coverage-map/
https://github.com/slhck/scenecut-extractor
https://github.com/slhck/scenecut-extractor
https://github.com/dtmilano/AndroidViewClient
https://github.com/dtmilano/AndroidViewClient
https://ffmpeg.org/

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

3rd Generation Partnership Project. Study on scenarios
and requirements for next generation access technolo-
gies. Technical report, 2017.

Wagar Ageel, Balakrishnan Chandrasekaran, Anja Feld-
mann, and Bruce M Maggs. On landing and internal
web pages: The strange case of jekyll and hyde in web
performance measurement. In Proceedings of the ACM
Internet Measurement Conference (IMC), 2020.

Jozef Babiarz, Kwok Chan, and Fred Baker. Configu-
ration guidelines for diffserv service classes. Network
Working Group, 2006.

Debopam Bhattacherjee, Waqar Aqgeel, Sangeetha Abdu
Jyothi, Ilker Nadi Bozkurt, William Sentosa, Muham-
mad Tirmazi, Anthony Aguirre, Balakrishnan Chan-
drasekaran, P. Brighten Godfrey, Gregory Laughlin,
Bruce Maggs, and Ankit Singla. cISP: A Speed-of-
Light Internet Service Provider. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2022.

Eduardo Cuervo. Beyond reality: Head-mounted dis-
plays for mobile systems researchers. GetMobile: Mo-
bile Computing and Communications, 21(2), 2017.

Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and
Hari Balakrishnan. WiFi, LTE, or both? Measuring
multi-homed wireless internet performance. In Pro-
ceedings of the ACM Internet Measurement Conference
(IMC), 2014.

Yoav Einav. Amazon found every 100ms of latency cost
them 1% in sales, January 2019.

A El Gamal, James Mammen, Balaji Prabhakar, and
Devavrat Shah. Throughput-delay trade-off in wireless
networks. In IEEE INFOCOM 2004, volume 1, 2004.

M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi.
A Tutorial on Beam Management for 3GPP NR at
mmWave Frequencies. IEEE Communications Surveys
& Tutorials, 21(1), 2019.

Giacomo Giuliari, Tobias Klenze, Markus Legner, David
Basin, Adrian Perrig, and Ankit Singla. Internet back-
bones in space. ACM SIGCOMM Computer Communi-
cation Review, 50(1), 2020.

Sergio Gomes. Resource prioritization —
getting the browser to help you. https:
//developers.google.com/web/fundamentals/
performance/resource-prioritization, June
2020. [Last accessed on June 12, 2020].

Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi.
Mobile cpu’s rise to power: Quantifying the impact of

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

generational mobile cpu design trends on performance,
energy, and user satisfaction. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 64-76. IEEE, 2016.

Haitham Hassanieh, Omid Abari, Michael Rodriguez,
Mohammed Abdelghany, Dina Katabi, and Piotr Indyk.
Fast Millimeter Wave Beam Alignment. In Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2018.

Brett D Higgins, Azarias Reda, Timur Alperovich, Jason
Flinn, Thomas J Giuli, Brian Noble, and David Watson.
Intentional networking: opportunistic exploitation of
mobile network diversity. In Proceedings of the 16th
annual international conference on Mobile computing
and networking (MobiCom), 2010.

Se Gi Hong and Chi-Jiun Su. ASAP: fast, controllable,
and deployable multiple networking system for satellite
networks. In IEEE Global Communications Conference
(GLOBECOM), 2015.

Hung-Yun Hsieh and Raghupathy Sivakumar. pTCP:
An end-to-end transport layer protocol for striped con-
nections. In Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP), 2002.

Janardhan R Iyengar, Paul D Amer, and Randall Stewart.
Concurrent multipath transfer using SCTP multihoming
over independent end-to-end paths. IEEE/ACM Trans-
actions on networking (ToN), 14(5), 2006.

Adrian Loch, Irene Tejado, and Joerg Widmer. Potholes
Ahead: Impact of Transient Link Blockage on Beam
Steering in Practical mm-Wave Systems. In The 22nd
European Wireless Conference, May 2016.

Luiz Magalhaes and Robin Kravets. Transport level
mechanisms for bandwidth aggregation on mobile hosts.
In Proceedings of the 9th IEEE International Confer-
ence on Network Protocols (ICNP), 2001.

Arvind Narayanan, Eman Ramadan, Jason Carpenter,
Qingxu Liu, Yu Liu, Feng Qian, and Zhi-Li Zhang. A
First Look at Commercial 5G Performance on Smart-
phones. In Proceedings of The Web Conference, 2020.

Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ah-
mad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang,
Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao,
et al. A variegated look at 5G in the wild: performance,
power, and QoE implications. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2021.

432 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://developers.google.com/web/fundamentals/performance/resource-prioritization
https://developers.google.com/web/fundamentals/performance/resource-prioritization
https://developers.google.com/web/fundamentals/performance/resource-prioritization

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for HTTP. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2015.

Jan Odvarko. Har 1.2 spec, 2007.

Tommy Pauly, Brian Trammell, Anna Brunstrom, Gorry
Fairhurst, Colin Perkins, Philipp S Tiesel, and Christo-
pher A Wood. An architecture for transport services.
Internet-Draft draft-ietf-taps-arch-00, IETF, 2018.

Maxim Podlesny and Sergey Gorinsky. RD network
services: differentiation through performance incentives.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM),
2008.

Murali Ramanujam, Harsha V Madhyastha, and Ravi
Netravali. Marauder: synergized caching and prefetch-
ing for low-risk mobile app acceleration. In Proceedings
of the 19th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2021.

Sanae Rosen, Haokun Luo, Qi Alfred Chen, Z Morley
Mao, Jie Hui, Aaron Drake, and Kevin Lau. Discover-
ing fine-grained RRC state dynamics and performance
impacts in cellular networks. In Proceedings of the 20th
annual international conference on Mobile computing
and networking (MobiCom), 2014.

Philipp S Schmidt, Theresa Enghardt, Ramin Khalili,
and Anja Feldmann. Socket intents: Leveraging ap-
plication awareness for multi-access connectivity. In
Proceedings of the 9th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT),
2013.

William Sentosa, Balakrishnan Chandrasekaran,
P Brighten Godfrey, Haitham Hassanieh, Bruce Maggs,
and Ankit Singla. Accelerating mobile applications
with parallel high-bandwidth and low-latency channels.
In Proceedings of the 22nd International Workshop on
Mobile Computing Systems and Applications, pages
1-7, 2021.

M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang,
and Jia Wang. Characterizing geospatial dynamics of
application usage in a 3G cellular data network. In
Proceedings IEEE INFOCOM, 2012.

Srikanth Sundaresan, Nick Feamster, Renata Teixeira,
and Nazanin Magharei. Measuring and mitigating web
performance bottlenecks in broadband access networks.
In Proceedings of the ACM Internet Measurement Con-
ference (IMC), 2013.

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

Cheng-Lin Tsao and Raghupathy Sivakumar. On effec-
tively exploiting multiple wireless interfaces in mobile
hosts. In Proceedings of the 5th International Confer-
ence on Emerging Networking Experiments and Tech-
nologies (CoNEXT), 2009.

Xiao Sophia Wang, Aruna Balasubramanian, Arvind Kr-
ishnamurthy, and David Wetherall. Demystifying page
load performance with wprof. In /0th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

Xiao Sophia Wang, Aruna Balasubramanian, Arvind
Krishnamurthy, and David Wetherall. How Speedy is
SPDY? In 1ith USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2014.

Damon Wischik, Costin Raiciu, Adam Greenhalgh, and
Mark Handley. Design, implementation and evaluation
of congestion control for multipath tcp. In 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2011.

Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang,
Xi Liu, Congkai An, Yiming Shi, Liang Liu, and
Huadong Ma. Understanding operational 5G: A first
measurement study on its coverage, performance and
energy consumption. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM), 2020.

Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Ragha-
van, Riad S Wahby, Philip Levis, and Keith Winstein.
Pantheon: the training ground for internet congestion-
control research. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 731-743, 2018.

Ming Zhang, Junwen Lai, Arvind Krishnamurthy,
Larry L Peterson, and Randolph Y Wang. A Transport
Layer Approach for Improving End-to-End Performance
and Robustness Using Redundant Paths. In USENIX
Annual Technical Conference (ATC), 2004.

Torsten Zimmermann, Benedikt Wolters, Oliver
Hohlfeld, and Klaus Wehrle. Is the web ready for
http/2 server push? In Proceedings of the 14th ACM
Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2018.

Baiqing Zong, Chen Fan, Xiyu Wang, Xiangyang Duan,
Baojie Wang, and Jianwei Wang. 6g technologies: Key
drivers, core requirements, system architectures, and en-
abling technologies. IEEE Vehicular Technology Maga-
zine, 14(3), 2019.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation

433

(a) (b)

40
—A— DChannel

N
o

w
o

301

\ OurURLLC| 201

N
o
L

% Imprv. over All-eMBB

! Our|URLLC
104 band\'mdth 10 1 latency
—A— DChannel| Paseline baseline
0 : : ot
1 2 3 4 2 5 10 15 20 25 30
URLLC Bandwidth (Mbps) URLLC RTT (ms)

(c)

34 —e— All-emsB
—A— DChannel

20 40 60 80 100
eMBB RTT (ms)

Figure 8: DChannel under varying eMBB and URLLC net-

work conditions, conducted using the baseline (RTT (ms) /

bandwidth (Mbps) for eMBB and URLLC are 40 /200 and 5

/ 2) with a single varying parameter.

A Appendix

A.1 Algorithm Listing

The packet steering algorithm is listed as Algorithm 1. Note
that since HBC bandwidth (Byy,) is typically large and rela-
tively hard to measure, for simplicity, we omitted the queueing
delay caused by (Size(Pn) + thc(tn))/Bhbc-

Algorithm 1: DChannel steering algorithm

Result: Send a packet to either HBC or LLC
c_llc =t_now + llc_prop + (size(packet) + queue_lIc) /
band_llc;
c_hbc = t_now + hbc_prop;
rewards = c_hbc - max(prev_c, c_llc);
cost = (size(packet) + queue_lIc) / band_llc;
if rewards > alpha * cost then
send(pkt, LLC);
‘ prev_c = max(prev_c, c_lIc);
else

send(pkt, HBC);
prev_c = max(prev_c, c_hbc);

end

A.2 Parameter Calibration

The results of our parameter sweep are shown in Table 5.

A.3 Understanding DChannel Performance

Below, we investigated how DChannel performs under tightly
controlled network variables. We used a fixed network latency
and bandwidth for the experiments below.

w
o

% Imprv. over ALL-eMBB
Ll N
o o

00 025 05 075 1.0 15 20
URLLC RTT coefficient of variation
Figure 9: DChannel PLT improvement under time-varying
URLLC RTT randomly generated according to a Gaussian
distribution.

A.3.1 Performance under high eMBB RTT

We evaluated DChannel under eMBB RTT inflation and found
it to be resilient towards the RTT increase (Fig. 8c). Specifi-
cally, DChannel is 2 faster than the baseline when eMBB
RTT is held at 100 ms, which is possible in device mobility as
Tab. 1 shows. As eMBB RTT increases, DChannel web PLT
degrades at a slower rate compared to All-eMBB because it
uses eMBB primarily for bandwidth-sensitive (low rewards)
traffic that is not affected as severely by the increased latency.
Inline with our trace-based evaluation under mobility, the par-
allel channel setup can be extremely effective when the eMBB
channel quality degrades.

A.3.2 Varying URLLC latency

Although URLLC is expected to deliver consistent low la-
tency, we evaluated latency inflation on URLLC to reflect sce-
narios where web traffic is de-prioritized in favor of critical
traffic. DChannel is still superior even when URLLC latency
increases up to 30 ms and eMBB held at 40 ms (Fig. 8b). As
expected, as URLLC latency increases and becomes closer
to eMBB, the PLT improvement rapidly diminished because
LLC no longer offers a competitive resource despite its higher
cost.

To evaluate DChannel sensitivity to URLLC latency insta-
bility, we changed URLLC propagation latency over time to
random values that follow Gaussian distribution. We kept the
URLLC mean to 10 ms and ran experiments with an increas-
ing amount of variation, controlled with the Gaussian distri-
bution’s coefficient of variation (CoV). We set the URLLC
bandwidth to 2 Mbps while the eMBB RTT and bandwidth are
40 ms and 200 Mbps. We found that DChannel performance
is relatively robust to the URLLC latency change (Figure 9);
the PLT improvement only drops from 27.18% to 23.31%
when the URLLC latency CoV changes from 0O to 2.

A.3.3 Varying URLLC bandwidth

The URLLC bandwidth is generally limited to ensure its
reliable and low latency service. We tested DChannel under
varying URLLC and summarize that its improvement flattens
as URLLC bandwidth increases past 2 Mbps (Fig. 8a). As

434 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Table 5: Percentage of improvement or ‘speedup’ in PLT (%ps.) along with the percentage of bytes (%sz.) sent via URLLC for
various values of the eMBB channel RTT. The table also shows how the different values of & affect the performance benefits.

RTT oa=0 o=0.25 a=0.5 a=0.75 a=1 o=2 oa=3
(ms) | 9ops. Yosz. | Yops. Yosz. | Yops. Yosz. | Yops. Yesz. | Yops. Yosz. | Yops. Yesz. | Yops. Yesz.
20 | 167 133 | 166 107 [[184" 59 5.7 55 | 156 47 | 142 41

40 | 31.1 188 | 332 162 | 340 139
60 | 375 226 | 409 195 | 412 174
80 | 432 263 | 463 229 | 463 199
100 | 47.1 294 | 48.6 26.1 | 49.7 225

119 | 340 11.1 | 328 85 | 31.8 58
149 | 40.8 142 | 40.6 11.1 | 374 938
17.7 165 | 456 133 | 45.1 11.6
19.9 183 | 49.8 149 | 485 13.1

N
o

—e— eMBB RTT prediction = 20ms

% Imprv. over All-eMBB
N
o

04 —&— eMBB RTT prediction = 100ms
-#- Correct prediction
20 40 60 80 100
eMBB RTT (ms)

Figure 10: Effect of underestimating and overestimating
eMBB latency on the mean PLT improvement.

URLLC bandwidth increases, DChannel aggressively offloads
packets belonging to a larger transfer (e.g., HTTP response)
to URLLC. It may not affect the completion time, however,
as it still needs to wait for the remaining part to be transferred
over the eMBB.

A.3.4 Working with Incorrect Latency Estimates

DChannel requires estimates of eMBB and URLLC latency
to calculate rewards and cost (§3.4). While URLLC latency
is predictable, it can be hard to get an accurate measurement
of eMBB latency, especially under mobility. To better under-
stand the sensitivity of DChannel to the latency estimates,
we evaluated DChannel under underestimated and overesti-
mated latency. Fig. 10 shows that underestimating eMBB
latency is safer: When DChannel underestimates eMBB la-
tency as 20 ms (from 100 ms, which is 5x higher), the PLT
improvement only decreases by 8%. Underestimating eMBB
latency will underestimate the rewards, causing a more conser-
vative use of URLLC and ensuring that the offloaded packets
are high rewards packets. Overestimating the latency will, in
contrast, overestimate the rewards, resulting in unnecessary
packets being offloaded to URLLC, and slowing down the
channel. Per Fig. 10, overestimating eMBB latency by 5x,
DChannel gets worse performance than the baseline.

A.3.5 DChannel under TCP BBR

Since DChannel steers packets over two channels, the sender
may notice an abrupt change in the flow RTT. We evaluated

Table 6: Mean PLT with TCP BBR under different eMBB
RTTs. The URLLC RTT is set to 5 ms

RTT=20ms RTT=100ms
All-eMBB 915 ms 2661 ms
DChannel 716ms (21%) 2713 ms (-2%)
pkt-uplink 860 ms (6%) 1628 ms (39%)

DChannel in TCP BBR, which uses RTT measurement to
determine whether a path is congested. Tab. 6 shows the re-
sult when low (RTT=20ms) and high (RTT=100 ms) eMBB
latency are used. When the eMBB RTT is 20 ms, BBR works
perfectly with DChannel because eMBB and URLLC laten-
cies are not that different. As the latency gap widens, however,
BBR starts to treat abrupt latency inflation as a congestion
signal, reduces its windows rate, and increases PLT. We found
that for 20% of the web page loads, DChannel performs worse
than All-eMBB. These sites rely on a single TCP connection
to deliver most web objects, and that flow suffers from a low
sending rate. This can happen as DChannel accelerates the
early packets (such as TCP SYN) to URLLC and suddenly
switches back to eMBB once it sees large traffic. The abrupt
RTT change gives a wrong congestion signal to the sender.
One possible solution is to modify BBR to be aware of eMBB
and URLLC use so that it can tolerate a change in RTT and
maintain its sending rate. We leave this as future work. Alter-
natively, we can use different heuristics (pkt-uplink) that will
send all uplink packets to URLLC and downlink packets to
eMBB. This heuristic is based on the observation that client
traffic is generally small and accelerating those packets will
accelerate the flow RTT in a more consistent way. Table 6
shows we can get 39% improvement in PLT under BBR from
this scheme.

A.4 DChannel rewards calculation accuracy

We evaluated DChannel packet rewards (R) calculation accu-
racy by comparing the calculated rewards and the real rewards.
As we used a trace-based emulated network, we knew both
network bandwidth, latency, and the link’s queue depth at any
given time. Leveraging this information, we can calculate the

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 435

1.04
0.8+
w 0.64
S
0.4
0.2 —— mmWave-stationary
—— mmWave-driving
0.0 1, i T
0 50 100 150

rewards_error (ms)

Figure 11: DChannel calculates rewards error distribution
(Ryeal — Rest) across individual packets. A positive value de-
notes R underestimation. We limited the x-axis due to the high
rewards error in the tail (155 ms and 604 ms at the 99th and
100th percentile).

real rewards before we commit a packet to a link. Figure 11
shows the rewards calculation error for the mmWave station-
ary (MM-S) and driving (MM-D) network traces. DChannel
is able to accurately estimate R with just 12 ms of error in
the 90th percentile in the stationary network traces due to
the network latency being relatively stable and the bandwidth
being large. In the driving traces, the error is noticeably higher
with a long tail. However, 90% of the time the error is less
than 37 ms. The R error mainly arises from the less accurate
network eMBB latency estimation and the impact of ignoring
the eMBB queueing delay (§A.1), since eMBB bandwidth
may be low, and the delay becomes more significant).

The above is also why, as can be seen in the figure, R is
rarely overestimated. Underestimation is the preferred direc-
tion of error, as we have shown that DChannel can tolerate
some incorrect latency estimates and rewards underestimation
(§A.3.4). However, better network measurement may improve
DChannel performance; we leave this as future work.

436 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

	1 Introduction
	2 Background and Motivation
	2.1 Channels in 5G
	2.2 Web browsing traffic

	3 DChannel Design
	3.1 High-Level Architecture
	3.2 Steering Granularity
	3.3 Packet Steering Intuition
	3.4 Rewards and Cost
	3.5 The Packet Steering Algorithm
	3.6 Reordering buffers at the endpoints

	4 Prototype and Experimental Setup
	4.1 Live-eMBB Setting
	4.2 Emulated-eMBB Setting
	4.2.1 Collecting network traces
	4.2.2 Emulating the traces

	5 Evaluation
	5.1 Testbed Configuration
	5.2 Application use cases
	5.3 Comparing steering schemes
	5.4 Live 5G Experiments
	5.5 Evaluating the reordering buffer
	5.6 Bulk download performance
	5.7 Mobile application performance

	6 Discussions and Future Work
	7 Related work
	A Appendix
	A.1 Algorithm Listing
	A.2 Parameter Calibration
	A.3 Understanding DChannel Performance
	A.3.1 Performance under high eMBB RTT
	A.3.2 Varying URLLC latency
	A.3.3 Varying URLLC bandwidth
	A.3.4 Working with Incorrect Latency Estimates
	A.3.5 DChannel under TCP BBR

	A.4 DChannel rewards calculation accuracy

