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Abstract

This study presents a new framework for obtaining personalized optimal treatment strate-
gies targeting aberrant signaling pathways in esophageal cancer, such as the epidermal growth
factor (EGF) and vascular endothelial growth factor (VEGF) signaling pathways. A new
pharmacokinetic model is developed taking into account specific heterogeneities of these sig-
naling mechanisms. The optimal therapies are designed to be obtained using a three step
process. First, a finite-dimensional constrained optimization problem is solved to obtain the
parameters of the pharmacokinetic model, using discrete patient data measurements. Next,
a sensitivity analysis is carried out to determine which of the parameters are sensitive to the
evolution of the variants of EGF receptors and VEGF receptors. Finally, a second optimal
control problem is solved based on the sensitivity analysis results, using a modified pharma-
cokinetic model that incorporates two representative drugs Trastuzumab and Bevacizumab,
targeting EGF and VEGF, respectively. Numerical results with the combination of the two
drugs demonstrate the efficiency of the proposed framework.
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1 Introduction

Esophageal cancer (EC) is the sixth leading cause of cancer deaths worldwide [19]. It presents no
significant symptoms at an early stage and, thus, tends to be diagnosed very late [34]. This leads
to very few available treatments for cure or control of EC, leading to a high mortality rate [§].
Thus, the need for development of accurate and timely treatments for EC is crucial. Accumulating
evidence has shown abnormal activities in various signaling pathways in a broad range of cancers,
which can be targeted as therapy [9, 18, 27, 37, 38, 40]. It is worthwhile to note that all these
studies are experimental in nature and are based on data from a limited number of patients. In
particular, it has been observed that in EC, several receptor tyrosine kinases (RTKs), such as
epidermal growth factor (EGF) receptor, HER2, and vascular endothelial growth factor (VEGF)
receptor, present significant increased expression in EC tumor compared to normal tissues [36].
They often presents high copy numbers, which has been found to correlate with poor prognosis and
aggressive malignancy. Thus, it is of paramount importance to understand the dynamics of RTK
signaling pathways and to develop strategies targeting them in order to combat EC. Many small
molecule compounds and monoclonal antibodies targeting RTKs have been developed and some
have been approved by FDA for cancer treatment. For example, Trastuzumab and Bevacizumab
are two drugs targeting HER2 and VEGF receptors, respectively [11, 22, 23, 24].

To understand the dynamics of RTK signaling pathways, mathematical frameworks are very
natural and rich, and can provide a speedy assessment without the need for a large number of
clinical trials. Omne class of mathematical frameworks is the pharmacokinetic models that use
differential equations to describe the anatomical, physiological, physical, and chemical processes
involved due to the effects of cancer inside a body [4, 41]. These models take into account the
molecular characteristics of an individual patient, thus, able to accurately model and predict
the cancer progress. Numerous deterministic pharmacokinetic models have been used in past to
model the dynamics of RTK signaling pathways for different cancer types. In [3], the authors use
a ODE-based model to explore the relationship between EGFR and IGF1R protein expressions
in non-small cell lung cancer. A mathematical model for crosstalk between estrogen receptor and
EGFR was presented in [5]. In [6, 7], the authors develop ordinary differential equations (ODE)-
based models for studying the effects of HER2 overexpression on cell proliferation in breast cancer.
The authors in [14] present a mathematical model based on ODE to understand the dimerization
process for Gefitinib resistance in lung cancer. A computational model was used to simulate the
main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways in melanoma
cancer [28]. The authors in [30] study the therapy resistance in RTK signaling pathways through
the AKT pathways in colon cancer. To the best of our knowledge, no such model is available for
RTK signaling pathways in EC.

Comparing with other solid tumor malignancies, EC patients present much more heterogeneity
and diverse cancerogenous origins [39]. There are two primary types of heterogeneities in pathways
related to EC: extrinsic and intrinsic [16]. Extrinsic heterogeneities arise due to the fact that the
development of EC involves various perturbation events like gene copy number amplification and
are also induced by different environmental signals, like metabolic stress, inflammatory micro-
environments, immune responses [2]. Intrinsic heterogeneities are a result of intracellular dynamics,



not necessarily related to EC [35]. These heterogeneities have been found to be a major factor
in drug resistance in EC. Thus, it is important to develop a pharmacokinetic model that can
incorporate heterogeneities in EC. As a simplistic answer to this question, in this paper, we
present a new pharmacokinetic model for RTK signaling pathways in EC by modeling interactions
between two biological entities using a combination of Michaelis-Menten and Mass action laws.
The rationale behind such a modeling is to incorporate a specific kind of extrinsic heterogeneitic
behavior, where copies of the same biological entity can behave differently.

Pharmacokinetic models contain a set of parameters that represent important physiological
and mechanistic characteristics in a body, like cell counts, absorption rates, diffusion rates, and so
on. Accurate estimation of these parameters and determining the most sensitive ones with respect
to the EGFR receptors are very crucial in order to devise an appropriate treatment method for the
patient. Existing methods of parameter estimation rely on the availability of huge datasets for an
accurate estimation. But such large datasets are in scarcity [17]. In this paper, we present a data-
driven optimal control framework for devising personalized treatment targeting aberrant pathways
using a 3-step process: we first estimate the parameters of our pharmacokinetic model through
a finite dimensional optimization framework that yields accurate, robust, and stable estimates
of the parameters. Next, we determine which of the parameters are sensitive with respect to
EGFRs-dependent tumor growth. We finally, solve an optimal control problem that incorporates
combination drugs, based on the sensitivity analysis results, and provides the optimal dosages.

The main content of this paper is divided into six sections. Following the Introduction, Section
2 describes the new pharmacokinetic ODE model for the evolution of the pathways, and present
the optimization problems used for obtaining the optimal therapies. Section 3 contains theoretical
results related to the pharmacokinetic model and the corresponding optimization problems. Sec-
tion 4 presents a NSFD numerical scheme for solving the forward and the adjoint ODE systems,
and the projected non-linear conjugate gradient (PNCG) method for solving the optimality sys-
tem. We also present the method for carrying out the sensitivity analysis of the optimal parameter
set. Section 5 presents the results of our proposed optimal control framework followed by Section
6: Conclusions and Acknowledgements.

2 A controlled quantitative systems pharmacology model
for pathways

We aim at developing a quantitative systems pharmacology (QSP) model for pathway dynamics in
a single cancer cell. In the cell, a monovalent EGF ligand (L), binds reversibly to monovalent cell
surface EGF receptor (R) to form a receptor-ligand EGFR-EGF complex (C), and this reaction
is reversible. The occupied receptor then hetero-dimerizes with the cell surface HER2 receptor
to form a dimer or ternary complex EGFR-EGF-HER2 (T), which is also a reversible reaction.
Below is the schematic of the reactions:



EGFR(R) + EGF(L) = EGF : EGFR(C)
EGF : EGFR(C) + HER2(H) = EGF : EGFR : HER2(T)

We assume there is no cell proliferation, so that the total number of bound and unbound EGF
receptors (R) and HER2 receptors (H) at any given time is conserved. The aforementioned process
can be represented through the evolution of the following variables:

1. H(7)- the density of HER2 receptors (#/volume)

2. T(7)- the density of EGF:EGFR:HER2 complex (#/volume)

3. R(7)- the density of EGFR receptors (#/volume)

4. C(r1)
5. L(7)- the concentration of EGF (uM)

where 7(hours) is the time variable. The dynamics is gven through the governing system of ODEs

dH ~ CH

iy Sy a>CH + asT,

Cfl—f — aI% +ayCH — a3T — By (7)7,

% — _a‘*KRLfR —asLR + aC, (1)
% - _al—KffH — a,CH + asT + a4 [_(RLf 7 T8 LR =0 = Br1s()C,

dL

= —a7RL + asC + agL — ayoL,
H(0) = Hy, T(0) =Ty, R(0) = Ry, C(0)=Cy, L(0) = Ly.

The unknown patient-specific parameters that need to be determined is the parameter vector 0 =
(@1,...,a10). The functions @; i = 1,2 represent dosages of Trastuzumab and Bevacizumab [10],
with efficacy rates 31, B2, respectively. The rationale behind the modeling of the combination doses
is as follows: Trastuzumab binds to the extracellular domain of the HER2 receptor and inhibits
HER2 homodimerization. This, in turn, prevents HER2-mediated signaling [22]. For this reason,
we represent the action of Trastuzumab through a mass action law on the EGF:EGFR:HER2
complex. On the other hand, Bevacizumab attaches to the VEGF protein and blocks its growth
[29]. Due to the fact that the VEGF and EGFR pathways share common downstream signaling
pathways and EGF ligand is one of the many growth factors that drive VEGF expression [11, 23],
we model the action of Bevacizumab by a mass action law on the EGF:EGFR complex.



For stabilization and scalability of the numerical algorithms, we non-dimensionalize the above
ODE system using the following non-dimensionalized state and time variables, and parameters

H:dlg, T:le, R:dlé, C:dlé, L:dzfz, t:dgT,

aq a9 as d1d4 d1a5
a1 = — Ao = —— A = — as = — ar = ——
1 d3 y U2 d1d3 , U3 d3 ; W4 d2d3 , Wh d3 ) (2)
g oG o Oy G
6 d3 , W7 dl dg ; W8 d2d3 , U9 dg , W10 d3
The transformed non-dimensionless ODE system is given as follows
dH CH
% = —alm — CLQCH + G3T,
dr CH
% = alm + &QCH — &3T — ﬁlul(t)T,
dR LR
Rl — asLR + aC
@t~ MEKprr BT (3)
dc cH LR
% = —alm — GQCH + ClgT + mm + CL5LR - CLGC — ﬁglbz(t)c,
dL

E = —a;RL + CLgC +agl — a10L7

H(0) = Ho, T(0) =Tp, R(0) =Ry, C(0) =Co, L(0) = Lo,

where ¢ € (0,7). The system of ODEs given in (3) can be written in a compact form as follows

dX
— =F(X.0.0U) )
X(0) = Xo,

where X (t) = (H(t),T(t), RT(t),C(t),L(t))T, 0 = (a1,...,a10) € Tyg = {0 € RV : 0 < 0; < M;}
and U = (uy,uz) € Uyg = U}y x U2, with U, = {u € L*(0,Ty) : 0 < u(t) < D;, Vt € (0,T})}

2.1 Optimal control algorithm for combination therapies

Here we describe a three-step algorithm for obtaining the optimal combination therapies.

1. We first estimate the patient specific unknown parameter vector @, given the values of X at
specific time instants t1,--- ,ty as X{i, 1=1,---,N. Note that data for some components

of X might not be specified, and data can be noisy. We solve the following optimization
problem
* . a (1 d ()2 v 2
0" = argminJ, (X, 0) :==— (X (t) — Xt))" de + =10z, (5)
0€T, 4 2 Jo 2
subject to the QSP system (3) with U = 0, where X¢(¢) is the data function formed by
interpolating the patient data X¢(¢). The first term in the expression of J; in (5) is the
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standard least squares fitting term. The second term is a [? regularization term for 8. Such a
regularization term prevents any one (or multiple) of the parameter values in 8 from getting
too far out of control.

2. In the next step, we determine the subset of the optimal parameter set 8* that is sensitive
with respect to the EGF:EGFR complex C'. This will be achieved through a global uncer-
tainty and sensitivity analysis using the Latin hypercube sampling-partial rank correlation
coefficient method (LHS-PRCC), as described in Section 4.1.

3. Using the information of the sensitive parameters from the previous step, we now decide on
the type of drugs to be chosen, and the number of different drugs to be used, represented
by the number of 8; # 0. We then formulate a second optimization problem as follows:

min o f) (O - O 2wy e Y [T a o

w €U ,,Bi#0 i=1,8; ;éo 0

subject to the QSP system (3), where C*, T* are targets EGF:EGFR and EGF:EGFR:HER2
complexes. The first two terms in the expression of .J in (6) serve as the target of the drugs
for driving C,T to the desired target values C*,T™ at the final time T}. The choice of
such terms in the functional is motivated by the scenario where variable dosage treatment
is administered on a sequence of days so as to achieve a desired target on a monitoring
day (T), which is similar to a treatment regime like an antibiotic. The second term is a [?
regularization term for u;, which controls, possibly, large dosages of the drugs while achieving
the desired targets.

At the end of Step 3, we not only obtain the types of drugs that can be used for treatment
but also the optimal drug concentration and the dosage profile over time.

3 Theory of the optimal control problem

In this section we describe some theoretical properties of the ODE system (4). We first begin with
the positivity of the solutions of (4).

Lemma 3.1. The solutions of (4) are non-negative in the sense that if Xo > 0, we have X (t) > 0
for all t € [0,TY].

Proof. We can write (4) in a productive-destructive form as follows:

dX
dt

where P, D are positive, i.e., if X, 0 > 0, we have P, D > 0, componentwise. Consider the
integrating factor vector I = exp([ D dt). The (7) can be rewritten as

(IX)
dt

— P(X.0) - D(X,0,U)X, (7)

U

= P(I,9). (8)

(=}



Since, Xy > 0, we have I X, > 0. Thus, (8) gives us that I X (¢) > 0 for all ¢ € [0,T}]. Since,
I > 0, we have that X (t) > 0 for all ¢ € [0, T¥]. O

We next prove some stability estimate for the solution of (4).

Lemma 3.2. A solution X = (H,T,R,C, L) of (4) satisfies the following stability estimate

H(t)+T(t) < Hy+ Ty,
R(t)+C(t)+T(t) < Ry+ Cy+ Tp, (9)
L(t) < exp(agTy)(Lo + K(0, Xo)).

Proof. From (4), we note the following:

WD~ s <o,

d(R+C+T)
at
dL

E < CLgC(t) + CLgL.

= _62u2(t>T < 07

A simple application of Gronwall’s inequality gives the desired result. m

Lemma 3.2 gives us that a solution X of (4) is bounded. We now state and prove the existence
and uniqueness of solutions of (4).

Theorem 3.1. Given U € Uy, there exists an unique solution X of (4) in (H*(0,T}))".

Proof. Since U € Uy, U is bounded. From Lemma 3.2, we have that X is bounded. These two
results yield that F' satisfies the following conditions:

1. F'is continuous with respect to X.

2. F' is measurable with respect to t.

3. F' is bounded.

4. The derivative of F' with respect to X is also bounded.

Thus, F' satisfies the Caratheodory’s conditions, which gives the existence and uniqueness of a
solution X € (H(0,T}))°® of (4). O

The aforementioned results give that the mapping A : Thg x U,y — H' (0, Ty), (0,U) - X =
A(6,U) is continuous. Further, using similar arguments as in [1, 31, 32], it can be shown that
this mapping is also Fréchet differentiable. We now discuss some properties of the cost functionals
Ji, Ja given in (5) and (6).



Proposition 1. The objective functionals Jy,Ja, given in (5) and (6), are sequentially weakly
lower semi-continuous (w.l.s.c.), bounded from below, coercive on Toq,Usq. respectively, and are
Fréchet differentiable.

With this preparation, we are now ready to state and prove the existence of the optimal
parameter set 8* and the optimal drug dosage concentration vector U* in the following theorem.

Theorem 3.2. Let Jy,Jo be given as in (5) and (6). Then, there exists pairs (X{,0%) €
HY0,T}) x Toq and (X3,U*) € (H'(0,T}))° X Uaq such that X7, X5 are solutions of (4), and
0. U* mimimize Jy, Jo in Tog, Usg, respectively.

Proof. We first prove the existence of minimizer of .J; in (5). Since J; is bounded below, there
exists a minimizing sequence (™) € T,4. Since T,y C R and J; is sequentially w.ls.c. as
well as coercive in T4, this sequence is bounded. Therefore, it contains a convergent subsequence
(0™) in T,4 such that 8™ — @*. Correspondingly, the sequence (X)), where X™ = A(8™,0),
is bounded in (L?*(0,7}))® while the sequence of the time derivatives, (9,X™), is bounded in
(L*(0,Ty))° by Lemma 3.2 and Theorem 3.1. Therefore, both the sequences converge weakly
to X} and 0, X7, respectively. From the above discussion, we obtain weak convergence of the
sequence (F(X™k 6™ 0)) in (L*(0,7}))°. It now follows that X; = A(6*,0), and the pair
(X7, 0*) minimizes J;.

For proving existence of a minimizer of Jy, given in (6), we can follow the same arguments
as above, due to the fact that U, is a closed subspace of a Hilbert space and .J; is coercive in
Usa, which yields a weakly convergent subsequence (u,,,) of a minimizing sequence (U,,) for Js.
The compactness result of Aubin-Lions [20] yields strong convergence of a subsequence (X™*) of
a sequence (X™ = A(6*,U,,)) in (L*(0,7}))°. From the above discussion, we obtain weak con-
vergence of the sequence (F(X™ 0* U, )) in (L*(0,T}))°. It now follows that X5 = A(6*,U*),
and the pair (X5, U*) minimizes Js. O

The Frechét differentiability of J;, J; gives rise to the first order necessary optimality conditions
as follows: For the minimization problem (5), the optimality system is given as

(il_i[ = _al% —ayCH + a3T,

62_3: _ a1% + ayCH — a7,

% _ _a4% — a5LR + agC, (FOR1)
% _ —m% — 4,CH + asT + M% 4 asLR — agC,

% = —a7;RL + agsC + a9l — ayoL,

H(0) = Ho, T(0) =Tp, R(0) =Ry, C(0)=Co, L(0) = Lo,



dH T—-H-C ~
— — =uCK T-H —a(H — H?
i aC H(KH T H) + axC( C) —of )
dT ~
- =a3(C+H~-T)—a(T-T9
dR C—-R ~ -
— — =@y LKp———= 4+ asL(C — L) — a(R — R,
it~ Ry + R TP ( )~ o ) (ADJ1)
dC T-H-C ~ o~ - -~
- = aleMQH(T—H—C) —agC + asL — a(C — O,
dL C—-R ~ ~ - ~
— E = CL4RKR i R + CL5RC — (I7RL + CLgL — aloL — CL’(L — Ld),
f[(Tf) = 07 f<Tf> = Oa §<Tf) = 07 6(Tf) = 07 Z(Tf) = 07
H+C-T)\ ,.
(’}/Cll + CHm) (Cll - Cll) 2 0,
(7@2 + CH( H+C— T)) (ay —ag) >0,
<7a3+T (T —H— C’)>( —ag) >0,
~C\ .
<7a4 + LR R) (a4 —ayg) >0,
(va5 + LR(R — 0)) (@5 — as) > 0, (OPT1)
(7% + O C - wR)) (ag — ag) > 0,
<Wa7 + RLL) ar —az) >0,
<7as ) ag —ag) > 0,
(’7&9 > g — ag) > 0,
(7%0 + LL) (@10 — a19) > 0,
for all @ = (ay, ... ,a10) € T,q. For the minimization problem (6), the optimality system is given



as
dH CH

@ R g eCHr el
dT CH
i alm + a;CH — asT — Bru (8)T,
dR LR
b —asL
i Rgr R LRt aC (FOR2)
dC CH LR
o= _alm —asCH + a3T + a4m +asLR — agC' — Bous(t)C,
dL
T —a7RL + agC + agL — ajoL,
H(O) = HO? T(O) = T07 R(O) = ROa C(O) = COa L(O) = L07
2l FoE-6 o
- K T—H—
a alC H(KH —|—H)2 +CL20( C),
df ~ ~ =~ - *
- = as(C+H —=T) = prus ()T — i (T = T7),
dR C—R ~ -
— — =wyLKg———— +asL(C — L),
dt — UKy +R2 T ( ) (ADJ2)
dC T-H-C N A .
—E :ale—FaQH(T—H—C)—&60+a8L_ﬁ2u2(t)C_V2(C_C )’
dL C-R ~ oo 5
- = a4RKR "y + asRC — a7y RL 4 agL — ayoL,
H(Ty) =0, T(Ty) = 0, R(Ty) =0, C(Ty) =0, L(Ty) =0,
)+ B TAT(L), @y (1) — uy (t)) 2 >0,
(i (8) + BT OT (1), @ (1) — s (D) 20.1y) 2 (OPT2)

(maus(t) + BC()C (1), ta(t) — ua(t)) r2(0,1y) > 0,

for all U = (iy, tiz) € Usa.

4 Numerical discretization schemes for solving the opti-
mality system and sensitivity analysis

In this section, we describe the numerical schemes for solving the optimality system (FOR1)-

(OPT1) and (FOR2)-(OPT2). We first divide the interval (0,7%) into IV; subintervals and form

the mesh
M" = {t), -ty = kh, 0 < k < N,},

where h = Ty /N;. To solve the forward and the adjoint equations, we use the non-standard finite
difference (NSFD) schemes. NSFD schemes are a class of finite difference schemes that uses a
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modified denominator function in the discretization of the time derivative in order to achieve
elementary stability. Traditionally, positive Euler-based NSFD methods are first order. But very
recently, a class of second-order, elementary stable positive Euler-based modified NSFD methods
were devised for solving ODE systems. The starting point is to note that both the forward
ODE system (4) and the corresponding adjoint ODE systems (ADJ1), (ADJ2), after using a
transformation of variables to rewrite them as an initial value problem, can be written in the
generic form as:

% ~ G(Y,0,U), Y(0) = Y". (10)

The corresponding NSFD discretization can be described as follows: Let Y* ~ Y (#), be the
numerical solution of (10) at the grid point t;. Then starting with Y? at the initial time, Y* can
be obtained using the NSFD numerical scheme

¢i(h,Y) i G5 0.U (1), if G(Yi,0,U (1)) <0

)

for k=0,...,N,—1,i=1,...,5, where gbi(h,Y)zw,with

(VyGi(Y),G(Y))
"W oav)  (wvav) e | 2

The NSFD scheme (11) is positive, elementary stable, and second order accurate.

For solving the optimization problems (5) and (6), we use a projected non-linear conjugate
gradient (NCG) scheme. NCG schemes are a class of non-linear optimization schemes for solving
optimization problems with the objective functional nonlinear yet differentiable with respect to the
optimization variables. Such a scheme has been used to solve several finite and infinite dimensional
optimization problems. It has been demonstrated to provide robust and accurate solutions of the
optimality system, even for finite dimensional optimization problems. For non-linear optimization
schemes involving non-differentiable objective functionals, one can use proximal methods, semi-
smooth Newton schemes, or gradient free schemes based on the Pontryagin’s maximum principle.
We describe below the NCG scheme for solving the minimization problems (5) and (6). For this
purpose, we generically denote the reduced functional corresponding to either of the minimization
problems as J , and the associated optimization variable as P. Starting with the initial guess P,
we compute the first descent direction as

dy = —go == VpJ(Py),

where Vp.J is given by (OPT1) or (OPT2). We then obtain the search directions recursively as
follows

dit1 = —Grt1 + Brdy, (13)

11



where g, = v.J (ug), k=0,1,.... The parameter [3; is chosen according to the formula of Hager-
Zhang given by

HG _ 1 (yk - Qdk—HkalZQ)Tgk 1 (14)
‘ d} Yk dj yx I

where v, = gri1 — gr. Next, a conjugate gradient descent step is used to compute the new
optimization variable iterate
Py = Py + ap dy, (15)

where £ is an index of the iteration step and o > 0 is a steplength obtained using a backtracking
line search algorithm. In this update, we use the following Armijo condition of sufficient decrease
of J for the backtracking line search

J(Py + ody) < J(Py) 4 00y (VpJ(Pr), dy) 12, (16)

where 0 < § < 1/2 and the scalar product (u,v)2 is the discrete {? inner product in R for the
minimization problem (5), and represents the standard L?([0,7])? inner product for the minimiza-
tion problem (6). The gradient update step is finally combined with the following projection step
to ensure that the iterates stay in the admissible sets.

Py = Py [Py + a dy], (17)

where
Py [P] = (max{0, min{N;, P;}}, Vi=1,---s),

with U = T4 or Uyg, s = 10 or 2 and N; = M; or D;, corresponding to the minimization problems
(5) and (6), respectively. The following algorithm summarizes the projected NCG scheme:

Algorithm 4.1 (Projected NCG Scheme).

1. Input: initial approx. P,. FEvaluate dy = —ij(Po), mder k = 0, maximum k = ks,
tolerance =tol.

While (k < kpaz) do

Set Pyi1 = Py [Py + oy dy], where ay, is obtained using a line-search algorithm.
Compute gry1 = VPj(PkH)-

Compute BHC using (14).

Set dpr1 = —grr1 + B “di.

If || Pey1 — Prlli2 < tol, terminate.

Setk=Fk+1.

© »® RS ;v e e

End while.
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4.1 Global sensitivity analysis of optimal parameter set

After obtaining the optimal parameter set, we next want to determine the most sensitive param-
eters with respect to the EGF:EGFR complex C. The reason for this is because patient-specific
parameters can vary due to uncertainties in the data, and, thus, they can be considered as random
variables. Furthermore, it is important to understand which of these parameters affect the huge
change in C' and this will help us determine what kind of drugs can be chosen to control the
cancer.

Traditional sensitivity analysis of parameters are carried out using a local approach where
the sensitivity of one parameter is studied separately by keeping rest of the parameters fixed at
their baseline values. However, this may not reflect an accurate measure of the sensitivity of each
parameter due to the absence of incorporating simultaneous effects of other parameters [12]. Thus,
we employ a global sensitivity analysis that allows identification of the effects all the parameters,
simultaneously. For this purpose, we will use the combined Latin hypercube sampling (LHS)
method and partial rank correlation coefficient (PRCC) method (LHS-PRCC) [21]. In context
of parameter sensitivity in mathematical models of cancer, such a technique was successfully
applied in [33] for identifying the treatment types in colon cancer. To the best of our knowledge,
this technique is being applied for the first time in context of developing optimal treatments for
controlling pathways in esophageal cancer. The sensitivity of the parameters in (3) is carried out
with respect to the outcome of interest, which is the sum of C' and T" at the final time T%. The
null hypothesis for the corresponding p-values for each parameter is that there is no significant
correlation between the parameter and the outcome of interest. Any parameter having p-values
greater than 0.05 implies that the null hypothesis is true and, thus, the corresponding parameter
does not affect the change in C' and T. We refer to [33] for details of the LHS-PRCC algorithm
for sensitivity analysis of the optimal parameter set.

5 Numerical results

We now present numerical results of the proposed optimal control framework in Section 2. For
this purpose, we choose our non-dimensionalized scaling parameters dy, ds, d3, as given in (2) as
di = 1075, dy = 103,d3 = 1072, With the original time interval as (0,100) hours, this transfor-
mation yields the final time 7y = 1. We divide the time interval (0,1) into 1000 equally-spaced
subintervals.

For test case 1, the patient data is generated as follows: We first simulate the following reduced
ODE system for t € (0,1) on a grid of 501 equally spaced points

© (R — C)L - k., C(0) = Cy

[ (18)

dL
E = —CLI{Zf(RN — C)L + CLer + SL - )‘dL7 L(O) - LO’

with parameter values ky = 0.297, k, = 0.224, \y = 1, S = 0.5, Ry = 10,¢, = 2.5, and
initial conditions Cy = 1.7, L(0) = 1.8. This reduced model is derived from equations (8a)-
(8¢) in [6], in context of EGFR signaling in breast cancer cell, assuming non-information of the
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HER2 complex formation dynamics. The motivation of such an assumption is to use partial
information about the EGF:EGFR complex C' formation dynamics to replicate some type of
possible heterogeneity in context of an EC cell, since there is a lack of real data about the complexes
for an actual EC cell. To the solution (C(t), L(t)) obtained, we then add 10% additive Gaussian
noise. This gives us our data C?, L¢. We also provide initial conditions for the remaining variables
as Hy = 5.6, Ty = 5.23, Ry = 3.07. We first solve the parameter estimation minimization problem
(5) using the PNCG method, with weights in the functional J; as o = 1.0,7 = 0.01. With the
parameter estimates, the ODE system (3) is simulated with the aforementioned initial conditions.
The plots of the obtained C, L and the data C? L% are shown in Figure 1. We see that the
simulated C| L resembles the mean trajectory.

Figure 1: Test Case 1: Plots of the data and the fitted curves of C, L after the parameter estimation

We next perform a sensitivity analysis of the obtained parameter set with respect to the sum
of C,T at the final time Ty = 1.0. For this purpose, we assume each parameter to follow a
Weibull distribution [25, 26] and consider the number of equiprobable intervals, M, to be 100.
The p—values are given in Table 1.
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Parameter | p— value
aq 0.0075319
s 2.7492e-47
as 0.019495
ay 2.05e-05
as 4.3642¢-82
ag 0.018705
ar 1.289e-09
as 3.3458e-230
ag 0.0088942
a1 7.0862e-65

Table 1: Test case 1: p—values for the optimal parameter set 6*

We note that in the ODE system (3) the drug dosages u;,us have been incorporated with
interaction terms similar to the uncoupling terms with rates as, ag. We now note from the p—values
in Table 1 that both the parameters as, ag have p—values less than 0.05, which means they are
significantly sensitive in the change of C,T. Thus, the combination drug is required to bring
down the values of C, T, and so (1,02 # 0. In this test case, (1,32 are chosen to be 0.7. We
now solve the second optimal control problem (6) to obtain the optimal dosages wq, us. For this
purpose, we start the observation at the non-dimensional time ¢ = 0.33 (corresponding to the actual
time of 33 hours). Our aim is to drive the non-dimensional values of C,T to 2 (corresponding
to the actual values 200,000) after treatment till non-dimensional time ¢t = 1.3 (corresponding
to the actual time of 133 hours). We choose the values of the weights in the functional Jy as
vy = 1.0, = 1.0, = 0.001, 72 = 0.001. We observe the evolution of C,T with and without the
treatments, as shown in Figure 2.
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t (hours) Iteration number t (hours)
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. . . . . . . . . ; \ . . . . . . . . . . . . . . . I
40 5 6 70 8 90 10 110 120 130 1 15 2 25 3 35 4 45 5 0 50 6 70 8 9 10 110 120 130
t(hours) Iteration number t(hours)

(d) T (e) (T(1) —T*)? (f) uo (Bevacizumab)

Figure 2: Test Case 1: Plots of the dosages and evolution of C, T with and without treatments.

We note that without treatment, the profiles of C\, T (in black) increase, leading to prominence
of the EC cell. However, with the combination treatment of Trastuzumab and Bevacizumab, we
have achieve the goal to drive the values of C,T to or below the desired level that renders the EC
cell ineffective, thus demonstrating the effectiveneness of our framework in obtaining personalized
therapies. We also note from Figure 2(b) and (e), the evolution of (C(T}) — C*),(T(Ty) — T*)?
during the optimal control process against the iterate number. We observe a monotonic decrease
till convergence is achieved.

In the second test case, we simulate the ODE system (18) with parameter values k; =
0.297, k., =0.224, \y =1, S, = 0.5, Ry = 10,¢; = 1.8, and initial conditions Cy = 1.7, L(0) =
1.8. To the solution (C(t),L(t) obtained, we then add 10% additive Gaussian noise. This
gives us our data C? LY. We also provide initial conditions for the remaining variables as
Hy = 4.6, Ty = 4.23, Ry = 4.07. We again solve the parameter estimation problem (5), with
weights in the functional J; as a = 1.0,y = 0.01. and check for the fits of C| L, as shown in Figure
3.
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Figure 3: Test Case 2: Plots of the data and the fitted curves of C| L after the parameter estimation

We again perform a sensitivity analysis of the obtained parameter set. The p—values are shown
in Table 2.

Parameter | p— value
ay 0.11127
as 4.6699e-05
as 0.71739
ay 0.44192
as 5.2e-80
ag 0.0091312
ar 0.5721
as 5.7334e-56
ag 0.5592
ai 5.3506e-09

Table 2: Test case 2: p—values for the optimal parameter set 8*

From Table 2, we now see that the parameter as has a p—value greater than 0.05 whereas ag still
has a p—value less than 0.05. Thus, a3 is not sensitive anymore to the change of C,T" and so the
drug Trastuzumab, represented by u; will not be effective for control anymore. We, thus, set 5; = 0
and B, = 0.7 and proceed to solve the optimal control problem 6 to drive the non-dimensional value
of C' to 2 and the non-dimensional value of T" to 0.5 at the final non-dimensional time 7T = 1.33.
We choose the values of the weights in the functional Jy as v; = 1.0, = 1.0, = 0.001. The
results of the evolution of C,T and the dosage profile uy are shown in Figure 4.
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Figure 4: Test Case 2: Plots of the dosages and evolution of C,T" with and without treatments.

We again observe that the without treatment, the values of C,T increase, whereas with the
treatment uq, the values of C,T" are driven towards the desired levels. Furthermore, we also note
from Figure 4(b) and (e), the evolution of (C(T}) — C*)?, (T(Ty) —T*)?* during the optimal control
process against the iterate number. We again observe a monotonic decrease till convergence is
achieved.

5.1 Discussion

Through the aforementioned two test cases, we obtained a dynamic optimal dosage regime for
patients with two different stages of EC. This dynamic treatment regime was obtained through
a combination of a new ODE dynamical model for RTK signaling pathways and a sensitivity
analysis approach to determine the number of drugs to be used for an individual patient. A final
optimal control problem gives us the actual treatment regime and the corresponding outcomes.
Such a setup is in contrary to existing treatment regimes with Trastuzumab and Bevacizumab
for other cancer types like breast cancers, where the drugs are administered based on a fixed
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schedule and dosage. Moreover, the current dosage schedule of the two drugs for breast cancer
are as follows: Trastuzumab is administered with a loading dosage of 8mg/kg in the first week
followed by maintenance dosage of 6mg/kg every three weeks. The standard treatment regime is
52 weeks [13]. Bevacizumab, on the other hand, is administered at a dosage of 10mg/kg for every
2 weeks (without combination of chemotherapy), with recommended continuation of treatment for
a long time [15]. The drugs are administered in 1 day for every weekly schedule. We observe from
the plots of the dosages in Figures 2 and 4 that the maximum dosage administered in 1 day for
Trastuzumab is 2mg/kg in a 1 day period and for Bevacizumab is 3.73-5 mg/kg in a 1 day period,
which is significantly lower than the traditional dosage. Furthermore, we also note that the total
time period of treatment to achieve the desired results is approximately 5.5 days (less than week)
in comparison to the aforementioned long treatment schedules. This shows that our obtained
optimal treatment regime provides a lower maximum dosage and a shorter treatment schedule
for treating EC patients, which will lead to the decrease in toxic side-effects and secondary risk
factors.

6 Conclusions

In this paper, we presented a new framework for obtaining personalized optimal treatment strate-
gies in EC. For this purpose, we modeled the dynamics of RTK signaling pathways using a new
pharmacokinetic model that takes into account a specific extrinsic heterogeneity. We then solved
an optimization problem to obtain the parameters of this model from noisy patient data. The
numerical discretization of the forward and the adjoint equations were done using a second-order,
elementary stable, and positive NSFD scheme. We also solved the optimality system using a pro-
jected NCG scheme. Furthermore, we performed a sensitivity analysis of the optimal parameters
with respect to the sum of the bound EGFR and HER2 using the LHS-PRCC method. Using this
analysis, we modified our pharmacokinetic model to incorporate two types of drugs, Trastuzumab
and Bevacizumab. We finally solved an optimal control problem to obtain the optimal dosages
that drive the number of bound EGFR and HER2 to a desired level. Numerical experiments
with synthetic data demonstrated that our proposed framework can be used to obtained optimal
combination therapies in real-time with high accuracy.
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