Distributed saddle point problems for strongly
concave-convex functions

Muhammad I. Qureshi and Usman A. Khan
Tufts University, Medford, MA

Abstract—In this paper, we propose GT-GDA, a distributed
optimization method to solve saddle point problems of the
form: min, maxy {F(x,y) := G(x) + (y, Px) — H(y)}, where
the functions G(-), H(-), and the coupling matrix P are dis-
tributed over a strongly connected network of nodes. GT-GDA is
a first-order method that uses gradient tracking to eliminate the
dissimilarity caused by heterogeneous data distribution among
the nodes. In the most general form, GT-GDA includes a consensus
over the local coupling matrices to achieve the optimal (unique)
saddle point, however, at the expense of increased communication.
To avoid this, we propose a more efficient variant GT-GDA-Lite
that does not incur additional communication and analyze its con-
vergence in various scenarios. We show that GT-GDA converges
linearly to the unique saddle point solution when G is smooth
and convex, H is smooth and strongly convex, and the global
coupling matrix P has full column rank. We further characterize
the regime under which GT-GDA exhibits a network topology-
independent convergence behavior. We next show the linear
convergence of GT-GDA-Lite to an error around the unique
saddle point, which goes to zero when the coupling cost (y, Px) is
common to all nodes, or when G and H are quadratic. Numerical
experiments illustrate the convergence properties and importance
of GT-GDA and GT-GDA-Lite for several applications.

Index Terms—Decentralized optimization, saddle point prob-
lems, constrained optimization, descent ascent methods.

I. INTRODUCTION

Saddle point or min-max problems are of significant prac-
tical value in many signal processing and machine learning
applications [1]-[9]. Applications of interest include but are
not limited to constrained and robust optimization, beamform-
ing, weighted linear regression, and reinforcement learning. In
contrast to the traditional minimization problems where the
goal is to find a global (or a local) minimum, the objective
in saddle point problems is to find a point that maximizes the
cost in one direction and minimizes it in the other. Consider
for example Fig. 1 (left), where we show a simple function
landscape (F : R? — R) that increases in one direction and
decreases in the other. Examples of such functions appear
in constrained optimization where adding the constraints as
a Lagrangian naturally leads to saddle point formulations.

Gradient descent ascent (GDA) methods are popular ap-
proaches towards saddle point problems. To find a saddle point
of the function in Fig. 1 (left), we would like to maximize
F with respect to the corresponding variable, say y, and
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Fig. 1. Plot of two dimensional strongly concave-convex saddle point problem
(left) and the corresponding gradient directions (right). The curves represent
contours to show the value of the function and the red star is the point where
partial gradients are all 0.

minimize F' in the direction, say x. A natural way is to
compute the partial gradients Vy I and V. F', shown in Fig. 1
(right). Then update the y estimate moving in the direction
of Vy F' and the x estimate moving opposite to the direction
of VxF'. The arrows, shown in Fig. 2, point towards the next
step of GDA dynamics and the method converges to the unique
saddle point (red star) under appropriate conditions on F'. The
extension of this method for convex and strongly concave, and
strongly convex and concave objectives is straightforward as
it is intuitive that the saddle point (x*,y*) € RP= x RPv is
unique such that Vx € RP» and Vy € RPv,

F(x*,y) < F(x",y") < F(x,y").

The traditional approaches mentioned above assume that
the entire dataset is available at a central location. In many
modern applications [10]-[13], however, data is often collected
by a large number of geographically distributed devices or
nodes and communicating/storing the entire dataset at a cen-
tral location is practically infeasible. Distributed optimization
methods are often preferred in such scenarios, which operate
by keeping data local to each individual device and exploit
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Fig. 2. The arrows point towards the next step of the gradient descent ascent
dynamics. The unique saddle point is denoted by the red star.



local computation and communication to solve the underlying
problem. Such methods often deploy two types of computa-
tional architectures: (i) master/worker networks — where the
data is split among multiple workers and computations are
coordinated by a master (or a parameter server); (ii) peer-to-
peer mesh networks — where the nodes are able to communi-
cate only with nearby nodes over a strongly connected network
topology. The topology of mesh networks is more general as
it is not limited to hierarchical master/worker architectures.
In this paper, we are interested in solving distributed saddle
point optimization problems over peer-to-peer networks, where
the corresponding data and cost functions are distributed
among n nodes, communicating over a strongly connected
weight-balanced directed graph. In this formulation, the net-
worked nodes are tasked to find the saddle point of a sum of
local cost functions f;(x,y), where x € RP= and y € RPv,
Mathematically, we consider the following problem:

n

1
P: min max F(x,y)= min max — i(x
xERPz yERPY (x¥) xERPz yERPY N Zlfz( ¥),
i=
where each local cost f;(x,y) is private to node i and takes
the form as follows

filx,y) = gi(x) + (y, Pix) — hi(y).
We assume that G(x):=2Y"  g¢;(x) is convex and

H(y) =+ >0 hily) is strgngly convex!, while the global

coupling matrix P =1%"" P, € RP+»*P= has full column

T n

rank. Such problems arise naturally in many subfields of signal
processing, machine learning, and statistics [14]-[17].

A. Related work

Theoretical studies on solutions for saddle point problems,
in centralized scenarios, have attracted significant research [1],
[2], [18], [19]. Recently, saddle point or min-max problems
have become increasingly relevant because of their applica-
tions in constrained and robust optimization, supervised and
unsupervised learning, image reconstruction, and reinforce-
ment learning [5]-[7], [9]. Commonly studied sub-classes of
saddle point problems of the form P are when G(-) and H ()
are assumed to be quadratic [14] or strongly convex [20].
In [20], the authors proposed a unified analysis technique
for extra-gradient (EG) and optimistic gradient descent ascent
(OGDA) methods assuming strongly concave-strongly convex
saddle point problems. Furthermore, they discussed the con-
vergence rates for the underlying problem classes and for bi-
linear objective functions. A more general approach was taken
in [15], where G(-) was considered convex but not strongly
convex. In [21], the authors established the convergence
of OGDA only assuming the existence of saddle points. These
are first-order methods with some modification of the vanilla
gradient descent (GD). Apart from gradient-based methods,
zeroth-order optimization techniques are proposed in [22]-
[25]. Such methods are useful when gradient computation is
not feasible either because the objective function is unknown
and the partial derivatives cannot be evaluated for the whole
search space, or the evaluation of partial gradients is too

Note that the problem class P includes —H, which is strongly concave.

expensive. In such cases, Bayesian optimization [23] or genetic
algorithms [24], [25] are used. These techniques are usually
slower than gradient-based methods.

When the data is distributed over a network of nodes, exist-
ing work has mainly focused on minimization problems [26]-
[32]. Of significant relevance are distributed methods that
assume access to a first-order oracle where the early work
includes [26], [33], [34]. The performance of these methods
is however limited due to their inability to handle the dissimi-
larity between local and global cost functions, i.e., V f; # VF.
In other words, linear convergence is only guaranteed but to an
inexact solution (with a constant stepsize). To avoid this inac-
curacy while keeping linear convergence, recent work [29],
[30], [35]-[38] propose a gradient tracking technique that
allows each node to estimate the global gradient with only
local communication; see also [28] for a related method.

On saddle point problems, there is not much progress
made towards distributed solutions. Recent work in this regard
includes [16], [17], [39]-[45]. Two primal-dual sub-gradient
methods are proposed in [39] to solve distributed convex
minimization problem under constrained sets. Some related
work on solving distributed variational inequalities was pro-
posed in [40]. Moreover, [41], [42] discuss extra-step and
accelerated methods for distributed saddle point problems.
However, majority of the work do not consider heterogeneous
data distribution among different nodes. To deal with the
dissimilarity between the local and global costs, [16] develops
a function similarity metric. Similarly, [44] proposes local
stochastic gradient descent ascent using similarity parameters
but it is restricted to master/worker networks that are typical in
federated learning scenarios. To get rid of the aforementioned
similarity assumptions, [43] uses gradient tracking to eliminate
this dissimilarity but assumes the functions G(-) and H ()
to be quadratic with a specific structure. Similarly, [45] ex-
tends [43] to directed graphs using the ideas from [46].

B. Main contributions

In this paper, we propose GT—-GDA and GT-GDA-Lite
to solve the underlying distributed saddle point problem P.
The GT-GDA algorithm performs a gradient descent in the x
direction and a gradient ascent in the y direction, both of
which are combined with a network consensus term along
with the communication of coupling matrices P; with neigh-
bours. GT-GDA-Lite is a lighter (communication-efficient)
version of GT-GDA, which does not require consensus over the
coupling matrices and therefore reduces the communication
complexity. To address the challenge that arises due to the
dissimilarity between the local and global costs, the proposed
methods use gradient tracking in both of the descend and
ascend updates. To the best of our knowledge, there is no
existing work for Problem P that shows linear convergence
when G(+) is convex and H(-) is strongly convex. The main
contributions of this paper are described next:

Novel Algorithm. We propose a novel algorithm that uses
gradient tracking for distributed gradient descent ascent up-
dates. Gradient tracking implements an extra consensus update
where the networked nodes track the global gradients with the
help of local information exchange among the nearby nodes.



Weaker assumptions. We consider the problem class P
such that g; and h; are smooth, G is convex, H is strongly
convex, and the coupling matrix P has full column rank. We
note that the constituent local functions, g;(-) and h;(-), can
be non-convex as we only require convexity on their average.
Earlier work [43] that shows linear convergence of distributed
saddle point problems is only applicable to specific quadratic
functions G and H, used in reinforcement learning, and does
not provide explicit rates. It is noteworthy that the proposed
problem P can be written in the primal form as follows:

m)in 0(x) = m}zn {H*(Px)+G(x)} (1)

where H*(-) is the conjugate function [47], see Definition 2,
of H(-). We note that because G(-) is strongly convex, it is
enough to ensure that P has full column rank to conclude
that 6(-) is strongly convex [48]. This results in significantly
weaker assumptions as compared to the available literature.
Linear convergence and explicit rates. We show
that GT—-GDA converges linearly to the unique saddle
point (x*,y*) of Problem P under the assumptions described
above. We note that all these assumptions are necessary
for linear convergence even for the centralized case [15].
Furthermore, we evaluate explicit rates for gradient complexity
per iteration and provide a regime in which the convergence
of GT-GDA is network-independent. We also show linear con-
vergence of GT-GDA-Lite in three different scenarios and
establish that the rate is the same as GT—GDA (potentially with
a steady-state error) with reduced communication complexity.
Exact analysis for quadratic problems. We provide exact
analytic expressions to develop the convergence characteristics
of GT-GDA-Lite when G and H are in general quadratic
forms. With the help of matrix perturbation theory for semi-
simple eigenvalues, we show that GT-GDA-Lite converges
linearly to the unique saddle point of the underlying problem.

C. Notation and paper organization

We use lowercase letters to denote scalars, lowercase bold
letters to denote vectors, and uppercase letters to denote matri-
ces. We define 0,, as vector of n zeros and I,, as the identity
matrix of n x n dimensions. For a function F(x,y), VyF
is the gradient of I’ with respect to x, while VI is the
gradient of F' with respect to y. We denote the vector
two-norm as | -|| and the spectral norm of a matrix in-
duced by this vector norm as ||| - ||. We denote the weighted
vector norm of a vector z with respect to a matrix C
as ||z]|c :=2z'Cz and the spectral radius of C as p(C).
We consider n nodes interacting over a potentially directed
(balanced) graph G = {V,&}, where V :={1,...,n} is the
set of node indices, and £ C V x V is a collection of ordered
pairs (¢,7) such that node r can send information to node i,
i.e., i< .

The rest of the paper is organized as follows. Section II
provides the motivation, with the help of several examples,
and describes the algorithms GT—-GDA and GT-GDA-Lite.
We discuss our main results in Section III, provide simulations
in Section IV, the convergence analysis in Section V, and
conclude the paper with Section VL.

II. MOTIVATION AND ALGORITHM DESCRIPTION

In this section, we provide some motivating applications
that take the form of convex-concave saddle point problems.
For more applications, see e.g., [49], [50].

A. Some useful examples

Distributed constrained optimization. Minimizing an ob-
jective function under certain constraints is a fundamental
requirement for several applications. For equality constraints,
such problems can be written as:

min G(x), subjectto Px = b, )

which has a saddle point equivalent form written using the
Lagrangian multipliers y:

L(x,y) =G(x)+y  (Px—b)
=G(x)+y'Px—y'b.

Assuming zero duality gap, any solution of (2) is a saddle
point of the Lagrangian. Hence, it is sufficient to solve for

L(x*,y") = minmax L(x,y).
x y

For large-scale problems, the data is distributed heteroge-
neously and each node possesses its local g;(-), P; and b;.
The network aims to solve (2) such that

1 n o 1 n 177.
G(X)::E;gi(x)’ P::E;Pi’ b::;;bi.

Then for h(y) := (bi,y) and H(y):= 5 30, hi(y), (2)
takes the same form as Problem P.

Distributed beamforming. Constrained optimization is
widely used for array signal processing. When the signal is
uncorrelated with the interference, the Capon beamformer [4]
maximizes the SINR by solving the following problem:

min xHRxxx, subject to sfx =1

X

)

where x is Hermitian of vector x, Ryx = E[xx"] and s

is the steering vector [3]. Recently, the distributed Capon
beamformer is proposed in [51], which essentially solves P.

Distributed weighted linear regression and reinforce-
ment learning. Most applications of weighted linear regres-
sion take the form:

min || Px — bl|Z_:. 3)

It can be shown [15] that the saddle point equivalent of (3) is
. 1 =

minmg { (v b) - SIVIE+ P @

This signifies the importance of the saddle point formu-
lation, which enables a solution of (3) without evalu-
ating the inverse of the matrix C, thus decreasing the
computational complexity. When the local data is dis-
tributed, ie, P:=1%" P, hi(y) = (y,b:) — illylZ,.
and H(y):= 13" | hi(y), the above optimization problem
takes the form of Problem P.

In several cases [14], [43], reinforcement leaning takes the

same form as weighted linear regression. The main objective




in reinforcement learning is policy evaluation that requires
learning the value function V'™, for any given joint policy 7.
The data {sg,Ski1,7%}h_, is generated by the policy m,
where s, is the state and r; is the reward at the k-th time
step. With the help of a feature function ¢(-), which maps
each state to a feature vector, we would like to estimate
the model parameters x such that V™ = (¢(s),x). A well
known method for policy evaluation is to minimize the
empirical mean squared projected Bellman error, which is
essentially Welghted linear regression: miny ||Px — b||%_,,
where P i=Y,0 1( ¢(sk), d(sk) — yP(sp+1)), for some
discount factor € (0,1), C:=3n, |l¢(sx)]|?, and
b=, rkqs(sk).

Supervised learning. Classical supervised learning prob-
lems are essentially empirical risk minimization. The aim is
to learn a linear predictor x when H(-) is the loss function to
be minimized using data matrix P, and some regularizer G(-).
The problem can be expressed as:

m)in {H(Px)+G(x)},

which has the following saddle point formulation:
miny maxy {G(x) + (y,Px) — H*(y)}. For large-scale
systems, the data P; is geographically distributed among
different computational nodes and the local functions g;’s
and h;’s are also private. Problem P can be obtained
here by choosing P:=21%" P G(x):=>", gi(x),
and H*(y):=> 1, hi(y)

B. Algorithm development and description

In order to motivate the proposed algorithm, we first
describe the canonical distributed minimization problem:
miny G(x) :== = 3" | gi(x), where G is a smooth and
strongly convex function. A well-known distributed solution
is given by [30], [52]:

E wzr

where x¥ is the estimate of the unique minimizer (denoted
as x* such that VG(x*) = 237, Vg;(x*) = 0,,) of G at
node ¢ and time k, and w;,. are the network weights such
that w; , # 0, if and only if (i,7) € £, and W = {w;,} is
primitive and doubly stochastic. Consider for the sake of
argument that each node at time k possesses the minimizer x*;
it can be easily verified that xf“ # x*, because the local
gradients are not zero at the minimizer, i.e., Vg;(x*) # 0,,.
To address this shortcoming of (5), recent work [29], [35]-
[37], [46] uses a certain gradient tracking technique that
updates an auxiliary variable y¥ over the network such
that y¥ — L 3. Vg;(x}). The resulting algorithm:

Zw”. x —a- yr)

szr yr + Vgr( k+1) VQT’(XZf))’

r=1

k+1

—a - Vg, (xF)), (5)

k+1

(6)

k+1

(7

converges linearly to x* thus removing the bias caused by the
local Vg, versus global gradient VG dissimilarity.

To deal with data heterogeneity, the proposed method
GT-GDA, formally described in Algorithm 1, uses gradient
tracking in both the descend and ascend updates. In particular,
there are three main components of the GT—-GDA method:
(i) gradient descent for x updates; (ii) gradient ascent for y
updates; and (iii) gradient tracking. However, since the cou-
pling matrices P;’s are not identical at the nodes, we add an
intermediate step to implement consensus on P;’s (see Remark
3 for more details). Initially, GT—-GDA requires random state
vectors x) and y? at each node i, gradients evaluated with
respect to x and y and some positive stepsizes a and 5 for
descent and ascent updates, respectively. At each iteration k,
every node computes gradient descent ascent type updates.
The state vectors x ! (and yk“) are evaluated by taking
a step in the negative (positive) direction of the gradient of
global problem, and then sharing them with the neighbouring
nodes according to the network topology. It is important to
note that ¥ and w’ are the global gradient tracking vectors,
ie., qf = VxF(x,y) and w¥ — V,F(x,y).

Algorithm 1 GT-GDA at each node ¢
x? e RP= yY € RPv, P? = P, {w;, }"_1, a0 > 0,
ﬂ>07q? :vmfi(x(i)ayz) W =V fl( 1ay1)

Require:

1: for £k =0,1,2,..., do,

2: P’€+1 —>r w;, PF

30X e Y win(xf —a-qf)
4t e Y w4 Ve fET = VL fF)
s oy e S L wa(yk + 8- wh)

6: ’“*1 = D0 wir(WE 4 Vy fEH =V, fF)

7: end for

GT-GDA-Lite: We note that GT-GDA implements con-
sensus on the coupling matrices (Step 2), which can result
in costly communication when the size of these matrices
is large. We thus consider a special case of GT—GDA that
does not implement consensus on the coupling matrices,
namely GT-GDA-Lite’ and characterize its convergence
properties for the following three cases:

(1) strongly concave-convex problems with different cou-
pling matrices P;’s at each node;
(ii) strongly concave-convex problems with identical P;’s;
(iii) quadratic problems with different P;’s at each node.
ITII. MAIN RESULTS

Next we provide some definitions followed by the assump-
tions required to establish the main results.

Definition 1 (Smoothness and convexity). A differentiable
Sfunction G : RP — R is L-smooth if Vx,y € RP,

IVG(x) = VG(y)l < LIx -y
and p-strongly convex if Vx,y € RP,
G(y) + (VG).x—y) + Slx—y]? < G0).

2We do not explicitly write GT-GDA-Lite as it is the same as Algo-
rithm 1: GT—-GDA but without the consensus (Step 2) on P;’s.



Algorithm Problem class Distributed Computational complexity
GD Strongly convex No @) (/{ log %)
GT-DGD [29] Strongly convex Yes ) (ﬁ log %)
GDA [15] Strongly concave-convex No O ({K4’}/2% + KZ?”}A} log %)
GT-GDA Strongly concave-convex Yes O (max { (I’i’f\;, ngfgﬁij'f\)4 , 7%5} log 1)
TABLE I

COMPUTATIONAL COMPLEXITIES OF OPTIMIZATION METHODS.

It is of significance to note that if G(-) is L smooth, then it is
also (L + &) smooth, Y& > 0.

Definition 2 (Conjugate of a function). The conjugate of a
function H : RP — R is defined as

H*(y) == sup {(x,y) — H(x)},

x€eRP

Yy € RP.

Moreover; if H(-) is closed and convex, then [H*(-)]* = H(-),
and if H(-) is L-smooth and p-strongly convex, then H*(-)
is i-smooth and %-strongly convex [53].

Next, we describe the assumptions under which the conver-
gence results of GT-GDA will be developed; note that all of
these assumptions may not be applicable at the same time.
Assumption 1 (Smoothness and convexity). Each local g;
is Lq-smooth and each h; is Lo-smooth, where Ly, Lo are
arbitrary positive constants. Furthermore, the global G is
convex and the global H is pu-strongly convex.

Assumption 2 (Quadratic). The g;’s and h;’s are quadratic
functions, i.e., gi(x) = XTQZ'X . qz-TX ta
hi(y) =y Riy +r]y +r;,

such that q; € RP*, r; € RPyv, ¢;,r; €R, Q; € RP=XPx
and R; € RPv*Pv, Vi. Moreover, for Q:=21%" Q;
and R:= 13" | R, we assume that (@—i—@—r) is positive
definite and (R + RT) is positive semi-definite.

Assumption 3 (Full ranked coupling matrix). The coupling
matrix P := % >; Pi has full column rank.

Assumption 4 (Doubly stochastic weights). The weight ma-
trices W := {w; ,} associated with the network are primitive
and doubly stochastic, i.e., W1, =1, and 1, W =1].

We note that Assumption 1 does not require strong con-
vexity of G while Assumptions 1 and 3 are necessary for
linear convergence [15]. The primal problem miny 6(x), de-
fined in (1), requires poly (e~!) iterations to obtain an e-
optimal solution even in the centralized case if we ignore
any of the above assumptions. It is important to note that
Assumptions 1-3 are not applicable simultaneously; GT—GDA
and GT-GDA-Lite are analyzed under different assumptions,
clearly stated in each theorem. Next, we define some useful
constants to explain the main results. Let L := max{Lq, Lo}
and let the condition number of H(-) be Lo /u. Furthermore,
we denote x := L/ > Lo/p. The maximum and minimum

singular values of the coupling matrices P;’s for all i are
defined as oj; and o,,, respectively. Moreover, the con-
dition number for the global coupling matrix is denoted
by v:=onm/om-

A. Convergence results for GT-GDA

We now provide the main results on the convergence
of GT-GDA and discuss their attributes.

Theorem 1. Consider Problem P under Assumptions I, 3,
and 4. For a large enough positive constant ¢ > 0, assume
the stepsizes are such that

12

a=o:= E—z ,
coyy
— [ (1=X)2 L(1-)? 1
B = := min ( 2), ( 2), .
19203, L 4805,  382kL
Then GT—-GDA achieves an e-optimal solution in

6,.3 2 2
TR ImIph 2,5 1
© (s e e )

gradient computations (in parallel) at each node

Corollary 1. Consider Problem P under Assumptions 1, 3,
and 4, and GT-GDA with stepsizes o :=a, [:=[ and
I' = max{y2,02,/L?}. If
K2 T— N2
then GT—-GDA achieves an e-optimal solution linearly at a
network-independent convergence rate of O (72/{5 log %)

Table I shows the computational complexities of gradient
descent and gradient descent ascent methods along with their
distributed counterparts. It can be seen that the computational
complexity of GDA (centralized) is of the order O (k) [15],
when the objective function is strongly concave-convex (where
we used L = max{Ly, Lo}, K = L/ and v = opr /o). It is
typical to lose one order of x in making the algorithm dis-
tributed as can be observed in Table I where GD (centralized)
has x dependence but GT-DGD has 2 dependence. Similar
behaviour is found for GDA and GT—-GDA.

We now discuss these results in the following remarks.

Remark 1 (Linear convergence). GT—GDA eliminates the
dissimilarity caused by heterogeneous data at each node using
gradient tracking in both of the x¥ and y¥* updates. Theorem 1
provides an explicit linear rate at which GT—-GDA converges
to the unique saddle point (x*,y*) of Problem P.



Remark 2 (Network-independence). Corollary 1 explicitly
describes a regime in which the convergence rate of GT-GDA
is independent of the network topology. We note that it signifies
a relationship between the condition number and the spectral
gap (1—X\). For weakly connected graphs, GT—-GDA requires a
higher value of k to attain network independent convergence.
Remark 3 (Communication complexity). At each node,
GT-GDA communicates two pg-dimensional vectors, two py-
dimensional vectors, and a py X p, dimensional coupling
matrix, per iteration. In ad hoc peer-to-peer networks, the
node deployment may not be deterministic. Let w be the
expected degree of the underlying (possibly random) strongly
connected communication graph. Then the expected commu-
nication complexity required for GT—-GDA to achieve an e-

optimal solution is

6,3 2 2
K OO

0% 2 5 1
scalars per node. We note that w is a function of under-
lying graph, e.g., w = O(1) for random geometric graphs
and w = O(logn) for random exponential graphs.

GT-GDA converges linearly to the unique saddle point but
it requires each node to communicate the local coupling
matrix P; with its neighbors. This incurs additional communi-
cation cost for strongly concave-convex local objective func-
tions. Gradient tracking does not account for the discrepancy
between local and global coupling matrices as can be seen in
Lemma 1. To reduce this communication cost, a finite-time
consensus method may be used, see for example [54].

B. Convergence results for GT-GDA-Lite

We now discuss GT-GDA-Lite in the context of the
aforementioned special cases below.
Theorem 2 (GT-GDA-Lite for Problem P). Consider
Problem P under Assumptions 1, 3, and 4. If the step-
sizes a € (0,@] and j3 € (0,5], then GT-GDA-Lite con-
verges linearly to an error ball around the unique saddle point.

Remark 4 (Convergence to an inexact solution). We note that
the speed of convergence for GT-GDA-Lite is of the same
order as GT-GDA, however, GT-GDA-Lite converges to an
error ball around the unique saddle point, which depends on
the size of T (formally defined in Lemma 1). This error T
can be eliminated by using identical P;’s at each node or by
having consensus. The first possibility is considered in the next
theorem and the second is explored in GT—GDA.

Theorem 3 (GT-GDA-Lite for Problem P with same P;’s).
Consider Problem P under Assumptions 1, 3, and 4 and with
identical P;’s at each node. If the stepsizes a = @ and 3 = 3,
then the computational complexity of GT-GDA-Lite to
achieve e-optimal solution is the same as in Theorem I,
whereas the communication cost reduces by a factor

of O(min(py,py)).

Remark 5 (Reduced communication complexity). We note
for GT-GDA-Lite, each node communicates two p, di-
mensional vectors and two p, dimensional vectors per it-
eration. For large values of p, and p,, this is signifi-
cantly less than what is required for GT-GDA, i.e., O(pzpy).

This makes GT—-GDA—-Lite more convenient for applications
where communication budget is low.

Theorem 4 (GT-GDA-Lite for quadratic problems). Con-
sider Problem P under Assumptions 2, 3, and 4 (with different
P;’s at the nodes). If the stepsizes o and [3 are small enough,
then GT-GDA-Lite converges linearly to the unique saddle
point (X*,y*) without consensus on P;’s.

Remark 6 (Exact analysis). The convergence analysis we
provide for the quadratic case is exact. In other words, we do
not use the typical norm bounds and derive the error system
of equations as an exact LTI system. Using the concepts from
matrix perturbation theory for semi-simple eigenvalues, we
show that GT-GDA-Lite linearly converges to the unique
saddle point of P with quadratic cost functions.

IV. SIMULATIONS

We now provide numerical experiments to compare the
performance of distributed gradient descent ascent with
(GT-GDA) and without gradient tracking (D—GDA) and verify
the theoretical results. We would like to perform a prelimi-
nary empirical evaluation on a linear regression problem. We
consider the problem of the form:

1 —
min2—||Px—bH2+)\R(X); 8)
x 2n

and the saddle point equivalent of above problem is

minmgx { (v, Px) = {y.b) ~ 5llyI? + ARG ©)
Performance characterization using the saddle point form
of (8) is common in the literature available on centralized
gradient descent ascent [15], [20]. For large-scale problems,
when data is available over geographically distributed nodes,
decentralized implementation is often preferred. In this pa-
per, we consider the network of nodes communicating over
strongly connected networks of different sizes and connectivity
to extensively evaluate the performance of GT—GDA. Figure 4
shows two directed exponential networks of n = 8 and n = 32
nodes. We note that although they are directed, their corre-
sponding matrices W are weight-balanced. To highlight the
significance of distributed processing for large-scale problems,
we evaluate the simulation results with the networks shown in
Fig. 4 and their extensions to n = 100 and n = 200 nodes.

Fig. 4. Directed exponential graphs with n = 8 nodes (left) and n = 32
nodes (right).

Smooth and strongly convex regularizer: We first con-
sider (9) with smooth and strongly convex regularizer
R(x) := ||x||%. Therefore, the resulting problem is strongly-
convex strongly-concave. For a peer-to-peer mesh network
of n nodes, each node ¢ has its private b, € RP* and
C; € RPv*P= guch that the average b := %2?21 b; and
C:=1%" C; and P:= 13" | P, has full column rank.

T n
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Fig. 3. Performance comparison of D—GDA and GT-GDA over a network of n = 8 nodes (left), n = 32 nodes (center) and n = 100 nodes (right).

We set the dimensions p, =4, p, = 10, and evaluate the
performance of GT-GDA for data generated by a random
Gaussian distribution.

We characterize the performance by evaluating the optimal-
ity gaps: ||x* — x*| + |ly* — y*|. Fig. 3 represents the com-
parison of the simulation results of D—GDA and GT-GDA for
different sizes of exponential networks (n = 8,32 and 100);
some shown in figure 4. The optimality gap reduces with the
increase in the number of iterations. It can be observed that
D-GDA (blue curve) converges to an inexact solution because
it evaluates gradients with respect to its local data at each
step; hence moves towards local optimal. On the contrary, the
proposed method GT—-GDA (red curve) uses gradient tracking
and consistently converges to the unique saddle point of
the global problem. We note that each iteration of GT-GDA
requires an additional communication cost for exchanging the
coupling matrix (see Remark 3 for the exact expression).
Smooth and convex regularizer: Next we use a smooth but
non strongly convex regularizer [55]:

n Pax 1
R(x) := — {log(1 + €'*) +log(1 + e~ 4%
30:= 33 |5 (sl o1 =)
Figure 5 shows the results for GT-GDA over a network
of n =32 and n = 200 nodes. It can be seen that GT-GDA
converges linearly to the unique saddle point, as it’s opti-
mality gap decreases, meanwhile D—GDA exhibits a similar
convergence rate but settles for an inexact solution due to
heterogeneous nature of data at different nodes.

10° T 4
—>—D-GDA
——GT-GDA

10°

;—P—DVGDA
|—=—acT-GDA

Optimality Gap
Optimality Gap

E
3

0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Iterations Number of Iterations

Fig. 5. Performance comparison of D—GDA and GT—-GDA over a network of
n = 32 nodes (left) and n = 200 nodes (right).

Convergence of GT-GDA-Lite: Next we show the perfor-
mance of GT-GDA-Lite for (9) with smooth and strongly
convex regularizer R(x) := ||x||3. Figure 6 (left) shows linear
convergence of GT-GDA-Lite to the unique saddle point.
Similarly, Figure 6 (right) shows the convergence properties
of GT-GDA-Lite for the aforementioned smooth and convex
regularizer with same and different coupling matrices. It can
be observed that the proposed method converges linearly to
an error ball around the unique saddle point when the nodes

possess different coupling matrices, however, converges to
exact solution for the same coupling matrices.

1
N —>— GT-GDA-Lite with different coupling matrices
——D-GDA —=—GT-GDALite with same coupling matrices

—=—GT-GDALile

3
Optimality Gap

Optimality Gap

107 107
0 200 400 600 800 1000 0 5000 10000 15000

Number of Iterations Number of Iterations

Fig. 6. (Left) Performance comparison of D—GDA and GT-GDA-Lite over
a network of n = 32. (Right) Performance comparison of GT-GDA-Lite
with different and same coupling matrices at each node.

Network independence and linear speedup: Now we an-
alyze the convergence of GT—GDA considering three types
of networks: (i) a circular graph (bad connectivity); (ii) an
exponential graph; and (iii) a complete graph (best connectiv-
ity). For a fixed x and varying (1 — \), Fig 7 (left) shows
that the performance of GT—-GDA. It can be verified that
the convergence rate for circular graph is slow but is the
same for an exponential graph and a complete graph, which
shows network independent convergence rate as claimed in
Corollary 1. Finally, we illustrate linear speed-up of GT-GDA
as compared to its centralized counterpart. We plot the ratio of
the number of iterations required to attain an optimality gap
of 10! for GT-GDA as compared to the centralized GDA
method in Fig. 7 (right). The results demonstrate that the
performance improves linearly as the number of nodes in-
creases (n = §8,16,32,100,200). We note that for n nodes,
the centralized case has n times more data to work with
at each iteration and thus has a slower convergence. In
distributed setting, the processing is done in parallel which
results in a faster overall performance. We emphasize that
the implementation of GT-GDA requires each node ¢ to
communicate the coupling matrix P; and the state variables
with its neighbors. However, GT-GDA-Lite eliminates the
requirement of communicating P;.

—b— Circular Graph
—&—Exponential Graph
—=—Complete Graph

200

—=—Speedup of GT-GDA| .~

Optimality Gap

0 100 200 300 400 0 50 100 150 200
Number of Iterations Number of nodes
Fig. 7. (Left) Convergence of GT—GDA for networks with different connectiv-
ity. (Right) Linear speedup: Performance ratio of GT—GDA with its centralized
counterpart to achieve optimality gap of 1074,



V. CONVERGENCE ANALYSIS

In this section, our aim is to establish linear convergence
of the proposed algorithms to the unique saddle point (under
given set of assumptions) for problem class P. We first define
four global state vectors x*,q* € R+ y* w* € R"Pv that
concatenate the local vectors x¥ ¥, y¥, and w¥ for all i
We next define the following error quantities with the goal of
characterizing their time evolution in order to establish that
the error decays to zero:

(i) Agreement errors, ||x* — W°x*|| and ||y* — Wsoy*|:

Note that we define W :=limj_o W* = 11,1,
Wy =We®I,, Wo:=W ® I, (where @ denotes the
Kronecker product), and thus each error quantifies how
far the network is from agreement;
Optimality gaps |xF —x*|| and ||F* —y*| or
H VH*(PX )|l Note that x":=21%" xF
=13"  y¥, and thus each error quantifies the
dlscrepancy between the network average and the unique
saddle point (x*,y*);
(iii) Gradient tracking errors, |q* — W®q*||> and
|wF — Wsow*||2: Note that these errors quantify
the difference between the local and global gradients.

A. Convergence of GT-GDA

(i)

The following lemma provides a relationship between the
error quantities defined above with the help of an LTI system
describing GT—-GDA.

Lemma 1. Consider GT-GDA described in Algorithm 1 under
Assumptions 1, 3, and 4. We define u*,s* € RS as

[x* — Wpexk| x|

Vit — x| [Fadl

k L_1||qk - Wfoqk” k 0
u’ = , , s¥ = ,

ly* = Waeyk| 0

Vlly* — VH*(PX")]| 0

LY |wFk — Weewk || 0

and let N g € RS*S be such that it has a\*t and BT
at the (2,1) and (1,5) locations, respectively, and ze-
ros everywhere else. We note that T := |H PO —Wwgep? |||
where PY concatenates P;’s initially available at each node.

2

uhtt < M, gu* + N g s®, (10)

where the system matrix M, g is defined in Appendix A.

The proof of the above lemma is omitted from here due to
space limitations and can be found in the technical report [56].
The main idea behind the proof is to establish bounds on
error terms (elements of u¥) for descent in x and ascent in y
for a range of stepsizes a and (. It is noteworthy that the
coupling between the ascent and descent equations gives rise
to additional terms (see M, g in Appendix A) adding to the
complexity of the analysis. Moreover, the analysis requires a
careful manipulation of the two stepsizes, unlike the existing
approaches. With the help of this lemma, our goal is to

establish convergence of GT—-GDA and further characterize its
convergence rate. To this aim, we first show that the spectral
radius p(M, g) of the system matrix is less than 1 in the
following lemma.

Lemma 2. Consider GT—GDA under Assumptions 1, 3, and 4.
For a large enough positive constant ¢ > 0, assume the

— 2 —
stepsizes are o € |0 “2 ] and B € (0, 8], such that
A i J TR (1=0)% LO- /\)2 1
pi= mm{ 19202,L ° 4802, ’ 382rL

then p(My g) < n <1, where
4 2 2 4
n:=1-0 (mm { (Cl,yei)?, ) Lmz(i]zw/,\{) ) ml,ﬁs }) .
Proof. Recall that M, 3 1is a non-negative matrix.
From [57], we know that if there exists a positive
vector § and a positive constant 1 such that My 80 <16,
then p(M, ) < || Ma,p ||| <1, where |||- H| is the matrix

norm induced by the weighted max-norm || - ||2,, with
respect to some positive vector §. To this end, we first

choose 7 := (1—aﬂ‘i"), which is clearly less than 1.

We next solve for a range of o ,8>0 and for a positive
vector 8 = [51,52,63,54,65,66] such that the inequalities
in M, 50 < (1 — %) § hold element-wise. With M, 5
in Appendix A, from the first and the fourth rows, we obtain

afim +aL53 <1-—), (11)
afZm +ﬂL56 <1-=M\ (12)
Similarly, from the second and the fifth rows, we obtain
Buds < 69 — 55 (L51 +om0s5), (13)
o ’”55 < ,u(l — 7) 55 — CUMdl
- sz msdy — (& 4 L) 4. (14)
Finally, from the third and the sixth rows, we obtain
(0L + B2F4) 61 + (amy + Bma) 65 + BAoaid
+ (aAL n aﬂ%?") 83 + (adonr + BAonr) b (15)
+ (aXon + BAoar) 5 < (1= A) 65 — A (61 + Z2L6y)
(aXanr + BAaar) 61 + (amy + fms) 82 + aloads
+ (@2 + BALY) 6y + (2% + BAL) 5 (16)

+ (BAL +aB%8) 86 < (1= A) 8 — A (%4201 + 64) .

We note that (13)—(16) hold true for some feasible range of «
and $ when their right hand sides are positive. Thus, we fix
the elements of & (independent of stepsizes) as

§ = o, 0o =4y [1 4 15], 03 = 1 AQULM’
0u =5ty 05 =23 [1+4hly (1+1)] +

D 2 1 1
% = T2x0M (ﬁﬁLa)’

2 242
where ¢ > —iLg + %%M + 1 and
. _L oM ___ omuL 1 _ 1
Iy = oM + n l2 T do2,? l3 T -1 d= 142011513 "



It can be verified that for the above choice of §, the right hand
sides of (13)—(16) are positive. Next we solve for the range
of a and f. It can be verified that (11) and (12) are satisfied
when a < (L-A)?

A o ?
(1=N)? (-1 oo L £(1=X)
5 < 4>“712v1 1+ck L%2+02, and O[ﬂ < 202,
Similarly, the relations (13) and (14) hold for
rp(c—1) 1
a< 307 and B < e
Finally, it can be verified that (15) and (16) hold when
. do?, do?, du 1-x  LO=X)
@ < min { 384L%’ 38402, w1’ 38403, ' 48165’ 240255 |
o fon (=N LO-N? 4 1
B = mm{ 19202, 4802, ’ 382xL’ 24L&s [~
(1-Nk (1=MN)rL?

and of < min { 35", ST }. The lemma follows by
simplifying all the o and 3 bounds for some large enough c
with n = (1—aﬁ%). O

The above lemma shows that the spectral radius of M, s is
less than or equal to a positive constant 77 < 1 for appropriate
stepsizes « and 3. We emphasize that the proof of Lemma 2
does not follow the conventional strategies used in the litera-
ture on distributed optimization [57]-[59]. It requires careful
selection of 7 and evaluation of appropriate bounds on both
the stepsizes (« and () to ensure convergence. Using the two
lemmas above, we are now in a position to prove Theorem 1.
It is noteworthy that N, g decays faster than M, g as it can
be verified that A < p(M, ). We now show that |[u*| — 0
and prove Theorem 1.

1) Proof of Theorem 1: We first rewrite the LTI system
dynamics described in Lemma 1 recursively as

k

ut < ME U+ SN ME T NG s (A7)

We now take the norm on both sides such that for some
positive constants wq,ws,ws and wy, (17) can be written as

k—1 k—r—
(| < |ME gu®l| + 32020 1ML Nag as” |
k;f
< +wen® SE20 187,

where [|s”]| < ws||u®|| + wal|x*|| + ws||y*||, with the help of
some arbitrary norm equivalence constants. It can be verified
that for a := wal||x*|| + ws|ly*]l

| < (s + ka+ waws SI7 ) o

Let by, := Zf;é lu”[], cx = (w1 + ka)n®* and dj, := wowsn®.
Then the above can be re-written as

[u¥|| = b1 — by, < (w1 + ka + wawsbi) 0",
<= bpy1 < (1+dg)bp + ck.

For non-negative sequences {by},{cx} and {di} related
as byy1 < (14di)bi + ¢, Vk, such that Y ;2 ¢ < oo
and >~ dj, < 0o, we have that the sequence {by,} converges
and is bounded [60]. Therefore, Vv € (1, 1), we have
k

lim M < lim

k—oo Uk k—oo 14
and there exists a ¢ > 0, such that ||[u®|| < ¢ (n + €)* for all k,
where £ > 0 is an arbitrarily small constant. To achieve an e-

(w1 + ka + wawzby) n*
k

:O7

accurate solution, we need

It — 1o x| + v — 1oy < 6
— |[uF|| < emU-+Dkg < ¢

and the theorem follows. O

B. Convergence of GT-GDA-Lite

We now establish the convergence of GT-GDA—-Lite under
the corresponding set of assumptions. It can be verified that
the LTI system for GT-GDA-Lite is similar to the one
described in Lemma 1 except that the non-zero elements
in Ny g are replaced by a7 at the (2, 1) location and ST at
the (1, 5) location (named as N, g). In the following lemma,
we consider the convergence of GT-GDA-Lite under least
assumptions, i.e., when Pi’s are not necessarily identical.

1) Proof of Theorem 2: Consider GT-GDA-Lite under
Assumptions 1, 3, and 4. Given the stepsizes « € (0,@]
and 3 € (0, 3], with @ and 3 defined in Theorem 1, we have

k-1
u” < M(]f”@uo + Z M(’)fy*l]\wfaﬁsk.
r=0
We have already established the fact that p(M,5) <n <1
(see Lemma 2). Therefore, the first term disappears exponen-
tially, and the asymptotic response is

(18)

limsup u® < (I — Ma,ﬁ)_lﬁaﬁ&

k—oc0

19)
where s := [sup,, [|x"||,supy, [ly*|0,0,0, O]T. The exact size
of the error ball may be evaluated by calculating the
norm |[(I6 — Ma,3) ™" Na,gs||. It is noteworthy that the only
two nonzero terms in the vector IV, gs are controllable by the
stepsizes « or $ and Theorem 2 follows. O

Next, we provide the proof of Theorem 3, which assumes
that each node has the same coupling matrix, and establishes
convergence of GT-GDA-Lite.

2) Proof of Theorem 3: Consider GT-GDA-Lite under
Assumptions 1, 3, and 4, with identical P;’s. It can be verified
that for stepsizes a € (0,@], and 3 € (0, 3], the LTI system
described in (10) reduces to

uf < M, put, (20)

because 7 = 0. The theorem thus follows since p(M,,5) < 1
from Lemma 2. O

C. GT-GDA-Lite for quadratic problems

We now consider GT-GDA-Lite for quadratic problems
where the coupling matrices are not necessarily identical at
each node. We show that GT-GDA-Lite converges to the
unique saddle point without needing consensus. We now define
the corresponding LTI system in the following lemma.

Lemma 3 (GT-GDA-Lite for quadratic problems). Con-
sider Problem P under Assumptions 2, 3, and 4 (with dif-
ferent P;’s at the nodes). Then the LTI dynamics govern-
ing GT-GDA-Lite are defined by the following

! = M, g, 1)



where
[ xF — Wioxk )
<5 _ x*
o q* - Wi*q*
yr—wseyk |’
75— y*
i wh — Wsewh ]

and the system matrix Ma}g is defined in Appendix B.

Lemma 3 provides an exact analysis of GT-GDA-Lite
for quadratic problems. The derivation of the above system
follows similar arguments as provided in Lemma 1 without
the use of norm inequalities; detailed analysis can be found in

the technical report [56].
Our aim now is to establish linear convergence of
GT-GDA-Lite to the exact saddle point. To proceed, we

set 8 = a, which makes M, s as a function of « alone. Thus

we define M, := M, g—o and My := M,—¢ leading to
(W, 0o o o0 o 0]
o I, O O O O
— X o W x O O
My := o ,
O 0] O Wz O 0]
o o o o I, O
L X @) (0] X 0] Wz i

where Wi =W — W°, Wq =Wy — Ws°, O are zero
matrices of appropriate dimensions, and ‘x’ are “don’t care
terms” that do not affect further analysis. Using Schur’s
Lemma for determinant of block matrices, we note that,
for the given structure of My, the eigenvalues of M
are the eigenvalues of the diagonal block matrices. Fur-
thermore, we know that p(W — W) < 1, which implies
that p(W1) <1 and p(W,) < 1. Therefore, p(My) =1
and My has p := p, + p, semi-simple eigenvalues. We would
like to show that for sufficiently small positive stepsizes
and 8 = «, all eigenvalues of 1 decrease and thus the spectral
radius of M, g becomes less than 1. It is noteworthy that
the analysis in the existing literature on distributed optimiza-
tion [46], [61] is limited to a simple eigenvalue and thus cannot
be directly extended to our case. We provide the following
lemma to establish the change in the semi-simple eigenvalues
with respect to a.

Lemma 4. [62] Consider an n x n matrix M, which
depends smoothly on a real parameter o > 0. Fix | € [1,n]
and let \y = --- = \; be a semi-simple eigenvalue of M,
with (linearly independent) right eigenvectors y1,--- ,y; and
(linearly independent) left eigenvectors z1,--- ,Zz;. Denote
by \;(«) the eigenvalues of M, corresponding to \;, i € [1,1],
as a function of «. Then the derivatives d\;(«)/da exist,
and d\;(@)/dala=o is given by the eigenvalues E)\S]i of the
Sfollowing | x | matrix

z] M'y: z My,

z) M'y, z My,

where M’ := dM, /da|a—o. Furthermore, the eigenvalue
i (@) under perturbation of the parameter o is given by

Ai(@) = Xi(0) + a[Xs]i +o(a),  Vie Ll

With the help of Lemma 4, we now prove Theorem 4.

1) Proof of Theorem 4: We note that M, := Mo + aM’,
where M’ := dM, /da|o—o. Furthermore, the left eigenvec-
tors corresponding to p semi-simple eigenvalues are the rows
of the matrix U and the right eigenvectors are the columns of
the matrix V', as defined below:

0O OO0 O O
o o0 001, O

U:= and V:=U".

We would like to ensure that the semi-simple eigenvalues
of M, are forced to move inside the unit circle as «
increases. Using Lemma 4, it can be established that the
derivatives d\;(«)/da|q=0 exist for all ¢ € [1,p] and are the
eigenvalues [Ag]; of

-0 -P'

P -R

S:=UM'V =

Next we define a; :=Re([Ag];) and b; :=1Im([As];),
Vi € [1,p]. From Theorem 3.6 in [2], we know that —S is
positive stable if (Q + @T) is positive definite and (R + ET)
is positive semi-definite, i.e., Vi € [1,p], a; < 0. Furthermore,
we know from Lemma 4 that

Ai(a) = XN (0) + a[As]i + o(a),

see Theorem 2.7 in [62] for details. For sufficiently small
stepsize « > 0, the term o(«) can be made arbitrarily small
as it contains higher order o terms. Therefore, we can re-
write (22) as

(22)

Aila) =1+ alrs]i =1+ afa; + 5by), Vi € [1,p].

Since the real parts of [Ag]; are a; <0, the semi-simple
eigenvalues would move towards the direction of the secants
of the unit circle for any b;, see Fig. 8. We thus obtain
that p(M,) < 1 for sufficiently small stepsize « > 0 and
Theorem 4 follows. O

~la| +jlb;

\

secant

Fig. 8. Tangent lines intersect a circle at a single point. Secant lines intersect
a circle at two points.



VI. CONCLUSION

In this paper, we describe first-order methods to
solve distributed saddle point problems of the form:
miny maxy {G(x) + (y, Px) — H(y)}, which has many
practical applications. In particular, we assume that the
underlying data is distributed over a strongly connected
network of nodes such that G(x) =13 gi(x),
H(y):=2>" hi(y), and P:=1%" P, where the
constituent functions g;, h;, and local coupling matrices P;
are private to each node ¢. Under appropriate assumptions,
we show that GT-GDA converges linearly to the unique
saddle point of strongly concave-convex problems. We further
provide explicit e-complexities of the underlying algorithms
and characterize a regime in which the convergence
is network-independent. To reduce the communication
complexity of GT-GDA, we propose a lighter (communication-
efficient) version GT-GDA-Lite that does not require
consensus on local P;’s and analyze GT-GDA-Lite
under various relevant scenarios. Finally, we illustrate the
convergence properties through numerical experiments.
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APPENDIX

A. System Matrix for GT-GDA

To completely describe lemma 1, for ¢ > %2 +

2
20K
o

+1’

2
m

we describe the system matrix as follows

My e My1 Mo ’
M21 M22
[ A 0 ol
My = alq 1-— Oé% 0 ,
At aAL+ B2 amy 4 Bma A+ aAL
[ 0 0 0
Mo = 0 o 0 oM,
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2
my = Am my = AT (1+ k), mg i= S,
2
o
my 1= 7’\"2‘””, ms = Aoy (L + k), m =L+ =t

B. System Matrix for GT-GDA-Lite: Quadratic case
Let p := p; + py, and we define Maﬁ € R@n+1)px(2n+1)p 44

Maﬂ = gll gm
M1 Moo
_ W, 0 oW
My = | —a@u@izdle 1 _ag 0 |,
L mi Mo o
- . . )
My = | o@@ltet _pT g |
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_ . . )
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such that for any collection of matrices { My, My, - -

: 7Mn}7

we define Ay := diag([M1, Ma, - - -, M,]) as the block diag-
onal matrix where the i-th diagonal element is M;. The rest
of the terms used in M, g are defined below:

my =W
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mg =W,
ms =W
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my = Wo
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My = Wo
s = Wa
g = Wa
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