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AbstractÐIn this paper, we propose GT-GDA, a distributed
optimization method to solve saddle point problems of the
form: minx maxy

{
F (x,y) := G(x) + ⟨y, Px⟩ −H(y)

}
, where

the functions G(·), H(·), and the coupling matrix P are dis-
tributed over a strongly connected network of nodes. GT-GDA is
a first-order method that uses gradient tracking to eliminate the
dissimilarity caused by heterogeneous data distribution among
the nodes. In the most general form, GT-GDA includes a consensus
over the local coupling matrices to achieve the optimal (unique)
saddle point, however, at the expense of increased communication.
To avoid this, we propose a more efficient variant GT-GDA-Lite
that does not incur additional communication and analyze its con-
vergence in various scenarios. We show that GT-GDA converges
linearly to the unique saddle point solution when G is smooth
and convex, H is smooth and strongly convex, and the global
coupling matrix P has full column rank. We further characterize
the regime under which GT-GDA exhibits a network topology-
independent convergence behavior. We next show the linear
convergence of GT-GDA-Lite to an error around the unique
saddle point, which goes to zero when the coupling cost ⟨y, Px⟩ is
common to all nodes, or when G and H are quadratic. Numerical
experiments illustrate the convergence properties and importance
of GT-GDA and GT-GDA-Lite for several applications.

Index TermsÐDecentralized optimization, saddle point prob-
lems, constrained optimization, descent ascent methods.

I. INTRODUCTION

Saddle point or min-max problems are of significant prac-

tical value in many signal processing and machine learning

applications [1]±[9]. Applications of interest include but are

not limited to constrained and robust optimization, beamform-

ing, weighted linear regression, and reinforcement learning. In

contrast to the traditional minimization problems where the

goal is to find a global (or a local) minimum, the objective

in saddle point problems is to find a point that maximizes the

cost in one direction and minimizes it in the other. Consider

for example Fig. 1 (left), where we show a simple function

landscape (F : R2 → R) that increases in one direction and

decreases in the other. Examples of such functions appear

in constrained optimization where adding the constraints as

a Lagrangian naturally leads to saddle point formulations.

Gradient descent ascent (GDA) methods are popular ap-

proaches towards saddle point problems. To find a saddle point

of the function in Fig. 1 (left), we would like to maximize

F with respect to the corresponding variable, say y, and
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Fig. 1. Plot of two dimensional strongly concave-convex saddle point problem
(left) and the corresponding gradient directions (right). The curves represent
contours to show the value of the function and the red star is the point where
partial gradients are all 0.

minimize F in the direction, say x. A natural way is to

compute the partial gradients ∇yF and ∇xF , shown in Fig. 1

(right). Then update the y estimate moving in the direction

of ∇yF and the x estimate moving opposite to the direction

of ∇xF . The arrows, shown in Fig. 2, point towards the next

step of GDA dynamics and the method converges to the unique

saddle point (red star) under appropriate conditions on F . The

extension of this method for convex and strongly concave, and

strongly convex and concave objectives is straightforward as

it is intuitive that the saddle point (x∗,y∗) ∈ R
px × R

py is

unique such that ∀x ∈ R
px and ∀y ∈ R

py ,

F (x∗,y) ≤ F (x∗,y∗) ≤ F (x,y∗).

The traditional approaches mentioned above assume that

the entire dataset is available at a central location. In many

modern applications [10]±[13], however, data is often collected

by a large number of geographically distributed devices or

nodes and communicating/storing the entire dataset at a cen-

tral location is practically infeasible. Distributed optimization

methods are often preferred in such scenarios, which operate

by keeping data local to each individual device and exploit

Fig. 2. The arrows point towards the next step of the gradient descent ascent
dynamics. The unique saddle point is denoted by the red star.
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local computation and communication to solve the underlying

problem. Such methods often deploy two types of computa-

tional architectures: (i) master/worker networks ± where the

data is split among multiple workers and computations are

coordinated by a master (or a parameter server); (ii) peer-to-

peer mesh networks ± where the nodes are able to communi-

cate only with nearby nodes over a strongly connected network

topology. The topology of mesh networks is more general as

it is not limited to hierarchical master/worker architectures.

In this paper, we are interested in solving distributed saddle

point optimization problems over peer-to-peer networks, where

the corresponding data and cost functions are distributed

among n nodes, communicating over a strongly connected

weight-balanced directed graph. In this formulation, the net-

worked nodes are tasked to find the saddle point of a sum of

local cost functions fi(x,y), where x ∈ R
px and y ∈ R

py .

Mathematically, we consider the following problem:

P : min
x∈Rpx

max
y∈R

py
F (x,y) = min

x∈Rpx
max
y∈R

py

1

n

n∑

i=1

fi(x,y),

where each local cost fi(x,y) is private to node i and takes

the form as follows

fi(x,y) := gi(x) + ⟨y, Pix⟩ − hi(y).

We assume that G(x) := 1
n

∑n
i=1 gi(x) is convex and

H(y) := 1
n

∑n
i=1 hi(y) is strongly convex1, while the global

coupling matrix P = 1
n

∑n
i=1 Pi ∈ R

py×px has full column

rank. Such problems arise naturally in many subfields of signal

processing, machine learning, and statistics [14]±[17].

A. Related work

Theoretical studies on solutions for saddle point problems,

in centralized scenarios, have attracted significant research [1],

[2], [18], [19]. Recently, saddle point or min-max problems

have become increasingly relevant because of their applica-

tions in constrained and robust optimization, supervised and

unsupervised learning, image reconstruction, and reinforce-

ment learning [5]±[7], [9]. Commonly studied sub-classes of

saddle point problems of the form P are when G(·) and H(·)
are assumed to be quadratic [14] or strongly convex [20].

In [20], the authors proposed a unified analysis technique

for extra-gradient (EG) and optimistic gradient descent ascent

(OGDA) methods assuming strongly concave-strongly convex

saddle point problems. Furthermore, they discussed the con-

vergence rates for the underlying problem classes and for bi-

linear objective functions. A more general approach was taken

in [15], where G(·) was considered convex but not strongly

convex. In [21], the authors established the convergence

of OGDA only assuming the existence of saddle points. These

are first-order methods with some modification of the vanilla

gradient descent (GD). Apart from gradient-based methods,

zeroth-order optimization techniques are proposed in [22]±

[25]. Such methods are useful when gradient computation is

not feasible either because the objective function is unknown

and the partial derivatives cannot be evaluated for the whole

search space, or the evaluation of partial gradients is too

1Note that the problem class P includes −H , which is strongly concave.

expensive. In such cases, Bayesian optimization [23] or genetic

algorithms [24], [25] are used. These techniques are usually

slower than gradient-based methods.

When the data is distributed over a network of nodes, exist-

ing work has mainly focused on minimization problems [26]±

[32]. Of significant relevance are distributed methods that

assume access to a first-order oracle where the early work

includes [26], [33], [34]. The performance of these methods

is however limited due to their inability to handle the dissimi-

larity between local and global cost functions, i.e.,∇fi ̸= ∇F .

In other words, linear convergence is only guaranteed but to an

inexact solution (with a constant stepsize). To avoid this inac-

curacy while keeping linear convergence, recent work [29],

[30], [35]±[38] propose a gradient tracking technique that

allows each node to estimate the global gradient with only

local communication; see also [28] for a related method.

On saddle point problems, there is not much progress

made towards distributed solutions. Recent work in this regard

includes [16], [17], [39]±[45]. Two primal-dual sub-gradient

methods are proposed in [39] to solve distributed convex

minimization problem under constrained sets. Some related

work on solving distributed variational inequalities was pro-

posed in [40]. Moreover, [41], [42] discuss extra-step and

accelerated methods for distributed saddle point problems.

However, majority of the work do not consider heterogeneous

data distribution among different nodes. To deal with the

dissimilarity between the local and global costs, [16] develops

a function similarity metric. Similarly, [44] proposes local

stochastic gradient descent ascent using similarity parameters

but it is restricted to master/worker networks that are typical in

federated learning scenarios. To get rid of the aforementioned

similarity assumptions, [43] uses gradient tracking to eliminate

this dissimilarity but assumes the functions G(·) and H(·)
to be quadratic with a specific structure. Similarly, [45] ex-

tends [43] to directed graphs using the ideas from [46].

B. Main contributions

In this paper, we propose GT-GDA and GT-GDA-Lite

to solve the underlying distributed saddle point problem P.

The GT-GDA algorithm performs a gradient descent in the x

direction and a gradient ascent in the y direction, both of

which are combined with a network consensus term along

with the communication of coupling matrices Pi with neigh-

bours. GT-GDA-Lite is a lighter (communication-efficient)

version of GT-GDA, which does not require consensus over the

coupling matrices and therefore reduces the communication

complexity. To address the challenge that arises due to the

dissimilarity between the local and global costs, the proposed

methods use gradient tracking in both of the descend and

ascend updates. To the best of our knowledge, there is no

existing work for Problem P that shows linear convergence

when G(·) is convex and H(·) is strongly convex. The main

contributions of this paper are described next:

Novel Algorithm. We propose a novel algorithm that uses

gradient tracking for distributed gradient descent ascent up-

dates. Gradient tracking implements an extra consensus update

where the networked nodes track the global gradients with the

help of local information exchange among the nearby nodes.
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Weaker assumptions. We consider the problem class P

such that gi and hi are smooth, G is convex, H is strongly

convex, and the coupling matrix P has full column rank. We

note that the constituent local functions, gi(·) and hi(·), can

be non-convex as we only require convexity on their average.

Earlier work [43] that shows linear convergence of distributed

saddle point problems is only applicable to specific quadratic

functions G and H , used in reinforcement learning, and does

not provide explicit rates. It is noteworthy that the proposed

problem P can be written in the primal form as follows:

min
x

θ(x) = min
x

{
H∗(Px) +G(x)

}
(1)

where H∗(·) is the conjugate function [47], see Definition 2,

of H(·). We note that because G(·) is strongly convex, it is

enough to ensure that P has full column rank to conclude

that θ(·) is strongly convex [48]. This results in significantly

weaker assumptions as compared to the available literature.

Linear convergence and explicit rates. We show

that GT-GDA converges linearly to the unique saddle

point (x∗,y∗) of Problem P under the assumptions described

above. We note that all these assumptions are necessary

for linear convergence even for the centralized case [15].

Furthermore, we evaluate explicit rates for gradient complexity

per iteration and provide a regime in which the convergence

of GT-GDA is network-independent. We also show linear con-

vergence of GT-GDA-Lite in three different scenarios and

establish that the rate is the same as GT-GDA (potentially with

a steady-state error) with reduced communication complexity.

Exact analysis for quadratic problems. We provide exact

analytic expressions to develop the convergence characteristics

of GT-GDA-Lite when G and H are in general quadratic

forms. With the help of matrix perturbation theory for semi-

simple eigenvalues, we show that GT-GDA-Lite converges

linearly to the unique saddle point of the underlying problem.

C. Notation and paper organization

We use lowercase letters to denote scalars, lowercase bold

letters to denote vectors, and uppercase letters to denote matri-

ces. We define 0n as vector of n zeros and In as the identity

matrix of n× n dimensions. For a function F (x,y), ∇xF
is the gradient of F with respect to x, while ∇yF is the

gradient of F with respect to y. We denote the vector

two-norm as ∥ · ∥ and the spectral norm of a matrix in-

duced by this vector norm as ||| · |||. We denote the weighted

vector norm of a vector z with respect to a matrix C
as ∥z∥C := z⊤Cz and the spectral radius of C as ρ(C).
We consider n nodes interacting over a potentially directed

(balanced) graph G = {V, E}, where V := {1, . . . , n} is the

set of node indices, and E ⊆ V × V is a collection of ordered

pairs (i, r) such that node r can send information to node i,
i.e., i← r.

The rest of the paper is organized as follows. Section II

provides the motivation, with the help of several examples,

and describes the algorithms GT-GDA and GT-GDA-Lite.

We discuss our main results in Section III, provide simulations

in Section IV, the convergence analysis in Section V, and

conclude the paper with Section VI.

II. MOTIVATION AND ALGORITHM DESCRIPTION

In this section, we provide some motivating applications

that take the form of convex-concave saddle point problems.

For more applications, see e.g., [49], [50].

A. Some useful examples

Distributed constrained optimization. Minimizing an ob-

jective function under certain constraints is a fundamental

requirement for several applications. For equality constraints,

such problems can be written as:

min
x

G(x), subject to Px = b, (2)

which has a saddle point equivalent form written using the

Lagrangian multipliers y:

L(x,y) = G(x) + y⊤(Px− b)

= G(x) + y⊤Px− y⊤b.

Assuming zero duality gap, any solution of (2) is a saddle

point of the Lagrangian. Hence, it is sufficient to solve for

L(x∗,y∗) = min
x

max
y

L(x,y).

For large-scale problems, the data is distributed heteroge-

neously and each node possesses its local gi(·), Pi and bi.

The network aims to solve (2) such that

G(x) :=
1

n

n∑

i=1

gi(x), P :=
1

n

n∑

i=1

Pi, b :=
1

n

n∑

i=1

bi.

Then for hi(y) := ⟨bi,y⟩ and H(y) := 1
n

∑n
i=1 hi(y), (2)

takes the same form as Problem P.

Distributed beamforming. Constrained optimization is

widely used for array signal processing. When the signal is

uncorrelated with the interference, the Capon beamformer [4]

maximizes the SINR by solving the following problem:

min
x

xHRxxx, subject to sHx = 1,

where xH is Hermitian of vector x, Rxx = E[xxH ] and s

is the steering vector [3]. Recently, the distributed Capon

beamformer is proposed in [51], which essentially solves P.

Distributed weighted linear regression and reinforce-

ment learning. Most applications of weighted linear regres-

sion take the form:

min
x

∥Px− b∥2C−1 . (3)

It can be shown [15] that the saddle point equivalent of (3) is

min
x

max
y

{
−⟨y,b⟩ − 1

2
∥y∥2C + ⟨y, Px⟩

}
. (4)

This signifies the importance of the saddle point formu-

lation, which enables a solution of (3) without evalu-

ating the inverse of the matrix C, thus decreasing the

computational complexity. When the local data is dis-

tributed, i.e., P := 1
n

∑n
i=1 Pi, hi(y) := ⟨y,bi⟩ − 1

2∥y∥2Ci
,

and H(y) := 1
n

∑n
i=1 hi(y), the above optimization problem

takes the form of Problem P.

In several cases [14], [43], reinforcement leaning takes the

same form as weighted linear regression. The main objective
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in reinforcement learning is policy evaluation that requires

learning the value function V π , for any given joint policy π.

The data {sk, sk+1, rk}Nk=1 is generated by the policy π,

where sk is the state and rk is the reward at the k-th time

step. With the help of a feature function ϕ(·), which maps

each state to a feature vector, we would like to estimate

the model parameters x such that V π ≈ ⟨ϕ(s),x⟩. A well

known method for policy evaluation is to minimize the

empirical mean squared projected Bellman error, which is

essentially weighted linear regression: minx ∥Px− b∥2
C−1 ,

where P :=
∑N

k=1⟨ϕ(sk), ϕ(sk)− γϕ(sk+1)⟩, for some

discount factor γ ∈ (0, 1), C :=
∑N

k=1 ∥ϕ(sk)∥2, and

b :=
∑N

k=1 rkϕ(sk).
Supervised learning. Classical supervised learning prob-

lems are essentially empirical risk minimization. The aim is

to learn a linear predictor x when H(·) is the loss function to

be minimized using data matrix P , and some regularizer G(·).
The problem can be expressed as:

min
x

{
H(Px) +G(x)

}
,

which has the following saddle point formulation:

minx maxy
{
G(x) + ⟨y, Px⟩ −H∗(y)

}
. For large-scale

systems, the data Pi is geographically distributed among

different computational nodes and the local functions gi’s
and hi’s are also private. Problem P can be obtained

here by choosing P := 1
n

∑n
i=1 Pi, G(x) :=

∑n
i=1 gi(x),

and H∗(y) :=
∑n

i=1 h
∗
i (y).

B. Algorithm development and description

In order to motivate the proposed algorithm, we first

describe the canonical distributed minimization problem:

minxG(x) :=
1
n

∑n
i=1 gi(x), where G is a smooth and

strongly convex function. A well-known distributed solution

is given by [30], [52]:

xk+1
i =

n∑

r=1

wir(x
k
r − α · ∇gr(xk

r )), (5)

where xk
i is the estimate of the unique minimizer (denoted

as x∗ such that ∇G(x∗) = 1
n

∑
i∇gi(x∗) = 0px

) of G at

node i and time k, and wir are the network weights such

that wi,r ̸= 0, if and only if (i, r) ∈ E , and W = {wir} is

primitive and doubly stochastic. Consider for the sake of

argument that each node at time k possesses the minimizer x∗;

it can be easily verified that xk+1
i ̸= x∗, because the local

gradients are not zero at the minimizer, i.e., ∇gi(x∗) ̸= 0px
.

To address this shortcoming of (5), recent work [29], [35]±

[37], [46] uses a certain gradient tracking technique that

updates an auxiliary variable yk
i over the network such

that yk
i → 1

n

∑
i∇gi(xi

k). The resulting algorithm:

xk+1
i =

n∑

r=1

wir(x
k
r − α · yk

r ), (6)

yk+1
i =

n∑

r=1

wir(y
k
r +∇gr(xk+1

r )−∇gr(xk
r )), (7)

converges linearly to x∗ thus removing the bias caused by the

local ∇gi versus global gradient ∇G dissimilarity.

To deal with data heterogeneity, the proposed method

GT-GDA, formally described in Algorithm 1, uses gradient

tracking in both the descend and ascend updates. In particular,

there are three main components of the GT-GDA method:

(i) gradient descent for x updates; (ii) gradient ascent for y

updates; and (iii) gradient tracking. However, since the cou-

pling matrices Pi’s are not identical at the nodes, we add an

intermediate step to implement consensus on Pi’s (see Remark

3 for more details). Initially, GT-GDA requires random state

vectors x0
i and y0

i at each node i, gradients evaluated with

respect to x and y and some positive stepsizes α and β for

descent and ascent updates, respectively. At each iteration k,

every node computes gradient descent ascent type updates.

The state vectors xk+1
i (and yk+1

i ) are evaluated by taking

a step in the negative (positive) direction of the gradient of

global problem, and then sharing them with the neighbouring

nodes according to the network topology. It is important to

note that qk
i and wk

i are the global gradient tracking vectors,

i.e., qk
i → ∇xF (x,y) and wk

i → ∇yF (x,y).

Algorithm 1 GT-GDA at each node i

Require: x0
i ∈ R

px ,y0
i ∈ R

py , P 0
i = Pi, {wir}nr=1, α > 0,

β > 0,q0
i = ∇xfi(x

0
i ,y

0
i ),w

0
i = ∇yfi(x

0
i ,y

0
i )

1: for k = 0, 1, 2, . . . , do,

2: P k+1
i ←∑n

r=1 wirP
k
r

3: xk+1
i ←∑n

r=1 wir(x
k
r − α · qk

r )

4: qk+1
i ←∑n

r=1 wir(q
k
r +∇xf

k+1
r −∇xf

k
r )

5: yk+1
i ←∑n

r=1 wir(y
k
r + β ·wk

r )

6: wk+1
i ←

∑n
r=1 wir(w

k
r +∇yf

k+1
r −∇yf

k
r )

7: end for

GT-GDA-Lite: We note that GT-GDA implements con-

sensus on the coupling matrices (Step 2), which can result

in costly communication when the size of these matrices

is large. We thus consider a special case of GT-GDA that

does not implement consensus on the coupling matrices,

namely GT-GDA-Lite
2 and characterize its convergence

properties for the following three cases:

(i) strongly concave-convex problems with different cou-

pling matrices Pi’s at each node;

(ii) strongly concave-convex problems with identical Pi’s;

(iii) quadratic problems with different Pi’s at each node.

III. MAIN RESULTS

Next we provide some definitions followed by the assump-

tions required to establish the main results.

Definition 1 (Smoothness and convexity). A differentiable

function G : Rp → R is L-smooth if ∀x,y ∈ R
p,

∥∇G(x)−∇G(y)∥ ≤ L∥x− y∥
and µ-strongly convex if ∀x,y ∈ R

p,

G(y) + ⟨∇G(y),x− y⟩+ µ

2
∥x− y∥2 ≤ G(x).

2We do not explicitly write GT-GDA-Lite as it is the same as Algo-
rithm 1: GT-GDA but without the consensus (Step 2) on Pi’s.
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Algorithm Problem class Distributed Computational complexity

GD Strongly convex No O
(
κ log 1

ϵ

)

GT-DGD [29] Strongly convex Yes O
(

κ2

(1−λ)2 log
1
ϵ

)

GDA [15] Strongly concave-convex No O
({
κ4γ2 µ2

σ2
m

+ κ3γ4
}
log 1

ϵ

)

GT-GDA Strongly concave-convex Yes O
(
max

{
γ6κ3

(1−λ)4 ,
σ2

mσ2

Mκ

L2µ2(1−λ)4 , γ
2κ5

}
log 1

ϵ

)

TABLE I
COMPUTATIONAL COMPLEXITIES OF OPTIMIZATION METHODS.

It is of significance to note that if G(·) is L smooth, then it is

also (L+ ξ) smooth, ∀ξ > 0.

Definition 2 (Conjugate of a function). The conjugate of a

function H : Rp → R is defined as

H∗(y) := sup
x∈Rp

{⟨x,y⟩ −H(x)} , ∀y ∈ R
p.

Moreover, if H(·) is closed and convex, then [H∗(·)]∗ = H(·),
and if H(·) is L-smooth and µ-strongly convex, then H∗(·)
is 1

µ
-smooth and 1

L
-strongly convex [53].

Next, we describe the assumptions under which the conver-

gence results of GT-GDA will be developed; note that all of

these assumptions may not be applicable at the same time.

Assumption 1 (Smoothness and convexity). Each local gi
is L1-smooth and each hi is L2-smooth, where L1, L2 are

arbitrary positive constants. Furthermore, the global G is

convex and the global H is µ-strongly convex.

Assumption 2 (Quadratic). The gi’s and hi’s are quadratic

functions, i.e.,
gi(x) := x⊤Qix+ q⊤

i x+ qi,

hi(y) := y⊤Riy + r⊤i y + ri,

such that qi ∈ R
px , ri ∈ R

py , qi, ri ∈ R, Qi ∈ R
px×px ,

and Ri ∈ R
py×py , ∀i. Moreover, for Q := 1

n

∑n
i=1Qi

and R := 1
n

∑n
i=1Ri, we assume that (Q+Q

⊤
) is positive

definite and (R+R
⊤
) is positive semi-definite.

Assumption 3 (Full ranked coupling matrix). The coupling

matrix P := 1
n

∑
i Pi has full column rank.

Assumption 4 (Doubly stochastic weights). The weight ma-

trices W := {wi,r} associated with the network are primitive

and doubly stochastic, i.e., W1n = 1n and 1⊤
nW = 1⊤

n .

We note that Assumption 1 does not require strong con-

vexity of G while Assumptions 1 and 3 are necessary for

linear convergence [15]. The primal problem minx θ(x), de-

fined in (1), requires poly (ϵ−1) iterations to obtain an ϵ-
optimal solution even in the centralized case if we ignore

any of the above assumptions. It is important to note that

Assumptions 1-3 are not applicable simultaneously; GT-GDA

and GT-GDA-Lite are analyzed under different assumptions,

clearly stated in each theorem. Next, we define some useful

constants to explain the main results. Let L := max{L1, L2}
and let the condition number of H(·) be L2/µ. Furthermore,

we denote κ := L/µ ≥ L2/µ. The maximum and minimum

singular values of the coupling matrices Pi’s for all i are

defined as σM and σm, respectively. Moreover, the con-

dition number for the global coupling matrix is denoted

by γ := σM/σm.

A. Convergence results for GT-GDA

We now provide the main results on the convergence

of GT-GDA and discuss their attributes.

Theorem 1. Consider Problem P under Assumptions 1, 3,

and 4. For a large enough positive constant c > 0, assume

the stepsizes are such that

α = α := β
µ2

cσ2
M

,

β = β := min

{
σ2
m(1− λ)2
192σ2

ML
,
L(1− λ)2
48σ2

M

,
1

382κL

}
.

Then GT-GDA achieves an ϵ-optimal solution in

O
(
max

{
γ6κ3

(1− λ)4 ,
σ2
mσ

2
Mκ

L2µ2(1− λ)4 , γ
2κ5

}
log

1

ϵ

)

gradient computations (in parallel) at each node

Corollary 1. Consider Problem P under Assumptions 1, 3,

and 4, and GT-GDA with stepsizes α := α, β := β and

Γ = max{γ2, σ2
m/L

2}. If

κ ≥ Γ

(1− λ)2 ,

then GT-GDA achieves an ϵ-optimal solution linearly at a

network-independent convergence rate of O
(
γ2κ5 log 1

ϵ

)
.

Table I shows the computational complexities of gradient

descent and gradient descent ascent methods along with their

distributed counterparts. It can be seen that the computational

complexity of GDA (centralized) is of the order O
(
κ4

)
[15],

when the objective function is strongly concave-convex (where

we used L = max{L1, L2}, κ = L/µ and γ = σM/σm). It is

typical to lose one order of κ in making the algorithm dis-

tributed as can be observed in Table I where GD (centralized)

has κ dependence but GT-DGD has κ2 dependence. Similar

behaviour is found for GDA and GT-GDA.

We now discuss these results in the following remarks.

Remark 1 (Linear convergence). GT-GDA eliminates the

dissimilarity caused by heterogeneous data at each node using

gradient tracking in both of the xk
i and yk

i updates. Theorem 1

provides an explicit linear rate at which GT-GDA converges

to the unique saddle point (x∗,y∗) of Problem P.
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Remark 2 (Network-independence). Corollary 1 explicitly

describes a regime in which the convergence rate of GT-GDA

is independent of the network topology. We note that it signifies

a relationship between the condition number and the spectral

gap (1−λ). For weakly connected graphs, GT-GDA requires a

higher value of κ to attain network independent convergence.

Remark 3 (Communication complexity). At each node,

GT-GDA communicates two px-dimensional vectors, two py-

dimensional vectors, and a py × px dimensional coupling

matrix, per iteration. In ad hoc peer-to-peer networks, the

node deployment may not be deterministic. Let ω be the

expected degree of the underlying (possibly random) strongly

connected communication graph. Then the expected commu-

nication complexity required for GT-GDA to achieve an ϵ-
optimal solution is

O
(
ωpxpy max

{
γ6κ3

(1− λ)4 ,
σ2
mσ

2
Mκ

L2µ2(1− λ)4 , γ
2κ5

}
log

1

ϵ

)

scalars per node. We note that ω is a function of under-

lying graph, e.g., ω = O(1) for random geometric graphs

and ω = O(log n) for random exponential graphs.

GT-GDA converges linearly to the unique saddle point but

it requires each node to communicate the local coupling

matrix Pi with its neighbors. This incurs additional communi-

cation cost for strongly concave-convex local objective func-

tions. Gradient tracking does not account for the discrepancy

between local and global coupling matrices as can be seen in

Lemma 1. To reduce this communication cost, a finite-time

consensus method may be used, see for example [54].

B. Convergence results for GT-GDA-Lite

We now discuss GT-GDA-Lite in the context of the

aforementioned special cases below.

Theorem 2 (GT-GDA-Lite for Problem P). Consider

Problem P under Assumptions 1, 3, and 4. If the step-

sizes α ∈ (0, α] and β ∈ (0, β], then GT-GDA-Lite con-

verges linearly to an error ball around the unique saddle point.

Remark 4 (Convergence to an inexact solution). We note that

the speed of convergence for GT-GDA-Lite is of the same

order as GT-GDA, however, GT-GDA-Lite converges to an

error ball around the unique saddle point, which depends on

the size of τ (formally defined in Lemma 1). This error τ
can be eliminated by using identical Pi’s at each node or by

having consensus. The first possibility is considered in the next

theorem and the second is explored in GT-GDA.

Theorem 3 (GT-GDA-Lite for Problem P with same Pi’s).

Consider Problem P under Assumptions 1, 3, and 4 and with

identical Pi’s at each node. If the stepsizes α = α and β = β,

then the computational complexity of GT-GDA-Lite to

achieve ϵ-optimal solution is the same as in Theorem 1,

whereas the communication cost reduces by a factor

of O(min(px, py)).

Remark 5 (Reduced communication complexity). We note

for GT-GDA-Lite, each node communicates two px di-

mensional vectors and two py dimensional vectors per it-

eration. For large values of px and py , this is signifi-

cantly less than what is required for GT-GDA, i.e., O(pxpy).

This makes GT-GDA-Lite more convenient for applications

where communication budget is low.

Theorem 4 (GT-GDA-Lite for quadratic problems). Con-

sider Problem P under Assumptions 2, 3, and 4 (with different

Pi’s at the nodes). If the stepsizes α and β are small enough,

then GT-GDA-Lite converges linearly to the unique saddle

point (x∗,y∗) without consensus on Pi’s.

Remark 6 (Exact analysis). The convergence analysis we

provide for the quadratic case is exact. In other words, we do

not use the typical norm bounds and derive the error system

of equations as an exact LTI system. Using the concepts from

matrix perturbation theory for semi-simple eigenvalues, we

show that GT-GDA-Lite linearly converges to the unique

saddle point of P with quadratic cost functions.

IV. SIMULATIONS

We now provide numerical experiments to compare the

performance of distributed gradient descent ascent with

(GT-GDA) and without gradient tracking (D-GDA) and verify

the theoretical results. We would like to perform a prelimi-

nary empirical evaluation on a linear regression problem. We

consider the problem of the form:

min
x

1

2n
∥Px− b∥2 + λR(x); (8)

and the saddle point equivalent of above problem is

min
x

max
y

{
⟨y, Px⟩ − ⟨y,b⟩ − 1

2
∥y∥2 + λR(x)

}
. (9)

Performance characterization using the saddle point form

of (8) is common in the literature available on centralized

gradient descent ascent [15], [20]. For large-scale problems,

when data is available over geographically distributed nodes,

decentralized implementation is often preferred. In this pa-

per, we consider the network of nodes communicating over

strongly connected networks of different sizes and connectivity

to extensively evaluate the performance of GT-GDA. Figure 4

shows two directed exponential networks of n = 8 and n = 32
nodes. We note that although they are directed, their corre-

sponding matrices W are weight-balanced. To highlight the

significance of distributed processing for large-scale problems,

we evaluate the simulation results with the networks shown in

Fig. 4 and their extensions to n = 100 and n = 200 nodes.

Fig. 4. Directed exponential graphs with n = 8 nodes (left) and n = 32

nodes (right).

Smooth and strongly convex regularizer: We first con-

sider (9) with smooth and strongly convex regularizer

R(x) := ∥x∥2C . Therefore, the resulting problem is strongly-

convex strongly-concave. For a peer-to-peer mesh network

of n nodes, each node i has its private bi ∈ R
px and

Ci ∈ R
py×px such that the average b := 1

n

∑n
i=1 bi and

C := 1
n

∑n
i=1 Ci, and P := 1

n

∑n
i=1 Pi has full column rank.
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Fig. 3. Performance comparison of D-GDA and GT-GDA over a network of n = 8 nodes (left), n = 32 nodes (center) and n = 100 nodes (right).

We set the dimensions px = 4, py = 10, and evaluate the

performance of GT-GDA for data generated by a random

Gaussian distribution.

We characterize the performance by evaluating the optimal-

ity gaps: ∥xk − x∗∥+ ∥yk − y∗∥. Fig. 3 represents the com-

parison of the simulation results of D-GDA and GT-GDA for

different sizes of exponential networks (n = 8, 32 and 100);

some shown in figure 4. The optimality gap reduces with the

increase in the number of iterations. It can be observed that

D-GDA (blue curve) converges to an inexact solution because

it evaluates gradients with respect to its local data at each

step; hence moves towards local optimal. On the contrary, the

proposed method GT-GDA (red curve) uses gradient tracking

and consistently converges to the unique saddle point of

the global problem. We note that each iteration of GT-GDA

requires an additional communication cost for exchanging the

coupling matrix (see Remark 3 for the exact expression).

Smooth and convex regularizer: Next we use a smooth but

non strongly convex regularizer [55]:

R(x) :=

n∑

i=1

px∑

j=1

[
1

ti

{
log(1 + etixj ) + log(1 + e−tixj )

}]
.

Figure 5 shows the results for GT-GDA over a network

of n = 32 and n = 200 nodes. It can be seen that GT-GDA

converges linearly to the unique saddle point, as it’s opti-

mality gap decreases, meanwhile D-GDA exhibits a similar

convergence rate but settles for an inexact solution due to

heterogeneous nature of data at different nodes.

Fig. 5. Performance comparison of D-GDA and GT-GDA over a network of
n = 32 nodes (left) and n = 200 nodes (right).

Convergence of GT-GDA-Lite: Next we show the perfor-

mance of GT-GDA-Lite for (9) with smooth and strongly

convex regularizer R(x) := ∥x∥22. Figure 6 (left) shows linear

convergence of GT-GDA-Lite to the unique saddle point.

Similarly, Figure 6 (right) shows the convergence properties

of GT-GDA-Lite for the aforementioned smooth and convex

regularizer with same and different coupling matrices. It can

be observed that the proposed method converges linearly to

an error ball around the unique saddle point when the nodes

possess different coupling matrices, however, converges to

exact solution for the same coupling matrices.

Fig. 6. (Left) Performance comparison of D-GDA and GT-GDA-Lite over
a network of n = 32. (Right) Performance comparison of GT-GDA-Lite
with different and same coupling matrices at each node.

Network independence and linear speedup: Now we an-

alyze the convergence of GT-GDA considering three types

of networks: (i) a circular graph (bad connectivity); (ii) an

exponential graph; and (iii) a complete graph (best connectiv-

ity). For a fixed κ and varying (1− λ), Fig 7 (left) shows

that the performance of GT-GDA. It can be verified that

the convergence rate for circular graph is slow but is the

same for an exponential graph and a complete graph, which

shows network independent convergence rate as claimed in

Corollary 1. Finally, we illustrate linear speed-up of GT-GDA

as compared to its centralized counterpart. We plot the ratio of

the number of iterations required to attain an optimality gap

of 10−14 for GT-GDA as compared to the centralized GDA

method in Fig. 7 (right). The results demonstrate that the

performance improves linearly as the number of nodes in-

creases (n = 8, 16, 32, 100, 200). We note that for n nodes,

the centralized case has n times more data to work with

at each iteration and thus has a slower convergence. In

distributed setting, the processing is done in parallel which

results in a faster overall performance. We emphasize that

the implementation of GT-GDA requires each node i to

communicate the coupling matrix Pi and the state variables

with its neighbors. However, GT-GDA-Lite eliminates the

requirement of communicating Pi.

Fig. 7. (Left) Convergence of GT-GDA for networks with different connectiv-
ity. (Right) Linear speedup: Performance ratio of GT-GDA with its centralized
counterpart to achieve optimality gap of 10−14.
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V. CONVERGENCE ANALYSIS

In this section, our aim is to establish linear convergence

of the proposed algorithms to the unique saddle point (under

given set of assumptions) for problem class P. We first define

four global state vectors xk,qk ∈ R
npx , yk,wk ∈ R

npy that

concatenate the local vectors xk
i ,q

k
i ,y

k
i , and wk

i for all i.
We next define the following error quantities with the goal of

characterizing their time evolution in order to establish that

the error decays to zero:

(i) Agreement errors, ∥xk −W∞
1 xk∥ and ∥yk −W∞

2 yk∥:
Note that we define W∞ := limk→∞W k = 1

n
1n1

⊤
n ,

W1 :=W ⊗ Ipx
, W2 :=W ⊗ Ipy

(where ⊗ denotes the

Kronecker product), and thus each error quantifies how

far the network is from agreement;

(ii) Optimality gaps, ∥xk − x∗∥ and ∥yk − y∗∥ or

∥yk −∇H∗(Pxk)∥: Note that xk := 1
n

∑n
i=1 x

k
i ,

yk := 1
n

∑n
i=1 y

k
i , and thus each error quantifies the

discrepancy between the network average and the unique

saddle point (x∗,y∗);
(iii) Gradient tracking errors, ∥qk −W∞

1 qk∥2 and

∥wk −W∞
2 wk∥2: Note that these errors quantify

the difference between the local and global gradients.

A. Convergence of GT-GDA

The following lemma provides a relationship between the

error quantities defined above with the help of an LTI system

describing GT-GDA.

Lemma 1. Consider GT-GDA described in Algorithm 1 under

Assumptions 1, 3, and 4. We define uk, sk ∈ R
6 as

uk :=




∥xk −W∞
1 xk∥

√
n∥xk − x∗∥

L−1∥qk −W∞
1 qk∥

∥yk −W∞
2 yk∥

√
n∥yk −∇H∗(Pxk)∥
L−1∥wk −W∞

2 wk∥




, sk :=




∥xk∥
∥yk∥
0

0

0

0




,

and let Nα,β,k ∈ R
6×6 be such that it has αλkτ and βλkτ

at the (2, 1) and (1, 5) locations, respectively, and ze-

ros everywhere else. We note that τ :=
∣∣∣∣∣∣P 0 −W∞

2 P 0
∣∣∣∣∣∣

where P 0 concatenates Pi’s initially available at each node.

For all k ≥ 0, α, β > 0, and α ≤ β µ2

cσ2

M

, we have

uk+1 ≤Mα,βu
k +Nα,β,ks

k, (10)

where the system matrix Mα,β is defined in Appendix A.

The proof of the above lemma is omitted from here due to

space limitations and can be found in the technical report [56].

The main idea behind the proof is to establish bounds on

error terms (elements of uk) for descent in x and ascent in y

for a range of stepsizes α and β. It is noteworthy that the

coupling between the ascent and descent equations gives rise

to additional terms (see Mα,β in Appendix A) adding to the

complexity of the analysis. Moreover, the analysis requires a

careful manipulation of the two stepsizes, unlike the existing

approaches. With the help of this lemma, our goal is to

establish convergence of GT-GDA and further characterize its

convergence rate. To this aim, we first show that the spectral

radius ρ(Mα,β) of the system matrix is less than 1 in the

following lemma.

Lemma 2. Consider GT-GDA under Assumptions 1, 3, and 4.

For a large enough positive constant c > 0, assume the

stepsizes are α ∈
(
0, β µ2

cσ2

M

]
and β ∈ (0, β], such that

β := min
{

σ2

m(1−λ)2

192σ2

M
L
, L(1−λ)2

48σ2

M

, 1
382κL

}
,

then ρ(Mα,β) ≤ η < 1, where

η := 1−O
(
min

{
(1−λ)4

cγ6κ3 ,
L2µ2(1−λ)4

cσ2
mσ2

M
κ
, 1
cγ2κ5

})
.

Proof. Recall that Mα,β is a non-negative matrix.

From [57], we know that if there exists a positive

vector δ and a positive constant η such that Mα,βδ ≤ ηδ,

then ρ(Mα,β) ≤ |||Mα,β |||δ∞ ≤ η, where ||| · |||δ
∞

is the matrix

norm induced by the weighted max-norm ∥ · ∥δ∞, with

respect to some positive vector δ. To this end, we first

choose η :=
(
1− αβ σ2

m

κ

)
, which is clearly less than 1.

We next solve for a range of α, β > 0 and for a positive

vector δ = [δ1, δ2, δ3, δ4, δ5, δ6]
⊤

such that the inequalities

in Mα,βδ ≤
(
1− αβ σ2

m

κ

)
δ hold element-wise. With Mα,β

in Appendix A, from the first and the fourth rows, we obtain

αβ
σ2

m

κ
+ αL δ3

δ1
≤ 1− λ, (11)

αβ
σ2

m

κ
+ βL δ6

δ4
≤ 1− λ. (12)

Similarly, from the second and the fifth rows, we obtain

βµδ2 ≤ δ2 − L
σ2
m
(Lδ1 + σMδ5) , (13)

α
σ2

m

κ
δ5 ≤ µ

(
1− 1

c

)
δ5 − µL

cσM
δ1

− µ2

cσ2

M

m3δ2 −
(
µ
c
+ L

)
δ4. (14)

Finally, from the third and the sixth rows, we obtain
(
αλL+ β

λσ2

M

L

)
δ1 + (αm1 + βm2) δ2 + βλσMδ6

+
(
αλL+ αβ

σ2

m

κ

)
δ3 + (αλσM + βλσM ) δ4 (15)

+ (αλσM + βλσM ) δ5 ≤ (1− λ) δ3 − λ
(
δ1 +

σM

L
δ4
)
,

(αλσM + βλσM ) δ1 + (αm4 + βm5) δ2 + αλσMδ3

+
(
α

λσ2

M

L
+ βλL

)
δ4 +

(
α

λσ2

M

L
+ βλL

)
δ5 (16)

+
(
βλL+ αβ

σ2

m

κ

)
δ6 ≤ (1− λ) δ6 − λ

(
σM

L
δ1 + δ4

)
.

We note that (13)±(16) hold true for some feasible range of α
and β when their right hand sides are positive. Thus, we fix

the elements of δ (independent of stepsizes) as

δ1 = σM

L
, δ2 = 4l2 [1 + l3] , δ3 = λ

1−λ
2σM

L
,

δ4 = c−1
2(1+cκ) , δ5 = 2l3 [1 + 4l1l2 (1 + l3)] + 1,

δ6 = λ
1−λ

σ2
M

(
1
L2 + 1

σ2
m

)
,

where c > 2L2

σ2
m

+
2σ2

Mκ

σ2
m

+ 1 and

l1 := L
σM

+ σM

µ
, l2 := σML

dσ2
m
, l3 := 1

c−1 , d = 1
1+2l1l2l3

.
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It can be verified that for the above choice of δ, the right hand

sides of (13)±(16) are positive. Next we solve for the range

of α and β. It can be verified that (11) and (12) are satisfied

when α ≤ (1−λ)2

4λσM
,

β ≤ (1−λ)2

4λσ2

M

(
c−1
1+cκ

)(
σ2

mL

L2+σ2
m

)
and αβ ≤ κ(1−λ)

2σ2
m

.

Similarly, the relations (13) and (14) hold for

α ≤ κµ(c−1)
2cσ2

m
and β ≤ 1

4µ .

Finally, it can be verified that (15) and (16) hold when

α ≤ min
{

dσ2

m

384L3 ,
dσ2

m

384σ2

M
κL
, dµ

384σ3

M

, 1−λ
48Lδ5

, L(1−λ)
24σ2

M
δ5

}
,

β ≤ min
{

σ2

m(1−λ)2

192σ2

M
L
, L(1−λ)2

48σ2

M

, d
382κL ,

1
24Lδ5

}
,

and αβ ≤ min
{ (1−λ)κ

48σ2
m
, (1−λ)κL2

48σ4
m

}
. The lemma follows by

simplifying all the α and β bounds for some large enough c

with η =
(
1− αβ σ2

m

κ

)
.

The above lemma shows that the spectral radius of Mα,β is

less than or equal to a positive constant η < 1 for appropriate

stepsizes α and β. We emphasize that the proof of Lemma 2

does not follow the conventional strategies used in the litera-

ture on distributed optimization [57]±[59]. It requires careful

selection of η and evaluation of appropriate bounds on both

the stepsizes (α and β) to ensure convergence. Using the two

lemmas above, we are now in a position to prove Theorem 1.

It is noteworthy that Nα,β,k decays faster than Mα,β as it can

be verified that λ ≤ ρ(Mα,β). We now show that ∥uk∥ → 0
and prove Theorem 1.

1) Proof of Theorem 1: We first rewrite the LTI system

dynamics described in Lemma 1 recursively as

uk ≤Mk
α,βu

0 +
∑k−1

r=0 M
k−r−1
α,β Nα,β,ks

r. (17)

We now take the norm on both sides such that for some

positive constants ω1, ω2, ω3 and ω4, (17) can be written as

∥uk∥ ≤ ∥Mk
α,βu

0∥+∑k−1
r=0 ∥Mk−r−1

α,β Nα,β,ks
r∥

≤ ω1η
k + ω2η

k
∑k−1

r=0 ∥sr∥,

where ∥sr∥ ≤ ω3∥uk∥+ ω4∥x∗∥+ ω5∥y∗∥, with the help of

some arbitrary norm equivalence constants. It can be verified

that for a := ω4∥x∗∥+ ω5∥y∗∥,

∥uk∥ ≤
(
ω1 + ka+ ω2ω3

∑k−1
r=0 ∥ur∥

)
ηk.

Let bk :=
∑k−1

r=0 ∥ur∥, ck := (ω1 + ka)ηk and dk := ω2ω3η
k.

Then the above can be re-written as

∥uk∥ = bk+1 − bk ≤ (ω1 + ka+ ω2ω3bk) η
k,

⇐⇒ bk+1 ≤ (1 + dk)bk + ck.

For non-negative sequences {bk}, {ck} and {dk} related

as bk+1 ≤ (1 + dk)bk + ck, ∀k, such that
∑∞

k=0 ck <∞
and

∑∞

k=0 dk <∞, we have that the sequence {bk} converges

and is bounded [60]. Therefore, ∀ν ∈ (η, 1), we have

lim
k→∞

∥uk∥
νk
≤ lim

k→∞

(ω1 + ka+ ω2ω3bk) η
k

νk
= 0,

and there exists a ψ > 0, such that ∥uk∥ ≤ ψ(η + ξ)k for all k,

where ξ > 0 is an arbitrarily small constant. To achieve an ϵ-

accurate solution, we need

∥xk − 1n ⊗ x∗∥+ ∥yk − 1n ⊗ y∗∥ ≤ ϵ,
⇐= ∥uk∥ ≤ e−(1−(η+ξ))kθ ≤ ϵ,

and the theorem follows.

B. Convergence of GT-GDA-Lite

We now establish the convergence of GT-GDA-Lite under

the corresponding set of assumptions. It can be verified that

the LTI system for GT-GDA-Lite is similar to the one

described in Lemma 1 except that the non-zero elements

in Nα,β,k are replaced by ατ at the (2, 1) location and βτ at

the (1, 5) location (named as Ñα,β). In the following lemma,

we consider the convergence of GT-GDA-Lite under least

assumptions, i.e., when Pi’s are not necessarily identical.

1) Proof of Theorem 2: Consider GT-GDA-Lite under

Assumptions 1, 3, and 4. Given the stepsizes α ∈ (0, α]
and β ∈ (0, β], with α and β defined in Theorem 1, we have

uk ≤Mk
α,βu

0 +

k−1∑

r=0

Mk−r−1
α,β Ñα,βs

k. (18)

We have already established the fact that ρ(Mα,β) ≤ η < 1
(see Lemma 2). Therefore, the first term disappears exponen-

tially, and the asymptotic response is

lim sup
k→∞

uk ≤ (I6 −Mα,β)
−1Ñα,βs, (19)

where s :=
[
supk ∥xk∥, supk ∥yk∥, 0, 0, 0, 0

]⊤
. The exact size

of the error ball may be evaluated by calculating the

norm ∥(I6 −Mα,β)
−1Ñα,βs∥. It is noteworthy that the only

two nonzero terms in the vector Ñα,βs are controllable by the

stepsizes α or β and Theorem 2 follows.

Next, we provide the proof of Theorem 3, which assumes

that each node has the same coupling matrix, and establishes

convergence of GT-GDA-Lite.

2) Proof of Theorem 3: Consider GT-GDA-Lite under

Assumptions 1, 3, and 4, with identical Pi’s. It can be verified

that for stepsizes α ∈ (0, α], and β ∈ (0, β], the LTI system

described in (10) reduces to

uk+1 ≤Mα,βu
k, (20)

because τ = 0. The theorem thus follows since ρ(Mα,β) < 1
from Lemma 2.

C. GT-GDA-Lite for quadratic problems

We now consider GT-GDA-Lite for quadratic problems

where the coupling matrices are not necessarily identical at

each node. We show that GT-GDA-Lite converges to the

unique saddle point without needing consensus. We now define

the corresponding LTI system in the following lemma.

Lemma 3 (GT-GDA-Lite for quadratic problems). Con-

sider Problem P under Assumptions 2, 3, and 4 (with dif-

ferent Pi’s at the nodes). Then the LTI dynamics govern-

ing GT-GDA-Lite are defined by the following

ũk+1 = M̃α,βũ
k, (21)



10

where

ũ
k :=




x
k −W∞

1 x
k

x
k − x

∗

q
k −W∞

1 q
k

y
k −W∞

2 y
k

y
k − y

∗

w
k −W∞

2 w
k




,

and the system matrix M̃α,β is defined in Appendix B.

Lemma 3 provides an exact analysis of GT-GDA-Lite

for quadratic problems. The derivation of the above system

follows similar arguments as provided in Lemma 1 without

the use of norm inequalities; detailed analysis can be found in

the technical report [56].
Our aim now is to establish linear convergence of

GT-GDA-Lite to the exact saddle point. To proceed, we

set β = α, which makes M̃α,β as a function of α alone. Thus

we define M̃α := M̃α,β=α and M̃0 := M̃α=0 leading to

M̃0 :=




W 1 O O O O O

O Ipx O O O O

× O W 1 × O O

O O O W 2 O O

O O O O Ipy O

× O O × O W 2




,

where W 1 :=W1 −W∞
1 , W 2 :=W2 −W∞

2 , O are zero

matrices of appropriate dimensions, and ‘×’ are ªdon’t care

termsº that do not affect further analysis. Using Schur’s

Lemma for determinant of block matrices, we note that,

for the given structure of M̃0, the eigenvalues of M̃0

are the eigenvalues of the diagonal block matrices. Fur-

thermore, we know that ρ(W −W∞) < 1, which implies

that ρ(W 1) < 1 and ρ(W 2) < 1. Therefore, ρ(M̃0) = 1

and M̃0 has p := px + py semi-simple eigenvalues. We would

like to show that for sufficiently small positive stepsizes

and β = α, all eigenvalues of 1 decrease and thus the spectral

radius of M̃α,β becomes less than 1. It is noteworthy that

the analysis in the existing literature on distributed optimiza-

tion [46], [61] is limited to a simple eigenvalue and thus cannot

be directly extended to our case. We provide the following

lemma to establish the change in the semi-simple eigenvalues

with respect to α.

Lemma 4. [62] Consider an n× n matrix Mα which
depends smoothly on a real parameter α ≥ 0. Fix l ∈ [1, n]
and let λ1 = · · · = λl be a semi-simple eigenvalue of M0,
with (linearly independent) right eigenvectors y1, · · · ,yl and
(linearly independent) left eigenvectors z1, · · · , zl. Denote
by λi(α) the eigenvalues of Mα corresponding to λi, i ∈ [1, l],
as a function of α. Then the derivatives dλi(α)/dα exist,
and dλi(α)/dα|α=0 is given by the eigenvalues [λS ]i of the
following l × l matrix

S :=




z
⊤
1 M

′
y1 · · · z

⊤
1 M

′
yl

...
. . .

...

z
⊤
l M

′
y1 · · · z

⊤
l M

′
yl


 ,

where M ′ := dMα/dα|α=0. Furthermore, the eigenvalue

λi(α) under perturbation of the parameter α is given by

λi(α) = λi(0) + α[λS ]i + o(α), ∀i ∈ [1, l].

With the help of Lemma 4, we now prove Theorem 4.

1) Proof of Theorem 4: We note that M̃α := M̃0 + αM ′,

where M ′ := dM̃α/dα|α=0. Furthermore, the left eigenvec-

tors corresponding to p semi-simple eigenvalues are the rows

of the matrix U and the right eigenvectors are the columns of

the matrix V , as defined below:

U :=


 O Ipx

O O O O

O O O O Ipy
O


 and V := U⊤.

We would like to ensure that the semi-simple eigenvalues

of M̃0 are forced to move inside the unit circle as α
increases. Using Lemma 4, it can be established that the

derivatives dλi(α)/dα|α=0 exist for all i ∈ [1, p] and are the

eigenvalues [λS ]i of

S := UM ′V =


 −Q −P⊤

P −R


 .

Next we define ai := Re ([λS ]i) and bi := Im ([λS ]i),
∀i ∈ [1, p]. From Theorem 3.6 in [2], we know that −S is

positive stable if (Q+Q
⊤
) is positive definite and (R+R

⊤
)

is positive semi-definite, i.e., ∀i ∈ [1, p], ai < 0. Furthermore,

we know from Lemma 4 that

λi(α) = λi(0) + α[λS ]i + o(α), (22)

see Theorem 2.7 in [62] for details. For sufficiently small

stepsize α > 0, the term o(α) can be made arbitrarily small

as it contains higher order α terms. Therefore, we can re-

write (22) as

λi(α) = 1 + α[λS ]i = 1 + α(ai + jbi), ∀i ∈ [1, p].

Since the real parts of [λS ]i are ai < 0, the semi-simple

eigenvalues would move towards the direction of the secants

of the unit circle for any bi, see Fig. 8. We thus obtain

that ρ(M̃α) < 1 for sufficiently small stepsize α > 0 and

Theorem 4 follows.

Fig. 8. Tangent lines intersect a circle at a single point. Secant lines intersect
a circle at two points.
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VI. CONCLUSION

In this paper, we describe first-order methods to

solve distributed saddle point problems of the form:

minx maxy
{
G(x) + ⟨y, Px⟩ −H(y)

}
, which has many

practical applications. In particular, we assume that the

underlying data is distributed over a strongly connected

network of nodes such that G(x) := 1
n

∑n
i=1 gi(x),

H(y) := 1
n

∑n
i=1 hi(y), and P := 1

n

∑n
i=1 Pi, where the

constituent functions gi, hi, and local coupling matrices Pi

are private to each node i. Under appropriate assumptions,

we show that GT-GDA converges linearly to the unique

saddle point of strongly concave-convex problems. We further

provide explicit ϵ-complexities of the underlying algorithms

and characterize a regime in which the convergence

is network-independent. To reduce the communication

complexity of GT-GDA, we propose a lighter (communication-

efficient) version GT-GDA-Lite that does not require

consensus on local Pi’s and analyze GT-GDA-Lite

under various relevant scenarios. Finally, we illustrate the

convergence properties through numerical experiments.
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APPENDIX

A. System Matrix for GT-GDA

To completely describe lemma 1, for c > 2L2

σ2
m

+
2σ2

Mκ

σ2
m

+ 1,

we describe the system matrix as follows

Mα,β :=


 M11 M12

M21 M22


 ,

M11 :=




λ 0 αL

αL1 1− α
σ2

m

L2
0

λ+ αλL+ β
λσ2

M

L
αm1 + βm2 λ+ αλL


 ,

M12 :=




0 0 0

0 α 0

λ
L
+ αλ+ βλ αλ+ βλ βλ


σM ,

M21 :=




0 0 0

α
σML1

µ
αm3 0

λσM

L
+ αλσM + βλσM αm4 + βm5 αλσM


 ,

M22 :=




λ 0 βL

α
σ2

M

µ
+ βL2 1− βµ

(
1− 1

c

)
0

λ+ α
λσ2

M

L
+ βλL α

λσ2

M

L
+ βλL λ+ βλL


 ,

m1 := λm m2 := λ
σ2

M

L
(1 + κ) , m3 := mσM

µ
,

m4 := λmσM

L
, m5 := λσM (1 + κ) , m := L+

σ2

M

µ
.

B. System Matrix for GT-GDA-Lite: Quadratic case

Let p := px + py , and we define M̃α,β ∈ R
(2n+1)p×(2n+1)p as

M̃α,β :=


 M̃11 M̃12

M̃21 M̃22


 ,

M̃11 :=




W 1 0 −αW1

−α
(1⊤

n ⊗Ipx )ΛQ

n
Ipx − αQ 0

m̃1 m̃2 m̃3


 ,

M̃12 :=




0 0 0

−α
(1⊤

n ⊗Ipx )Λ
P⊤

n
−αP

⊤
0

m̃4 m̃5 m̃6


 ,

M̃21 :=




0 0 0

β
(1⊤

n ⊗Ipy )ΛP

n
βP 0

m1 m2 m3


 ,

M̃22 :=




W 0 βW2

−β
(1⊤

n ⊗Ipy )ΛR

n
Ipy − βR 0

m4 m5 m6


 ,

such that for any collection of matrices {M1,M2, · · · ,Mn},
we define ΛM := diag([M1,M2, · · · ,Mn]) as the block diag-

onal matrix where the i-th diagonal element is Mi. The rest

of the terms used in M̃α,β are defined below:

m̃1 =W 1 [ΛQ ((W1 − Inpx
)− αW∞

1 ΛQ) + βΛP⊤W∞
2 ΛP ] ,

m̃2 =W 1 [−αΛQW
∞
1 ΛQ + βΛP⊤W∞

2 ΛP ] (1n ⊗ Ipx
),

m̃4 =W 1

[
−αΛQW

∞
1 ΛP⊤ + ΛP⊤

(
(W2 − Inpy

)− βW∞
2 ΛR

)]
,

m̃5 =W 1 [−αΛQW
∞
1 ΛP⊤ − βΛP⊤W∞

2 ΛR] (1n ⊗ Ipy
),

m̃3 =
[
W 1 − αΛQW1

]
, m̃6 =W 1 [βΛP⊤W2] ,

m1 =W 2 [−βΛRW
∞
2 ΛP + ΛP ((W1 − Inpx

)− αW∞
1 ΛQ)] ,

m2 =W 2 [−βΛRW
∞
2 ΛP − αΛPW

∞
1 ΛQ] (1n ⊗ Ipx

),

m4 =W 2

[
−ΛR

(
(W2 − Inpy

)− βW∞
2 ΛR

)
− αΛPW

∞
1 ΛP⊤

]
,

m5 =W 2 [βΛRW
∞
2 ΛR − αΛPW

∞
1 ΛP⊤ ] (1n ⊗ Ipy

),

m3 =W 2 [−αΛPW1] , m6 =
[
W 2 − βΛRW2

]
.


