JID: SLAST [m5GeSdc;May 31, 2023;14:51]

SLAS Technology xxx (XXXX) XXX

Contents lists available at ScienceDirect

TECHNOLOGY

Translating

Life Sciences
Innovation

SLAS Technology

journal homepage: www.elsevier.com/locate/slast

Review

Recent advances of droplet-based microfluidics for engineering artificial
cells

Samantha Fasciano?, Shue Wang"*

a Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, USA
b Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, USA

ARTICLE INFO ABSTRACT

Keywords: Artificial cells, synthetic cells, or minimal cells are microengineered cell-like structures that mimic the biological
Artificial cell functions of cells. Artificial cells are typically biological or polymeric membranes where biologically active com-
Sy_mhetic_ C_eu ponents, including proteins, genes, and enzymes, are encapsulated. The goal of engineering artificial cells is to
rr]z;’i‘s”dlcs build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several
Vesicles applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It

is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques.
Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artifi-
cial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of
vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including
flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and
artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expres-
sion dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally,
the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells
are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices,

membrane interactions, and mechanobiology.

1. Introduction

A cell is the fundamental unit of life. There are two major classifica-
tions of cells, known as prokaryotes and eukaryotes. Eukaryotic cells
have a nucleus bound by a membrane, membrane-bound organelles,
and a cytoskeleton while prokaryotes do not have [1]. To understand
the biological components of cells and how a cell behaves in ideal and
non-ideal situations, it is essential to understand the fundamentals that
is related to disease and development. Cells are a vital component and
have been used in a wide variety of fields, including biology, biomedi-
cal, synthetic biology, cancer research, space health, and development
[2,3]. Cells are complex with dozens of processes occurring within one
cell at any given time. Cells are also recognized as the smartest factories
where biochemical reactions occur. With the development of modern
cell biology, there is an increasing interest in artificial cells that could
potentially substitute nature cells for basic cell biology research for the
establishment of artificial cell factory. Artificial cells provide a means of
simplifying cell studies and are produced to mimic natural cells in a sim-
plified and controlled manner. For successful biomimicry, artificial cells
must be encompassed by a cell membrane with any internal organelles

also being surrounded by a membrane. Artificial cell should also be able
to perform cell-cell communication and be able to use metabolites for
biological functions [4]. Compared to nature cells, the advantage of ar-
tificial cells is the ability to produce a high throughput of easily manipu-
lated cells. The shape and size of an artificial cell can be easily controlled
and can have any components present within the cells [5]. This allows
researchers to focus on one aspect of cellular function without unrelated
processes complicating the study.

There are several fabrication technologies that have been developed
to generate artificial cells for different studies [6-8]. Two mainstream
approaches to fabricate artificial cells are the top-down and bottom-up
methods. The top-down approach begins with an already existing cell
that is simplified by removing portions of the cell and reprogramming
the cell to perform certain functions [9]. The bottom-up approach be-
gins with fabricating a compartment similar to the membrane of a nat-
ural cell and introducing specific biomolecular components [10]. The
bottom-up approach has become the widely preferred method of the
fabrication of artificial cells. One method for fabricating an artificial
cell is through the use of phase transfer, in which the droplets produced
by droplet microfluidic methods are placed in an oil-water column. The
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first layer of the lipid bilayer forms around the droplet from the lipids
present in the oil phase. The second layer of the lipid bilayer forms
around the droplet as it moves toward the lower water phase [11]. An-
other approach for fabricating artificial cells is through hydration meth-
ods which rely on hydrating a dry, thin layer of lipids in order to produce
a vesicle. These methods produce giant unilamellar vesicles (GUVs) be-
cause they are large compartments that share similar properties to nat-
ural cells [12]. Two forms of hydration methods are electroformation
and gentle hydration. Of these two methods, electroformation has typ-
ically been preferred because it can easily be replicated and displays
greater efficiency, though studies have shown that introducing osmo-
sis to increase the repulsion between the thin membranes of lipids in
its production of GUVs may allow for gentle hydration to be a viable
means of producing GUVs to mimic natural cells [12]. Once these GUVs
are produced, electro-injection can then be used to insert desired mate-
rials, resulting in a simple artificial cell for analysis [13]. Thus, the de-
velopment of high-throughput, easily controllable, and manipulatable
approaches to fabricate robust artificial cells is of great significance.
While a variety of methods exist for fabricating vesicles and artificial
cells, droplet microfluidic-based methods have become prevalent due
to the great potential of generating easily controlled, high-throughput
artificial cells.

In recent years, microfluidic-based methods have become more
prevalent in synthesizing artificial cells, particularly droplet-based mi-
crofluidics. Droplet-based microfluidic techniques include active and
passive methods that produce droplets to be used for a variety of applica-
tions [14]. Active methods of droplet-based microfluidics include elec-
trowetting on dielectric and dielectrophoresis. Electrowetting on dielec-
tric consists of two plates with arrayed electrodes pressed against liquid
droplets and an electrode potential which leads to the ability to create,
cut, transport, and merge droplets [15,16]. Dielectrophoresis tends to be
used as a method of separating and sorting droplets [17]. On the other
hand, passive methods of droplet-based microfluidics consist of using de-
vices with differing geometries, including T-junction, flow-focusing, and
co-flowing, to produce droplets. T-junction devices consist of a channel
carrying oil and an inlet carrying an aqueous phase intersecting it at
a perpendicular angle, producing droplets [18]. Flow-focusing devices
are also based on the intersection of multiple channels. Co-flowing de-
vices consist of one chamber being encompassed by another chamber.
A chamber containing an aqueous solution is present within a cham-
ber containing oil and droplets are produced when the aqueous phase
comes into contact with the oil phase [19]. While the geometries of each
of the passive droplet-microfluidic techniques differ from one another,
each one of these devices brings together two immiscible fluids which
produce droplets when they come into contact. Many factors impact the
size and shape of the droplets produced, including the flow rate [20], the
interfacial tension [21], and the height and width of the channels [22].
The droplets produced by each of these approaches can then be used as
artificial cells. This is done through the production of a lipid membrane
and the insertion of the necessary materials to conduct functions critical
to cell life.

This review will first discuss the shapes and mechanisms of the pas-
sive droplet-based microfluidic techniques employed to create droplets,
vesicles, and artificial cells. Next, we will discuss the membranes and
components of artificial cells and how droplet microfluidics is used to
produce them. Finally, we will discuss further uses of artificial cells in
gene expression dynamics, membrane interactions, and mechanobiol-

ogy.

2. Microfluidic technologies for the fabrication of
droplets/vesicles/artificial cells

Droplet-based microfluidic devices are advantageous in biomedical
research as they can be used to easily produce a large number of droplets
of a controlled size, structure, and compartmentalization [23]. In the
generated droplets, the droplets are provided with additional protec-
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tion as well as a stable microenvironment; both of these features allow
for the cell to be easily tested and analyzed in comparison to using other
methods [24]. These microfluidic devices consist of channels that con-
tain two immiscible phases which do not mix with one another; one is a
continuous phase, while the other is a dispersed phase. Due to the ability
of microfluidics to manipulate fluids [25], the aqueous phase is encapsu-
lated and turned into hundreds and thousands of droplets of a uniform
size [26]. Currently, droplet-based microfluidic devices are most suc-
cessful in creating droplets of a spherical shape. However, other studies
are being performed to use microfluidics to produce droplets of different
shapes, such as a rod, which could mimic some types of bacteria [27].

Droplet-based microfluidic devices can be used in various biologi-
cal and chemical experimental studies, such as those that relate to drug
delivery, micro-reactors, and in point-of-care diagnostic chips [28]. Be-
yond these applications, droplet-based microfluidic devices have be-
come exceptionally useful in relation to synthetic biology. Fabricating
and studying artificial cells are one of the main applications [29], largely
because using these cells reduces labor and is less restrictive than using
natural cells. Artificial cells maintain both artificial and natural com-
ponents of cells and can mimic how typical cells function [30]. In or-
der for this mimicry to be successful, artificial cells must be able to
perform similar functions as natural cells. This includes the synthesis
of biomolecules, signaling within the cell and communication between
other cells, locomotion to take cells from one location to another, and
reproduction to form new cells, and other features [31]. Currently, some
of these features are demonstrated better than others in artificial cells.
It is also important that each artificial cell produced contains multiple
inner compartments that maintain the sizes, contents, and composition
similar to that of a natural cell [32].

2.1. T-junction

There are several different types of microfluidic devices that can be
used for droplet generation. One of these is the T-junction. In T-junction
devices, the width of both channels and the height can be altered in
order to manipulate the droplets produced depending on the needs of
the droplets [22]. This is considered to be the most popular type of
cross-flow droplet generation [24,33]. The layout of a T-junction con-
sists of two channels intersecting one another at a 90-degree angle [34],
Fig. 1A. These two inlets are injected with two separate fluids that are
immiscible with one another and each move solely in one direction. The
continuous phase travels through one inlet and consists of the carrier
fluid that the droplets will travel through. The dispersed phase travels
through a perpendicular inlet and consists of the fluid that will be bro-
ken up into droplets [33]. The droplets form at the intersection of the
two channels where the dispersed phase runs into the continuous phase
due to different factors like surface tension and shear force [35]. The
size of the droplets that a T-junction system can create is impacted by
factors including the velocity of the flow, the thickness of the fluid, and
the interfacial tension [31]. They are also impacted by the channels the
fluids that are flowing through, as well. The height and width of the
main channels can also determine the size of droplets [33]. Baxani et al.
developed bilayer networks within a hydrogel shell using a T-junction
microfluidic device [36], Fig. 1B.

2.2. Flow-focusing

Flow-focusing devices are another type of microfluidic device that
can be used for the fabrication of droplets. The layout of this type of
device differs slightly from the T-junction devices. Two immiscible lig-
uids are inserted into the device, Fig. 1C. An aqueous fluid flows through
one inlet while oil enters from above and below, resulting in the aqueous
solution being separated into droplets as it continues through the chan-
nel [37]. The dispersed phase travels down one inlet until it reaches
an intersection where it meets the continuous phase liquid that has en-
tered through two other inlets above and below the dispersed phase
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Fig. 1. (A) Different microfluidic drop maker geometries, T-junction, flow-focusing, and co-flowing. (B) Illustration of the double coaxial microfluidic concept
employed for the formation of droplet interface bilayers (DIB) and encapsulation of a droplet of oil containing DIBs. (C) Microscale double emulsions created using
a flow-focusing glass-capillary microfluidic device and schematic illustration of the flow-focusing region with liquid composition labeled. (D) Schematic illustration
of a co-flowing microfluidic device for generating double emulsions. Adapted from [34,36,38,39].

liquid [38]. The droplets are formed due to the shearing force between
the two materials [31], which, when symmetrical, form stable droplets.
The droplets are also formed due to the hydrodynamic focusing exerted
by the continuous phase [24]. The size of these droplets is influenced
by the angle created between the channels carrying the dispersed and
continuous phased as well as changing the flow rates of the continuous
phase [26]. This type of device can be used to form hydrogel droplets
of exceptionally small sizes [24].

2.3. Co-flowing

A third type of microfluidic device used to generate droplets is co-
flowing device. This type of device differs further from the other two
types previously discussed because the continuous and dispersed phases
do not intersect with one another. These devices operate by precisely
controlling the flow of two or more streams of fluids through microscale
channels, allowing for the generation of complex structures with high
spatial resolution [39]. In the context of artificial cell fabrication, co-
flowing microfluidic devices can be used to encapsulate genetic mate-
rial, proteins, and other biomolecules within a lipid bilayer membrane.
Dewandre et al. developed a co-flow focusing microfluidic device al-
lowing for the generation of droplets in an axisymmetric flow-focusing
using a 3D printed nozzle [40]. Kalantarifard et al. developed a univer-
sal approach for the generation of high monodispersity droplets using
flow-focusing and co-flowing microfluidic devices [41]. Ho et al. devel-
oped a co-flow glass microfluidic device to engineer artificial cells [39].

To summarize, all these three types of microfluidic devices are
widely utilized for fabrication of droplets. For the application of gen-
erating artificial cells, both flow-focusing and co-flowing microfluidic
devices offer advantages over T-junction microfluidic devices. Flow-
focusing devices can easily generate uniform artificial cells with pre-
cise size control, complex structures, and muticompartments, which are
difficult to produce with T-junction devices. Similarly, co-flowing de-
vices can encapsulate particles and other components within droplets,

i.e., triple-core W/O/W droplets [42]. Additionally, both flow-focusing
and co-flowing devices have the ability to encapsulate multiple com-
partements within a single droplet, which is essential to create artificial
cells with multiple organelles. In contrast, T-junction microfluidic de-
vices have limited ability to encapsulate complex components, making
them less suitable for creating artificial cells with membrane properties.

3. Fabrication of artificial cells

Artificial cells, also referred to as synthetic cells, minimum cells, or
protocells, are microengineered entities that mimic the functions and
features of biological cells by recapitulating cellular behaviors and prop-
erties. It has been reported that artificial cells can be utilized to in-
vestigate the properties of biological cells, cell dynamics, and funda-
mental biological processes [43], Fig. 2. Thus, it is essential to develop
high-throughput, easy manipulation, and size-controllable approaches
to fabricate artificial cells. Microfluidic devices for synthetic biology
can be categorized into two main types: channel-based and droplet-
based. Channel-based microfluidics enable long-term, real-time observa-
tion of cell behavior, making them useful for detecting subtle changes. In
contrast, droplet-based microfluidics can produce droplets with precise
size control and high throughput, making them well-suited for fabricat-
ing artificial cells. In this section, we will first discuss the fabrication
of artificial cells membranes using microfluidics. Next, we will discuss
the recent progress of droplet-based microfluidics for the fabrication of
droplet-based artificial cells.

3.1. Synthesizing artificial cell membranes by microfluidics

Eukaryotic cells contain a plasma membrane and membrane-bound
organelles, which perform functions for complex processes. In order for
artificial cells to successfully mimic natural cells, the artificial cells pro-
duced through microfluidic-based methods must be encompassed by a
membrane and contain multiple compartments. In naturally-occurring
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Fig. 2. Schematic illustration of a bottom-up
based artificial cell which contains some key
cellular components and features, including re-
sponsive membrane protein, cell-free expres-
sion of protein, non-biological ligands, and
molecular recognition modules. Redraw from
ref [43].
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cells, the membrane is unilamellar and exhibits asymmetry [44]. These
features allow for imperative cell functions such as cell-cell commu-
nication, the uptake of nutrients, and the removal of waste. Separate
compartments within the cell are necessary to allow for biological pro-
cesses to occur simultaneously in different regions [45]. Therefore, arti-
ficial cells must display the same characteristics. The synthetic mem-
brane is typically derived from an assembly of molecules, including
lipids, copolymers, and protein-polymer conjugates. Thus, the formed
membrane-enclosed entities are referred to as lipid vesicles, polymer-
somes, and proteoliposomes, respectively.

One lipid vesicle, or liposome, that acts as an artificial membrane
is a vesosome. A vesosome is a liposome that contains other liposomes
to act as subcompartments [46]. Droplet microfluidic methods have al-
lowed vesosomes to be a viable option for producing artificial cells with
membrane-enclosed inner compartments. Deng et al. produced single
liposome vesicles and used double or multiple emulsions to insert these
liposomes into a larger liposome, creating a vesosome. Multiple lipid
vesicles were successfully encompassed within another liposome, mim-
icking the organelles within a eukaryotic cell [47]. Polymersomes of
varying sizes have been produced using T-junction and double emul-
sions. Compartments have also been produced within other polymer-
somes to act as organelles in a natural cell [48]. Polymersomes have
not always been considered a preferred material for artificial cell mem-
branes due to a lack of stability and a thicker, less permeable membrane
than liposomes and do not allow for interactions with membrane-bound
proteins [49]. As these features do not closely correlate with the features
of natural cells, artificial cells based on polymersomes cannot mimic nat-
ural cells as accurately. However, Seo and Lee found that pluronic-based
polymersomes can be stable for up to one week and be semi-permeable
to allow smaller molecules to be transported across the membrane [50].

In artificial cells, both the number of compartments and the function
of each of the compartments can be controlled. To aid in communica-
tion within the cell, each compartment contains transmembrane pores
to allow materials to enter and exit [51]. These pores can be specific for
a desired function which reduces the complexity that would occur in a
natural cell. It remains a challenge to control the spatial organization of

’ membrane protein

the compartments within an artificial cell. Spatial organization in natu-
ral cells is a dynamic feature and changes over time in order to reflect
the needed functions of the compartments; however, it remains static
in artificial cells [52]. This feature could then be manipulated in order
to place membrane-bound compartments in optimal locations within an
artificial cell.

3.2. Synthesizing droplet-based artificial cells by microfluidics

Droplet microfluidic techniques have been revolutionary in the field
of synthetic biology by providing a means for fabricating a high-
throughput of artificial cells with a controllable size and membrane com-
position [43]. Droplet microfluidics can construct droplets using meth-
ods such as T-junction, flow-focusing, co-flowing, and double emulsions.
These microfluidic devices can often be produced using photolithogra-
phy. Other studies are determining other means of creating these de-
vices. Sasami and Sugenami have developed a way to use consumer-
grade laser cutters in their production of these devices to allow for a
simpler and more affordable means of construction [53]. By doing so,
the production of artificial cells is more accessible to a wider array of
researchers.

The droplets formed are then encapsulated by a membrane, ideally,
one that is made up of lipids, in order to mimic cells in nature. Stud-
ies have shown that both single and double emulsion techniques can be
used at the same time in order to first produce a monodisperse water
droplet and then produce a lipid vesicle [54]. A means of producing the
outer membrane of an artificial cell include water/oil/water (w/o/w)
double emulsions. In double emulsions, lipids have been dissolved in
the intermediate oil phase. When the oil phase is extracted, a vesicle
with a lipid bilayer remains [55]. Droplet-interface-bilayers (DIBs) are
bilayers formed between two droplets when surrounded by oil and have
been coupled with droplet microfluidics in order to produce a artificial
cell with a bilayer membrane. Droplet microfluidic techniques, such as
the use of one or more T-junctions, have been used to produce water-
in-oil droplets with a monolayer surrounding the droplet [56,57]. DIBs
are formed when two of these water-in-oil droplets make contact and
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combine to form one droplet with a bilayer membrane, mimicking a
natural cell [57]. Hu et al. successfully used droplet microfluidics to
produce giant unilamellar vesicles (GUVs) with an asymmetric lipid bi-
layer [58]. GUVs are spherical vesicles that range in size from 10-100
um, similar to the size of eukaryotic cells [58,59]. They have been used
as membranes for artificial cells. Additionally, droplet-stabilized giant
unilamellar vesicles have been produced using droplet microfluidics to
act as compartments within an artificial cell. By further stabilizing these
vesicles, biomolecules can be inserted into the compartments [59]. Eu-
karyotic cells contain a wide array of biomolecules. Typically, the in-
ternal compartments contain specific internal contents which is related
to the function of the organelle. Studies such as the one performed by
Lu et al. have used a method of droplet microfluidics that uses water
and either air or nitrogen rather than the typical immiscible aqueous
and oil phases [32]. In this study, each droplet became a capsule, the
size of which depended on the flow of the liquid and the pulsing fre-
quency of the gas. These droplets were resuspended in alginate and then
put through the same droplet microfluidic device so that a new cap-
sule formed around a designated number of the previously produced
droplets. The desired proteins, nucleic acids, and other materials in-
tended for an internal capsule need only be included in the alginate
to enter into specific compartments [32]. This study has allowed for a
means of controlling the number of internal contents within an artifi-
cial cell as well as the size of each compartment and the biomolecules
present within. By using this droplet microfluidic process, biomolecules
can be inserted into specific compartments in an artificial cell to mimic
that organelle’s functions in a natural cell.

In addition to the biomolecules within a compartment, the shape
of a cell is closely related to the function of the cell. Droplet microflu-
idic techniques have been able to successfully produce spherical arti-
ficial cells, partially due to the capillary action of the droplets [25].
However, many cells in nature, particularly bacteria, are not spherical.
Fanalista et al. produced droplets using double emulsions and deformed
the droplets into shapes like rods and discs [27]. Providing a means to
manipulate the artificial cells into different shapes allows for artificially
mimicking a variety of cells that are not exclusively spherical.

4. Applications of artificial cells

Artificial cells have a variety of potential applications in biotechnol-
ogy, medicine and drug delivery. Artificial cells can be valuable tools
for studying fundamental biological processes, such as membrane inter-
actions and cell signaling, and have the potential to lead to the devel-
opment of new therapies for diseases. In this section, we first discuss
the applications of artificial cells to study fundamental biological pro-
cesses, transcription and translation, and membrane interactions. Fol-
lowing, we discuss the application of artificial cells in understanding
mechanobiology.

4.1. Transcription and translation (TXTL)t

Transcription and translation are two imperative processes in cells.
Artificial cells used in cell-free transcription and translation (TXTL)
models have allowed for quick and rigorous genetic studies in a con-
trolled environment [60]. TXTL studies can be performed on an expan-
sive scale, particularly if a microfluidic chip is produced which allows
for thousands of TXTL reactions to occur within phospholipid mem-
branes [61]. By using artificial cells, it has been possible to examine
switches used to turn transcription on and off. Light is considered an
ideal molecular switch due to its non-toxic nature and has been stud-
ied in E. coli cell-free expression systems [62]. By using the YF1 fusion
protein and the FixJ regulator, a two-component system was produced
which can turn TXTL on and off in cells based on the presence or ab-
sence of blue light [62]. In addition to using artificial cells for studying
the effect of light on TXTL systems, artificial cells can also be produced
to respond to temperature changes in the cell. Artificial cells can be
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produced to contain temperature-sensitive non-coding RNA sequences
which will perform protein synthesis at specific temperatures [63]. This
is beneficial in studies of bacteria that rely on temperature sensitivity
as well as studies in humans to perform temperature-specific drug de-
livery. While cell-free TXTL systems have often been studied in rela-
tion to prokaryotes, particularly E. coli [64], recent studies have pro-
duced mammalian cell-free systems. A locked nucleic acid (LNA) probe
was produced and used to determine that protein synthesis dynamics
in a HeLa system differ in bulk reactions in comparison with cell-sized
single-emulsion droplets produced by droplet microfluidic techniques
[65], Fig. 3A. Similar studies have performed synthetic studies contain-
ing cell-free expression systems compartmentalized within lipid vesicles.
Despite being simpler than natural cells, these cells have still displayed
different protein synthesis dynamics with bulk cell-free expression, sug-
gesting that this is due to the semi-permeable nature of the lipid mem-
brane [66]. Together, these studies provide a human-based system that
can be combined with artificial cells to gain a greater understanding of
gene circuits.

4.2. Membrane interactions

A major function of natural cells is the interactions between mem-
branes. For example, in eukaryotic cells, collection migration is a pro-
cess of a cohort of cells versus single-cell locomotion. It is a combi-
nation of the exchange of mechanical cues and mechano-sensing. The
ability to sense and respond to chemical and mechanical cues relies on
the existence of membrane proteins in nature cells. Membrane proteins
are critical in signaling cascades for cell-cell and cell-environment in-
teractions. Advances in artificial cells have allowed for a greater un-
derstanding of cell-cell interaction. Membrane interactions are involved
in important biological events, including membrane protein insertion,
membrane fusion, and intercellular communication. Advances in mem-
brane protein reconstitution methods lead to significant progress in in-
tercellular communication among artificial cells [67-69]. Most artificial
cells are compartmentalized by phospholipid membranes, which allows
for their semi-permeability. For example, Katarzyna et al. engineered
gene-mediated communications between artificial cells by encapsulat-
ing the non-permeable molecule doxycycline (Dox) in one population
and a plasmid encoding firefly luciferase (fluc) under a Tet promoter
in the other population [70]. Moreover, Buddingh et al. engineered ar-
tificial cells that use adenosine monophosphate (AMP) as the sending
signaling molecule [71], Fig. 3C. It was also reported that the mem-
brane was used as part of the signaling cascade, where phospholipid
vesicles are sender cells and proteoliposomes ae receivers. These two
populations of cells communicate with each other while the sender cells
use glucose as a signaling molecule and the receiver cells process glu-
cose via glucose oxidase as a membrane component. In another work,
Yang et al. designed an artificial signaling transduction system that can
control the influx of environmental ions by triggering the activation
of synthetic transmembrane channels immobilized on giant membrane
vesicles (GMVs) [72]. In addition to compartmentalized artificial cells,
water-in-oil-based artificial cells also communicate with each other by
diffusing membrane-permeable molecules and pore-mediated propaga-
tion of signaling molecules. Booth et al. designed light-sensitive tissues
which were made of droplets-in-oil that communicate only in the pres-
ence of external light triggers [73], Fig. 3B. In another work, Strutt et al.
engineered artificial cells by inserting MscL in the droplet interface bi-
layer, where MscL opening is triggered by membrane tension due to
membrane asymmetry [74].

4.3. Mechanobiology

Mechanobiology is the study of how physical forces affect the dy-
namics and functions of cells during complex biological processes. In
nature, cells sense mechanical and other biophysical cues of their mi-
croenvironment, altering their morphology, migration, and differentia-
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adapted from ref [65,71,73,79].

tion. Engineering mechanosensitive artificial cells are essential to un-
derstand the fundamental mechanisms of signaling transduction. In the
last decade, engineered artificial cells have been mainly focused on sens-
ing chemical inputs or physiochemical properties of the membrane. Re-
cently, engineering mechanosensitive artificial cells have attracted re-
searchers’ interest. In principle, an engineered mechanosensitive artifi-
cial cell could sense and respond to mechanical cues, including shear,
tensile, or compression forces. Ho et al. demonstrated the develop-
ment of a microfluidic device to mechanically activate artificial cells
by demonstrating the influx of calcium ions as a response through thin-
ning of oil [75], Fig. 3D. It was the first demonstration that an artificial
cell integrated a mechanical input into a chemical output. Majumder
et al. reported a mechanosensitive artificial cell with the capability of
biosensing by expressing MscL using cell-free expression [10,76]. They
generated a DNA-programmed cell-sized artificial cell that can sense
osmotic pressure and external calcium concentration. The ability to in-
tegrate artificial cells with mechanosensitive functions to sense and re-
spond to external stimuli will open up the possibilities for rapid sens-
ing. Recently, Hindley et al. reported a nested vesicle-in-vesicle artifi-
cial cells that can respond to an external Ca%* stimulus by initiating a
mechanosensitive sSPLA2-M-MscL network, which can control calcein re-
lease from MscL into the main compartment of the artificial cells [77].
By utilizing protein communication through inner lipid membranes to
control Ca®* behavior of an artificial cell, they designed a multicompart-
ment, synthetic communicative pathway in artificial cells. Moreover,
the first synthetic mechanosensitive potassium channel was reported by
using a newly developed aromatic fluorinated amphiphilic cyclophane
[78]. This new ion channel has both stimuli responsiveness and selec-
tive ion transport abilities, which could open new doors for the future
engineering of mechanosensitive artificial cells.

5. Summary and outlook

Artificial cells, minimal cells, protocells, and other “cell-like” sys-
tems have greatly attracted researchers’ interest due to their ability
to mimic the key characteristics of living nature cells. Artificial cells
not only provide insights into the basic understanding of processes
in nature cells but also provide opportunities to develop smart, cell-
like materials. Moreover, it is also beginning to have a significant im-
pact in the field of bioscience as novel therapeutic agent. During the
last decade, droplet-based microfluidic approaches for synthesizing ar-
tificial cells have shown great potential for engineering such systems
with high precision and in a manner compatible with relevant biolog-
ical materials. Future development of artificial cells should focus on
mimicking life-like systems with an effective metabolism to sustain the
biomimetic processes within the compartment. Furthermore, compart-
mentalization should not only allow the replication of membrane com-
ponents or genetic information but also the functional units that execute
the biomimetic processes. Additionally, intercellular communication be-
tween artificial cells or between artificial and natural cells would open
up more opportunities for collective behavior inspired by multicellular
organisms. In addition, communication between artificial cells would
open up interesting avenues to collective behavior inspired by bacterial
colonies or multicellular organisms. Finally, this bottom-up-based fab-
rication of artificial cells will not only enhance our basic understanding
of physical and chemical processes in living systems but also provide
opportunities to study the principles of genetic evolution. Ultimately,
the study of artificial cells has the potential to unlock new insights into
the fundamental principles of life, as well as to enable the development
of novel therapies and technologies with broad implications for human
health.
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