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Microbial gene expression in Guaymas Basin subsurface
sediments responds to hydrothermal stress and energy
limitation
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Analyses of gene expression of subsurface bacteria and archaea provide insights into their physiological adaptations to in situ
subsurface conditions. We examined patterns of expressed genes in hydrothermally heated subseafloor sediments with distinct
geochemical and thermal regimes in Guaymas Basin, Gulf of California, Mexico. RNA recovery and cell counts declined with
sediment depth, however, we obtained metatranscriptomes from eight sites at depths spanning between 0.8 and 101.9 m below
seafloor. We describe the metabolic potential of sediment microorganisms, and discuss expressed genes involved in tRNA, mRNA,
and rRNA modifications that enable physiological flexibility of bacteria and archaea in the hydrothermal subsurface. Microbial taxa
in hydrothermally influenced settings like Guaymas Basin may particularly depend on these catalytic RNA functions since they
modulate the activity of cells under elevated temperatures and steep geochemical gradients. Expressed genes for DNA repair,
protein maintenance and circadian rhythm were also identified. The concerted interaction of many of these genes may be crucial
for microorganisms to survive and to thrive in the Guaymas Basin subsurface biosphere.
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INTRODUCTION
Our overall knowledge of the diversity and in situ putative
metabolisms of subsurface microorganisms in deep sea hydro-
thermal ecosystems derives to a large extent from culturing efforts
and DNA-based surveys of hydrothermal sediments (reviewed in
[1]). RNA-based investigations can inform on in situ activities of
microorganisms. For hydrothermal settings, these are limited to
metatranscriptome and cDNA marker gene studies of hydro-
thermal plume waters, vent chimneys, surficial microbial mats, and
their underlying sediments sampled by submersible push cores
(e.g., [2–6]), as well as RNA-based stable isotope probing
experiments of hydrothermal fluids [7, 8]. These studies revealed
expression of key genes involved in methane, sulfur, nitrogen and
hydrogen cycling, and expression of heat shock proteins and
proteases (e.g., [7]). Here we examine the total RNA pool from
deep subsurface sediments (≥0.8 and up to 101.9 meters below
sea floor; mbsf) that were drilled during International Ocean
Discovery Program (IODP) Expedition 385 in Guaymas Basin, Gulf
of California, Mexico, and we provide the first insights into gene
expression in the deep biosphere of this hydrothermally active
seafloor spreading center.
In the Guaymas Basin, basaltic intrusions and strong heat flow

permeate its thick (>500 m thick) organic-rich sediments that
derive from the productive overlying waters and from
terrigenous inputs. These intrusions and the heat flow produce

a spectrum of cold to hot seep sites, as well as hydrothermal hot
spots with distinct thermal profiles and microbial communities
in their surficial sediments (e.g., [9]). Pyrolysis of buried organic
carbon at depth produces a complex milieu of liquid and
dissolved petroleum hydrocarbons, including light hydrocar-
bons and methane, alkanes, and aromatic compounds, as well
as carboxylic acids, and ammonia [10, 11]. These compounds
are transported in hydrothermal fluids through Guaymas Basin
sediments, supporting diverse microbial communities ([12, 13])
that include methanogens, chemoautotrophs [14], and deeply-
branching archaeal lineages like Asgard archaea [15, 16].
During IODP 385, eight sites with distinct geological features

and biogeochemical and thermal profiles, were drilled into the
sedimented off-axis regions and axial trough of Guaymas Basin
(sites U1545-U1552; Fig. 1, Table 1, Supplementary Table 1 and
detailed in “Sample collection”). U1545 and U1546 are adjacent
sites located ~52 km northwest of the northern Guaymas Basin
axial trough. U1546 has a massive, thermally equilibrated sill
between 350 and 430 mbsf that disrupts the sedimentary strata,
and changes the physical properties and geochemical gradients
of the sediment [17]. Sites U1547 and U1548 are ~27 km
northwest of the axial trough, where a shallow, recently
emplaced hot sill creates steep thermal gradients and drives
hydrothermal circulation. Off-axis sites U1549 and U1552 are
methane cold seep sites that are driven by deeply buried old sill
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intrusions. Off-axis site U1550 is located within the northern
axial trough, and site U1551 in the southeastern Guaymas Basin
is most strongly influenced by terrigenous input from the
Sonoran Margin. We present messenger RNA (mRNA) evidence
for metabolic activities of subsurface microorganisms using
19 metatranscriptomes prepared from shallow (0.8–2.1mbsf),
intermediate (15.4-36.8 mbsf) and deeper depths (defined here
as the deepest depths from which we extracted sufficient RNA
for metatranscriptomics (74.2–101.9 mbsf), available only for
sites U1545B, U1546B and U1547B). A detailed description and
annotation of all transcripts discussed in this study can be found
in Supplementary Tables 2 and 3. We aimed to identify major
metabolic pathways used by active microbial groups, and to
determine whether survival and activity was dominated by
increasingly specialized microorganisms with increasing depth.
Additionally, we investigated whether survival and activity
depend on coordinated cellular responses that are widespread
among bacteria and archaea – namely posttranscriptional tRNA
and rRNA editing, mRNA degradation, DNA maintenance, and
protein homeostasis.

RESULTS
Cell counts and taxonomy of transcripts
RNA recovery from our subsurface samples was challenging and
declined with downcore depth, consistent with the overall ~1000-
fold decrease in cell counts detected between the seafloor and
~100 mbsf (Fig. 2). At the hot Ringvent sites (U1547 and U1548)
cell counts already decreased sharply from >108 to 106 cells cm-3

by the first ~60 mbsf (temperature up to ~56 oC). In contrast, a
more gradual decline in cell abundance was detected at
temperate sites where temperatures did not exceed 18oC between
0.8 and 60 mbsf (Fig. 2A). This trend supports the notion that in
situ temperature, rather than depth, shapes cell density in these
subsurface hydrothermal sediments (Fig. 2B). Putatively active taxa
based on metatranscriptome data include methanogens/metha-
notrophs (Methanophagales, Methanococcales, Methanosarci-
nales), bacterial lineages previously identified in deep subsurface
(Chloroflexota, Atribacteria, Planctomycetes, Aminicenantes), and
archaeal taxa associated with anoxic/sulfidic and moderately
thermophilic conditions (Lokiarchaea, Heimdallarchaeota, Thermo-
proteota, Bathyarchaeota) (Supplementary Table 2). DNA-based
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Fig. 1 Guaymas Basin overview. A Bathymetry of Guaymas Basin with IODP Expedition 385 drilling sites U1545 to U1552. Light green to deep
blue contour lines indicate the increasing water depth in meters. The inner figure shows the overall sampling location in Guaymas Basin; red
lines depict the transformation faults, and green lines show the oceanic spreading centers along the transformation faults in Guaymas Basin.
Drilling sites included two adjacent sedimented sites in the northwestern flanking regions, with (U1546) and without (U1545) a deep sill
intrusion at ~350-430 mbsf; two sites at the hydrothermally active Ringvent formation, where a shallow, recently emplaced hot sill creates
steep temperature gradients and drives hydrothermal circulation (sites U1547 and U1548); one site 3.2 km offset from a cold seep on the
northwestern flanking regions (U1549), and a cold seep site with a shallow hydrate area on the Sonora Margin (U1552). IODP 385 also drilled
the northern axial valley (U1550) and the southwestern franking region known to receive terrestrial sediment input (U1551). B Temperature
gradients in the Guaymas Basin subsurface (Source Data).

Table 1. Summary of location, water and drilling depths [52] of the IODP 385 sites.

Site Hole Latitude Longitude Water depth
(mbsl)

Total penetration
(mbsf)

Cored interval
(mbsf)

Core recovered
(mbsf)

SMTZ
(mbsf)

Start
(2019)

End
(2019)

U1545 B 27o38.2301’N 111o53.3295’W 1594.24 387.3 387.3 340.1 50–80 1-Oct 4-Oct

U1546 B 27o37.8840’N 111o52.7809’W 1585.58 333.8 333.8 351.2 80–100 7-Oct 9-Oct

U1547 B 27o30.4128’N 111o40.7341’W 1732.22 209.8 209.8 161.3 99 16-Oct 20-Oct

U1548 B 27o30.2540’N 111o40.8601’W 1738.94 95.1 95.1 87.7 76 21-Oct 22-Oct

U1549 B 27o28.3383’N 111o28.7927’W 1841.17 166.9 166.9 164.4 30 25-Oct 27-Oct

U1550 B 27o15.1704’N 111o30.4451’W 2001.21 174.2 174.2 160.8 10 28-Oct 30-Oct

U1551 B 27o12.3832’N 111o13.1841’W 1843.9 48.5 48.5 50 25 3-Nov 4-Nov

U1552 B 27o33.2885’N 111o32.9640’W 1841.09 55 55 40 10 9-Nov 10-Nov

mbsl meters below sea level, mbsf meters below seafloor, SMTZ sulfate-methane transition zone.
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long-read sequencing (~800 base pairs) of the archaeal 16S rRNA
gene confirms the presence of these archaeal taxa detected in the
metatranscriptomes (Supplementary Fig. 1).

Metabolic processes that dominate in the Guaymas
subsurface
In almost all samples, we find mRNA evidence for metabolic
processes plausible for the deep biosphere, including methane,
sulfur and nitrogen cycling, and chemoautotrophy (Fig. 3). We also
observe expressed genes involved in biosynthetic pathways that
produce cofactors that can support these metabolisms, and
expressed genes associated with microbial defense, motility and
chemotaxis that indicate an active subsurface community (Fig. 3).
The identified processes and metabolisms are most highly
expressed across our sites between 0.8 and 36.8 mbsf, before
relative expression drops to near-zero at depths ≥92 mbsf at the
northwestern off-axis sites, and at 74.2 mbsf in the hot Ringvent site
U1547B. Although all samples were processed identically, the cDNA
yield from sample U1546B at 16.2 mbsf was low, and sequencing
yielded the lowest recovery of reads, precluding any detailed
interpretation of data from that sample (Supplementary Table 4).
At the hot Ringvent sites U1547B and U1548B (>50 oC below 56

mbsf), key genes and co-factors that were associated with
methanogenesis using different substrates (e.g., CO2, acetate)
were abundantly expressed at shallow and intermediate depths
(Fig. 4). Methanogenesis-related genes were also expressed in
shallow sediments from cold seep sites (e.g., U1549B and U1552B;
0.8–1.5 mbsf ~3.5 oC), sites enriched in terrigenous organic inputs
(e.g., U1551B; 0.8 mbsf, 3.7 °C), and from shallow sediments of
U1546B (Fig. 4). The lowest relative expression levels of genes for
putative methanogenesis were detected in deeper samples, at
74.2 mbsf (~51 oC) in the hot Ringvent site U1547B, and at 92.1
mbsf (~25.6 oC) in the cooler site U1545B.

A wide range of expressed CO2 fixation pathways including
the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydro-
xybutyrate pathways, the reductive Krebs (rTCA) and dicarbox-
ylate/4-hydroxybutyrate cycles (DC/4HB), and the
3-hydroxypropionate bi-cycle, was detected between 0.8 and
36.8 mbsf at almost all examined sites (Fig. 4). Site U1545B
revealed relatively moderate gene expression for rTCA between
1.7 and 25.8 mbsf, and for WL at 25.8 mbsf (Fig. 4). At 92.1 mbsf
(25.6 oC) low expression of rTCA is observed, and expression of
DC/4HB (not observed at 1.7 and 25.8 mbsf) appears. At hot
Ringvent site U1547B, chemoautotrophy genes are almost
undetectable at 74.2 mbsf (51oC). Key genes involved in folate
metabolism, one-carbon pool from folate metabolism, and the
glycine cleavage system (that provides CO2, NH4 and -CH2-
groups; [18]) were co-expressed with genes associated with
methane cycling and chemoautotrophy at depths between 0.8-
36.8 mbsf at all sites (except U1545B; Figs. 3, 4). Folate-mediated
C1 metabolism produces methyl/methylene groups that support
microbial growth on C1 compounds (any reduction state from
CO2 to CH4; [19]).
Key genes involved in nitrogen cycling showed generally low

expression levels (Fig. 4). Co-expression of genes involved in
putatively complete denitrification (narG/H/I, napA/B, norB, nosZ)
was detected at the cold seep site U1549B at 1.5 mbsf.
Hydroxylamine reductase (hcp) and hydroxylamine dehydrogen-
ase (hao) genes involved in ammonia production, were moder-
ately expressed at shallow and intermediate depths of sites
U1549B and U1547B. We did not detect expressed genes for
nitrification (e.g., ammonia oxygenases, amo), consistent with
pervasive anoxia of Guaymas subsurface sediments. Relatively
abundant expression levels of urea and ornithine cycling were
detected in samples from almost all examined sites between 0.8
and 36.8 msbf.
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Fig. 2 Cell abundances for eight IODP385 drilling sites sampled for metatranscriptomic analysis. A Cell abundance data vs. depth. B Cell
abundance data vs. temperature.
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Expressed genes for sulfate assimilation, and dissimilatory
sulfate reduction to H2S were detected at shallow depths at all
sites, and at 15.4 and 36.8 mbsf at sites U1551B and U1547B,
respectively. Sulfate assimilation was also detected below 90 mbsf
at site U1546B, albeit at a relatively lower expression level (Fig. 4).
The overall expression of genes associated with dissimilatory
sulfate reduction was higher in shallow subsurface samples, where
sulfate is available at near-seawater concentrations (Supplemen-
tary Table 1).

Links between RNA editing and subsurface metabolisms
RNA editing is an essential process detected in prokaryotes and
eukaryotes that involves posttranscriptional modifications of tRNA,
mRNA and rRNA molecules. In prokaryotes has been described
using cultured bacterial and archaeal strains (see “Discussion”).
These posttranscriptional modifications regulate RNA plasticity

in cells and utilize methyl/methylene-groups that come from
folate-mediated C1 metabolism (tetrahydrofolate) [20]. Our
metatranscriptomes suggest active folate-mediated C1 metabo-
lism in the Guaymas subsurface (Figs. 3, 4), which prompted us to
manually search our BLASTx results for expressed RNA editing
genes that encode proteins and tailoring enzymes that have been
reported in the literature (Figs. 3, 6, Supplementary Table 2, and
“Methods”). RNA editing genes modulate mRNA translation (via
rRNA and tRNA editing) and mRNA degradation, which can both
enhance survival in the Guaymas Basin subsurface biosphere (see
“Discussion”). Expressed genes involved in mRNA degradation
were primarily expressed by archaeal linages affiliated with
Bathyarchaeota and the Asgard superphylum (Supplementary
Table 2 for detailed annotations). Evidence for active tRNA
modifications was also present at all examined depths in
metatranscriptomes. These modifications were affiliated with
various archaeal and bacterial linages previously reported in the
deep biosphere (Fig. 3, Supplementary Table 2). Transcripts

encoding a ribosomal silencing factor (rRNA modifications; Figs. 3,
6) were retrieved from shallow and intermediate depths at the hot
Ringvent site U1547B and were annotated primarily to Atribacteria
(Supplementary Table 2).
In archaea, the highly organized cellular process of mRNA

degradation is mediated by exosomes, which are conserved
protein machineries that share structural and functional simila-
rities with the exosomes found in eukaryotes [21] (Fig. 5). Manual
curation of the metatranscritptome data identified genes encod-
ing for the exosomal proteins Rpr41, Rpr42 and Csl4. These genes
were primarily expressed in shallow sediments (0.8–2.1 mbsf)
(Fig. 6), and were annotated to Lokiarchaeota, Bathyarchaeota,
and Heimdallarchaeota. Nonetheless, Rpr41, Rpr42, and Csl4
transcripts were retrieved also from deeper sediments at 33.3
and 36.8 mbsf (~32–33 oC) at hot Ringvent sites U1547B and
U1548B, and at the cool site U1551B (6.3 oC) at 15.4 mbsf.
Exosome-catalyzed mRNA degradation is also supported by the
expression of bathyarchaeotal ski2-type helicase that clamps
mRNA molecules to the exosomes, and by the expression of the
lokiarchaeotal mRNA-cleaving ribonuclease aCPSF1, which is a
transcription terminator that cleaves the 3’-end of the mRNA
[22, 23]. The ski2-type helicase and aCPSF1 ribonuclease genes are
co-expressed at shallow and intermediate depths at Ringvent sites
U1547B (2.1–36.8 mbsf; 14.2–31.8 oC), and in the shallow, cool
sediments of sites U1549B and U1550B (1.5–2 mbsf; ~3.5 oC)
(Fig. 6). Other ribonucleases (e.g., Y, R, Z, D, P, PH, II, III, HIII, Y, E/G,
MPR, VapC), and retrohoming endonucleases (degrade RNA and
reintegrate introns into DNA; [24] were expressed abundantly at
all Guaymas subsurface depths and sites, except from 74.2 mbsf at
U1547B (Fig. 6; Supplementary Table 2).
Archaeal exosomes have functional (but not structural) simila-

rities to the bacterial polynucleotide phosphorylase (PNPase) that
degrades mRNA in bacteria [25, 26]. Expression of PNPase was
observed in 13/19 metatranscriptomes (Fig. 6) indicating active
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mRNA degradation by subsurface bacterial lineages. PNPase
degrades mRNA and generates pools of ribonucleoside dipho-
sphates (NDPs) that can support transcription performed by RNA
polymerases (demonstrated under laboratory conditions; [27]).
Likewise, NDPs can be converted to deoxyribonucleoside dipho-
sphates (dNDPs) by ribonucleotide/ribonucleoside reductases [28]
with the potential to be used in DNA synthesis [29]. Transcripts
annotated to anaerobic, B12-dependent ribonucleotide and
ribonucleoside reductases were observed in 11/19 samples, and
in 10/11 samples there was co-expression with the PNPase (Fig. 6;
Supplementary Table 2).

DNA and protein maintenance, degradation and repair in the
Guaymas subsurface
Maintenance of DNA integrity and proteostasis are especially
important for subseafloor life where elevated in situ temperatures
increase the likelihood of DNA and protein damage (e.g., [30, 31]).
Indeed, during manual curation of our metatranscriptomes we
identified expressed genes related to DNA repair of single- and
double- strand breaks, nucleotide mismatches and incision/
excision nucleotide repairs, at all examined depths and sites
(Fig. 6). In addition, we identified expression of DNA editing genes
that initiate DNA repair upon disruptions in the genome caused by

viral DNA and bacterial plasmids (e.g., CRISPR/Cas9; [32]).
Alternative mechanisms for DNA repair associated with retro-
homing events, (e.g., group II introns; [33]) were present in 11/19
metatranscriptomes. Evidence for uptake of exogenous DNA, for
example expression of DNA competence proteins, was present at
shallow depths at 6/8 sites, except for sites U1545B and U1546B
(Fig. 6). DNA competence can occasionally enhance fitness
through introduction of beneficial genes into genomes, or
through DNA uptake as a nutrient when bacteria enter prolonged
stationary growth phase (e.g., [34]).
Expressed genes with functions in proteostasis included

transcripts of chaperons, chaperonins, cold shock proteins and
archeases (chaperons involved in archaeal tRNA processing; [35]),
and specialized archaeal heat shock chaperonins called thermo-
somes ([36]; Fig. 6, Supplementary Table 2). Thermosome
transcripts were relatively highly expressed at all sites and were
retrieved from all depths (Fig. 6). These archaeal genes were co-
expressed with bacterial chaperones, suggesting both archaea
and bacteria in the Guaymas subsurface invest in chaperone
mediated-protein transfer and repair. We also identified expressed
archaeal transcripts for specialized members of multiprotein
complexes, the von Willebrand type A protein domains (vWA),
which are known to promote cell adhesion and to repress cellular
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motility ([37, 38]; Fig. 6). Such responses would benefit subsurface
microorganisms that may need to adhere to localized hotspots of
buried organic material, for example decaying diatoms that are
infected with chytrid fungi [13]. Expression of proteases was high
in almost all samples; proteasome-related enzymes (protein
complexes that degrade unneeded or damaged proteins by
proteolysis) were relatively highly expressed in 10/19 metatran-
scriptomes (Fig. 6) and were annotated to diverse archaeal taxa
(Supplementary Table 2). These findings further support efficient
protein repair and recycling in the hydrothermally influenced
subsurface.

Persistence of circadian rhythms in the deep biosphere
Expressed transcripts encoding the archaeal circadian clock
protein KaiC (histidine kinase; [39]) were identified in shallow
subsurface samples (0.8–2.0 mbsf) at sites U1549B-U1552B (Fig. 3).
Circadian clocks allow bacteria and archaea to adapt to oscillating
environmental conditions, e.g., temperature and light [40]. In
archaea, circadian clocks evolved due to primordial selection
pressures (e.g., intense/mutagenic UV radiation) to ameliorate
DNA-damage (“escape from light hypothesis”; [41]), and in
modern archaea are suggested to regulate signal transduction
processes (e.g., organization of archaellum, regulation of buoyancy
using gas vesicles; [42]). Evidence of putative archaeal circadian
clocks in the Guaymas hydrothermal subsurface is intriguing;
nonetheless, the low expression levels of KaiC, and the detection
of KaiC transcripts only in shallow sediments may reflect an
evolutionary remnant whose possible effect on archaeal fitness
gradually disappears in the deep biosphere.

DISCUSSION
Overall, relative expression levels of genes for metabolic processes
and cellular activity in these Guaymas Basin samples are highest
between 0.8 and 36.8 mbsf at all examined sites, and generally

they drop to low (or near-zero) levels at depths ≥74.2 mbsf. This
general pattern demonstrates rapidly declining metabolic activity
of subsurface microorganisms with depth, an effect that mirrors
the exponential drop in cell abundance due to temperature
increase that is particularly steep at some sites (e.g., site U1547B;
Fig. 2, Supplementary Table 1 and Source Data). These trends are
consistent with declining 16S rRNA gene diversity for Archaea
(Supplementary Fig. 1), and with downcore decreasing prokaryotic
diversity based on general prokaryotic marker genes and on
metagenomes (Geller-McGrath et al. under review). Downcore
trends in metabolic activities may also be shaped by declining
availability of labile organic matter due to long-term hydrothermal
heating and increasing recalcitrance of buried organic compounds
[43].
The suite of metabolic strategies detected in the metatran-

scriptomes expands on the metabolic capacities predicted from
previous metagenomes for surficial Guaymas sediments (up to
60 cm below sea floor; [14, 15]) and from DNA microarray analyses
of shallow Guaymas subsurface sediments (up to 10 mbsf; [44]).
For example, expressed genes for nitrogen metabolism suggest
biosynthesis of ornithine and urea is occurring in most samples
(14/19; Fig. 4). This may indicate that nitrogen mineralization (e.g.,
ammonium production via urea) occurs at sites with different
thermal and biogeochemical regimes, and possibly contributes to
the elevated (up to 14mM) ammonium concentrations detected
at all examined sites (Supplementary Table 1). Nitrogen miner-
alization via urea was previously reported based on DNA
microarray analyses only for Guaymas cold seep sediments [44].
Co-expression of carbamate kinase and carbamoyl phosphate,
primarily at shallow depths where ornithine/urea biosynthesis
occurs (Fig. 4), may indicate assimilation of ammonium with CO2

or byproducts of acetogenesis (bicarbonates) into carbamyl
phosphate (CP). The energy-rich CP molecule provides the
carbamyl group for biosynthesis of nucleotides and ribonucleo-
tides used for DNA and RNA synthesis, respectively [45]. Thus, the
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recycling of metabolic byproducts (e.g., urea, bicarbonates, CO2) in
the Guaymas subsurface could be linked to DNA/RNA (nucleotide/
ribonucleotide) synthesis.

Selective aspects of RNA editing
RNA editing is a universal genome editing process that modifies
all three RNA molecules (mRNA, tRNA, rRNA) and was experimen-
tally suggested to provide adaptive advantages, and to enhance
fitness in microorganisms [46]. The importance of RNA editing is
evidenced by the fact that ~1% of bacterial genomes (estimate
from cultured bacterial isolates) is devoted to genes involved in
RNA modifications [47]. Our metatranscriptomes show that
Guaymas subsurface microorganisms invest in these RNA mod-
ifications to maintain RNA homeostasis (e.g., mRNA degradation),
or to reprogram RNA molecules (e.g., tRNAs) for efficient
translation. Given the diverse functions these genes serve, we
suggest that RNA editing and reprogramming activities identified
in our data may be especially important for survival and growth of
Guaymas subsurface microorganisms. As an example, near-surface
sediments in Guaymas Basin, where microbial burial and subsur-
face entrainment begins, are rich in energy and substrates but also
thermally and geochemically dynamic [48]. Dynamic environ-
ments usually demand rapid RNA editing and reprogramming for
reacting quickly under changing conditions, ensuring tight
translational control over cell activities [49].
The RNA modifications reported here have been described

mainly under laboratory conditions and have not been elucidated

in the ecological context of the deep biosphere. As an example,
expressed genes associated with tRNA thiolations are known to
control translational fidelity in bacterial and yeast isolates, and to
coordinate the availability of sulfur-containing amino acids when
nutrients become scarce [50]. Likewise, transcripts associated with
tRNA wobbling were experimentally shown to facilitate main-
tenance of cellular homeostasis under stationary-phase condi-
tions, and adaptation to nutrient limitation [51]. In our dataset,
relatively high expression levels of diverse tRNA modification
genes are detected at all sites between 0.8 and 36.8 mbsf. Over
the first 50 mbsf, temperatures can increase significantly from 14-
18oC (~2 mbsf) to 40-50oC at ~50 mbsf (especially at hot Ringvent
sites; Supplementary Table 1; Fig. 2, [52]). Steep biogeochemical
gradients are changing the sedimentary habitat; for example,
active dissimilatory sulfate reduction is depleting sulfate and
produces sulfide (Supplementary Table 1). Along these thermal
and biogeochemical gradients, tRNA editing could be especially
important for supporting survival by efficiently coordinating
housekeeping processes like translation, and amino acid avail-
ability as in situ conditions change. Similarly, transcripts annotated
to the ribosomal silencing factor can also increase chances of
survival under unfavorable conditions by provoking translational
arrest via ribosomal disassociation, under elevated temperatures
or energy limitation (e.g., [53]).
Overall, tRNA modifications and ribosomal silencing would be

beneficial responses to substrate and nutrient limitation and
temperature increase in Guaymas Basin. These modifications can
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facilitate the transition from more active microorganisms in
surficial and shallow/intermediate subsurface sediments (e.g.,
[13, 16], this study), to less active microorganisms in deeper
subsurface realms where sulfide concentrations and temperature
can increase drastically, and nutrients and energy sources likely
become limiting. Some taxa, less adapted to in situ subsurface
conditions, may need to pause their translation or slow their
growth when conditions become unfavorable. In fact, we observe
expression of these ribosomal silencing factor genes in greatest
abundance at Ringvent site U1547B at 36.8 mbsf where in situ
temperature reaches 31.8oC, and sulfide concentrations increase
1000-fold relative to shallow depths (Supplementary Table 1). In
sum, ribosomal silencing could be a “last minute escape button”
for subsurface microorganisms that must transition to a dormant
state for survival. The ability to efficiently modulate growth and
(temporarily) transition to a dormant state for survival, is likely one
factor that selects bacteria and archaea from surficial sediment
communities that can survive in the deep biosphere [54, 55].

mRNA degradation and nucleotide recycling
In the Guaymas subsurface cell counts drop drastically below 50
mbsf (Fig. 2) and with increasing temperature and depth, cells
may walk a fine line between utilizing strategies that salvage
critical nutrients to remain active, vs. entering stationary-phase,
long-term dormancy (e.g., spore formation), or cell death.
Prokaryotes orchestrate mRNA degradation in response to various
environmental cues including amino acid starvation, DNA damage
and heat shock [56]. Degraded mRNA products (NDPs) may be
salvaged and used as nutrients or as structural subunits in DNA
replication. Microbial consumption of nucleic acids (DNA) is
demonstrated to increase competitive fitness when cells enter
long-term stationary phase [57]. Experimental evidence indicates
that dNDPs support DNA synthesis if nutrients required for de
novo nucleotide synthesis are in short supply [29]. We observe
expression of genes for mRNA degradation performed by a suite
of enzymes annotated to archaea and bacteria primarily at
shallow/intermediate depths of sites U1547B-U1552B (0.8-36.8
mbsf). At Ringvent sites U1547B and U1548B we observe
increasing relative expression of genes for ribonucleotide/
ribonucleoside reductases with depth that can potentially convert
dNDPs to triphosphorylated substrates (dNTPs) (highest expres-
sion at 74.2 mbsf at U1547B; Fig. 6). Nucleotide synthesis by this
process would proceed at slower rates, due to the higher
activation energy of dNDPs compared to dNTPs [29]. Resulting
slow rates of DNA synthesis would be consistent with predicted
long doubling times of subsurface microorganisms, especially at
depths where energy is limited (e.g., [58, 59]). At hotter sites (e.g.,
Ringvent sites where temperatures can exceed 50oC) the energy
penalty of using dNDPs could be less prohibitive because high
temperature can lower the activation energy required for
thermostable DNA polymerases to utilize dNDPs over dNTPs
[29]. Overall, dNDP recycling can be energetically less costly than
de novo synthesis, and the most promising strategy for heat-
stressed cells that must conserve energy for other processes
including repair of damaged DNA and proteins.

Costs of RNA editing
The fractional cost (relative to the total cellular energy budget) of
maintaining transcription, translation and protein assembly in
non-dormant cells is estimated to be one to two orders of
magnitude higher compared to the cost of genome/DNA
maintenance [60]. Despite the putative energy barriers antici-
pated to exist in the deep biosphere (e.g., decreasing energy
fluxes with depth; [58]), we find evidence for microorganisms in
the Guaymas Basin subsurface, at least up to 101.9 mbsf, that
actively express a repertoire of RNA modifications that may
enhance survival. A portion of the energetic cost of these RNA
modifications could be paid for via fine-tuned recycling and

salvage of RNA. Certain RNA modifications that we report
(e.g., mRNA degradation, thiolation and wobbling of tRNAs), as
well as conserved chromatin (de)acetylases, primarily annotated
to Bathyarchaeota (e.g., Alba proteins linked with RNA metabo-
lism; [61]), are thought to be traceable to a last universal common
ancestor (LUCA) [62, 63]. These modifications are known to be
successful strategies for conserving energy by regulating carbon
and nitrogen homeostasis [64], helping cells to adapt to extreme
temperatures, and by controlling micronutrient (e.g., iron/
phosphate) acquisition (e.g., [65–67]). Aside from stress-related
adaptations, RNA editing can also confer immunity against viral
and bacterial attacks. It is suggested that tRNA modifications in
archaea provide immunity against archaeal viruses that use tRNA
genes as integration targets [68]. Viral activity in the deep
biosphere and in hydrothermal vent systems is known (e.g.,
[69–71]) and viral transcripts, which require future examination,
were recovered within our metatranscriptomes.

Archaeal signaling in the subsurface
Manually identified transcripts for chromosome segregation and
sporulation proteins (Figs. 3, 6; Supplementary Table 2) indicate
that the Guaymas subsurface hosts a mixed community of active
and dormant microorganisms. In non-photosynthetic prokaryotes
cell fate decisions associated with growth vs. sporulation and
oxidative stress responses (e.g., expression/translation of Fe-S
cluster rubredoxins and ferredoxins) are thought to be controlled
by timekeeping mechanisms like circadian clocks [42, 72–74]. We
observe that expressed archaeal rubredoxin and ferredoxin genes
(annotated primarily to Lokiarchaeota and Thermoplasmata),
signal recognition particles (associated with protein trafficking,
and annotated to Lokiarchaeota, Heimdallarchaeota, Bathyarch-
aeota, Thermoplasmata) and archaeal flagellin (annotated to
Thermoplasmatales) are often co-expressed with the archaeal
KaiC kinase (Figs. 3, 6; Supplementary Table 2). KaiC kinases are
suggested to regulate complex signaling networks involved in
motility and oxidative stress responses in archaea [42], and may
play similar roles in the shallow Guaymas subsurface (0.8–2.0
mbsf; U1549-U1552B). Considering the overall low expression of
KaiC in our metatranscriptomes, this hypothesis will require future
examination using genetic manipulation of cultured Guaymas
archaeal isolates. We also note that bacterial rubredoxins and
ferredoxins in our datasets (annotated primarily to Chloroflexi,
Atribacteria and Desulfobacterota) can also participate as electron
carriers in other processes aside from oxidative stress responses,
including n-alkane mineralization and iron reduction/sulfur
sequestration [75, 76]. These processes are likely relevant in the
Guaymas subsurface where abundant iron [77], n-alkanes
(Supplementary Table 5), and sulfur (Supplementary Table 1)
concentrations are found.

Range and limitations of protein maintenance
Incubations of sediments from the Nankai Trough subduction
zone (IODP370 > 200 mbsf heated to ~120 °C) with sulfur and
carbon radiotracers suggested that protein repair occurs at an
essential energetic cost that can be covered by rapid substrate
turnover [31]; however, no genomic or metatranscriptomic data
are available for those deep and extremely hot samples retrieved
from Nankai Trough. While our mRNA data were obtained from
sediments at maximum depths of 101.9 mbsf and temperatures
up to 51oC, within this range, active microorganisms also express a
suite of molecular chaperons at all examined sites, which help to
maintain and repair active proteins at the expense of ATP. The
relative expression of chaperons generally increased with depth,
particularly at the hot Ringvent sites, except for one Ringvent
sample at 74.2 mbsf (U1547B), where cell counts drop down to
~104 cells per cm-3 of sediment (Fig. 2). Actively dividing cells are
more prone to spontaneous protein misfolding and protein
aggregation compared to stationary cells where errors of folding
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may be rarer [78]. Although protein repair is energetically
demanding, prolonged accumulation of misfolded proteins
jeopardizes cellular homeostasis, which explains the evolutionary
retention of energetically expensive protein repair processes [78].
Overall, the cost of chaperone-mediated repair is significantly
lower than the cost of protein degradation and de novo
resynthesis [79], and this relative efficiency of repair can offset
some of the cost explaining the variety of different chaperons
identified in our samples (Supplementary Table 2).

CONCLUSION
Prokaryotic activity and gene expression in the Guaymas Basin
subsurface are not maintained by extremophiles that are
fundamentally different from other microorganisms. This study
on expressed genes by Guaymas subsurface microorganisms from
sites and depths with contrasting biogeochemistry and tempera-
ture profiles, indicates that some fraction of the subsurface
prokaryotic community is active, and that many/most of these
taxa must be efficient recyclers that struggle to survive and access
sufficient resources for their maintenance and growth. With
increased burial, these populations at any given time are likely
balancing the capacity for activity with inevitable periods of
dormancy or even death. Aside from the use of metabolic
strategies for obtaining carbon and energy, previously associated
with deep biosphere (e.g., chemoautotrophy, methane, and sulfur
cycling), survival in the Guaymas subsurface is also facilitated by
mechanisms that permit fine-tuning of cellular activities that
include RNA editing, ribosomal silencing, and protein homeostasis.
These processes collectively help diverse bacterial and archaeal
lineages to succeed/persist in this challenging habitat.

METHODS
Sample collection
International Ocean Discovery Program Expedition 385 (IODP 385) drilled
organic-rich sediments and intruded sills in the off-axis region, and the
northern axial graben of Guaymas Basin during a 90-days expedition
between September and November 2019 [52]. Among the major
objectives of IODP 385 was to examine the subsurface biosphere of
Guaymas Basin and investigate microbial responses and adaptations under
the different sill-driven hydrothermal conditions that occur in the broader
region of the Basin. Sill intrusions in Guaymas Basin extend tens of
kilometers off axis and provide transient heat that drives hydrothermal
circulation in the sediments of the basin, and mobilizes buried sedimentary
carbon [52]. The thermal and geochemical gradients that emerge from this
circulation shape the abundance, composition, and activity of the deep
subsurface biosphere of the basin.
IODP 385 drilled eight sites (U1545-U1552 thereafter referred as U1545B-

U1552B to indicate also the hole -B- devoted for microbiology samples)
with different thermal and geochemical regimes, and differences in the
depths and thickness of sill intrusions present in the sediments. The drilling
sites included (a) the adjacent sites U1545B and U1546B located ~52 km
northwest of the northern Guaymas Basin axial trough, (b) the
hydrothermal sites U1547B and U1548B ~ 27 km northwest of the axial
trough, (c) the two cold seep sites U1549B and U1552B found off-axis, (d)
site U1550B at the northern axial valley and (e) site U1551B ~ 29 km
southeast of the axial trough ([52]; Fig. 1, Table 1). Drilling sites U1545B and
U1546B recovered sediments from ~390 meters below seafloor (mbsf).
U1546B has a massive sill below ~350 mbsf that affects the surrounding
sediment; the temperature range at both U1546B and U1545B spanned
from cold-seafloor temperatures (~5 oC) to hot (~60 °C) subsurface
sediments (~240 mbsf) covering a thermal gradient suitable for growth
of psychrophilic mesophilic and thermophilic microorganisms. Sites
U1547B and U1548B (Ringvent sites; drilled down to ~210 mbsf) are sites
with active hydrothermal systems and thick sills at a shallow depth ( ~ 99
mbsf and below). The temperatures at Ringvent increase sharply below 8
mbsf ( ~ 17oC), reaching ~50oC at 74 mbsf and 96oC at 150 mbsf. Cold seep
site U1549B and site U1552B drilled near a methane hydrate area, are
located ~9.5 km and 20 km northwest of the northern axial trough of
Guaymas Basin, respectively. U1552 site is described to produce massive

amounts of gas hydrates [52]. Finally, site 1550B is documented to have
great hydrocarbon formation near the sill/sediment contact and site
U1551B to receive terrigenous inputs.
Sediment cores were collected using the drilling vessel JOIDES

Resolution. Holes were first advanced using advanced piston coring
(APC), then half-length APC, and then extended core barrel (XCB) coring as
necessary. Temperature measurements were made using the advanced
piston corer temperature (APCT-3) and Sediment Temperature 2 (SET2)
tools. After coring, downhole logging used the triple combination and
Formation MicroScanner sonic logging tool strings. After bringing core
sections onto the core receiving platform of the D/V JOIDES Resolution,
sampling for RNA occurred immediately after core retrieval on the core
receiving platform by sub-coring with a sterile, cutoff 50cc syringe into the
center of each freshly cut core section targeted. These sub-cores were
immediately frozen in liquid nitrogen and stored at –80 °C.
For DNA-based studies, whole round sections were immediately

transferred (within 30min) to the laboratory after placing them in gas-
tight sterile bags. Masks, gloves and laboratory coats were worn during
sample handling in the laboratory where core samples were transferred
from their gas-tight bags onto sterilized foil on the bench surface inside a
Table KOACH T 500-F system, which creates an ISO Class I clean air
environment (Koken Ltd., Japan). In addition, the bench surface was
targeted with a fanless ionizer (Winstat BF2MA, Shishido Electrostatic Co.,
Ltd., Japan) for neutralizing static charge on the surface of working
materials especially plasticware to avoid contamination by electrostatic
attraction. Within this clean space, the exterior 2 cm of each extruded
section was removed using a sterilized ceramic knife. The core interior was
transferred to sterile 50-mL Falcon tubes, labeled, and immediately frozen
at –80 °C for post cruise analyses.

RNA isolation, and metatranscriptome library preparation,
and analysis
RNA extraction and sequencing. Total RNA was extracted successfully from
19 sediment samples from sites U1545B-U1552B (Supplementary Table 1).
Before each RNA extraction, all samples including a blank sample (control),
were washed twice with absolute ethanol (200 proof; purity ≥ 99.5%;
Thermo Scientific Chemicals), and one time with DEPC water (Fisher
BioReagents) to remove hydrocarbons and other inhibitory elements
present in Guyamas sediments, that without these washes, resulted in low
or zero RNA yield. In brief, 13–15g of frozen sediments were transferred
into UV-sterilized 50ml Falcon tubes (RNAase/DNase free) using clean,
autoclaved and ethanol-washed metallic spatulas. Each tube received an
equal volume of absolute ethanol and was shaken manually for 2 min
followed by 30 s of vortexing at full speed to create a slurry. Samples were
transferred into an Eppendorf centrifuge (5810 R) and were centrifuged at
room temperature for 2 min at 2000 rpm. The supernatant was decanted,
and the ethanol wash was repeated. After decanting the supernatant of
the second ethanol wash, an equal volume of DEPC water was added into
each sample. Samples were manually shaken and vortexed as before to
create slurry, and were transferred into the Eppendorf centrifuge (5810 R)
where they were centrifuged at room temperature for 2 min at 2000 rpm.
The supernatant was decanted, and each sediment sample was
immediately divided into three bead-containing 15mL Falcon tubes,
provided by the PowerSoil Total RNA Isolation Kit (Qiagen). RNA was
extracted as suggested by the manufacturer with the modification that the
RNA extracted from the three aliquots was pooled into one RNA collection
column and eluted at 30 μl final volume. All RNA extractions were
performed in a UV-sterilized clean hood (two UV cycles of 15min each)
that was installed with HEPA filters. Surfaces inside the hood and pipettes
were thoroughly cleaned with RNase AWAY (Thermo Scientific) before
every RNA extraction and in between extraction steps. Trace DNA
contaminants were removed from RNA extracts using TURBO Dnase
(Thermo Fisher Scientific) and the manufacturer’s protocol. Removal of
DNA from the RNA extracts was confirmed with PCR reactions using the
bacterial primers BACT1369F/PROK1541R (F: 5ʹCGGTGAATACGTTCYCGG 3ʹ,
R: 5ʹAAGGAGGTGATCCRGCCGCA 3ʹ; [80]), targeting the small ribosomal
subunit (SSU) of 16S rRNA gene. Each 25 μl PCR reaction was prepared
using GoTaq G2 Flexi DNA Polymerase (Promega) and contained 0.5 U μl–1

GoTaq G2 Flexi DNA Polymerase, 1X Colorless GoTaq Flexi Buffer, 2.5 mM
MgCl2, (Promega) 0.4 mM dNTP Mix (Promega), 4 μM of each primer (final
concentrations), and DEPC water. These PCR amplifications were
performed in an Eppendorf Mastercycler Pro S Vapoprotect (Model 6321)
thermocycler with following conditions: 94 °C for 5 min, followed by 35
cycles of 94 °C (30 s), 55 °C (30 s), and 72 °C (45 s). The PCR reaction
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products were run in 2% agarose gels (Low-EEO/Multi-Purpose/Molecular
Biology Grade Fisher BioReagents) to confirm absence of DNA products.
RNA quantification (ng μl–1) was performed using Qubit RNA High
Sensitivity (HS), Broad Range (BR), and Extended Range (XR) Assay Kits,
(Invitrogen).
Amplified cDNAs from the DNA-free RNA extracts were prepared using

the Ovation RNA-Seq System V2 (Tecan) following manufacturer’s
suggestions. cDNAs were submitted to the Georgia Genomics and
Bioinformatics Core for library preparation and sequencing using NextSeq
500 PE 150 High Output (Illumina). The sequencing of the cDNA library
from the control sample was unsuccessful as it failed to generate any
sequences that met the length criterion of 300-400 base pairs.

Metatranscriptome data analyses. Raw sequencing reads were trimmed to
remove adapters and low-quality bases using fastp (v0.23.2) [81] with
parameters (-q 20 -u 20 -l 50 -w 16 -5 -M 30 -g -D --detect_adapter_for_pe
--dup_calc_accuracy 6). We used Trinity (v2.14.0) [82] to assemble the 19
metatranscriptomes with default settings. Trinity generated 640,136
assembled metatranscripts with size > 165 bp. We performed DIAMOND
(v.2.0.7) BLASTx [83] against NCBI-NR database (release date: 2022-12-04)
to provide functional and taxonomic annotations on the assembled
metatranscriptomes. Because the control sample failed to generate
sequences that met the minimum length criterion, the annotated
transcripts with e-values > 1e–5 were manually curated to remove possible
contaminants by creating an in-house database that contained putative
contaminant species (taxa identified as potential kit contaminants and
human pathogens; e.g., [84]). Taxa used in the in-house database are
provided in Supplementary Table 6. Transcripts with > 90% similarity to the
in-house database over >50% of contig length were removed for
downstream analyses. This process removed 8,301 transcripts (8,301/
640,136; ~1.2%). The remaining decontaminated assembled transcripts
were processed with Prodigal (v2.6.3; [85]) to predict gene and protein
sequences. CD-hit [86] (v. 4.8.1; -c 0.95 -aS 0.9 -n 10) was used to cluster
genes and to remove redundancy. For functional annotation, KofamScan
(v.1.3.0) [87] and GhostKOALA (v.2.2) [88] were used to assign orthologs
(KOs) to protein sequences using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. DIAMOND (v.2.0.7) BLASTp [83] (v2.0.15.153, -e
1e–5 --more-sensitive) was used to search against NCBI-NR database
(release date: 2022-12-04).
To gain a more detailed insight on the function and taxonomy of the

expressed genes, the decontaminated and non-redundant assembled
transcripts were re-run with DIAMOND BLASTx [83] (v2.0.15.153, -e 1e–5
--more-sensitive) against NCBI-NR database (release date: 2022-12-04). The
BLASTx results with e-values > 1e–5 were manually curated for expression
of genes involved in methane, nitrogen, sulfur and folate metabolisms,
carbon fixation, C1 from folate, glycine cleavage system, DNA maintenance
and repair, RNA modifications, proteostasis, proteolysis, arsenic detoxifica-
tion, cadmium and copper transport, tungsten-containing aldehyde
ferredoxin oxidoreductases, circadian rhythm, ferredoxins, rubredoxins,
signal recognition particle protein, archaeal flagellin, von Willebrand type A
domains, sporulation, Ni-Fe hydrogenases, haloacid reductive dehalo-
genases (see also Supplementary Table 2). We recognize that any
automated and manual pipeline that is used to assign gene function has
the caveat that publicly available databases may contain some protein
sequences that have not been functionally validated on the bench.
The expression level of each transcript was estimated in units of

transcripts per million (TPM) using Salmon (v1.9.0, --meta) [89]. The TPM
values of all transcripts annotated to same gene were summed and were
added to a value of 1 (to avoid zeros) and normalized using log2-
transformation. Metatranscriptome reads were deposited to the National
Center for Biotechnology Information Sequence Read Archive under
accession numbers SRR22580929-SRR22580947.

Archaeal 16S rRNA marker gene analyses
DNA was extracted from all 8 sites and at depths between 0.8 to 177.4
mbsf using a FastDNA SPIN Kit for Soil (MP Biomedicals) following the
manufacturer’s protocol. The DNA was PCR-amplified using the archaeal
primers Arch25F (5’TCYGKTTGATCCYGSCRG 3’; [90]) and Arch806R
(5’GGACTACVSGGGTATCTAAT 3’; [91]) targeting ~800 base pairs (bp)
between the V2-V4 regions of the archaeal 16SrRNA SSU. PCR amplifica-
tions were performed using the SpeedSTAR HS DNA Polymerase (TAKARA)
kit with the following modifications: each 25 μl PCR reaction contained up
to 1 ng of template DNA, 2X Fast Buffer I, 2.5 mM dNTP mixture, 5 units of
SpeedSTAR HS DNA Polymerase, 10 mM of each primer and DEPC water

(Fisher BioReagents). The PCR amplifications were performed in an
Eppendorf Mastercycler Pro S Vapoprotect (Model 6321) thermocycler
with the following conditions: 95 °C for 5 min, followed by 30 cycles of
94 °C (30 s), 55 °C (30 s), 72 °C (45 s). The total volume of PCR reactions was
run in 2% agarose gel (Low-EEO/Multi-Purpose/Molecular Biology Grade
Fisher BioReagents) and the correct size PCR products (~800 bp), were
isolated and recovered from the gel using the Zymoclean Gel DNA
Recovery Kit as instructed by the manufacturer. Libraries for DNA PacBio
sequencing (long-read sequencing) were prepared from the recovered and
gel purified DNA extracts at the University of Delaware DNA Sequencing &
Genotyping Center.
The generated PacBio sequences were analyzed using QIIME2 (v.2022.8)

[92] pipeline for single-end generated sequences. Dada2 denoise-ccs
plugin provided in the QIIME2 pipeline was used to denoise, dereplicate
and filter out chimera reads. Taxonomy was assigned to amplicon
sequence variants (ASVs) using the scikit-learn multinomial naïve Bayes
classifier (q2-feature-classifier plugin; [93]) with the SILVA database (v138.1)
as reference database [94]. PacBio reads were deposited to the National
Center for Biotechnology Information Sequence Read Archive under access
numbers SRR23604162-SRR23604206.

Cell counts
The sediment sampling for cell counts occurred immediately after core
retrieval on the core receiving platform by sub-coring with a sterile, tip-cut
2.5 cc syringe from the center of each freshly cut core section.
Approximately 2 cm3 sub-cores were immediately put into tubes contain-
ing fixation solution consisting of 8 mL of 3xPBS (Gibco PBS, pH 7.4,
Fischer) and 5% (v/v) neutralized formalin (Thermo Scientific Shandon
Formal-Fixx Neutral Buffered Formalin). If necessary, the mixture was
stored at 4 °C.
Fixed cells were separated from the slurry using ultrasonication and

density gradient centrifugation [95]. For cell detachment, a 1 ml aliquot of
the formalin-fixed sediment slurry was amended with 1.4 ml of 2.5% NaCl,
300 μl of pure methanol, and 300 μl of detergent mix ([96]; 100mM
ethylenediamine tetraacetic acid [EDTA], 100 mM sodium pyrophosphate,
1% [v/v] Tween-80). The mixture was thoroughly shaken for 60min (Shake
Master, Bio Medical Science, Japan), and subsequently sonicated at 160W
for 30 s for 10 cycles (Bioruptor UCD-250HSA; Cosmo Bio, Japan). The
detached cells were recovered by centrifugation based on the density
difference of microbial cells and sediment particles, which allows collection
of microbial cells in a low-density layer. The sample was transferred onto a
set of four density layers composed of 30% Nycodenz (1.15 g cm–3), 50%
Nycodenz (1.25 g cm-3), 80% Nycodenz (1.42 g cm-3), and 67% sodium
polytungstate (2.08 g cm–3). Cells and sediment particles were separated
by centrifugation at 10,000 × g for 1 h at 25 °C. The light density layer was
collected using a 20 G needle syringe. The heavy fraction, including
precipitated sediment particles, was resuspended with 5mL of 2.5% NaCl,
and centrifuged at 5000 × g for 15 min at 25 °C. The supernatant was
combined with the previously recovered light density fraction. With the
remaining sediment pellet, the density separation was repeated. The
sediment was resuspended using 2.1 ml of 2.5% NaCl, 300 μl of methanol,
and 300 μl of detergent mix and shaken at 500 rpm for 60min at 25 °C,
before the slurry sample was transferred into a fresh centrifugation tube
where it was layered onto another density gradient and separated by
centrifugation just as before. The light density layer was collected using a
20 G needle syringe, and combined with the previously collected light
density fraction and supernatant to form a single suspension for cell
counting.
For cell enumeration, a 50%-aliquot of the collected cell suspension was

passed through a 0.22-μm polycarbonate membrane filter. Cells on the
membrane filter were treated with SYBR Green I nucleic acid staining
solution (1/40 of the stock concentration of SYBR Green I diluted in Tris-
EDTA [TE] buffer). The number of SYBR Green I– stained cells were
enumerated either by a direct microscopic count [97] or an image-based
discriminative count [98]. For image-based discriminative counting, the
Count Nuclei function of the MetaMorph software (Molecular Devices) was
used to detect and enumerate microbial cells.

DATA AVAILABILITY
The raw metatranscriptome sequencing data in this study have been deposited in
the National Center for Biotechnology Information Sequence Read Archive under the
accession numbers SRR22580929-SRR22580947. PacBio reads were deposited to the
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National Center for Biotechnology Information Sequence Read Archive under access
numbers SRR23604162-SRR23604206.

CODE AVAILABILITY
The custom R scripts used in this study are publicly available at Zenodo (https://
doi.org/10.5281/zenodo.7710615) [99].
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