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Abstract—We consider the Sherrington-Kirkpatrick
model of spin glasses at high-temperature and no external
field, and study the problem of sampling from the Gibbs
distribution µ in polynomial time. We prove that, for any
inverse temperature β < 1/2, there exists an algorithm
with complexity O(n2) that samples from a distribution
µalg which is close in normalized Wasserstein distance to µ.
Namely, there exists a coupling of µ and µalg such that if
(x,xalg) ∈ {−1,+1}n × {−1,+1}n is a pair drawn from
this coupling, then n−1 E{‖x − xalg‖22} = on(1). The best
previous results, by Bauerschmidt and Bodineau [BB19]
and by Eldan, Koehler, Zeitouni [EKZ21], implied efficient
algorithms to approximately sample (under a stronger
metric) for β < 1/4.

We complement this result with a negative one, by
introducing a suitable “stability” property for sampling
algorithms, which is verified by many standard techniques.
We prove that no stable algorithm can approximately
sample for β > 1, even under the normalized Wasserstein
metric. Our sampling method is based on an algorithmic
implementation of stochastic localization, which progres-
sively tilts the measure µ towards a single configuration,
together with an approximate message passing algorithm
that is used to approximate the mean of the tilted measure.

I. INTRODUCTION

The Sherrington-Kirkpatrick (SK) Gibbs measure is the
probability distribution on ΣN = {−1,+1}N given by

µA(x) =
1

Z(β,A)
exp

{β

2
〈x,Ax〉

}
, (I.1)
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where β ≥ 0 is an inverse temperature parameter and
A ∼ GOE(N); i.e., A is symmetric. This means that
Aij ∼ N (0, 1/N) are i.i.d. for 1 ≤ i ≤ j ≤ N , and the
diagonal entries Aii ∼ N (0, 2/N) are i.i.d. for 1 ≤ i ≤
N . The parameter β is fixed and often suppressed.

In this paper, we consider the problem of efficiently
sampling from the measure (I.1). Namely, we seek
a randomized algorithm that accepts as input A and
generates xalg ∼ µalg

A, such that: (i) the algorithm runs
in polynomial time for any A; (ii) the distribution µalg

A
is close to µA for typical realizations of A. Given
a bounded distance dist(µ, ν) between probability dis-
tributions µ, ν, this can be formalized by requiring
E[dist(µA, µalg

A)] = oN (1).

Gibbs sampling (also known in this context as Glauber
dynamics) provides an algorithm to approximately sam-
ple from µA. However, standard techniques to bound
its mixing time (e.g., Dobrushin condition [AH87]) only
imply polynomial mixing for a vanishing interval of
temperatures β = O(N−1/2). By contrast, physicists
[SZ81], [MPV87] predict fast convergence to equilib-
rium (at least for certain observables) for all β < 1.

Significant progress on this question was achieved
only recently. In [BB19], Bauerschmidt and Bodineau
showed that, for β < 1/4, the measure µA can be
decomposed into a log-concave mixture of product mea-
sures. They use this decomposition to prove that µA

satisfies a log-Sobolev inequality, although not for the
Dirichlet form of Glauber dynamics.1 [EKZ21] prove

1Their result immediately suggests a sampling algorithm: sample
from the log-concave mixture using Langevin dynamics, and then from
the corresponding component using the product formula.
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that, in the same region β < 1/4, µA satisfies a Poincaré
inequality for the Dirichlet form of Glauber dynamics.
Hence Glauber dynamics mixes in O(N2) spin flips in
total variation distance. This mixing time estimate was
improved to O(N logN) by [AJK+21] using a modified
log Sobolev inequality, see also [CE22, Corollary 51].
The aforementioned results apply deterministically to
any matrix A satisfying β(λmax(A)−λmin(A)) ≤ 1−ε
(for constant ε > 0).

For spherical spin glasses, it is shown in [GJ19] that
Langevin dynamics have a polynomial spectral gap at
high temperature. Meanwhile [BAJ18] proves that at
sufficiently low temperature and under an overlap gap
condition, the mixing times of Glauber and Langevin
dynamics are exponentially large in Ising and spherical
spin glasses, respectively.

In this paper we develop a different approach which
is not based on a Monte Carlo Markov Chain strategy.
We build on the well known remark that approximate
sampling can be reduced to approximate computation
of expectations of the measure µA, and of a family of
measures obtained from µA. One well known method
to achieve this reduction is via sequential sampling
[JVV86], [CDHL05], [BD11]. A sequential sampling
approach to µA would proceed as follows. Order the
variables x1, . . . , xN ∈ {−1,+1} arbitrarily. At step
i compute the marginal distribution of xi, conditional
to x1, . . . , xi−1 taking the previously chosen values:
p(i)s := µA(xi = s|x1, . . . , xi−1), s ∈ {−1,+1}. Fix
xi = +1 with probability p(i)+1 and xi = −1 with
probability p(i)−1.

We follow a different route, which is similar in spirit,
but that we find more convenient technically, and of
potential practical interest. Our approach is motivated
by the stochastic localization process [Eld20]. Given any
probability measure µ on RN with finite second moment,
positive time t > 0, and vector y ∈ RN , define the tilted
measure

µy,t(dx) :=
1

Z(y)
e〈y,x〉−

t
2‖x‖

2
2 µ(dx) , (I.2)

and let its mean vector be

m(y, t) :=

∫

RN

xµy,t(dx) . (I.3)

Consider the stochastic differential equation2 (SDE)

dy(t) = m(y(t), t)dt+ dB(t), y(0) = 0 , (I.4)

2If µ is has finite variance, then y → m(y, t) is Lipschitz and so
this SDE is well posed with unique strong solution.

where (B(t))t≥0 is a standard Brownian motion in RN .
Then, the measure-valued process (µy(t),t)t≥0 is a mar-
tingale and (almost surely) µy(t),t ⇒ δx! as t → ∞, for
some random x! (i.e. the measure localizes). As a conse-
quence of the martingale property, E[

∫
ϕ(x)µy(t),t(dx)]

is a constant for any bounded continuous function ϕ,
whence E[ϕ(x!)] =

∫
ϕ(x)µ(dx). In other words, x! is

a sample from µ. For further information on this process,
we refer to Section III.

In order to use this process as an algorithm to sample
from the SK measure µ = µA, we need to overcome
two problems:

• Discretization. We need to discretize the SDE (I.4)
in time, and still guarantee that the discretization
closely tracks the original process. This is of course
possible only if the map y +→ m(y, t) is sufficiently
regular.

• Mean computation. We need to be able to com-
pute the mean vector m(y, t) efficiently. To this
end, we use an approximate message passing
(AMP) algorithm for which we can leverage ear-
lier work [DAM17] to establish that ‖m(y) −
m̂AMP(y)‖22/N = oN (1) along the algorithm tra-
jectory. (Note that the SK measure is supported on
vectors with ‖x‖22 = N , and hence the quadratic
component of the tilt in Eq. (I.2) drops out. We will
therefore write m(y) or m(A,y) instead m(y, t)
for the mean of the Gibbs measure.)

To our knowledge, ours is the first algorithmic imple-
mentation of the stochastic localization process, although
a recent paper by Nam, Sly and Zhang [NSZ22] uses
this process (without naming it as such) to show that
the Ising measure on the infinite regular tree is a factor
of IID process up to a constant factor away from
the Kesten–Stigum, or “reconstruction”, threshold. Their
construction can easily be transformed into a sampling
algorithm.

In order to state our results, we define the normalized
2-Wasserstein distance between two probability mea-
sures µ, ν on RN with finite second moments as

W2,N (µ, ν)2 = inf
π∈C(µ,ν)

1

N
Eπ

[∥∥X − Y
∥∥2

2

]
, (I.5)

where the infimum is over all couplings (X,Y ) ∼ π
with marginals X ∼ µ and Y ∼ ν.

In this paper, we establish two main results.

Sampling algorithm for β < 1/2. We prove that the
strategy outlined above yields an algorithm with
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complexity O(N2), which samples from a distri-
bution µalg

A with W2,N (µalg
A, µA) = oN,P(1).

Hardness for stable algorithms, for β > 1. We prove
that no algorithm satisfying a certain stability prop-
erty can sample from the SK measure (under the
same criterion W2,N (µalg

A, µA) = oN,P(1)) for β >
1, i.e., when replica symmetry is broken. Roughly
speaking, stability formalizes the notion that the
algorithm output behaves continuously with respect
to A.

It is worth pointing out that we expect our algorithm to
be successful (in the sense described above) for all β < 1
and that closing the gap between β = 1/2 and β = 1
should be within reach of existing techniques, at the price
of a longer technical argument. We expound on this point
in Remark II.1 further below, and in Section VI.

The hardness results for β > 1 are proven using
the notion of disorder chaos, in a similar spirit to
the use of the overlap gap property for random opti-
mization, estimation, and constraint satisfaction prob-
lems [GS14], [RV17], [GS17], [CGPR19], [GJW20],
[Wei22], [GK21], [BH21], [HS21]. While the overlap
gap property has been used to rule out stable algorithms
for this class of problems, and variants have been used
to rule out efficient sampling by specific Markov chain
algorithms, to the best of our knowledge we are the first
to rule out stable sampling algorithms using these ideas.
In sampling there is no hidden solution or set of solutions
to be found, and therefore no notion of an overlap gap
in the most natural sense. Instead, we argue directly
that the distribution to be sampled from is unstable in
a W2,N sense at low temperature, and hence cannot be
approximated by any stable algorithm.

II. MAIN RESULTS

A. Sampling algorithm for β < 1/2

In this section we describe the sampling algorithm,
and formally state the result of our analysis. As pointed
out in the introduction, a main component is the com-
putation of the mean of the tilted SK measure:

µA,y(x) =
exp

(
β
2 〈x,Ax〉+ 〈y,x〉

)

Z(A,y)
(II.1)

x ∈ {−1,+1}N .

We describe the algorithm to approximate this mean in
Section II-A1, the overall sampling procedure (which
uses this estimator as a subroutine) in Section II-A2, and
our Wasserstein-distance guarantee in Section II-A3.

Algorithm 1: MEAN OF THE TILTED GIBBS
MEASURE

Input: Data A ∈ RN×N , y ∈ RN , parameters
β, η > 0, q ∈ (0, 1), iteration numbers
KAMP, KNGD.

1 m̂−1 = z0 = 0,
2 for k = 0, · · · ,KAMP − 1 do
3 m̂k = tanh(zk), bk =

β2

N

∑N
i=1

(
1− tanh2(zki )

)
,

4 zk+1 = βAm̂k + y − bkm̂
k−1 ,

5 u0 = zKAMP ,
6 for k = 0, · · · ,KNGD − 1 do
7 uk+1 = uk − η ·∇FTAP(m̂

+,k;y, q),
8 m̂+,k+1 = tanh(uk+1),

9 return m̂+,KNGD

1) Approximating the mean of the Gibbs measure: We
will denote our approximation of the mean of the Gibbs
measure µA,y by m̂(A,y), while the actual mean will
be m(A,y).

The algorithm to compute m̂(A,y) is given in Algo-
rithm 1, and is composed of two phases:

1) An Approximate Message Passing (AMP) algo-
rithm is run for KAMP iterations and constructs a first
estimate of the mean. We denote by AMP(A,y; k)
the estimate produced after k AMP iterations

AMP(A,y; k) := m̂k . (II.2)

2) Natural gradient descent (NGD) is run for KNGD iter-
ations with initialization given by vector computed
at the end of the first phase. This phase attempts
to minimize the following version of the TAP free
energy (for a specific value of q):

FTAP(m;y, q) := −β

2
〈m,Am〉 − 〈y,m〉 −

N∑

i=1

h(mi)

− Nβ2(1− q)(1 + q − 2Q(m))

4
,

Q(m) =
1

N
‖m‖2,

h(m) = −1 +m

2
log

(
1 +m

2

)

− 1−m

2
log

(
1−m

2

)
.

The second stage is motivated by the TAP (Thouless-
Anderson-Palmer) equations for the Gibbs mean of a
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high-temperature spin glass [MPV87], [Tal10]. Essen-
tially by construction, stationary points for the function
FTAP(m;y, q) satisfy the TAP equations, and we show
that the first stage above constructs an approximate
stationary point for FTAP(m;y, q). The effect of the
second stage is therefore numerically small, but it turns
out to reduce the error incurred by discretizing time in
line 6 of Algorithm 2.

Let us emphasize that this two-stage construction is
considered for technical reasons. Indeed a simpler algo-
rithm, that runs AMP for a larger number of iteration,
and does not run NGD at all, is expected to work but
our arguments do not go through. The hybrid algorithm
above allows us to exploit known properties of AMP
(precise analysis via state evolution) and FTAP(m;y, q)
(Lipschitz continuity of the minimizer in y).

Algorithm 2: APPROXIMATE SAMPLING FROM
THE SK GIBBS MEASURE

Input: Data A ∈ RN×N , parameters
(β, η,KAMP,KNGD, L, δ)

1 ŷ0 = 0,
2 for ) = 0, · · · , L− 1 do
3 Draw w%+1 ∼ N (0, IN ) independent of

everything so far;
4 Set q = q∗(β, t = )δ);
5 Set m̂(A, ŷ%) the output of Algorithm 1,

with parameters (β, η, q,KAMP,KNGD);
6 Update ŷ%+1 = ŷ% + m̂(A, ŷ%) δ +

√
δw%+1

7 Set m̂(A, ŷL) the output of Algorithm 1, with
parameters (η, q,KAMP,KNGD);

8 Draw {xalg
i }i≤N conditionally independent with

E[xalg
i |y, {w%}] = m̂i(A, ŷL)

9 return xalg

2) Sampling via stochastic localization: Our sam-
pling algorithm is presented as Algorithm 2. The al-
gorithm makes uses of constants qk := qk(β, t). With
W ∼ N (0, 1) a standard Gaussian, these constants are
defined for k,β, t ≥ 0 by the recursion

qk+1 = E
[
tanh

(
β2qk + t+

√
β2qk + tW

)2]
,

q0 = 0 , q∗ = lim
k→∞

qk .

This iteration can be implemented via a one-dimensional
integral, and the limit q∗ is approached exponentially fast
in k (see Lemma V.3 below). The values q∗(β, t = )δ)
for ) ∈ {0, . . . , L} can be precomputed and are indepen-
dent of the input A. For the sake of simplicity, we will
neglect errors in this calculation.

The core of the sampling procedure is step 6, which is
a standard Euler discretization of the SDE (I.4), with step
size δ, over the time interval [0, T ], T = Lδ. The mean
of the Gibbs measure m(A,y) is replaced by the output
of Algorithm 1 which we recall is denoted by m̂(A,y).
We reproduce the Euler iteration here for future reference

ŷ%+1 = ŷ% + m̂(A, ŷ%) δ +
√
δw%+1 . (II.3)

The output of the iteration is m̂(A, ŷL), which should
be thought of as an approximation of m(A,y(T )),
T = Lδ, that is the mean of µA,y(T ). According to the
discussion in the introduction, for large T , µA,y(T ) con-
centrates around x! ∼ µA. In other words, m(A,y(T ))
is close to the corner x! of the hypercube. We round its
coordinates independently to produce the output xalg.

3) Theoretical guarantee: Our main positive result is
the following.

Theorem II.1. For any ε > 0 and β0 < 1/2 there
exist η,KAMP,KNGD, L, δ independent of N , so that the
following holds for all β ≤ β0. The sampling algorithm 2
takes as input A and parameters (η,KAMP,KNGD, L, δ)
and outputs a random point xalg ∈ {−1,+1}N with
law µalg

A such that with probability 1 − oN (1) over
A ∼ GOE(N),

W2,N (µalg
A, µA) ≤ ε . (II.4)

The total complexity of this algorithm is O(N2).

Remark II.1. The condition β < 1/2 arises because our
proof requires the Hessian of the TAP free energy to be
positive definite at its minimizer. A simple calculation
yields

∇2FTAP(m;y, q) = −βA+D(m) + β2(1− q) IN ,

D(m) := diag
(
{(1−m2

i )
−1}i≤N

)
.

A crude bound yields ∇2FTAP(m;y, q) / −βA+IN /
(1−βλmax(A))IN . Since p-limN→∞ λmax(A) = 2 the
desired condition holds trivially for β < 1/2. However,
we expect that a more careful treatment will reveal that
the Hessian is locally positive in a neighborhood of the
minimizer for all β < 1.

After an initial version of this manuscript was made
public, Celentano [Cel22] showed the above-mentioned
local strong convexity of the TAP free energy for all
β < 1, thereby confirming that our sampling procedure
succeeds up to the critical temperature.
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B. Hardness for stable algorithms, for β > 1

The sampling algorithm 2 enjoys stability properties
with respect to changes in the inverse temperature β
and the matrix A which are shared by many natural
efficient algorithms. We will use the fact that the actual
Gibbs measure does not enjoy this stability property for
β > 1 to conclude that sampling is hard for all stable
algorithms.

Throughout this section, we denote the Gibbs and
algorithmic output distributions by µA,β and µalg

A,β re-
spectively to emphasize the dependence on β.

Definition II.1. Let {ALGN}N≥1 be a family of ran-
domized sampling algorithms, i.e., measurable maps

ALGN : (A,β,ω) +→ ALGN (A,β,ω) ∈ [−1, 1]N ,

where ω is a random seed (a point in a probability
space (Ω,F ,P)). Let A′ and A ∼ GOE(N) be in-
dependent copies of the coupling matrix, and consider
perturbations As =

√
1− s2A + sA′ for s ∈ [0, 1].

Finally, denote by µalg
As,β

the law of the algorithm output,
i.e., the distribution of ALGN (As,β,ω) when ω ∼ P
independent of As,β which are fixed.

We say ALGN is stable with respect to disorder, at
inverse temperature β, if

lim
s→0

p-lim
N→∞

W2,N (µalg
A,β , µ

alg
As,β

) = 0 . (II.5)

We say ALGN is stable with respect to temperature at
inverse temperature β, if

lim
β′→β

p-lim
N→∞

W2,N (µalg
A,β , µ

alg
A,β′) = 0 . (II.6)

As proved in the full version, Algorithm 2 is stable.

Theorem II.2. 2] For any β ∈ (0,∞) and fixed
parameters (η, KAMP, KNGD, L, δ), Algorithm 2 is stable
with respect to disorder and with respect to temperature.

As a consequence, the Gibbs measures µA,β enjoy
similar stability properties for β < 1/2, which amount
(as discussed below) to the absence of chaos in both
temperature and disorder:

Corollary II.2. For any β < 1/2, the following proper-
ties hold for the Gibbs measure µA,β of the Sherrington-
Kirkpatrick model, cf. Eq. (I.1):

1) lims→0 p-limN→∞W2,N (µA,β , µAs,β) = 0.

2) limβ′→β p-limN→∞W2,N (µA,β , µA,β′) = 0.

Proof. Take ε > 0 arbitrarily small and choose pa-
rameters (η,KAMP,KNGD, L, δ) of Algorithm 2 with the
desired tolerance ε so that Theorem II.1 holds. Com-
bining with Theorem II.2 using the same parameters
(η,KAMP,KNGD, L, δ) implies the result since ε is arbitrar-
ily small. (Recall that (η,KAMP,KNGD, L, δ) can be chosen
independent of β for β ≤ β0 < 1/2.)

Remark II.2. We emphasize that Corollary II.2 makes
no reference to an algorithm, and is instead a purely
structural property of the Gibbs measure. The sampling
algorithm, however, is the key tool of our proof.

Stability is related to chaos, which is a well studied
and important property of spin glasses, see e.g. [Cha09],
[Che13], [Cha14], [CHHS15], [CP18]. In particular,
“disorder chaos” refers to the following phenomenon.
Draw x0 ∼ µA,β independently of xs ∼ µAs,β , and
denote by µ(0,s)

A,β := µA,β⊗µAs,β their joint distribution.
Disorder chaos holds at inverse temperature β if

lim
s→0

lim
N→∞

Eµ(0,s)
A,β

{( 1

N
〈x0,xs〉

)2}
= 0 . (II.7)

Note that disorder chaos is not necessarily a surprising
property. For instance when β = 0, the distribution
µAs,β is simply the uniform measure over the hypercube
{−1,+1}N for all s, and this example exhibits disorder
chaos in the sense of Eq. (II.7). In fact, the SK Gibbs
measure exhibits disorder chaos at all β ∈ [0,∞)
[Cha09]. However, for β > 1, Eq. (II.7) leads to a
stronger conclusion.

Theorem II.3 (Disorder chaos in W2,N distance). For
all β > 1,

inf
s∈(0,1)

lim inf
N→∞

E
[
W2,N (µA,β , µAs,β)

]
> 0 .

Finally, we obtain the desired hardness result by
reversing the implication in Corollary II.2: no stable
algorithm which can approximately sample from the
measure µA,β in the W2,N sense for β > 1.

Theorem II.4. Fix β > 1, and let {ALGN}N≥1 be a
family of randomized algorithms which is stable with
respect to disorder as per Definition II.1 at inverse
temperature β. Let µalg

A,β be the law of the output
ALGN (A,β,ω) conditional on A. Then

lim inf
N→∞

E
[
W2,N (µalg

A,β , µA,β)
]
> 0 .

We refer the reader to the full version for the proof.
Let us remark that while our sampling algorithm allows
us to conclude stability in both disorder and temperature,
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only chaos in disorder is used to prove hardness. Indeed,
temperature stability is known to hold below the replica-
symmetry breaking temperature in pure spherical spin
glasses [Sub17].

C. Notations

We use oN (1) to indicate a quantity tending to 0 as
N → ∞. We use oN,P(1) for a quantity tending to 0
in probability. If X is a random variable, then L(X)
indicates its law. The quantity C(β) refers to a constant
depending on β. The uniform distribution on the interval
[a, b] is denoted by Unif([a, b]).

D. Outline

The rest of the paper is organized as follows. Section
IV introduces the planted model and its contiguity with
the original model. We then analyze the AMP component
of our algorithm in Section V, and the NGD component
in Section VI. Finally, Section VII puts the various
elements together and proves Theorem II.1.

III. PROPERTIES OF STOCHASTIC LOCALIZATION

We collect in this section the main properties of the
stochastic localization process needed for our analysis.
We focus on the Gibbs measure (I.1), although most
of the below generalizes to other probability measures
in RN , under suitable tail conditions. Throughout this
section, the matrix A is viewed as fixed.

Recalling the tilted measure µA,y of Eq. (I.2), and the
SDE of Eq. (I.4), we introduce the shorthand

µt = µA,y(t) .

The following properties are well known. See for
instance [ES22, Propositions 9, 10] or [Eld20].

Lemma III.1. For all t ≥ 0 and all x ∈ {−1,+1}N ,

dµt(x) = µt(x)〈x−mA,y(t), dB(t)〉 . (III.1)

As a consequence, for any function ϕ : RN → Rm, the
process

(
Ex∼µt

[
ϕ(x)

])
t≥0

is a martingale.

Lemma III.2 ( [Eld20]). For all t > 0,

E cov(µt) 1
1

t
IN . (III.2)

Lemma III.3. For all t > 0,

W2,N

(
µA,L(mA,y(t))

)2 ≤ 1

t
. (III.3)

In particular, the mean vector mA,y(t) converges in
distribution to a random vector x! ∼ µA as t → ∞.

IV. THE PLANTED MODEL AND CONTIGUITY

Let ν be the uniform distribution over {−1,+1}N
and consider the joint distribution of pairs (x,A) ∈
{−1,+1}N × RN×N

sym ,

µpl(dx, dA) =
1

Zpl

exp
{
−N

4

∥∥∥A−βxx.

N

∥∥∥
2

F

}
ν(dx) dA ,

(IV.1)
where dA is the Lebesgue measure over the space of
symmetric matrices RN×N

sym , and the normalizing constant

Zpl :=

∫
exp

{
− N

4

∥∥∥A− βxx.

N

∥∥∥
2

F

}
dA (IV.2)

is independent of x ∈ {−1,+1}N . It is easy to see by
construction that the marginal distribution of x under
µpl is ν, and the conditional law µpl( · |x) is a rank-one
spiked GOE model with spike βxx./N . Namely, under
µpl( · |x), we have

A =
β

N
xx. +W , W ∼ GOE(N) . (IV.3)

On the other hand, µpl( · |A) is the SK measure µA.

The marginal of A under µpl is not the GOE(N)
distribution µGOE but takes the form

µpl(dA) =
1

Zpl

e−
N
4 ‖A‖

2
F ZSK(A) dA (IV.4)

= µGOE(dA)ZSK(A) , (IV.5)

where ZSK(A) is the (rescaled) partition function of the
SK measure

ZSK(A) = 2−n
∑

x∈{−1,+1}N

exp
{β

2
〈x,Ax〉 − β2N

4

}
.

(IV.6)
By a classical result [ALR87], ZSK(A) has log-normal
fluctuations for all β < 1:

Theorem IV.1 ( [ALR87]). Let β < 1, A ∼ µGOE and
σ2 = 1

4 (− log(1− β2)− β2). Then

ZSK(A)
d−−−−→

n→∞
exp(W ) , (IV.7)

where W ∼ N
(
− σ2, 2σ2

)
.

Therefore, by Le Cam’s first lemma [VdV98, Lemma
6.4], µpl(dA) and µGOE(dA) are mutually contiguous for
all β < 1. For the purpose of our analysis we will need
a stronger result about the joint distributions of (A,y)
under our “random” model and a planted model which
we now introduce.

Recall that m(A,y) denotes the mean of the Gibbs
measure µA,y in Eq. (I.2). For a fixed T ≥ 0, we define
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two Borel distributions P (planted) and Q (random)
on (A,y) ∈ RN×N

sym × C([0, T ],RN ) as follows. For
t ∈ [0, T ]:

Q :






A ∼ µGOE ,

y(t) =

∫ t

0
m(A,y(s)) ds+B(t),

(IV.8)

P :






x0 ∼ ν ,

A ∼ µpl( · |x0) ,

y(t) = tx0 +B(t)

(IV.9)

where (B(t))t≥0 is a standard Brownian motion in RN

independent of everything else. Note the SDE defining
the process y = (y(t))t∈[0,T ] in Eq. (IV.8) is a restate-
ment of the stochastic localization equation (I.4) applied
to the SK measure µA. Using this it is not hard to verify
the following.

Proposition IV.1. For all T ≥ 0 and β ≥ 0, P is
absolutely continuous with respect to Q and for all
(A,y) ∈ RN×N

sym × C([0, T ],RN ),

dP
dQ (A,y) = ZSK(A) .

Therefore, for all β < 1, P and Q are mutually contigu-
ous. (I.e. for a sequence of events EN , limN→∞ P(EN ) =
0 if and only if limN→∞Q(EN ) = 0.)

For the remainder of the proof of Theorem II.1, we
work under the planted distribution P. All results proven
under P transfer to Q by contiguity.

V. APPROXIMATE MESSAGE PASSING

In this section we analyze the AMP iteration of Algo-
rithm 1, which we copy here for the reader’s convenience

m̂−1 = z0 = 0, m̂k = tanh(zk) (V.1)

bk =
β2

N

N∑

i=1

(
1− tanh2(zki )

)
∀k ≥ 0 ,

zk+1 = βAm̂k + y − bkm̂
k−1 .

When needed, we will specify the dependence on A,y
by writing m̂k = m̂k(A,y) = AMP(A,y; k) and zk =
zk(A,y). Throughout this section (A,y) ∼ P will be
distributed according to the planted model introduced
above.

Our analysis will be based on the general state evo-
lution result of [BM11], [JM13], which implies the

following asymptotic characterization for the iterates. Set
γ0(β, t) = 0,Σ0,i(β, t) = 0 and recursively define

γk+1(β, t) = β2 · E [tanh (γk(β, t) + t+Gk)] ,
(V.2)

Σk+1,j+1(β, t) = β2 · E
[
tanh

(
γk(β, t) + t+Gk

)

· tanh (γj(β, t) + t+Gj)
]
,

(V.3)

where (Gj)j≤k are jointly Gaussian, with zero mean and
covariance Σ≤k + t11., Σ≤k := (Σij)i,j≤k.

Proposition V.1 (Theorem 1 of [BM11]). For (A,y) ∼
P and any k ∈ Z≥0, the empirical distribution of the
coordinate of the AMP iterates converges almost surely
in W2(Rk+2) as follows:

1

N

N∑

i=1

δ(z1
i ,··· ,zk

i ,xi,yi)
W2−−−−→

n→∞

L
(
γ≤k(β, t)X +G+ Y 1, X, Y

)
;

γ≤k(β, t) =
(
γ1(β, t), . . . , γk(β, t)

)
, G ∼ N (0,Σ≤k) .

On the right-hand side, X is uniformly random in
{−1,+1}, Y = tX +

√
tW where W ∼ N (0, 1) and

X,G,W are mutually independent.

As in [DAM17, Eqs. (69, 70)] we argue that the
state evolution equations (V.2), (V.3) take a simple form
thanks to our specific choice of AMP non-linearity
tanh(·). It will be convenient to use the notations

γ̃k(β, t) = γk(β, t) + t ,

Σ̃k,j(β, t) = Σk,j(β, t) + t .

Proposition V.2. For any t ∈ R≥0 and k, j ∈ Z≥0,

Σk,j(β, t) = γk∧j(β, t) , and Σ̃k,j(β, t) = γ̃k∧j(β, t) .

Proof. The two claims are equivalent and we proceed by
induction. The base case k = 0 holds by definition, so
we may assume Σi,j(β, t) = γi∧j(β, t) for i, j ≤ k− 1.
Set Zj = γjX + G̃j where G̃ ∼ N (0, Σ̃≤k−1). Note
that, by the induction hypothesis, Zk−1 is a sufficient
statistic for X given (Zj)j≤k−1. Using Bayes’ rule, and
writing σ̃2

k−1 := Σ̃k−1,k−1, one easily computes that
E[X|Zk−1] equals

eγ̃k−1Zk−1/σ̃
2
k−1 − e−γ̃k−1Zk−1/σ̃

2
k−1

eγ̃k−1Z/σ̃2
k−1 + e−γ̃k−1Z/σ̃2

k−1

= tanh(Zk−1) .
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Therefore using Eq. (V.2), the fact that tanh is an odd
function and WX

d
= W ,

Σ̃k,j = E
[
E[X|Zk−1]E[X|Zj−1]

]

(a)
= E

[
X E[X|Zj−1]

]

= E
[
X tanh(γ̃j−1X + σ̃2

j−1W )
]

= E
[
tanh(γ̃j−1 + σ̃2

j−1W )
]
= γj ,

where in step (a) we used the sufficient statistic property.
This completes the inductive step and proof.

Define the function mmse : R → R given by

mmse(γ) ≡ 1− E
[
tanh(γ +

√
γW )2

]

= 1− E
[
E[X|γX +

√
γW ]2

]
.

It follows from Proposition V.2 that (V.2) and (V.3)
can be expressed just in terms of the sequence γk(β, t)
defined by γ0(t) = 0 and the recursion

γk+1(β, t) = β2
(
1−mmse(γk(β, t) + t)

)
. (V.4)

Note that γk(β, t) depends also on β, which is usually
treated as constant. The following result (proved in the
full version) details some useful properties of mmse.

Lemma V.3 ( [DAM17, Lemma 6.1]). The following
properties hold, where {γk(β, t)}k≥1 is as in (V.4).

(a) mmse is differentiable, strictly decreasing, and con-
vex in γ ∈ R≥0.

(b) mmse(0) = 1, mmse′(0) = −1 and
limγ→∞mmse(γ) = 0.

(c) For t ≥ 0 there exists a non-negative solution γ∗ =
γ∗(β, t) to the fixed point equation

γ∗ = β2(1−mmse(γ∗ + t)) . (V.5)

The solution to this equation is unique for all t > 0.

(d) The function (β, t) +→ γ∗(β, t) is differentiable for
t > 0.

(e) For all β < 1 and t > 0,

1− β2k ≤ γk(β, t)

γ∗(β, t)
≤ 1 . (V.6)

(f) For β < 1 and T > 0, there exist constants
c(β, T ), C(β, T ) ∈ (0,∞) such that, for all t ∈
(0, T ],

c(β, T ) ≤ γ∗(β, t)

t
≤ C(β, T ) . (V.7)

(g) For β < 1 and any t1, t2 ∈ (0,∞),

γ∗(β, t1)− γ∗(β, t2) ≤
β2

1− β2
|t1 − t2|. (V.8)

Next for (A,y) ∼ P and x ∼ µA,y(t), define

MSEAMP(k;β, t) = p-lim
N→∞

1

N
E
∥∥x− m̂k(A,y(t))

∥∥2

2
,

(V.9)

m̂k(A,y(t)) := AMP(A,y(t); k) ,

where the limit is guaranteed to exist by Proposition V.1.

Lemma V.4. We have

MSEAMP(k;β, t) = 1− γk+1(β, t)

β2
.

In particular,

lim
k→∞

MSEAMP(k;β, t) = 1− γ∗(β, t)

β2
.

Proof. By state evolution

MSEAMP(k;β, t) = p-lim
N→∞

1

N
E
∥∥m̂k(A,y(t))− x

∥∥2

2

= E
[(

tanh(γkX + σkW + Y )−X
)2]

= E
[(

tanh(γ̃kX + σ̃kW )−X
)2]

= 1− 2E[tanh(γ̃kX + σ̃kW )X]

+ E[tanh(γ̃kX + σ̃kW )2]

= 1− 2γk+1/β
2 + σ2

k+1/β
2

= 1− γk+1/β
2,

where the last line follows from Proposition V.2.

The next Proposition shows that for any t > 0, the
mean square error achieved by AMP is the same as
the Bayes optimal error, i.e., the mean squared error
achieved by the posterior expectation m(A,y(t)). The
proof is based on an area law argument similar to
[DAM17] and is omitted.

Proposition V.5. Fix β < 1 and t ≥ 0. We have

lim
N→∞

1

N
E
[∥∥x−m(A,y(t))

∥∥2

2

]
=

γ∗(β, t)

β2
. (V.10)

It follows that AMP approximately computes the
posterior mean m(A,y(t)) in the following sense.
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Proposition V.6. Fix β < 1, T > 0 and let t ∈ (0, T ].
Recalling that m̂k(A,y(t)) := AMP(A,y(t); k) de-
notes the AMP estimate after k iterations, and that zk

is defined by Eq. (V.1), we have

lim
k→∞

sup
t∈(0,T )

p-lim
N→∞

‖m(A,y(t))− m̂k(A,y(t))‖2
‖m(A,y(t))‖2

= 0 .

(V.11)

Moreover

lim
k→∞

sup
t∈(0,T )

p-lim
N→∞

‖zk+1 − zk‖
‖zk‖ = 0 . (V.12)

Remark V.1. [CT21] shows a related result (under
different conditions) where the external field vector y(t)
is replaced by a multiple of the all-ones vector h1.

We conclude this subsection with a lemma controlling
the regularity of the posterior path t +→ m(A,y(t)),
which will be useful later. We omit the proof, which is
based on Doob’s maximal inequality.

Lemma V.7. Fix β < 1 and 0 ≤ t1 < t2 ≤ T . Then

p-lim
N→∞

sup
t∈[t1,t2]

1

N

∥∥m(A,y(t))−m(A,y(t1))
∥∥2

2

= p-lim
N→∞

1

N

∥∥m(A,y(t2))−m(A,y(t1))
∥∥2

2

=
(
γ∗(β, t2)− γ∗(β, t1)

)
/β2.

(V.13)

VI. NATURAL GRADIENT DESCENT

Algorithm 3: NATURAL GRADIENT DESCENT
ON FTAP( · ;y, q)
Input: Initialization u0 ∈ RN , data A ∈ RN×N ,

ŷ ∈ RN , step size η > 0, q ∈ (0, 1),
integer K > 0.

1 m̂+,0 = tanh(u0).
2 for k = 0, · · · ,K − 1 do
3 uk+1 ← uk − η ·∇FTAP(m̂

+,k;y, q),
4 m̂+,k+1 = tanh(u+,k+1),

5 return m̂+,K

Here we state Lemma VI.1, which shows that
FTAP(m;y, q) behaves well for q = q∗(β, t) and for
m in a neighborhood of m̂KAMP . Namely it has a
unique local minimum m∗ = m∗(A,y) in such a
neighborhood, and NGD approximates m∗ well for large
number of iterations K. Crucially, the map y +→ m∗ will

be Lipschitz. For reference, we reproduce Algorithm 3
(NGD), corresponding to lines 5-9 of Algorithm 1.

Lemma VI.1. Let β < 1
2 , c ∈ (0, 1 − 2β), and T > 0

be fixed. Then there exists ε0 = ε0(β, T ) such that, for
all ε ∈ (0, ε0) there exists KAMP = KAMP(β, T, ε) and
ρ0 = ρ0(β, T, ε) such that for all ρ ∈ (0, ρ0) there exists
KNGD = KNGD(β, T, ε, ρ), such that the following holds.

Let m̂AMP = AMP(A,y(t);KAMP) be the output of the
AMP after KAMP iterations, when applied to y(t). Fix
K ≥ KAMP. With probability 1 − oN (1) over (A,y) ∼
P, for all t ∈ (0, T ] and all ŷ ∈ B

(
y(t), c

√
εtN/4

)
,

setting q∗ := q∗(β, t):

1) The function

m +→ FTAP(m; ŷ, q∗)

restricted to B
(
m̂AMP,

√
εtN

)
∩ (−1, 1)N has a

unique stationary point

m∗(A, ŷ) ∈ B
(
m̂AMP,

√
εtN/2

)
∩ (−1, 1)N

which is also a local minimum. In the case ŷ =
y(t), m∗(A,y(t)) also satisfies

m∗(A,y) ∈ B
(
m̂k′

,
√
εtN/2

)
∩ (−1, 1)N

for all k′ ∈ [KAMP,K], where m̂k′
=

AMP(A,y(t); k′).

2) The stationary point m∗(A, ŷ) satisfies (recall that
m(A,y) denotes the mean of the Gibbs measure)

∥∥m(A,y)−m∗(A,y)
∥∥
2
≤ ρ

√
tN .

3) The stationary point m∗ obeys the following Lips-
chitz property for all ŷ, ŷ′ ∈ B

(
y(t), c

√
εtN/4

)
:

∥∥m∗(A, ŷ)−m∗(A, ŷ′)
∥∥ ≤ c−1‖ŷ−ŷ′‖ . (VI.1)

4) There exists a learning rate η = η(β, T, ε) such
that the following holds. Let m̂NGD(A, ŷ) be the
output of NGD (Algorithm 3), when run for KNGD

iterations with parameter q∗, ŷ, η. Assume that the
initialization u0 satisfies

∥∥u0 − arctanh(m̂AMP)
∥∥ ≤ c

√
εtN

200
. (VI.2)

Then the algorithm output satisfies
∥∥m̂NGD(A, ŷ)−m∗(A, ŷ)

∥∥ ≤ ρ
√
tN . (VI.3)

Lemma VI.1 is proved in the full version. We note
that using a radius Θ(

√
tN) neighborhood is crucial.
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VII. CONTINUOUS LIMIT AND PROOF OF
THEOREM II.1

We fix (β, T ) and choose constants KAMP =
KAMP(β, T, ε), ρ0 = ρ0(β, T, ε,KAMP), ρ ∈ (0, ρ0) and
KNGD = KNGD(β, T, ε, ρ) so that Lemma VI.1 holds.

We couple the discretized process (ŷ%)%≥0 defined in
Eq. (II.3) (line 6 of Algorithm 2) to the continuous time
process (y(t))t∈R≥0

(cf. Eq. (IV.8)) via the driving noise,
as follows:

w%+1 =
1√
δ

∫ (%+1)δ

%δ
dB(t) . (VII.1)

We denote by m̂(A,y) the output of the mean estima-
tion algorithm 1 on input A,y. Lemma VI.1 ensures that
for any t ∈ (0, T ], with probability 1− oN (1),

∥∥m̂(A,y(t))−m∗(A,y(t); q∗(β, t))
∥∥ ≤ ρ

√
tN .
(VII.2)

Here and below we note explicitly the dependence of m∗
on t via q∗. The next lemma provides a crude estimate
on the Lipschitz continuity of AMP in its input.

Lemma VII.1. Recall that AMP(A,y; k) ∈ RN denotes
the output of the AMP algorithm on input (A,y), after
k iterations, cf. Eq. (II.2). If ‖A‖op ≤ 3, then, for any
y, ŷ ∈ RN ,
∥∥ arctanh

(
AMP(A,y; k)

)
− arctanh

(
AMP(A, ŷ; k)

)∥∥
2

≤ k6k ‖y − ŷ‖2 .
(VII.3)

Proof. For 0 ≤ j ≤ k, set:

mj = AMP(A,y; j), zj = arctanh(mj),

bj =
β2

N

N∑

i=1

(
1− tanh2(zji )

)
,

m̂j = AMP(A, ŷ; j), ẑj = arctanh(m̂j),

b̂j =
β2

N

N∑

i=1

(
1− tanh2(ẑji )

)
.

Using the AMP update equation (line 4 of Algorithm 1)
and the fact that tanh( · ) is 1-Lipschitz, we obtain

‖zj+1 − ẑj+1‖ ≤ ‖βA(mj − m̂j)‖+ ‖y − ŷ‖
+ ‖bjmj−1 − bjm̂

j−1‖
+ ‖bjm̂j−1 − b̂jm̂

j−1‖
≤ 3β‖zj − ẑj‖+ ‖y − ŷ‖
+ bj‖zj−1 − ẑj−1‖+ |bj − b̂j |

√
N .

Note that |1−tanh2(x)| ≤ 1 for all x ∈ R and |bj | ≤ β2.
Setting Ej = maxi≤j ‖zi+1 − ẑi+1‖, we find

Ej+1 ≤ (3β2 + 3β)Ej + ‖y − ŷ‖
≤ 6Ej + ‖y − ŷ‖ .

It follows by induction that

Ej ≤ j6j‖y − ŷ‖ .

Setting j = k concludes the proof.

Define the random approximation errors

A% :=
1√
N

∥∥ŷ% − y()δ)
∥∥ , (VII.4)

B% :=
1√
N

∥∥m̂(A, ŷ%)−m(A,y()δ))
∥∥ . (VII.5)

Note that A0 = B0 = 0. In the next lemma we bound
the above quantities:

Lemma VII.2. For β < 1/2 and T > 0, there exists
a constant C = C(β) < ∞, and a deterministic non-
negative sequence α(N) with limN→∞ α(N) = 0 such
that the following holds with probability 1− oN (1). For
every ) ≥ 0, δ ∈ (0, 1) such that )δ ≤ T ,

A% ≤ CeC%δ)δ
(
ρ
√
)δ +

√
δ
)
+ α(N) ,

(VII.6)

B% ≤ CeC%δ)δ
(
ρ
√
)δ +

√
δ
)
+ Cρ

√
)δ + α(N) .

(VII.7)

Proof. Throughout the proof, we denote by α(N)
a deterministic non-negative sequence α(N) with
limN→∞ α(N) = 0, which can change from line to line.
Also, C will denote a generic constant that may depend
on β, T,KAMP.

We induct on ). As the base case is trivial, we assume
the result for all j ≤ ) and prove it for ) + 1. We first
claim that with probability 1− oN (1),

A%+1 ≤ A% + δB% + Cδ3/2. (VII.8)

Indeed, using (VII.1) we find for I% = [)δ, ()+ 1)δ]:

A%+1 −A% ≤ n−1/2

∫

I"

∥∥m̂(A, ŷ%)−m(A,y(t))
∥∥ dt

≤ δn−1/2
(∥∥m̂(A, ŷ%)−m(A,y()δ))

∥∥

+ sup
t∈I"

∥∥m(A,y(t))−m(A,y()δ))
∥∥
)

≤ δB% + δ ·
supt∈I"

∥∥m(A,y(t))−m(A,y()δ))
∥∥

√
n

≤ δB% + C(β)δ3/2 + α(N) ,
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where the last line holds with high probability by
Lemma V.7 and Eq. (V.8) of Lemma V.3. Using this
bound and the inductive hypothesis on A%, B% we obtain

A%+1 ≤ CeC(%+1)δ)δ(ρ
√
)δ +

√
δ) + Cρδ

√
)δ

+ Cδ3/2 + α(N)

≤ CeC(%+1)δ()+ 1)δ(ρ+
√
δ) + α(N) .

This implies Eq. (VII.6) for )+ 1.

We next show that Eq. (VII.7) holds with ) replaced
by ) + 1. By the bound (VII.6) for ) + 1, taking δ ≤
δ(β, ε,KAMP, T ) and ρ ∈ (0, ρ0) ρ = ρ(β, ε,KAMP, T )
ensures that

A%+1 ≤ c
√
ε)δ

200KAMP6KAMP
,

where ε can be chosen an arbitrarily small constant. So
by Lemma VII.1, we have with probability 1− oN (1),

∣∣∣∣ arctanh(AMP(A,y(()+ 1)δ);KAMP))

− arctanh(AMP(A, ŷ%+1;KAMP))
∣∣∣∣
2

≤ KAMP6
KAMPA%+1

√
N

≤ c
√
ε)δN

200
.

By choosing ε ≤ ε0(β, T ), we obtain that Lemma VI.1,
part 4 applies. We thus find

‖m̂(A, ŷ%+1)−m∗(A, ŷ%+1)‖ ≤ ρ
√
)δN .

Using parts 3 and 2 respectively of Lemma VI.1 on
the other terms below, by triangle inequality we obtain
(writing for simplicity q% := q∗(β, )δ))

‖m̂(A, ŷ%+1)−m(A,y(()+ 1)δ))‖
≤ ‖m̂(A, ŷ%+1)−m∗(A, ŷ%+1; q%+1)‖
+ ‖m∗(A, ŷ%+1; q%+1)−m∗(A,y(()+ 1)δ); q%+1)‖
+ ‖m∗(A,y(()+ 1)δ); q%+1)−m(A,y(()+ 1)δ))‖

≤
(
ρ
√
)δ + c−1A%+1 + ρ

√
)δ + α(N)

)√
N .

(VII.9)
In other words with probability 1− oN (1),

B%+1 ≤ c−1A%+1 + 2ρ
√
)δ + α(N) .

Together with the bound (VII.6) for ) + 1, this verifies
the inductive step for (VII.7), concluding the proof.

The following lemma ensures the final randomized
rounding step in our sampling algorithm is benign.

Lemma VII.3. Suppose probability distributions µ1, µ2

on [−1, 1]N are given. Sample m1 ∼ µ1 and m2 ∼ µ2

and let x1,x2 ∈ {−1,+1}N be standard randomized

roundings, respectively of m1 and m2. (Namely, the
coordinates of xi are conditionally independent given
mi, with E[xi|mi] = mi.) Then

W2,N (L(x1),L(x2)) ≤ 2
√
W2,N (µ1, µ2) .

Proof. Let (m1,m2) be a W2,N -optimal coupling be-
tween µ1, µ2. Couple x1,x2 by choosing i.i.d. uniform
random variables ui ∼ Unif([0, 1]) for i ∈ [n], and for
(i, j) ∈ [n]× {1, 2} setting

(xj)i =

{
+1, if u ≤ 1+(mj)i

2 ,

−1, else.

Then it is not difficult to see that

1

N
E
[
‖x1 − x2‖2 |(m1,m2)

]
=

2

N

N∑

i=1

|(m1)i − (m2)i|

≤ 2

√
1

N
‖m1 −m2‖2.

Averaging over (m1,m2) implies the result.

Proof of Theorem II.1. Set ) = L = T/δ and ρ =
√
δ in

Eq. (VII.7). With all laws L( · ) conditional on A below,
we find

EW2,N (µA,L(m̂(A, ŷL)))

≤ EW2,N (µA,L(m(A,y(T ))))

+ EW2,N (L(m(A,y(T )))),L(m̂(A, ŷL)))

≤ T−1/2 + C(β, T )
√
δ + oN (1).

Here the first term was bounded by Eq. (III.3) in
Section III and the second by Eq. (VII.7). Taking T
sufficiently large, δ sufficiently small, and N sufficiently
large, we obtain

EW2,N

(
µA,L(m̂NGD(A, ŷL))

)
≤ ε2

4

for any desired ε > 0. Applying Lemma VII.3 shows

EW2,N (µA,xalg) ≤ ε .

The Markov inequality now implies that (II.4) holds with
probability 1− oN (1) as desired.

The full version of this paper is available as an online
preprint at https://arxiv.org/abs/2203.05093 .
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structions in the random number partitioning problem,
arXiv preprint arXiv:2103.01369 (2021).

[GS14] David Gamarnik and Madhu Sudan, Limits of local algo-
rithms over sparse random graphs, Proceedings of the 5th
conference on Innovations in theoretical computer science,
ACM, 2014, pp. 369–376.

[GS17] , Performance of sequential local algorithms for
the random NAE-K-sat problem, SIAM Journal on Com-
puting 46 (2017), no. 2, 590–619.

[HS21] Brice Huang and Mark Sellke, Tight Lipschitz Hardness
for Optimizing Mean Field Spin Glasses, arXiv preprint
arXiv:2110.07847 (2021).

[JM13] Adel Javanmard and Andrea Montanari, State evolution for
general approximate message passing algorithms, with ap-
plications to spatial coupling, Information and Inference:
A Journal of the IMA 2 (2013), no. 2, 115–144.

[JVV86] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani,
Random generation of combinatorial structures from a uni-
form distribution, Theoretical computer science 43 (1986),
169–188.

[MPV87] Marc Mézard, Giorgio Parisi, and Miguel A. Virasoro, Spin
glass theory and beyond, World Scientific, 1987.

[NSZ22] Danny Nam, Allan Sly, and Lingfu Zhang, Ising model on
trees and factors of IID, Communications in Mathematical
Physics (2022), 1–38.

[RV17] Mustazee Rahman and Bálint Virág, Local algorithms for
independent sets are half-optimal, The Annals of Proba-
bility 45 (2017), no. 3, 1543–1577.

[Sub17] Eliran Subag, The geometry of the gibbs measure of
pure spherical spin glasses, Inventiones mathematicae 210
(2017), no. 1, 135–209.

[SZ81] Haim Sompolinsky and Annette Zippelius, Dynamic theory
of the spin-glass phase, Physical Review Letters 47 (1981),
no. 5, 359.

[Tal10] Michel Talagrand, Mean field models for spin glasses:
Volume i, Springer-Verlag, Berlin, 2010.

[VdV98] Aad W Van der Vaart, Asymptotic statistics, vol. 3, Cam-
bridge university press, 1998.

[Wei22] Alexander S Wein, Optimal low-degree hardness of max-
imum independent set, Mathematical Statistics and Learn-
ing (2022).

334

Authorized licensed use limited to: Stanford University. Downloaded on January 08,2024 at 19:49:31 UTC from IEEE Xplore.  Restrictions apply. 


