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Abstract—We study the problem of algorithmically opti-
mizing the Hamiltonian of a spherical or Ising mean field
spin glass. The maximum asymptotic value OPT of this
random function is characterized by a variational principle
known as the Parisi formula, proved first by Talagrand
and in more generality by Panchenko. Recently devel-
oped approximate message passing algorithms efficiently
optimize these functions up to a value ALG given by an
extended Parisi formula, which minimizes over a larger
space of functional order parameters. These two objectives
are equal for spin glasses exhibiting a no overlap gap
property. However, ALG can be strictly smaller than OPT,
and no efficient algorithm producing a value exceeding
ALG is known.

We prove that when all interactions have even degree, no
algorithm satisfying an overlap concentration property can
produce an objective larger than ALG with non-negligible
probability. This property holds for all algorithms with
suitably Lipschitz dependence on the random disorder
coefficients of the objective. It encompasses natural formu-
lations of gradient descent, approximate message passing,
and Langevin dynamics run for bounded time and in par-
ticular includes the algorithms achieving ALG mentioned
above. To prove this result, we substantially generalize the
overlap gap property framework introduced by Gamarnik
and Sudan to arbitrary ultrametric forbidden structures of
solutions.

Index Terms—non-convex optimization, statistical
physics, spin glass, overlap gap property

I. INTRODUCTION

In a random optimization problem, one sets out to
optimize an objective function generated from random
data. The computational complexity of these problems is
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not well understood, due to the fact that they are often
both non-convex and high-dimensional. Optimizing non-
convex functions in high dimensions is well-known to be
computationally intractable in the worst case; however,
worst-case lower bounds rely on highly structured hard
instances, and in average-case settings the picture is far
less clear.

In this paper we obtain a sharp computational thresh-
old for a natural class of random optimization problems,
namely the Hamiltonians of mean-field spin glasses.
These functions have been studied since [67] as models
for disordered magnetic systems. From a mathematical
point of view, they are simply polynomials or power
series in many variables with independent and iden-
tically distributed coefficients. Moreover as discussed
below they are closely related to random combinatorial
optimization problems such as k-SAT and MaxCut. Our
main result is a lower bound against a natural class of
stable algorithms which exactly matches the best known
algorithms for this problem.

Our problem is defined as follows. For each p ∈
2N, let G(p) ∈

(
RN

)⊗p be an independent p-tensor
with i.i.d. N (0, 1) entries. Let h ≥ 0 and set h =
(h, . . . , h) ∈ RN . Fix a sequence (γp)p∈2N with γp ≥ 0
and

∑
p∈2N 2pγ2

p <∞.1 The mixed even p-spin Hamil-
tonian HN is defined by

HN (σ) = 〈h,σ〉+ H̃N (σ), where

H̃N (σ) =
∑

p∈2N

γp
N (p−1)/2

〈G(p),σ⊗p〉. (I.1)

We consider inputs σ in the sphere SN = {σ ∈ RN :
‖σ‖22 = N} or the cube ΣN = {−1, 1}N . These define,
respectively, the spherical and Ising mixed p-spin glass

1Not much generality is lost by assuming the sequence (γp) is
eventually zero, in which case HN is a polynomial in σ.
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models. The coefficients γp are customarily encoded in
the mixture function ξ(x) =

∑
p∈2N γ2

px
p. Note that H̃N

is equivalently described as the Gaussian process with
covariance

E H̃N (σ1)H̃N (σ2) = Nξ(〈σ1,σ2〉/N)

while the term 〈h,σ〉 represents an external field.

Our purpose is to shed light on a discrepancy between
the in-probability limiting maximum values

OPTSp
ξ,h = p-lim

N→∞

1

N
max
σ∈SN

HN (σ),

OPTIs
ξ,h = p-lim

N→∞

1

N
max
σ∈ΣN

HN (σ)

and the maximum efficiently computable values of HN

over the same sets. We will write OPTSp = OPTSp
ξ,h and

OPTIs = OPTIs
ξ,h when ξ, h are clear from context.

The investigation of average-case computational
thresholds, or information-computation gaps, has a sub-
stantial history in computer science. These thresholds
have been studied in random optimization problems such
as random instances of k-SAT and MaxCut, as well as
in signal detection problems such as planted clique and
sparse PCA.

A. OPT,ALG, and the Parisi Functional

The values OPTSp and OPTIs are given by the
celebrated Parisi formula [60] which was proved for even
models by [71], [72] and in more generality by [58].
While most often stated as a formula for the limiting
free energy at inverse temperature β, the asymptotic
maximum can be recovered as a β → ∞ limit of the
Parisi formula. Restricting for concreteness to the Ising
case (we will state the analogous result for the spherical
case in Section II), the result can be expressed in the
following form due to Auffinger and Chen [13]. Define
the function space

U =

{
ζ : [0, 1)→ R≥0 right-continuous
and nondecreasing,

∫ 1
0 ζ(t)dt <∞

}
. (I.2)

For ζ ∈ U , define Φζ : [0, 1]×R→ R to be the solution
of the Parisi PDE

∂tΦζ(t, x) = −
ξ′′(t)

2

(
∂xxΦζ(t, x) + ζ(t)(∂xΦζ(t, x))

2
)

with terminal condition Φζ(1, x) = |x|. Existence and
uniqueness properties for this PDE are established in

[13], [48]. The Parisi functional PIs = PIs
ξ,h : U → R is

given by

PIs(ζ) = Φζ(0, h)−
1

2

∫ 1

0
tξ′′(t)ζ(t)dt. (I.3)

Theorem 1 ([13, Theorem 1]). The following identity
holds.

OPTIs = inf
ζ∈U

PIs(ζ). (I.4)

The infimum over ζ ∈ U is achieved at a unique
ζ∗ ∈ U as shown in [13], [26], which can be obtained as
an appropriately renormalized zero-temperature limit of
the corresponding minimizers in the positive temperature
Parisi formula. These positive temperature minimizers
roughly correspond to cumulative distribution functions
for the overlap 〈σ1,σ2〉/N of two replicas σ1,σ2

sampled from the Gibbs measure eβHN /ZN (β); this is
why the functions ζ considered in the Parisi formula are
nondecreasing.

Efficient algorithms to find an input σ achieving a
large objective have recently emerged in a line of work
initiated by [69] and continued in [7], [55], [66]. The
main results of these works in the Ising case can be
described as follows. For a function f : R → R and
interval J , let ‖f‖TV(J) denote the total variation of f
on J , expressed as the supremum over partitions:

‖f‖TV(J) = sup
n

sup
t0<t1<···<tn,ti∈J

n∑

i=1

|f(ti)− f(ti−1)|.

Let L ⊇ U denote the set of functions given by

L =






ζ : [0, 1)→ R≥0 right-continuous,
‖ξ′′ · ζ‖TV[0,t] <∞ ∀t ∈ [0, 1),∫ 1
0 ξ′′(t)ζ(t)dt <∞




 . (I.5)

Intuitively, one may just think of L as containing of
all reasonable and possibly non-increasing functions ζ :
[0, 1)→ R≥0. The above definition of PIs extends from
U to L . Therefore we may define ALGIs = ALGIs

ξ,h by

ALGIs = inf
ζ∈L

PIs(ζ). (I.6)

Note that ALGIs ≤ OPTIs trivially holds. We have
ALGIs = OPTIs if the infimum in (I.6) is attained by
some ζ ∈ U , and otherwise ALGIs < OPTIs.

Theorem 2 ([7], [66]). Assume there exists ζ∗ ∈ L such
that PIs(ζ∗) = ALGIs. Then for any ε > 0, there exists
an efficient algorithm A : HN → CN such that for some
c = c(ε) > 0,

P[HN (A(HN ))/N ≥ ALGIs − ε] ≥ 1− o(1).
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All of the algorithms in [7], [55], [66], [69] are
computationally efficient. The latter three works use
a class of iterative algorithms known as approximate
message passing (AMP). In particular they require only
a constant number of queries of ∇HN (·); this results
in computation time linear in the description length of
HN when ξ is a polynomial, assuming oracle access
to ζ∗ and the function Φζ∗ (which only need to be
computed once for each (ξ, h)). AMP offers a great
deal of flexibility, and the idea introduced in [55] was
to use it to encode a stochastic control problem which
is in some sense dual to the Parisi formula. Based on
this idea it was shown in [7] that no AMP algorithm of
this powerful but specific form can achieve asymptotic
value ALGIs + ε in the case h = 0. The non-equality
ALGIs < OPTIs also has a natural interpretation in terms
of the optimizer ζ∗ of (I.4). Namely, it implies that ζ∗
is not strictly increasing; see [66] for a more precise
condition called “optimizability” therein. As explained
in [66, Section 6], in the case of even Ising spin glasses
this non-equality exactly coincides with the presence of
an overlap gap property (discussed below) associated
with forms of algorithmic hardness. It is therefore natural
to conjecture that the aforementioned AMP algorithms
achieve the best asymptotic energy possible for efficient
algorithms.

This belief was also aligned with results on the “criti-
cal point complexity” of pure spherical spin glasses with
ξ(x) = xp and h = 0. In this case, the analogous value
ALGSp is the one obtained by [69] and coincides with
the onset of exponentially many bounded index critical
points, as established in [11], [68]. In this case almost all
local optima have energy value ALGSp ± o(1) with high
probability, which suggests from another direction that
exceeding the energy ALGSp might be computationally
intractable. On the other hand, this threshold (see [19])
does not coincide with ALGSp beyond the pure case.

It unfortunately seems difficult to establish any lim-
itations on the power of general polynomial-time algo-
rithms to optimize a spin glass Hamiltonian. However
one might still hope to characterize the power of natural
classes of algorithms that include gradient descent and
AMP. To this end, we define the following distance
on the space HN of Hamiltonians HN . We identify
HN with its disorder coefficients (G(p))p∈2N, which
we concatenate (in an arbitrary but fixed order) into an
infinite vector g(HN ). We equip HN with the (possibly
infinite) distance

‖HN −H ′
N‖2 = ‖g(HN )− g(H ′

N )‖2.

Let BN = {σ ∈ RN : ‖σ‖22 ≤ N} and CN = [−1, 1]N
be the convex hulls of SN and ΣN , which we equip
with the standard ‖·‖2 distance. A consequence of our
main result is that no suitably Lipschitz function A :
HN → CN can surpass the asymptotic value ALGIs.
(And similarly in the spherical case for A : HN → BN

and an analogous ALGSp.)

Theorem 3. Let τ, ε > 0 be constants. For N sufficiently
large, any τ -Lipschitz A : HN → CN satisfies, for some
c = c(ξ, h, ε, τ) > 0,

P
[
HN (A(HN ))/N ≥ ALGIs + ε

]
≤ e−cN .

The algorithms of [7], [55], [66] are O(1)-Lipschitz in
the sense above2. While the approach of [69] is not Lip-
schitz, its performance is captured by AMP as explained
in [7, Remark 2.2]. Hence in tandem with these construc-
tive results, Theorem 3 identifies the exact asymptotic
value achievable by Lipschitz functions A : HN → CN

(assuming the existence of a minimizer ζ∗ ∈ L as
required in Theorem 2). We also give an analogous result
for spherical spin glasses, in which there is no question
of existence of a minimizer on the algorithmic side.
Let us remark that the rate e−cN in Theorem 3 is best
possible up to the value of c, being achieved even for the
trivial algorithm A(HN ) = (1, 1, . . . , 1) which ignores
its input entirely.

Many natural optimization algorithms satisfy the Lip-
schitz property above on a set KN ⊆ HN of inputs
with 1 − exp(−Ω(N)) probability; this suffices just as
well for Theorem 3 thanks to the Kirszbraun extension
theorem. As explained in Section 8 of the full version of
the paper, algorithms with this property include the fol-
lowing examples, all run for a constant (i.e. dimension-
independent) number of iterations or amount of time.

• Gradient descent and natural variants thereof;
• Approximate message passing;
• More general “higher-order” optimization methods

with access to ∇kHN (·) for constant k;
• Langevin dynamics for the Gibbs measure eβHN

with suitable reflecting boundary conditions and any
positive constant β.

In fact we will not require the full Lipschitz assumption
on A, but only a consequence that we call overlap
concentration. Roughly speaking, overlap concentration

2Technically the algorithms in these papers round their outputs to
the discrete set ΣN at the end, making them discontinuous. Removing
the rounding step yields Lipschitz maps A : HN → CN with the
same performance.
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of A means that given any fixed correlation between
the disorder coefficients of H1

N and H2
N , the over-

lap 〈A(H1
N ),A(H2

N )〉/N tightly concentrates around its
mean. This property holds automatically for τ -Lipschitz
A thanks to concentration of measure on Gaussian space.
It also might plausibly be satisfied for some discontinu-
ous algorithms such as the Glauber dynamics.

B. Algorithms and Lower Bounds in Related Problems

As mentioned previously, mean field spin glasses are
just one example of a random optimization problem.
In these problems we are given a random objective
function and we aim to find an input achieving a large
value; examples include random constraint satisfaction
problems, such as random k-SAT and MaxCut, as well
as random perceptron models [35], [73], [74]. In the
large-degree limit, the maxima of the former problems
are known to be described by mean-field spin glasses
[33], [59] (see [6] for an algorithmic analog). Many other
algorithms have been studied for these problems includ-
ing the Gaussian wave function for MaxCut [52] and a
combinatorial algorithm for random k-SAT [28]. Let us
also mention a line of work on the algorithmic Lóvasz
local lemma for approximate counting and sampling of
solutions at low clause density [46], [54], [56].

The aforementioned problems stand in contrast to
signal recovery problems, such as recovering a unit norm
signal v from a noisy matrix observation A = W +
λv⊗2 for W ∼ GOE(N), and the analogous detection
problems, where we must hypothesis test between this
model and a null model where v = 0. For detection
problems, the so-called low degree heuristic has by now
led to several robustly supported predictions for the
onset of computational hardness, based on projecting
the classical likelihood ratio onto a subspace of low
degree polynomials. Indeed, it is often possible to show
tight lower bounds on the performance of low degree
polynomial testing algorithms (see [51] and references
therein). Recovery lower bounds for low degree polyno-
mials can often be similarly shown [65]. However for
random optimization problems, no comparable unifying
picture has been put forward. We discuss several existing
heuristics in the next subsection.

C. The Overlap Gap Property as a Barrier to Algorithms

The main heuristics proposed to understand compu-
tational hardness in random optimization problems have
focused on geometric properties of the solution space.
One version of this connection was proposed in [3],

[29] based on a shattering phase transition: for suitable
random instances of k-SAT, q-coloring, and maximum
independent set, beyond a threshold constraint density
the solution space breaks into exponentially many small
components. Shattering defeats local search heuristics,
suggesting that polynomial-time algorithms should not
succeed. Other predictions based on the clustering,
condensation [50] and freezing [76] transitions have
also been suggested. While intuitively appealing, the
hypothesis that some form of clustering is responsible for
hardness has been shown incorrect in notable examples
– see Subsection I-D for more discussion.

In the past several years, a line of work [21], [25],
[39]–[41], [43]–[45], [63], [75] on the Overlap Gap
Property (OGP) has made substantial progress on rig-
orously linking solution geometry to hardness. A sur-
vey can be found in [38]. Initiated by Gamarnik and
Sudan in [44], this line of work links the absence of
certain constellations of solutions in the super-level set
S(E) = {σ : HN (σ)/N ≥ E} – in its original form, a
pair of solutions a medium distance apart – with the
failure of algorithms with certain stability properties.
Roughly, these works proceed by contradiction, arguing
that any stable algorithm attaining value E would be
able to construct the forbidden constellation. An impor-
tant difference from the predictions above is that the
shattering, clustering, and freezing transitions describe
properties of a typical solution, while an OGP argument
requires the forbidden constellation to not exist at all.

In many of these problems, the classic OGP shows
the failure of stable algorithms above an intermediate
value, smaller than the existential maximum but larger
than the algorithmic limit. The argument stalls because
below this value, S(E) does contain pairs of inputs at
each possible distance. To improve the lower bound,
subsequent works have considered “multi-OGPs," which
consider more complex forbidden structures; this is usu-
ally more difficult but often yields much sharper results.
Indeed, multi-OGPs have been used to show nearly-
tight hardness results for finding maximum independent
sets on G(N, d/N) in the limit N → ∞ followed by
d → ∞ [63], [75] as well as for random k-SAT [21].
In both cases the threshold is attained by a simple local
algorithm, which is shown to be optimal within the larger
class of low degree polynomials.

The overlap gap property has been applied previously
to the spin glass Hamiltonians we consider. For pure
spherical and Ising p-spin glasses where h = 0 and p ≥ 4
is even, ALG < OPT always holds (recall (I.4), (I.6)). In
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such models, [40] showed using a (2-solution) OGP that
low degree polynomials cannot achieve some objective
strictly smaller than OPT, extending a similar hardness
result of [39] for approximate message passing. [41]
extended the conclusions of [40] to Boolean circuits of
depth less than logn

2 log logn . As pointed out in [66, Section
6], these results extend in the Ising case to any mixed
even model where ALGIs < OPTIs. In this paper, we
will use a multi-OGP to show that overlap concentrated
algorithms cannot optimize mixed even spherical or Ising
spin glasses to any objective larger than ALG.

The design of our multi-OGP is a significant departure
from previous work. Previous OGPs and multi-OGPs all
use one of the following three forbidden structures, see
Figure 1.

• Classic OGP: two solutions with medium overlap
[25], [39]–[41], [44].

• Star OGP: several solutions with approximately the
same pairwise overlap [43], [45], [63].

• Ladder OGP: several solutions, where the i-th so-
lution (i ≥ 2) has medium “multi-overlap” with the
first i− 1 solutions [21], [75].

In contrast, the forbidden structure in our multi-OGP
is an arbitrarily complicated ultrametric branching tree of
solutions. We call this the Branching OGP. Informally,
the Branching OGP is the condition that for any fixed
ε > 0, no constellation of configurations with a certain
ultrametric overlap structure has average energy ALG+ε.
The definition involves a family of “ultrametrically cor-
related” Hamiltonians, with one input in the constellation
per Hamiltonian.

We also show that the full strength of the branching
OGP is necessary to establish Lipschitz hardness at all
objectives above ALG, in the sense that any less complex
ultrametric structure fails to be forbidden at an energy
bounded away from ALG, via the following theorem.
Recall that finite ultrametric spaces can be canonically
identified with rooted trees.

Theorem 4 (Informal). Consider a spherical model
ξ without external field such that ALGSp

ξ < OPTSp
ξ ,

and a fixed ultrametric overlap structure T of inputs
whose corresponding rooted tree If T does not contain a
complete depth-D binary tree, then with high probability
there exists a constellation of inputs (σ(v))v∈V (T) with
overlap structure T such that

min
v∈V (T)

HN (σ(v)) ≥ ALGSp + εξ,D

for a constant εξ,D > 0 depending only on ξ, D.

(a) Classic OGP: σ1,σ2 have medium overlap.

(b) Star OGP: many solutions, medium overlaps.

(c) Ladder OGP: medium “multi-overlaps” between σi and
{σ1, . . . ,σi−1}.

(d) Branching OGP: many solutions in an ultrametric tree.

Fig. 1: Schematics of OGP forbidden structures OGP.
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More details can be found in Section 7 of the full
version of the paper.

Remark I.1. To our knowledge, this is the first hardness
result in any random optimization problem that is tight
in the strong sense of characterizing the exact point ALG
where hardness occurs. The aforementioned hardness
results for maximum independent set on G(N, d/N) are
tight in the sense of matching the best algorithms within
a 1+od(1) factor in the limit d→∞, while there is still
a constant factor gap for random k-SAT. In fact, prior to
this work, all outstanding predictions for the algorithmic
threshold in any random optimization problem have only
matched the best algorithms within a 1+ od(1) factor in
the large-degree limit. Consequently we believe that the
branching OGP elucidates the fundamental reason for
algorithmic hardness and may provide a framework for
exact algorithmic thresholds in other random optimiza-
tion problems.

Remark I.2. The significance of ultrametricity in mean-
field spin glasses began with [60] and has played an
enormous role in guiding the mathematical understand-
ing of the low temperature regime in works such as [24],
[47], [57], [64]. Ultrametricity also appears naturally in
the context of optimization algorithms. Indeed in [69,
Remark 6], [5, Section 3.4] and [66, Theorem 4] it was
realized that the aforementioned algorithms achieving
asymptotic energy ALG are capable of more. Namely,
they can construct arbitrary ultrametric constellations of
solutions (subject to a suitable diameter upper bound),
each with energy ALG. Our proof via branching OGP es-
tablishes a sharp converse — the existence of essentially
arbitrary ultrametric configurations at a given energy
level is equivalent to achievability by Lipschitz A.

The aforementioned rigorous results on ultrametricity
in [24], [47], [57], [64] state that the Gibbs measure
eβHN (σ)/Z dσ is, very roughly speaking, supported
on an ultrametric subset S of the cube or sphere. For
large β, this Gibbs measure describes the typical near
maxima of HN . However, the pairwise overlaps in S
may not cover the entire interval [0, 1], which means that
S is highly disconnected. By contrast, the ultrametric
structures we link with algorithms are forced to branch
continuously, which implies that the pairwise overlaps
are dense in [0, 1]. The condition that the Gibbs measure
is supported on a continuously branching tree is a strong
form of full replica symmetry breaking. It was under such
a condition that the works [7], [55], [69] gave algorithms
achieving the value OPT.

D. On Algorithmic Signatures of Hardness

While it has long been believed that algorithmic
hardness in random optimization problems is caused by
a change in the solution geometry, the precise geomet-
ric phenomenon giving rise to hardness has been the
subject of much debate. A popular belief has been that
hardness is caused by a clustering transition. Indeed,
the influential work [3] shows that in random k-SAT
and q-coloring, the maximal constraint density where
algorithms succeed coincides (up to leading order in the
k, q →∞ limit) with a shattering phase transition. The
intuition justifying this belief was that in the shattered
regime, the solution geometry becomes rugged, meaning
that local search and potentially other algorithms fail.
A related conjecture was put forward in [50], that in
random CSPs local Markov chains fail above a different
clustering (or dynamic RSB) threshold.

However, for random CSPs with bounded typical
degree, it is known that algorithms succeed at constraint
densities beyond the clustering transition [4], [76]. More-
over, it was later observed that in random perceptron
models, neither clustering nor shattering coincides with
hardness! Indeed, [14] empirically demonstrated an al-
gorithm that finds solutions even when (according to
physics heuristics) the overall solution space is domi-
nated by well-separated isolated solutions, i.e. clusters
of size one; they conjecture that algorithms find rare
connected clusters of solutions. As rigorous evidence for
this perspective, for the symmetric binary perceptron [2],
[62] proved the isolated solutions phenomenon and [1]
gives an algorithm to construct a cluster of solutions
with macroscopic diameter when the clause density is
small. Still, it was not clear even heuristically what type
of solution cluster should correspond to computational
tractability.

For the spin glass models we consider, our results
show that the signature of algorithmic hardness is not
clustering properties of typical solutions, but the exis-
tence of dense clusters of a particular form. Namely,
optimization of HN to energy E is possible for overlap-
concentrated algorithms if and only if the super-level set
S(E) contains an “everywhere-branching" ultrametric
tree of solutions. We expect that this characterization
generalizes to other random optimization problems.

E. Further Background

We now describe some other results on algorith-
mically optimizing spin glass Hamiltonians. First, in
the worst case over the disorder (G(p))p∈2N, achieving
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any constant approximation ratio to the true optimum
value is known to be quasi-NP hard even for degree 2
polynomials [9], [15]. For the Sherrington-Kirkpatrick
model with ξ(t) = t2/2 on the cube, it was recently
shown to be NP-hard on average to compute the exact
value of the partition function [42]. Of course, these
computational hardness results demand much stronger
guarantees than the approximate optimization with high
probability that we consider.

Another important line of work, alluded to above, has
studied the complexity of the landscape of HN on the
sphere, defined as the exponential growth rate for the
number of local optima and saddle points of finite-index
at a given energy level. These are understood to serve
as barriers to efficient optimization, and a non-rigorous
study was undertaken in [30], [31], [61] followed by a
great deal of recent progress in [10], [11], [49], [53],
[68], [70]. Notably because the true maximum value of
HN is nothing but its largest critical value, the first mo-
ment results of [11] combined with the second moment
results of [68] gave an alternate self-contained proof of
the Parisi formula for the ground state in pure spherical
models. In a related spirit, [23], [26], [27], [34] have
shown that mixed even p-spin Hamiltonians typically
contain exponentially many well-separated near-global
maxima.

Other works such as [17], [18], [20], [22], [32] have
studied natural algorithms such as Langevin and Glauber
dynamics on short (independent of N ) time scales. These
approaches yield (often non-rigorous) predictions for the
energy achieved after a fixed amount of time. However
these predictions involve complicated systems of differ-
ential equations, and to the best of our knowledge it is
not known how to cleanly describe the long-time limiting
energy achieved. Let us also mention the recent results
of [8], [36] showing that the Glauber dynamics for
the Sherrington-Kirkpatrick model mix rapidly at high
temperature. By contrast the problem of optimization
considered in this work is related to the low temperature
behavior of the model.

II. MAIN RESULTS

A. Overlap Concentrated Algorithms

For any p ∈ [0, 1], we may construct two correlated
copies H(1)

N , H(2)
N of HN as follows. Construct three

i.i.d. Hamiltonians H̃ [0]
N , H̃ [1]

N , H̃ [2]
N with mixture ξ, as

in (I.1). For i = 1, 2, let

H(i)
N (σ) = 〈h,σ〉+ H̃(i)

N (σ), where

H̃(i)
N (σ) =

√
pH̃ [0]

N (σ) +
√
1− pH̃ [i]

N (σ).

We say the pair of Hamiltonians H(1)
N , H(2)

N is p-
correlated. Note that corresponding entries in g(1) =
g(H(1)

N ) and g(2) = g(H(2)
N ) are standard Gaussians

with covariance p.

We will determine the maximum energy attained by
algorithms AN : HN → BN or AN : HN → CN (al-
ways assumed to be measurable) obeying the following
overlap concentration property.

Definition II.1. Let λ, ν > 0. An algorithm A = AN

is (λ, ν) overlap concentrated if for any p ∈ [0, 1] and
p-correlated Hamiltonians H(1)

N , H(2)
N ,

P
[∣∣∣R

(
A(H(1)

N ),A(H(2)
N )

)
− χA(p)

∣∣∣ ≥ λ
]
≤ ν;

χA(p) ≡ ER
(
A(H(1)

N ),A(H(2)
N )

)
.

B. The Spherical Zero-Temperature Parisi Functional

We introduce a Parisi functional PSp for the spherical
setting, analogous to the Parisi functional PIs for the
Ising setting introduced in (I.3). Similarly to Theorem 1,
Auffinger and Chen [12], see also [27], characterize the
ground state energy of the spherical spin glass by a
variational formula in terms of this Parisi functional.
Recall the set U defined in (I.2). Let

V (ξ) =

{
(B, ζ) ∈ R+ ×U : B >

∫ 1

0
ξ′′(t)ζ(t)dt

}
.

Define the spherical Parisi functional PSp = PSp
ξ,h :

V (ξ)→ R by

PSp(B, ζ) =
h2

2Bζ(0)
+

∫ 1

0

(
ξ′′(t)

2Bζ(t)
+

Bζ(t)

2

)
dt

(II.1)
where for t ∈ [0, 1],

Bζ(t) = B −
∫ 1

t
ξ′′(q)ζ(q)dq.

Theorem 5 ([12, Theorem 10]). The following identity
holds.

OPTSp = inf
(B,ζ)∈V (ξ)

PSp(B, ζ). (II.2)

The infimum is attained at a unique (B∗, ζ∗) ∈ V (ξ).
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C. The Optimal Energy of Overlap Concentrated Algo-
rithms

We defined ALGIs in (I.6) by a non-monotone exten-
sion of the variational formula in (I.4). We can similarly
define ALGSp by a non-monotone extension of (II.2).
Recall the set L defined in (I.5). Let K (ξ) ⊇ V (ξ)
denote the set

K (ξ) =

{
(B, ζ) ∈ R+ ×L : B >

∫ 1

0
ξ′′(t)ζ(t)dt

}
.

The Parisi functional PSp can clearly be defined on
K (ξ). We define ALGSp = ALGSp

ξ,h by

ALGSp = inf
(B,ζ)∈K (ξ)

PSp(B, ζ). (II.3)

Note that ALGSp ≤ OPTSp trivially.

We are now ready to state the main result of this
work. We show that for any mixed even spherical or
Ising spin glass, no overlap concentrated algorithm can
attain an energy above the algorithmic thresholds ALGSp

and ALGIs with nontrivial probability.

Theorem 6 (Main Result). Consider a mixed even
Hamiltonian HN with model (ξ, h). Let ALG = ALGSp

(resp. ALGIs). For any ε > 0 there are λ, c,N0 > 0
depending only on ξ, h, ε such that the following holds
for N ≥ N0 and ν ∈ [0, 1]. For any (λ, ν) overlap
concentrated A = AN : HN → BN (resp. CN ),

P
[
1

N
HN (A(HN )) ≥ ALG+ ε

]
≤ e−cN + (ν/λ)c.

Remark II.1. If A is τ -Lipschitz, (λ, ν) overlap concen-
tration holds with ν = exp(−cλ,τN) by concentration
of measure on Gaussian space. . Hence in this case the
probability on the right-hand side above is exponentially
small in N . The same property holds when A is τ -
Lipschitz on a set of inputs with 1 − exp(−Ω(N))
probability as a consequence of the Kirszbraun extension
theorem.

In tandem with Theorem 2 and its spherical analogue
Theorem 7 below, Theorem 6 exactly characterizes the
maximum energy attained by overlap concentrated al-
gorithms (again with the caveat on the algorithmic side
in the Ising case that a minimizer γ∗ ∈ L exists in
Theorem 2).

Theorem 7 ([7], [66]). For any ε > 0, there exists an
efficient and Oε(1)-Lipschitz AMP algorithm A : HN →
BN such that for some c = c(ε) > 0,

P[HN (A(HN ))/N ≥ ALGSp − ε] ≥ 1− e−cN .

For spherical spin glasses, the value of ALGSp is
explicit and is given by the following proposition.

Proposition II.2. If h2 + ξ′(1) ≥ ξ′′(1), then

ALGSp = (h2 + ξ′(1))1/2,

and the infimum in (II.3) is uniquely attained by B =
(h2 + ξ′(1))1/2, ζ = 0. Otherwise,

ALGSp = q̂ξ′′(q̂)1/2 +

∫ 1

q̂
ξ′′(q)1/2dq

where q̂ ∈ [0, 1) is the unique number satisfying h2 +
ξ′(q̂) = q̂ξ′′(q̂). If h > 0, the infimum in (II.3) is uniquely
attained by B = ξ′′(1)1/2 and

ζ(q) = I{q ≥ q̂} ξ′′′(q)

2ξ′′(q)3/2
= −I{q ≥ q̂} d

dq
ξ′′(q)−1/2.

(II.4)
If h = 0, the infimum is achieved by B = ξ′′(1)1/2 and
ζ given by (II.4) in the limit as q̂ → 0+.

Note that ALGSp = OPTSp if and only if the infimum
in (II.3) is attained at a pair (B, ζ) ∈ V (ξ). Thus,
Proposition II.2 implies that ALGSp = OPTSp if and
only if h2 + ξ′(1) ≥ ξ′′(1) or ξ′′(q)−1/2 is concave on
[q̂, 1]. Interestingly, in the case h2+ ξ′(1) > ξ′′(1), [16],
[37] showed that HN has “trivial complexity”: no critical
points on SN with high probability except for the unique
global maximizer and minimizer.

In the important case of the pure p-spin model, with
h = 0 and ξ(x) = xp for p ≥ 4 even,

ALGSp =

∫ 1

0
ξ′′(q)1/2dq = 2

√
p− 1

p
.

This coincides with the threshold E∞(p) identified in
[11]. As conjectured in [11] and proved in [68], with high
probability an overwhelming majority of local maxima
of HN on SN have energy value E∞(p) ± o(1). This
suggests that it may be computationally intractable to
achieve energy at least E∞(p) + ε for any ε > 0; our
results confirm this hypothesis for overlap concentrated
algorithms.

Remark II.2. Our results generalize with no changes in
the proofs to arbitrary external fields h = (h1, . . . , hN )
which are independent of H̃N — one only needs to
replace h2 by ‖h‖2

N in (II.1) and replace Φζ(0, h) by
1
N

∑N
i=1 Φζ(0, hi) in (I.3). This includes for instance the

natural case of Gaussian external field h ∼ N (0, IN ).
Here A can depend arbitrarily on h as long as overlap
concentration holds conditionally on h.
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III. IDEAS OF THE PROOF

Our proof has two main pieces, the first of which is
relatively conceptual and the second of which is more
technical. The first stage is to show that an overlap
concentrated A allows the construction of an arbitrary
ultrametric constellation of outputs. To do this, we apply
A to a large constant number of coupled Hamiltonians
H(u)

N for u ∈ [k]D. We think of u as ranging over the
kD leaves of a complete k-ary tree of depth D. The
Hamiltonians H(u)

N have a jointly Gaussian structure, and
each has the marginal law of HN . The key property is
ultrametric correlation between different Hamiltonians.
Namely we let H(u)

N and H(v)
N to be pu∧v-correlated,

where u ∧ v is the depth of the least common ancestor
of u and v, and

0 = p0 ≤ p1 ≤ · · · ≤ pD = 1

is an arbitrary increasing sequence. By Definition II.1,
for any overlap concentrated A, there exists χ such
that the outputs σ(u) = A(H(u)

N ) satisfy with high
probability

〈σ(u),σ(v)〉/N ≈ qu∧v = χ(pu∧v), ∀u, v.

By the intermediate value theorem, given A we may
choose any sequence

χ(0) = q0 ≤ q1 ≤ · · · ≤ qD = 1

and find (p0, . . . , pD) such that χ(pd) = qd for 0 ≤ d ≤
D. Assuming for simplicity that χ(0) = 0, we do this
for qd = d/D with large D.

Consequently, if A outputs points with energy at
least ALG + ε, then A run on the above family of
ultrametrically correlated Hamiltonians will output the
forbidden structure above, a contradiction. Some addi-
tional complications are created by the fact that χ(0) =
‖E[A(HN )]‖2 may be arbitrary, and that A(HN ) may
be in the interior of CN (or in the spherical case, BN ).
The former issue requires us to control the maximum
average energy of ultrametric constellations of points that
all have approximately a fixed overlap with E[A(HN )].
We deal with the latter issue by composing A with an
additional phase that grows each output of A into its
own ultrametric tree of points in ΣN (or SN ), so that
the resulting set of points has the forbidden ultrametric
structure.

Given the above, the most technical part of the proof is
to show that, for any ε > 0, there does not exist a suitable
ultrametric constellation of inputs (to an appropriate
family of ultrametrically correlated Hamiltonians) with

average energy ALG+ ε. Using a version of the Guerra-
Talagrand interpolation, which we take to zero tempera-
ture, we derive an upper bound for this average energy.
This upper bound is a multi-dimensional analogue of the
Parisi formula, and depends on an essentially arbitrary
increasing function ζ : [0, 1] → R+ (which we are
free to minimize over). We show that for the above
symmetric branching trees, the resulting estimate can be
upper bounded by P(κζ). Here P is the Parisi functional
PIs or its spherical analogue PSp, and κ is a decreasing
function which is constant on each interval [qd, qd+1).
By taking qd a fine enough discretization of [0, 1], the
function κ can be arranged to decrease as rapidly as
desired. As a result, the functions κζ are dense in the
space L of reasonable decreasing functions. Thus, we
may choose a tree and ζ such that P(κζ) is arbitrarily
close to ALG.

The full version of this paper is available as an online
preprint at https://arxiv.org/abs/2110.07847 .
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