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Abstract—We consider the classic question of state tomogra-
phy: given copies of an unknown quantum state ρ ∈ Cd×d, output
ρ̂ which is close to ρ in some sense, e.g. trace distance or fidelity.
When one is allowed to make coherent measurements entangled
across all copies, Θ(d2/ε2) copies are necessary and sufficient
to get trace distance ε [18], [29]. Unfortunately, the protocols
achieving this rate incur large quantum memory overheads that
preclude implementation on near-term devices. On the other
hand, the best known protocol using incoherent (single-copy)
measurements uses O(d3/ε2) copies [24], and multiple papers
have posed it as an open question to understand whether or
not this rate is tight [6], [18]. In this work, we fully resolve
this question, by showing that any protocol using incoherent
measurements, even if they are chosen adaptively, requires
Ω(d3/ε2) copies, matching the upper bound of [24]. We do so
by a new proof technique which directly bounds the “tilt” of
the posterior distribution after measurements, which yields a
surprisingly short proof of our lower bound, and which we believe
may be of independent interest.

While this implies that adaptivity does not help for tomography
with respect to trace distance, we show that it actually does help
for tomography with respect to infidelity. We give an adaptive
algorithm that outputs a state which is γ-close in infidelity to
ρ using only Õ(d3/γ) copies, which is optimal for incoherent
measurements. In contrast, it is known [18] that any nonadaptive
algorithm requires Ω(d3/γ2) copies. While it is folklore that in
2 dimensions, one can achieve a scaling of O(1/γ), to the best of
our knowledge, our algorithm is the first to achieve the optimal
rate in all dimensions.

Index Terms—Quantum learning, quantum state tomography,
adaptive algorithm, single-copy measurements

I. INTRODUCTION

In this paper, we consider the problem of quantum state
tomography. Here, the algorithm is given n copies of an
unknown d-dimensional quantum mixed state ρ, and the goal
is to output ρ̂ which is close to ρ in some sense.1 There
are several standard ways to measure closeness used in the
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1Here and throughout the introduction, we will consider the setting where
the success probability is some fixed constant.

literature. Arguably the two most important and well-studied
notions are that of trace distance and infidelity2, which are
the natural quantum analogues of total variation distance and
Hellinger distance, respectively. From a mathematical point of
view, tomography is arguably the most fundamental quantum
state learning task, and can also be seen as the natural non-
commutative generalization of the classical problem of esti-
mating a discrete distribution from samples. From a practical
point of view, state tomography has many applications to the
verification of quantum technologies [5].

In the coherent setting, that is, when the learner is allowed
to make arbitrary measurements to the product state ρ⊗n, the
situation is very well-understood. [18] demonstrated that for
this problem, n = O(d2 log(d/ε)/ε2) copies suffice to learn a
state to error ε in trace distance, and n = Ω(d2/ε2) copies are
necessary. Concurrently, [29] removed the logarithmic factor
in the upper bound, thus establishing that the optimal rate
for this problem is n = Θ(d2/ε2). The aforementioned paper
of [18] also showed that, up to a single logarithmic factor,
Ω(d2/γ) copies are sufficient and necessary to learn a state
to infidelity γ. Tight bounds are also known in many other
settings, including for low rank states [18], [29], [30], as well
as for a variety of related testing problems [3], [28].

However, in virtually all cases, the upper bounds that
achieve the optimal rates require heavily entangled measure-
ments. These measurements require all n copies of ρ to be
prepared simultaneously, which—in addition to the complex-
ity of preparing the measurements themselves—renders such
approaches currently impractical. In light of this, there has
been a recent surge of interest in the incoherent setting. Here,
the algorithm is restricted to only making measurements of
a single copy of ρ at a time. While such measurements are
strictly weaker than general entangled measurements, they are
much more practical and can be performed on real world
quantum computers [21].

One of the main difficulties that arises when dealing
with incoherent measurements is understanding the power
of adaptivity. In general, an algorithm that uses incoherent
measurements can sequentially measure each copy of ρ, and

2The fidelity between ρ,σ is F (ρ,σ) = tr(
√√

ρσ
√
ρ)2, and the infidelity

is 1− F (ρ,σ).
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moreover can choose how to measure the i-th copy of ρ based
on the results of the previous i−1 measurements. We say such
an algorithm is adaptive. In contrast, a nonadaptive algorithm
must specify all of its measurements ahead of time.

Clearly, adaptive measurements are strictly more general
than nonadaptive ones. On the other hand, to date, it has
been unclear whether or not adaptivity actually yields better
rates for any natural quantum learning problems. In large part,
this is because until recently, it was not known how to obtain
tight lower bounds against adaptive algorithms. Existing lower
bound frameworks in the literature could only prove lower
bounds against nonadaptive measurements; such algorithms
are significantly easier to work with, and existing techniques
from the classical learning literature could be adapted to the
quantum setting.

However, starting with recent work of [6], there have
been a flurry of works giving lower bounds against adaptive
algorithms for a number of natural quantum learning prob-
lems. Now, lower bounds are known for a number of testing
problems, such as mixedness testing and identity testing [6],
[9], [10], shadow tomography [7], [8], [22], purity testing [1],
[8]. In all of these cases, the lower bound against adaptive
algorithms matches the best nonadaptive bound (up to poly-
logarithmic factors), so for all of these problems, adaptivity is
not necessary to achieve optimal rates.

In contrast, for state tomography, progress has been slow
in understanding the power of adaptivity. It is known that
nonadaptively, Θ(d3/ε2) copies are necessary and sufficient
for learning to error ε in trace distance [18], [24], and
Θ(d3/γ2) copies are necessary and sufficient to learn to
infidelity γ [18]. Similarly, as mentioned above, tight rates
are known for the fully coherent setting (up to log factors).
But nothing nontrivial is known in the adaptive setting: prior
to our work, we did not know any adaptive algorithms that
improve upon the best known nonadaptive rates, nor did we
know any lower bounds against adaptive algorithms which
were better than those known against coherent algorithms.
Indeed, understanding the power of adaptive but incoherent
measurements for quantum tomography has been posed as an
open question by multiple papers [6], [18].

This problem is interesting on both fronts. From the lower
bounds perspective, it seems that fundamentally new ideas
are necessary to develop lower bounds for tomography. This
is because all previous lower bound techniques for adaptive
algorithms only held for testing problems, or via reductions
to testing problems. These techniques will consequently fail
for tomography, which is fundamentally a learning problem.
From the upper bounds perspective, tomography in infidelity
is one of the few natural candidates for a quantum learning
problem where adaptive algorithms are provably better than
nonadaptive ones. Indeed, it is folklore that in 2 dimensions,
there are adaptive algorithms which achieve a scaling of
O(1/γ), although we could not find a reference to a full proof
of this fact.

a) Our Results.: In this paper, we fully resolve the copy
complexity of quantum state tomography with (potentially

adaptively chosen) incoherent measurements, for both learning
in trace distance and learning in infidelity. For trace distance,
our main result is the following:

Theorem I.1 (Informal, see Theorem III.11). With incoherent
measurements, Ω(d3/ε2) copies are necessary for tomography
of d-dimensional states to ε error in trace distance.

This matches the upper bound given by nonadaptive algo-
rithms, and therefore for this problem, adaptivity provably
does not help. In contrast, for learning in infidelity, our main
result is the following:

Theorem I.2 (Informal, see Theorem VI.1). With adaptive,
incoherent measurements, Õ(d3/γ) copies3 are sufficient for
tomography of d-dimensional states to γ infidelity.

Because trace distance and fidelity are related via 1 −
F (ρ,σ) ≤ ‖ρ − σ‖tr ≤

√
2(1− F (ρ,σ)) [16], Theorem I.1

implies that Ω(d3/γ) copies are necessary for tomography
in infidelity, so up to polylogarithmic factors, our upper
bound in Theorem I.2 settles the complexity of tomography
in infidelity with incoherent measurements. In contrast, [18]
showed that Ω(d3/γ2) copies are necessary with nonadaptive
measurements, so the rate in Theorem I.2 is provably better
than what can be achieved with nonadaptive measurements,
and thus provides arguably the first natural instance of a
separation between the power of adaptive versus nonadaptive
measurements.

b) Our Techniques.: Here, we give a very high level
discussion of our proof techniques for Theorems I.1 and I.2.
For a more detailed discussion, see Section II.

We begin with the lower bound. The main difficulty with
proving lower bounds for state tomography with incoherent
measurements is that essentially all the existing lower bound
frameworks in the literature were fundamentally for testing
problems. In such settings, it suffices to demonstrate hardness
for a point-versus-mixture distinguishing task, where the goal
is to distinguish between the case where the unknown mixed
state is a single point versus the case where it is drawn
from a mixture over alternate hypotheses. Such a setup is
mathematically nice because the resulting likelihood ratios
have a (relatively) simple multilinear form. However, for
learning tasks, no such reduction exists; indeed, it is more
natural to demonstrate hardness for a mixture-versus-mixture
distinguishing task, but here the resulting likelihood ratios are
much more complicated. Indeed, this phenomena seems to
appear more generally in a variety of other (classical) learning
settings, see e.g. [31].

We avoid this by directly bounding how much information
the algorithm can learn from incoherent measurements, a
technique which we believe may be of independent interest.
We demonstrate that, for a carefully chosen prior on mixed
states, the posterior distribution of the algorithm after o(d3/ε2)
incoherent measurements is anti-concentrated around the true

3We use f = Õ(g) to denote that f = C · g · logc(g)) for some absolute
constants c, C > 0.
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mixed state. It is perhaps surprising that we are able to directly
bound the behavior of the posterior distribution, but it turns
out that the “tilt” caused by the measurements can be upper
bounded “by hand”, and then the required anti-concentration
follows from classical results in random matrix theory.

We now turn our attention to the upper bound. First, let
us briefly discuss why adaptivity may help for learning in
infidelity. At a very high level, learning in infidelity seems to
correspond to learning the eigenvalues and eigenvectors of the
density matrix to some degree of relative accuracy. However,
nonadaptive algorithms are unable to do this easily: the small
eigenspaces are hidden by the “noise” caused by the large
eigenvalues. On the other hand, adaptive algorithms can learn
the large eigenspaces, then project them away to reveal the
information about the smaller eigenvalues.

The main challenge with this approach is dealing with the
error accumulation in the infidelity as we iterate this process.
In particular, we cannot exactly learn the large eigenspaces,
and so we must control the error the projections incur. In
constant dimensions, one can directly brute force the cal-
culations, but in high dimensions, the calculations become
intractable. Our main technical contribution for this part of the
paper is a new technique to bound the fidelity between two
noncommuting states, by carefully guessing a matrix square
root for their symmetrized product.

c) Comparison to Prior Work.: As discussed above, our
techniques are very different from the ones used to prove lower
bounds for quantum testing in the incoherent measurements
setting [1], [6]–[10], [12], [22]. Here we briefly mention the
sole commonalities between our proof and these works.

First, we use the helpful abstraction of adaptive algorithms
as given by decision trees. This is common to all aforemen-
tioned works on incoherent measurements, but here we clarify
a common misconception: the tree representation is not so
much a central technical ingredient as it is a notational neces-
sity for keeping track of the internal state of the algorithm.

Secondly, similar to [9], in place of an ensemble based
on Haar-random unitaries, we work with a suitable Gaussian
approximation. While the former is the construction of choice
for many known quantum property testing lower bounds, it
was observed in [9] that the latter is more amenable to
certain high-degree moment calculations that arise in the
proofs of these lower bounds. We emphasize however that
such moment calculations are not relevant to the current work,
and the Gaussian ensemble turns out to be convenient for
fairly different reasons, namely certain density and isotropy
properties (see Section II-B).

The similarities between our techniques and previous work
essentially end here. In particular, our main lower bound
strategy (which allows us to directly reason about the change
in the posterior distribution) is to our knowledge completely
novel, and we believe it may be of independent interest.

d) Additional Related Work.: Apart from the aforemen-
tioned bounds for state tomography and quantum state testing,
there have also been lower bounds in the incoherent setting
when the measurements are partially adaptive or come from

a set of bounded size [25], and when the measurements are
Pauli [15].

We also note there is a large literature on understanding the
power that adaptivity affords for tomography in infidelity in
the asymptotic setting [4], [13], [20], [26]. They obtain rates
that are linear in 1/γ, but unlike our Theorem I.2, these results
get some unspecified dependence on d and/or only apply to
the regime of d = O(1).

[32] gives upper and lower bounds for pure state tomog-
raphy in a different setting where instead of getting copies of
the unknown state, one has access to a unitary which prepares
the state.

Finally, the recent work of [11] gives a constant-factor
separation between non-adaptive and adaptive algorithms for
quantum hypothesis selection, as well as a polynomial separa-
tion for a problem in which one is promised that an unknown
state can be diagonalized in one of m known bases and would
like to approximate the state in trace distance by measuring
copies. Their separation is with respect to the parameters d
and m, rather than ε as in our work.

e) Concurrent work.: Our proof of Theorem I.2 directly
generalizes to give that Õ(dr2/γ) measurements are sufficient
when the unknown state has rank-r. In concurrent and inde-
pendent work, Flammia and O’Donnell [14] also obtain, up
to polylogarithmic factors, an upper bound of O(dr2/γ) for
tomography with adaptive single-copy measurements. Their
guarantee is somewhat stronger as their error is measured
in quantum relative entropy, which is an upper bound on
infidelity. They also obtain a bound of Õ(d3/2r3/2/γ) for
the same problem where γ is given by Bures chi-squared
divergence, which also upper bounds infidelity.

II. TECHNICAL OVERVIEW

a) Notation.: In addition to standard big-O notation, we
sometimes also use the notation f ! g (resp. f " g) to denote
that there exists an absolute constant C > 0 such that f ≤ Cg
(resp. f ≥ Cg).

A. Preliminaries
Throughout, let ρ denote a quantum state. We recall that a

quantum state is a psd Hermitian matrix in Cd×d with trace
1.

a) Measurements.: We now define the standard measure-
ment formalism, which is the way algorithms are allowed to
interact with a quantum state ρ.

Definition II.1 (Positive operator valued measurement
(POVM), see e.g. [27]). A positive operator valued measure-
ment M is a finite collection of psd matrices M = {Mz}z∈Z
satisfying

∑
z Mz = Id. When a state ρ is measured using M,

we get a draw from a classical distribution over Z , where we
observe z with probability tr(ρMz). Afterwards, the quantum
state is destroyed.

In this work we assume that all POVMs used are rank-1. It is
a standard fact that this is without loss of generality (see e.g.
[8, Lemma 4.8]). We will sometimes represent a sequence of
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n measurement outcomes by x = (x1, . . . , xn) to denote that
in the i-th step, the outcome that was observed corresponds to
a POVM element which is a scalar multiple of xix

†
i .

b) Incoherent Measurements.: An algorithm using in-
coherent measurements operates as follows: given n copies
of ρ, it iteratively measures the i-th copy using a POVM
(which could depend on the results of previous measurements),
records the outcome, and then repeats this process on the
(i+1)-th copy. After having performed all n measurements, it
must output an estimate of ρ based on the (classical) sequence
of outcomes it has received. Formally, such an algorithm can
be represented as a tree, see Definition III.1.

B. Lower Bound
We begin with a heuristic calculation that explains how

the threshold d3/ε2 enters our lower bound. We assume
heuristically that we have a discrete set S of quantum states
ρ ∈ Rd×d satisfying the following properties.

a) Near-mixedness: for all ρ ∈ S , all eigenvalues of ρ lie in
[0.9/d, 1.1/d].

b) Packing: for all ρ, ρ′ ∈ S , ‖ρ− ρ′‖tr ≥ 2ε.
c) Density: for a 1− o(1) fraction of ρ0 ∈ S , the neighbor-

hood

N(ρ0) = {ρ ∈ S : ‖ρ− ρ0‖tr ≤ 100ε}

has cardinality |N(ρ0)| ≥ exp(Ω(d2)).
d) Isotropy: for a 1−o(1) fraction of ρ0 ∈ S , the distribution

γ(ρ0) = unif(N(ρ0)) is isotropic around ρ0, in the sense
that

Eρ∼γ(ρ0)[ρ] = ρ0, (1)
Eρ∼γ(ρ0)[(v

†(ρ− ρ0)v)
2] ! ε2/d3, ∀‖v‖2 = 1. (2)

(The below argument still works if (1) holds only ap-
proximately, but having it hold with equality simplifies
the discussion.)

We expect this can be achieved by a random construction. The
scale exp(Ω(d2)) arises from the dimension of the ambient
space of quantum states, and the right-hand side ε2/d3 of
(2) is the scale we get if we replace γ(ρ0) with an isotropic
distribution around ρ0 with appropriate trace distance, for
example that of ρ = ρ0 + 100ε

d U†ZU for Haar random
U ∈ Rd×d and Z = diag(1, . . . ,−1, . . .). We expect the
density and isotropy conditions to hold for all ρ0 ∈ S not
too close to the boundary of the point cloud S .

Assuming such S exists, we will show that it is not possible
to learn ρ0 sampled from the hard distribution µ = unif(S).
Because S is a 2ε-packing in trace distance, learning ρ0 ∈ S
to ε in trace distance amounts to recovering ρ0.

The central idea of the proof is that, if ρ0 satisfies the
mixedness and isotropy conditions (a), (d), each measurement
improves the log likelihood ratio of ρ0 to N(ρ0) by at
most O(ε2/d). So, if ρ0 satisfies the density condition (c),
after observing n ' d3/ε2 measurements the improvement
exp(O(nε2/d)) in the likelihood ratio is not enough to over-
come the cardinality exp(Ω(d2)) of N(ρ0). Thus the posterior

distribution of ρ0 still places much more mass on N(ρ0) than
ρ0 itself.

More concretely, let the observations (from adaptive
POVMs) of ρ0 be x = (x1, . . . , xn) and denote the posterior
distribution of ρ0 by νx(·). Then,

νx(N(ρ0))

νx(ρ0)
=

∑

ρ∈N(ρ0)

n∏

i=1

x†
iρxi

x†
iρ0xi

= |N(ρ0)|Eρ∼γ(ρ0)

n∏

i=1

x†
iρxi

x†
iρ0xi

(3)

≥ exp

{
Ω(d2) +

n∑

i=1

Eρ∼γ(ρ0) log

(
1 +

x†
i (ρ− ρ0)xi

x†
iρ0xi

)}
,

(4)

where the last step uses Jensen’s inequality. For suitably small
ε, Taylor expanding log(1 + x) gives

Eρ∼γ(ρ0) log

(
1 +

x†
i (ρ− ρ0)xi

x†
iρ0xi

)

≥ Eρ∼γ(ρ0)
x†
i (ρ− ρ0)xi

x†
iρ0xi

− Eρ∼γ(ρ0)
2

3

(
x†
i (ρ− ρ0)xi

x†
iρ0xi

)2

≥ −d2 Eρ∼γ(ρ0)[(x
†
i (ρ− ρ0)xi)

2] (by (a))
" −ε2/d (by (2)).

The hypothesis n ' d3/ε2 implies nε2/d ' d2, so (4) is
exp(Ω(d2)). Thus the posterior mass on ρ0 is

νx(ρ0) ≤
νx(ρ0)

νx(N(ρ0))
≤ exp(−Ω(d2))

and learning ρ0 is impossible.
However, it is hard to make the above approach rigorous,

due to the difficulty of constructing a point set S with the
required density and isotropy properties. We sidestep this
issue by instead working with a continuous prior µ, namely a
perturbation of the maximally mixed state 1

dId by a suitable
trace-centered Gaussian matrix. In this approach, in lieu of
showing νx(N(ρ0))/νx(ρ0) is large, our goal will be to show
νx(B(ρ0, Cε))/νx(B(ρ0, ε)) is large, where B(ρ0, ε) denotes
a trace distance ball of radius ε and C is a large constant.
In the new proof, γ(ρ0) will be µ restricted to B(ρ, Cε),
then sub-sampled to be transparently isotropic. Being able
to sub-sample a measure in this way is a key advantage of the
continuous setup.

The central idea of the proof is still that each mea-
surement improves the log likelihood ratio by O(ε2/d),
which is not enough to overcome the volume ratio
|B(ρ0, Cε)|/|B(ρ0, ε)| = CΘ(d2), which serves as the con-
tinuous analogue of the cardinality of N(ρ0) from the earlier
argument. Although sub-sampling incurs factors that decrease
our estimate of νx(B(ρ0, Cε))/νx(B(ρ0, ε)) by a exp(Ω(d2))
factor, this is overcome by setting C to be a suitably large
constant.
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C. Upper Bound
The first observation about infidelity compared to trace

distance is that infidelity is much more sensitive to errors
on smaller eigenvalues. For instance, consider two states
ρ = diag(ρ1, . . . , ρd) and ρ′ = diag(ρ′1, . . . , ρ′d) where
ρ′i = ρi + ∆i for all i ∈ [d]. When the ∆i are sufficiently
small (to ensure the following power series expansion is a
good approximation), we have

1− F (ρ, ρ′) = 1−
d∑

i=1

√
ρi(ρi +∆i)

≈ 1−
d∑

i=1

(
ρi −

∆i

2
− ∆2

i

4ρi

)
=

d∑

i=1

∆2
i

4ρi
.

The ρi in the denominator means that it is necessary to
get better accuracy on smaller eigenvalues. Heuristically, this
means to get infidelity γ we should need to learn eigenvalues
of size ∼ σ to accuracy

√
γσ/d.

In the classical setting of estimating a discrete distribution,
if we simply take the empirical point estimates, we naturally
get finer additive accuracy for the lower probability points.
However, in the quantum setting this is not the case because
we do not know the right basis to measure in. If we run a
nonadaptive tomography algorithm on an unknown state ρ
with d3/γ samples, we can (see Theorem V.4) learn a state ρ̂
such that ‖ρ− ρ̂‖op ≤

√
γ
d . This would suffice for learning to

infidelity γ if the eigenvalues of ρ are all Ω(1/d). However,
if ρ has small eigenvalues, they can be dominated by the
estimation error in ρ̂.

Our learning algorithm overcomes this issue by running
logarithmically many rounds. In each round, we run a standard
tomography algorithm and argue that this accurately learns
the large eigenvalues and corresponding eigenspace. Then
we can essentially project out this eigenspace and restrict to
the orthogonal complement in all future measurements using
appropriately designed POVMs (see Definition V.6). This lets
us focus on the smaller eigenvalues and learn those to finer
accuracy. We can then repeat by running a tomography algo-
rithm on the orthogonal complement, learning and projecting
out the largest remaining eigenvalues and so on. At the end
of the algorithm we will have learned projection matrices
Π1 = B1B'

1 , . . . ,Πt = BtB'
t (where Bi has columns

forming an orthonormal basis of the corresponding subspace)
where t ∼ log(d/ε) and an estimator ρ̂ that is diagonal in the
basis given by {B1, . . . , Bt}. Let di be the dimension of Bi

so d = d1 + · · ·+ dt. In this basis, we can write

ρ̂ =





ρ̂1
ρ̂2

. . .
ρ̂t





ρ =





ρ1 E1

ρ2 E2

E'
1 E'

2

. . .
ρt





where ρi, ρ̂i ∈ Rdi×di , Ei ∈ Rdi×(di+1+···+dt). The guaran-
tees of our tomography algorithm give us appropriate scale-
sensitive bounds on ‖ρ̂i − ρi‖op and ‖Ei‖op. We can then
bound the infidelity between ρ, ρ̂ in two stages. We first bound
the infidelity coming from the differences on the diagonal
blocks i.e. 1 − F (ρ̂, ρdiag) where ρdiag = diag(ρ1, . . . , ρt)
(see Lemma VI.5). We then bound the infidelity coming from
the off-diagonal blocks (see Lemma VI.6) This is the main
technical component of the proof. The matrix square root
that appears in the expression for fidelity can become very
complicated and unwieldy. Instead, we bound it by carefully
guessing a matrix that lower bounds the square root (see
Lemma VIII.4).

III. PROOF OF LOWER BOUND

In this section we prove Theorem III.11, our hardness result
for tomography in trace distance.

A. Lower Bound Framework

We begin by reviewing a standard framework for represent-
ing an adaptive algorithm as a tree.

Definition III.1 (Tree representation, see e.g. [8]). Fix an
unknown d-dimensional mixed state ρ. An algorithm for state
tomography that only uses n incoherent, possibly adaptive,
measurements of ρ can be expressed as a pair (T ,A), where
T is a rooted tree T of depth n satisfying the following
properties:
• Each node is labeled by a string of vectors x = (x1, . . . , xt),

where each xi corresponds to measurement outcome ob-
served in the i-th step.

• Each node x is associated with a probability pρ(x) corre-
sponding to the probability of observing x over the course
of the algorithm. The probability for the root is 1.

• At each non-leaf node, we measure ρ using a rank-1 POVM{
ωxd · xx†}

x
to obtain classical outcome x ∈ Sd−1. The

children of x consist of all strings x′ = (x1, . . . , xt, x) for
which x is a possible POVM outcome.

• If x′ = (x1, . . . , xt, x) is a child of x, then

pρ(x′) = pρ(x) · ωxd · x†ρx . (5)

• Every root-to-leaf path is length-n. Note that T and ρ induce
a distribution over the leaves of T .

A is a randomized algorithm that takes as input any leaf x
of T and outputs a state A(x). The output of (T ,A) upon
measuring n copies of a state ρ is the random variable A(x),
where x is sampled from the aforementioned distribution over
the leaves of T .

We also recall the definition of the Gaussian Orthogonal
Ensemble (GOE) and define a trace-centered variant, which
will be the basis of our hard distribution.

Definition III.2 (GOE, Trace-centered GOE). A sample G ∼
GOE(d) is a symmetric matrix with independent Gaussians on
and above the diagonal, with Gi,i ∼ N (0, 2/d) and Gi,j ∼
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N (0, 1/d) for i < j. A sample G′ ∼ GOE∗(d) is sampled by
G′ = G− tr(G) where G ∼ GOE(d).

The trace-centered GOE also features in the hard instance
of [9] for state certification, but as discussed in Section I,
our reason for working with this ensemble is very different
from that of [9]. We recall the following standard fact about
extremal eigenvalues of the GOE matrix.

Lemma III.3 ( [8, Lemma 6.2]). If G ∼ GOE∗(d), then
‖G‖op ≤ 3 with probability 1− e−Ω(d).

B. Construction of Hard Distribution

We construct the following hard distribution µ of quantum
states. Let U ⊆ Rd×d be the affine subspace of symmetric
matrices with trace 1 and U0 ⊆ Rd×d be the linear subspace of
symmetric matrices with trace 0. These spaces inherit the inner
product of Rd×d, which defines Lebesgue measures LebU and
LebU0 on them. Let σ = 1

100 be a small constant. A sample
ρ ∼ µ is generated by

ρ =
1

d
(Id + σG),

where G is a sample from GOE∗(d) conditioned on ‖G‖op ≤
4. Note that such matrices are clearly psd and thus valid
quantum states. Concretely, µ has density (with respect to
LebU )

µ(ρ) =
1

Z
exp

(
− d3

4σ2
‖ρ− 1

d
Id‖2F

)
{ρ ∈ Ssupp}

Ssupp =

{
ρ ∈ U : ‖ρ− 1

d
Id‖op ≤

4σ

d

}
.

where Z is a normalizing constant. Further define a set of
“good” states

Sgood =

{
ρ ∈ U : ‖ρ− 1

d
Id‖op ≤

3σ

d

}
,

which corresponds to the event ‖G‖op ≤ 3. Due to
Lemma III.3, µ(Sgood) ≥ 1− e−Ω(d).

In the below proof, we will show that all ρ0 ∈ Sgood are
hard to learn. The important property of Sgood is that it is far
from the boundary of supp(µ) = Ssupp; this ensures that we
can choose a suitable sub-sampling of µ in a neighborhood of
ρ0, which is isotropic around ρ0.

Finally we record the following straightforward fact.

Lemma III.4. For all ρ, ρ′ ∈ Ssupp, exp(−4d2) ≤
µ(ρ)/µ(ρ′) ≤ exp(4d2).

Proof. For all ρ ∈ Ssupp,

0 ≤ d3

4σ2
‖ρ− 1

d
I‖2F ≤

d4

4σ2
‖ρ− 1

d
I‖2op ≤ 4d2.

C. Anticoncentration of Posterior Distribution
Fix a tomography algorithm (T ,A) as in Definition III.1,

and let Tρ denote the distribution over observation sequences
x = (x1, . . . , xn) when T is run on state ρ. Note that for any
states ρ, ρ′ in the support of µ, the likelihood ratio

dTρ
dTρ′

(x) =
n∏

i=1

x†
iρxi

x†
iρ

′xi

is well defined, since µ is supported on full-rank matrices. Let
νx denote the posterior distribution of ρ given observations x.
The density ratio of any ρ, ρ′ ∈ Ssupp under νx is given by
Bayes’ rule, and equals

νx(ρ)

νx(ρ′)
=

dTρ
dTρ′

(x) · µ(ρ)

µ(ρ′)
.

So, for an arbitrary reference state ρ′ ∈ Ssupp (below we take
ρ′ = ρ0, the unknown true state) the density of νx is

νx(ρ) =
1

Zx

dTρ
dTρ′

(x)µ(ρ)

Zx =

∫

U

dTρ
dTρ′

(x)µ(ρ) dLebU (ρ).

The main technical component of the proof is the following
anti-concentration result for νx.

Definition III.5. For ρ ∈ U , let B(ρ, ε) denote the ball {ρ′ ∈
U : ‖ρ′−ρ‖tr ≤ ε}. Similarly for ρ ∈ U0, let B(ρ, ε) = {ρ′ ∈
U0 : ‖ρ′ − ρ‖tr ≤ ε}.

Theorem III.6. Suppose d + 1, ε ≤ ε0 for an absolute
constant ε0, and n' d3/ε2. If ρ ∈ Sgood and x ∼ Tρ0 , there
is an event Sρ0 ∈ σ(x), with P(x ∈ Sρ0) ≥ 1 − exp(−d2),
on which νx(B(ρ0, ε))' 1.

Let C be a large constant we will set later and ε0 = σ/C.
The starting point of the proof of Theorem III.6 is the estimate

νx(B(ρ0, Cε))

νx(B(ρ0, ε))
=

∫
B(ρ0,Cε)

dTρ

dTρ0
(x)µ(ρ) dLebU (ρ)

∫
B(ρ0,ε)

dTρ

dTρ0
(x)µ(ρ) dLebU (ρ)

(6)

≥ exp(−4d2)

∫
B(ρ0,Cε)

dTρ

dTρ0
(x) {ρ ∈ Ssupp} dLebU (ρ)

∫
B(ρ0,ε)

dTρ

dTρ0
(x) {ρ ∈ Ssupp} dLebU (ρ)

,

(7)

where the second line uses Lemma III.4. Applying
Lemma III.4 in this way amounts to replacing µ in the
numerator of (6) with a measure that sub-samples it, and in
the denominator with a measure that upper bounds it. Define
the volumes

V1 =

∫

B(0,1)
dLebU0(ρ)

V2 =

∫

B(0,1)
{‖ρ‖op ≤ 1/d} dLebU0(ρ).

We now separately bound the numerator and denominator of
(7) in terms of these volumes, beginning with the denominator.
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Lemma III.7. If ρ0 ∈ Sgood, there is an event Sρ0 ∈ σ(x),
with P(x ∈ Sρ0) ≥ 1− exp(−d2), on which

∫

B(ρ0,ε)

dTρ
dTρ0

(x) {ρ ∈ Ssupp} dLebU (ρ)

≤ exp(d2)ε(d+2)(d−1)/2V1 .

Proof. Note that Ex∼Tρ0

dTρ

dTρ0
(x) = 1. So

Ex∼Tρ0

∫

B(ρ0,ε)

dTρ
dTρ0

(x) {ρ ∈ Ssupp} dLebU (ρ)

=

∫

B(ρ0,ε)
{ρ ∈ Ssupp} dLebU (ρ)

≤
∫

B(ρ0,ε)
dLebU (ρ) = ε(d+2)(d−1)/2V1.

The exponent (d + 2)(d − 1)/2 comes from the fact that the
space of symmetric matrices has dimension d(d+1)/2, so U
has dimension d(d+1)/2− 1 = (d+2)(d− 1)/2. The result
follows from Markov’s inequality.

Before bounding the numerator of (7), we define the set

N∗(ρ0) =

{
ρ ∈ U : ‖ρ− ρ0‖op ≤

Cε

d
, ‖ρ− ρ0‖tr ≤ Cε

}
,

which is an isotropic neighborhood of ρ0. Let γ(ρ0) denote
the uniform distribution on N∗(ρ0) (w.r.t. LebU ). That is, for
bounded measurable test function f : U → R,

Eρ∼γ(ρ0) f(ρ) =

∫
U f(ρ) {ρ ∈ N∗(ρ0)}dLebU (ρ)∫

U {ρ ∈ N∗(ρ0)}dLebU (ρ)
.

Lemma III.8. If ρ0 ∈ Sgood and ε ≤ ε0, then
∫

B(ρ0,Cε)

dTρ
dTρ0

(x) {ρ ∈ Ssupp} dLebU (ρ)

≥ (Cε)(d+2)(d−1)/2 Eρ∼γ(ρ0)

[
dTρ
dTρ0

(x)

]
V2.

(8)

Proof. Because ρ0 ∈ Sgood, we have ‖ρ0 − 1
dId‖op ≤

3σ
d .

Because ε ≤ ε0 = σ/C, if ρ satisfies ‖ρ − ρ0‖op ≤ Cε
d we

have the implication chain

‖ρ− ρ0‖op ≤
Cε

d
⇒ ‖ρ− ρ0‖op ≤

σ

d

⇒ ‖ρ− 1

d
Id‖op ≤

4σ

d
⇒ ρ ∈ Ssupp.

So, letting X denote the left-hand side of (8), we have

X ≥
∫

B(ρ0,Cε)

dTρ
dTρ0

(x)

{
‖ρ− ρ0‖op ≤

Cε

d

}
dLebU (ρ)

=

∫

U

dTρ
dTρ0

(x) {ρ ∈ N∗(ρ0)} dLebU (ρ)

= Eρ∼γ(ρ0)

[
dTρ
dTρ0

(x)

] ∫

U
{ρ ∈ N∗(ρ0)} dLebU (ρ).

Finally, note that
∫

U
{ρ ∈ N∗(ρ0)} dLebU (ρ)

=

∫

B(ρ0,Cε)

{
‖ρ− ρ0‖op ≤

Cε

d

}
dLebU (ρ)

= (Cε)(d+2)(d−1)/2V2,

which conludes the proof.

It remains to control Eρ∼γ(ρ0)

[
dTρ

dTρ0
(x)

]
and the volume

ratio V2/V1. The former measures the information gained from
the observations x. It is bounded by the following lemma,
which formalizes the intuition that each observation improves
the log likelihood ratio by at most O(ε2/d). This is the step
that uses the hypothesis n' d3/ε2.

Lemma III.9. If ρ0 ∈ Sgood, then for any sequence of unit
vectors x = (x1, . . . , xn),

Eρ∼γ(ρ0)

[
dTρ
dTρ0

(x)

]
≥ exp(−d2).

Proof. For all ρ ∈ Ssupp, the eigenvalues of ρ lie within
[0.96/d, 1.04/d]. Thus, for any unit vector x, x†ρx

x†ρ0x
∈

[0.96/1.04, 1.04/0.96] ⊆ [0.9, 1.1]. Using the fact that log(1+
a) ≥ a− 2

3a
2 for |a| ≤ 0.1, we have

log
x†ρx

x†ρ0x
≥ x†(ρ− ρ0)x

x†ρ0x
− 2

3

(
x†(ρ− ρ0)x

x†ρ0x

)2

≥ x†(ρ− ρ0)x

x†ρ0x
− d2(x†(ρ− ρ0)x)

2.

By symmetry, Eρ∼γ(ρ0)(ρ − ρ0) = 0, and by rotational
invariance,

d2 Eρ∼γ(ρ0)

[
(x†(ρ− ρ0)x)

2
]
= Eρ∼γ(ρ0)

[
‖ρ− ρ0‖2F

]

≤ Eρ∼γ(ρ0) [‖ρ− ρ0‖tr‖ρ− ρ0‖op] ≤
C2ε2

d
.

By Jensen’s inequality and the above estimates,

logEρ∼γ(ρ0)

[
dTρ
dTρ0

(x)

]
≥

n∑

i=1

Eρ∼γ(ρ0) log
x†
iρxi

x†
iρ0xi

≥
n∑

i=1

Eρ∼γ(ρ0)

[
x†
i (ρ− ρ0)xi

x†
iρ0xi

− d2(x†
i (ρ− ρ0)xi)

2

]

≥ −C2nε2

d
.

Finally, because n ' d3/ε2, this is lower bounded by −d2.

The volume ratio V2/V1 is bounded by the following lemma,
whose proof we defer to Section IV. The proof uses tools from
random matrix theory.

Lemma III.10. We have that V2/V1 ≥ exp(−3d2).

We now put the above claims together to prove Theo-
rem III.6.
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Proof of Theorem III.6. Let Sρ0 be the event from
Lemma III.7. By the calculation (7) and Lemmas III.7
and III.8, for all x ∈ Sρ0 ,

νx(B(ρ0, Cε))

νx(B(ρ0, ε))

≥ exp(−5d2)C(d+2)(d−1)/2 Eρ∼γ(ρ0)

[
dTρ
dTρ0

(x)

]
· V2

V1
.

Lemmas III.9 and III.10 bound the remaining factors, giving

νx(B(ρ0, Cε))

νx(B(ρ0, ε))
≥ exp(−9d2)C(d+2)(d−1)/2.

Taking C = e20 gives νx(B(ρ0,Cε))
νx(B(ρ0,ε))

+ 1. Since
νx(B(ρ0, Cε)) ≤ 1, this implies νx(B(ρ0, ε))' 1.

D. Main Lower Bound
We can now prove our main lower bound for tomography

with incoherent measurements, which we state formally below:

Theorem III.11. There exist absolute constants ε0 > 0 and
d0 ∈ N such that for any 0 < ε < ε0 and any integer d ≥ d0,
the following holds. If n = o(d3/ε2), then for any algorithm
for state tomography (T ,A) that uses n incoherent, possibly
adaptive, measurements, its output ρ̂ upon measuring n copies
of ρ satisfies ‖ρ− ρ̂‖tr > ε with probability 1− o(1) for some
ρ.

Proof. Let S ∈ σ(ρ,x) be the event that ρ ∼ µ lies in Sgood

and x ∼ Tρ lies in Sρ. In this proof we will abuse notation
and use A to also denote the internal randomness used by A.
It suffices to show PA,ρ∼µ,x∼Tρ [‖A(x)− ρ‖tr ≤ ε] = o(1).

First note that

P
A,ρ,x

[‖A(x)− ρ‖tr ≤ ε] (9)

= EA,x Eρ∼νx [1[‖A(x)− ρ‖tr ≤ ε]] (10)
≤ EA,x Eρ∼νx [1[‖A(x)− ρ‖tr ≤ ε and (ρ,x) ∈ S]] + o(1)

(11)

where the second step follows by a union bound and the
fact that P[(ρ,x) .∈ S] = e−Ω(d) + e−Ω(d2) = o(1) by
Theorem III.6.

For any choice of internal randomness for A and any tran-
script x, let ρAx denote an arbitrary state for which (ρAx ,x) ∈ S
and ‖A(x) − ρAx ‖tr ≤ ε, if such a state exists. Denote by E
the event that such a state exists. Then under E , for any state
ρ for which ‖A(x)−ρ‖tr ≤ ε, we have ‖ρAx −ρ‖tr ≤ 2ε. If E
does not occur for some choice of internal randomness for A
and some x, note that the corresponding inner expectation in
(11) is zero. We can thus upper bound the double expectation
in (11) by

EA,x|E Eρ∼νx

[
1[‖ρAx − ρ‖tr ≤ 2ε and (ρ,x) ∈ S]

]

≤ EA,x|E P
ρ∼νx

[
‖ρAx − ρ‖tr ≤ 2ε

]
= o(1), (12)

where in the last step we used the fact that under E we have
(ρAx ,x) ∈ S, so by Theorem III.6 the posterior measure νx
places o(1) mass on the trace norm ε-ball around ρAx .

IV. LOWER BOUNDING THE VOLUME RATIO: PROOF OF
LEMMA III.10

In this section, we will prove Lemma III.10, which lower
bounds the volume ratio V2/V1.

Let

V =

{
λ = (λ1, . . . ,λd) ∈ Rd :

d∑

i=1

λi = 0

}
.

This is a subspace of Rd of codimension 1. It inherits the
inner product of Rd, which defines a Lebesgue measure LebV .
Define

∆ =

{
λ ∈ V : λ1 ≥ λ2 ≥ · · · ≥ λd,

d∑

i=1

|λi| ≤ 1

}
,

and
∆′ =

{
λ ∈ ∆ : max

i∈[d]
|λi| ≤ 1/d

}
,

and
Γ =

{
λ ∈ V :

∣∣∣∣λi −
d− 2i+ 1

d2

∣∣∣∣ ≤
1

d4

}
.

Lemma IV.1. We have Γ ⊆ ∆′.

Proof. If λ ∈ Γ, then

λi − λi+1 ≥
2

d2
− 2

d4
> 0

and
d∑

i=1

|λi| ≤ d · 1
d
= 1,

so λ ∈ ∆. Moreover

|λi| ≤
d− 1

d2
+

1

d4
≤ 1

d
.

The volume ratio V2/V1 is the probability that if ρ is drawn
from the uniform measure on B(0, 1) (w.r.t. LebU0 ), then
‖ρ‖op ≤ 1/d. The main random matrix theory fact we will use
is [2, Theorem 2.5.2], which implies that if λ = (λ1, . . . ,λd)
are the eigenvalues of ρ drawn from this distribution, then λ
has density (w.r.t. LebV ) 1

Z f(λ), where Z is a normalizing
constant and

f(λ) = {λ ∈ ∆}
∏

1≤i<j≤d

|λi − λj |.

For measurable A ⊆ V , let Vol(A) =
∫
A 1dLebV denote the

volume of A. Then,

V2

V1
=

∫
∆′ f(λ) dLebV (λ)∫
∆ f(λ) dLebV (λ)

≥
∫
Γ f(λ) dLebV (λ)∫
∆ f(λ) dLebV (λ)

≥ Vol(Γ)

Vol(∆)
· infλ∈Γ f(λ)

supλ∈∆ f(λ)
.

(13)

The following three propositions bound the quantities in the
right-hand side of (13).
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Proposition IV.2. For any λ ∈ Γ, f(λ) ≥
1/((2e)d

2/2dd(d−1)/2).

Proof. For each i ∈ [d],
∏

j∈[d]\{i}

|λi − λj |

≥
i−1∏

j=1

(
2(i− j)

d2
− 2

d4

) d∏

j=i+1

(
2(j − i)

d2
− 2

d4

)

≥
i−1∏

j=1

i− j

d2

d∏

j=i+1

j − i

d2

≥
d−1∏

j=1

j

2d2

≥ (d− 1)!

2dd2(d−1)
=

d!

2dd2d−1
≥ (d/e)d

2dd2d−1
≥ 1

(2e)ddd−1
.

Thus

f(λ) =




d∏

i=1

∏

j∈[d]\{i}

|λi − λj |




1/2

≥ 1

(2e)d2/2dd(d−1)/2
.

(14)

Proposition IV.3. For any λ ∈ ∆, f(λ) ≤ e2d
2

/dd(d−1)/2.

Proof. Let (λ̄1, . . . , λ̄d) be the permutation of (λ1, . . . ,λd)
with |λ̄1| ≤ · · · ≤ |λ̄d|. For each i ∈ [d],

∏

j<i

|λ̄i − λ̄j | ≤ (2|λ̄i|)i−1 ≤
(
e2d|λ̄i|

d

)i−1

≤ e2d
2|λ̄i|

di−1
,

so (since
∑d

i=1 |λi| ≤ 1)

f(λ) =
d∏

i=1

∏

j<i

|λ̄i − λ̄j | ≤
e2d

2 ∑d
i=1 |λ̄i|

dd(d−1)/2
≤ e2d

2

dd(d−1)/2
.

Proposition IV.4. We have Vol(∆) ≤ eO(d) and Vol(Γ) ≥
d−O(d).

Proof. The projection of V onto its first d−1 coordinates has
Jacobian Θ(1). Because this projection maps ∆ injectively to
Rd−1 and each resulting coordinate is in [−1, 1],

Vol(∆) ≤ Θ(1) · 2d−1 ≤ eO(d),

proving the first conclusion. Note that Γ is the set of λ
satisfying λi = d−2i+1

d2 + 1
d4µi, where µ = (µ1, . . . , µd)

ranges over

Γ′ =

{
µ ∈ V : max

i∈[d]
|µi| ≤ 1

}
.

The set Γ′ certainly contains the set of µ where
|µ1|, . . . , |µd−1| ≤ 1/d and µd = −

∑d−1
i=1 µi. So,

Vol(Γ′) ≥ Θ(1)(2/d)d−1 = d−O(d).

Finally,

Vol(Γ) = Vol(Γ′) · (d−4)d−1 = d−O(d),

proving the second conclusion.

Proof of Lemma III.10. By equation (13) and the last three
propositions,

V2

V1
≥ d−O(d)

eO(d)
· (2e)

−d2/2

e2d2 ≥ e−3d2

.

V. BASIC LEARNING RESULTS

Recall that for two quantum states ρ,σ, the fidelity between
them is F (ρ,σ) = tr(

√√
ρσ
√
ρ)2. This is the quantum

analogue of the Bhattacharyya coefficient, which for two
classical probability distributions p, q over [d], is defined to
be BC(p, q) =

∑d
i=1
√
pi
√
qi. Note that if ρ and σ commute,

then F (ρ,σ) = BC(p, q)2, where p, q are the classical
distributions given by the eigenvalues of ρ and σ, respectively.
The following inequality is well known:

Fact V.1.
BC(p, q) ≥ 1−O

(
χ2(p‖q)

)
.

As an immediate corollary of this, we have the following:

Corollary V.2. Let ρ ∈ Cd×d be an arbitrary mixed state, and
let ρ̃ = (1− γ)ρ+ γ · 1

d1. Then F (ρ, ρ̃) ≥ 1−O (γ).

Proof. Let p and p̃ denote the the distributions given by the
eigenvalues of ρ and ρ̃, respectively. Since ρ and ρ̃ commute,
it suffices to show that BC(p, p̃) ≥ 1 − O(γ). However, we
have:

χ2(p̃‖p) =
d∑

i=1

(γpi + γ/d)2

p̃i
≤ 2

d∑

i=1

γ2p2i
p̃i

+ 2
d∑

i=1

γ2

d2p̃i

≤ O(γ) ,

since p̃i ≥ γ/d for all i.

It is well-known that infidelity is not a metric on mixed
states. However, the associated Bures metric, defined as

DB(ρ,σ)
2 = 2

(
1−

√
F (ρ,σ)

)
,

does satisfy the triangle inequality and is hence a valid metric.
As an immediate consequence of this, we obtain that infidelity
still satisfies a weak version of the triangle inequality:

Corollary V.3. Let k be a positive integer, and let γ ' 1/k2

be sufficiently small. Let ρ1, . . . , ρk be a sequence of mixed
states satisfying 1− F (ρi, ρi+1) ≤ γ for all i = 1, . . . , k− 1.
Then

1− F (ρ1, ρk) ≤ O(k2γ) .

Proof. By repeated application of the Taylor series expan-
sion of the square root function around 1, we know that
DB(ρi, ρi+1) ≤ O(

√
γ) for all i = 1, . . . , k−1. Therefore by

the triangle inequality, we have that DB(ρ1, ρk) ≤ O(k
√
γ),

from which the claim immediately follows.
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A. Learning a state in spectral norm

Finally, we require the following guarantee for one of
the standard estimators for a mixed state based on unentan-
gled measurements. Given n copies of a mixed state ρ, we
measure each one with the uniform POVM over the sphere
{d |v〉 〈v| dv} where v ranges over the unit sphere, and let
|vi〉 denote the outcome of the ith measurement. We consider
the estimator Hn(ρ) = Hn(ρ, v1, . . . , vn), defined as

Hn(ρ) =
1

n

n∑

i=1

((d+ 1) |vi〉 〈vi|− 1) . (15)

We show the following rate for this estimator. The same rate
is claimed in the proof sketch of Theorem 2 in [17], but to
our knowledge no full proof of this exists in the literature. We
include a full proof for completeness:

Theorem V.4. There exists a universal constant C so that for
all n, we have that

‖Hn(ρ)− ρ‖op ≤ C ·max

(
d+ log 1/δ

n
,

√
d+ log 1/δ

n

)
,

with probability 1− δ.

The key concentration lemma we require is the following:

Lemma V.5. Let |v〉 be the outcome of measuring ρ using the
uniform POVM. Then, for any fixed pure state |u〉, and for all
k ≥ 1, we have

E
[
(d+ 1)k 〈u|v〉2k

]
≤ (k + 1)k+1 .

Proof. First consider the case where ρ = |w〉 〈w| is a pure
state. For any t, let Πt denote projection onto the t-fold
symmetric subspace. Then, we have:

E
[
〈u|v〉2k

]
= d ·

∫
〈u|v〉2k 〈v|w〉2 dv (16)

= d · 〈u|⊗k ⊗ 〈w|
(∫

|v〉⊗(k+1) 〈v|⊗(k+1) dv

)
|u〉⊗k ⊗ |w〉

(17)

= d ·
(
k + d

k + 1

)−1

·
(
〈u|⊗k ⊗ 〈w|

)
Πk+1

(
|u〉⊗k ⊗ |w〉

)

(18)

≤ d ·
(
k + d

k + 1

)−1

, (19)

where the third step follows by the standard Haar integral
formulation of Πt [19]. Therefore, we have that

E
[
(d+ 1)k 〈u|v〉2k

]
≤ (d+ 1)k+1 ·

(
k + d

k + 1

)−1

(20)

≤ (d+ 1)k+1 · (k + 1)k+1

(d+ k)k+1
(21)

≤ (k + 1)k+1 , (22)

as claimed. The claim for general ρ directly follows by
convexity.

Proof of Theorem V.4. The proof proceeds via the same gen-
eral strategy as in [17]. Let N be a 1/3-net of all pure states
in Cd. For any u ∈ N , Lemma V.5 implies that the random
variable

〈u| (ρ−Hn(ρ)) |u〉 =
1

n

n∑

i=1

(
(d+ 1) 〈u, vi〉2 − 1− 〈u| ρ |u〉

)

is a sum of n independent O(1)-subexponential random vari-
ables. Therefore, by standard net arguments, we have that for
all γ > 0,

P[‖ρ−Hn(ρ)‖op > γ] ≤ exp
(
c1d− c2nmax(γ, γ2)

)
,

for some universal constants c1, c2, which is equivalent to what
we wanted to show.

Finally, we also require the following generalization of the
estimator we considered above:

Definition V.6. Given a projection matrix Π ∈ Cd×d onto
an r-dimensonal subspace, the projected estimator on the
subspace Π, denoted Hn(ρ,Π) is defined as follows. Let
MΠ = {r |v〉 〈v| dv} denote the uniform POVM over the
subspace spanned by Π, and consider the POVM over Cd×d

defined by M = {I − Π} ∪ MΠ. Given n copies of ρ,
let |vi〉 denote the outcomes of measuring each copy of ρ
independently with M, where we say vi = ⊥ if the outcome
is I −Π. Then, we define

Hn(ρ,Π) =
1

n

∑

vi +=⊥
((r + 1) |vi〉 〈vi|− 1) .

For projected estimators we have the following rate, which
follows immediately from Theorem V.4 and standard Chernoff
bounds:

Lemma V.7. Let ρ ∈ Cd×d and let Π be a projection onto an
r-dimensional subspace. Let α = tr(ΠρΠ). Then, there exists
a universal constant C so that

‖Hn(ρ,Π)−ΠρΠ‖op

≤ C ·max

(
d+ log 1/δ

n
,

√
α(d+ log 1/δ)

n

)
.

with probability 1− δ.

VI. LEARNING A STATE IN FIDELITY

In this section, we present our algorithm for tomography in
fidelity. Our main theorem is stated below.

Theorem VI.1. Let ρ ∈ Cd×d be an unknown rank-r mixed
state. Given n = Õ(dr2 log(1/δ)/γ) copies of ρ, there is
an algorithm that uses incoherent measurements and with
probability 1− δ, outputs a state ρ̂ such that F (ρ, ρ̂) ≥ 1−γ.

Let η > 0 be a parameter to be determined later, and let t
be an integer satisfying t ≤ log2 r/γ+4. We first describe our
algorithm. Divide the samples into t groups of n/t samples
each.

We will compute a sequence of orthogonal projections Π0 =
0,Π1, . . . ,Πt. To find Πj given Π0, . . . ,Πj−1, the algorithm
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proceed as follows: it forms Γj = 1 −
∑j−1

i=0 Πi, and using
a fresh batch of samples, it computes σj = Hn/t(ρ,Γj), and
it sets Πj to be the span of the nonzero eigenvectors of σj

with corresponding eigenvalue at least 2−j . When it finishes,
it outputs the state

Mn(ρ)
def
=

σ̂

tr(σ̂)
, where σ̂

def
=

t∑

i=1

ΠiσiΠi , (23)

To analyze the algorithm, we make the following definitions.
Let Πt+1 = Γt+1, and define the state

ρdiag =
t+1∑

i=1

ΠiρΠi . (24)

For all i = 1, . . . , t + 1, let Bi ∈ Cd×rank(Πi) be any matrix
with orthonormal columns so that BiB'

i = Πi. Similarly, for
i = 1, . . . , t + 1, let Ci ∈ Cd×rank(Γi) be any matrix with
orthonormal columns so that CiC'

i = Γi.
Notice that by construction

∑t+1
i=1 Πi = 1, so this is indeed

a valid mixed state. Furthermore, note that ρdiag is block-
diagonal with respect to the matrices Π1, . . . ,Πt+1, that is,
after a suitable rotation which sends each Bi to itself, ρdiag
has the form

ρdiag =





ρ1
ρ2

. . .
ρt+1




,

where we let ρi denote the projection of ΠiρΠi onto its
nonzero eigenvectors. Note that in this basis, ρ is not block di-
agonal, and indeed, much of the work in the proof is to bound
the contribution of the error because of these off-diagonal
blocks. To this end, for all i = 1, . . . , t, let Ei = B'

i ρCi+1,
so that

ρ =





ρ1 E1

ρ2 E2

E'
1 E'

2

. . .
ρt




,

i.e., the Ei are the off-diagonal components of ρ.
Next, since each σj is computed with fresh samples, by

Lemma V.7 and a union bound, we have that

‖σj − ΓjρΓj‖op ≤ γj

def
= C ·max

(
d+ log t/δ

n
,

√
αj(d+ log t/δ)

n

)
,

(25)

for all j = 1, . . . , t simultaneously, with probability at least
1− δ, where αj = tr(ΠjρΠj).

For the remainder of the section, let us take n "
(d+log t/δ)r2

γ , and we will assume that (25) holds. We first
show a few basic inequalities. We have the following estimate
on the RHS of (25).

Lemma VI.2. Let n " (d+log t/δ)r2

γ . Then, we have that γj !
2−(j+t)/2.

Proof. By our choice of n, we have that:

d+ log t/δ

n
! γ

r2
≤ 2−(j+t)/2 ,

and
√

αj−1(d+ log t/δ)

n
=

√
tr(Γj−1ρΓj−1) ·

d+ log t/δ

n

!
√
2−(j−1) · γ

r
≤ 2−(j+t)/2 ,

where in both cases we use that t = log2 r/γ + 4.

With this, we can show the following set of useful inequalities:

Lemma VI.3. For all j = 1, . . . , t, we have that
(i) ‖ΓjρΓj‖op ≤ 2−(j−1),

(ii) ‖σj‖op ≤ 2−(j−2), and
(iii) B'

i ρBi 5 2−j−11, and
(iv) tr(Γt+1ρΓt+1) ≤ γ/2.

Proof. To prove the first bullet point, we proceed by induction.
The case where j = 1 is trivial. Now, suppose the claim holds
for some j − 1. By (25), we have that

‖σj−1 − Γj−1ρΓj−1‖op ≤ γj−1 .

Now Γj is defined to be the projection onto the eigenvectors of
σj−1 with eigenvalue less than 2−j . Therefore, ‖ΓjρΓj‖op ≤
γj−1 + 2−j . The second and third claims then both follow
from Lemma VI.2, and by the definition of Mj . Finally, the
last claim follows because ρ has at most r nonzero eigenvalues,
and therefore so does tr(Γt+1ρΓt+1); moreover by the above,
each one is at most 2−t+2 ≤ γ/(2r).

One simple but important consequence of these inequalities
is that the subspaces Πi are low dimensional:

Corollary VI.4. For all i, we have rank(Πi) ≤ r.

Proof. Note that ρ has r nonzero eigenvalues by assumption,
so by Lemma VI.3, σi can only have r eigenvalues which are
at least 2−i−1.

We will show the following two key estimates. Roughly,
Lemma VI.5 bounds the contribution to infidelity form the er-
ror on the diagonal blocks of ρ and ρdiag. Lemma VI.6 bounds
the contribution to infidelity from the off-diagonal blocks in
ρ. Putting them together with the (weak) triangle inequality in
Corollary V.3 will immediately imply Theorem VI.1.

Lemma VI.5. Let ρ,Mn(ρ), and ρdiag be as above, and
assume that (25) holds. Then, we have that

F (Mn(ρ), ρdiag) ≥ 1− γt

Lemma VI.6. Let ρ,Mn(ρ), and ρdiag be as above, and
assume that (25) holds. Then, we have that

F (ρ, ρdiag) ≥ 1− γ ·min(t, d/r) .
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Proof of Theorem VI.1. Combining
Lemma VI.5, Lemma VI.6 and Corollary V.3, we get

F (Mn(ρ).ρ) ≥ 1−O(γmin(t, d/r))

and since t ≤ log2(r/γ) + 4, we can redefine γ appropriately
(scaling down by a logarithmic factor) to complete the proof.

VII. PROOF OF LEMMA VI.5

We first require the following fact, which is a direct con-
sequence of Proposition 3.1 in [23], and direct calculation:

Theorem VII.1. Let f(X) : Cd×d
≥0 → R be defined by

f(X) = tr(
√
X). Let A ∈ Cd×d be a non-degenerate

Hermitian matrix. Then, for all symmetric matrices B ∈ Cd×d,
we have that

∇2f(A)[B,B] ≥ −1

4
tr
(
BA−3/2B

)
(26)

where ∇2f(A) denotes the Hessian of f(A) (where we treat
the entries of A as variables) and ∇2f(A)[B,B] denotes
taking the quadratic form of this Hessian at B.

Proof of Lemma VI.5. For conciseness, throughout this proof
we will let M = Mn(ρ). Let ∆ = M − ρdiag. By Taylor’s
theorem, we know that there is some β ∈ [0, 1] so that

F (Mn(ρ), ρdiag) = tr
(√

M2 −M1/2∆M1/2
)

= 1 +
1

2
tr
(
M−1M1/2∆M1/2

)
+D2f

·
(
M2 − βM1/2∆M1/2

) [
M1/2∆M1/2,M1/2∆M1/2

]

≥ 1− 1

4
tr
(
(M1/2∆M−1/4(M + β∆)−3/2M−1/4∆M1/2

)

where in the last line we used Theorem VII.1.
Notice that both M and ∆ are block diagonal, and moreover,

by construction, they share the same block structure. Thus, if
we let Mi = ΠiMΠi and ∆i = Πi∆Πi, then we have that

tr
(
(M1/2∆M−1/4(M + β∆)−3/2M−1/4∆M1/2

)

=
t∑

i=1

tr
(
M1/2

i ∆iM
−1/4
i (Mi + β∆i)

−3/2M−1/4
i ∆iM

1/2
i

)

where in a slight abuse of notation, we let M−1
i and (Mi +

β∆)−1 denote the pseudoinverses of the associated matrices.
For any i, we have that

tr
(
M1/2

i ∆iM
−1/4
i (Mi + β∆i)

−3/2M−1/4
i ∆iM

1/2
i

)

≤ tr(Mi) · ‖∆iM
−1/4
i (Mi + β∆i)

−3/2M−1/4
i ∆i‖op

≤ C · tr(Mi) · γ2
i · ‖M−1/4

i (Mi + β∆i)
−3/2M−1/4

i ‖op ,
(27)

where the last step follows because ‖∆i‖op ≤ γi by
Lemma V.7 and (25). By construction, we have that all nonzero
eigenvalues of Mi are at least 2−i, so all nonzero eigenvalues

of Mi + β∆i are at least 2−(i+1). Putting it all together, we
obtain that

tr
(
M1/2

i ∆iM
−1/4
i (Mi + β∆i)

−3/2M−1/4
i ∆iM

1/2
i

)

! tr(Mi) · γ2
i · 22i ≤ r · 2iγ2

i ≤ γ ,

as claimed.

VIII. PROOF OF LEMMA VI.6

First, observe that we may disregard the subspace spanned
by Γt+1:

Lemma VIII.1. Let Γ = 1− Γt+1. We have that tr(ΓρΓ) =
tr(ΓρdiagΓ)

def
= c, and moreover, if we let ρ̃ = 1

cΓρΓ
and ρ̃diag = 1

cΓρdiagΓ, then F (ρ̃, ρ) ≤ 1 − γ/2 and
F (ρ̃diag, ρdiag) ≤ 1− γ/2.

Proof. The first claim follows since Πi and Γ all commute.
The fact that F (ρ̃, ρ) ≤ 1 − γ/2 immediately follows from
(iv) in Lemma VI.3, and the last claim follows since the same
lemma implies that tr(Γt+1ρdiagΓt+1) ≤ γ/2 as well.

In light of this, for the rest of the proof, we will assume
that Γ = 1; in particular, this implies that ρ and ρdiag both
have minimum eigenvalue at least 2−j−1 by Lemma VI.3. The
above lemma implies that this incurs at most an additional
additive γ to the overall fidelity calculation. We now establish
the following bound on the matrices Ei:

Lemma VIII.2. Let n " (d+log T/δ)r2

γ , and assume that (25)
holds. Then, for all i = 1, . . . , t, we have that ‖Ei‖op ≤ 2γj .

Proof. For any i, we have that

‖Ei‖op = ‖Γj (ρ− ρdiag)Γj‖op
≤ ‖ΓjρΓj − σj‖op + ‖ΓjρdiagΓj − σj‖op
≤ 2‖ΓjρΓj − σj‖op = 2γj ,

where the third inequality follows because ΓjρdiagΓj is the
projection of ΓjρΓj onto a basis which commutes with σj .

To prove our overall claim we will proceed via a hybrid
argument. For all j = 0, . . . , t, let

ρ(j) =
j∑

i=1

ΠiρΠi + Γj+1ρΓj+1 .

Note that by design, we have that ρ(0) = ρ and ρ(t) = ρdiag.
For these matrices, we show:

Lemma VIII.3. For all j = 1, . . . , t, we have that

F (ρ(j−1), ρ(j)) ≥ 1− 2−t−1 min(rt, d) .

To prove Lemma VIII.3, we rely on the following fact
that bounds the contribution from off-diagonal perturbations
to infidelity between two states.

Lemma VIII.4. Let 0 < c2, c1 < 1 satisfy c2 ≤ c1/10, and
let M ∈ Cd1×d1 and N ∈ Cd2×d2 be PSD matrices satisfying
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c11 7 M 7 4c11 and c21 7 N 7 2c11. Let E ∈ Cd1×d2

satisfy ‖E‖op ≤ η, and define the matrices

A =

(
M E
E' N

)
, and Adiag =

(
M 0
0 N

)
. (28)

Suppose further that A 5 0, and that η ≤ √c1c2. Then

tr

(√
A1/2

diagAA1/2
diag

)
≥ tr(A)− c2(d1 + d2) . (29)

Proof. For any δ, let Mδ = M − δ1 and similarly let Nδ =
N − δ1. we will explicitly construct a matrix B which will
be a PSD lower bound for the matrix A1/2

diagAA1/2
diag. Our guess

will have the form

B =

(
Mc2 X
X' Nc2

)
, (30)

for some matrix X we define shortly. Note that if we can
show that A1/2

diagAA
1/2
diag 5 B2, we are done, since by operator

monotonicity of the matrix square root, we have that

tr

(√
A1/2

diagAA
1/2
diag

)
≥ tr(B)

≥ tr(A) + tr(M)− c2(d1 + d2)

= tr(A)− c2(d1 + d2) ,

as claimed.
It remains to demonstrate how to construct such an X . We

choose the following matrix:

X
def
=

∞∑

i=1

M−i
(c2−c1)

(
M1/2EN1/2

)
N i−1

(c2+c1)
. (31)

We first note that this sum is convergent, since ‖M−i
c2−c1‖ ≤

1
(1.9c1)i

and ‖N i
c2+c1‖op ≤ (1.1c1)i. Next, we note that

Mc2X +XNc2 = M(c2−c1)X +XN(c2+c1) = M1/2EN1/2 .

Therefore, we have that

B2 =

(
M2

c2 +XX' Mc2X +XNc2

(Mc2X +XNc2)
' X'X +N2

c2

)

=

(
M2

c2 +XX' M1/2EN1/2

(
M1/2EN1/2

)'
X'X +N2

c2

)
,

(32)

At the same time, we have that

A1/2
diagAA

1/2
diag =

(
M2 M1/2EN(

M1/2EN1/2
)'

N2

)
, (33)

so in particular the off-diagonal block of B2 exactly matches
that of A1/2

diagAA
1/2
diag. Therefore,

A1/2
diagAA

1/2
diag −B2 (34)

=

(
M2 −M2

c2 −XX'

N2 −N2
c2 −X'X

)
(35)

=

(
2c2M − c22I −XX'

2c2N − c22I −X'X

)
(36)

Therefore for our candidate to be a valid PSD lower bound,
it suffices to show that c22I + XX' 7 2c2M and similarly
c22I +X'X 7 2c2N . Note that for both of these inequalities
to be satisfied, it suffices to show that X'X 7 c2N .

Define the matrix

Q =
∞∑

i=1

M−i
(c2−c1)

(
M1/2E

)
N i−1

(c2+c1)
. (37)

Since N and Nδ commute for all δ, we have that

X'X = N1/2Q'QN1/2 .

Additionally, we have that

‖Q‖op =

∥∥∥∥∥

∞∑

i=1

M−i
(c2−c1)

(
M1/2E

)
N i−1

(c2+c1)

∥∥∥∥∥
op

(38)

≤
∞∑

i=1

∥∥∥M−i
(c2−c1)

(
M1/2E

)
N i−1

(c2+c1)

∥∥∥
op

(39)

≤ 1.9

1.1c1
· ‖M1/2E‖op

∞∑

i=1

(
1.1

1.9

)i

(40)

! η
√
c1
≤
√
c2 , (41)

by assumption. Therefore, we have that X'X 7 c2N , so B
is indeed a valid PSD lower bound on A1/2

diagAA1/2
diag.

Proof of Lemma VIII.3. Fix some j ∈ {1, . . . , t}. Let B =
C'

j+1ρCj+1, and define the matrices

A
def
=

(
ρj Ej

E'
j B

)
, and Adiag =

(
ρj

B

)
.

Then

F (ρ(j−1), ρ(j)) = F

((
τ

A

)
,

(
τ

Adiag

))
,

for some shared, unnormalized state τ . Recall that by
Lemma VI.2, we have that ρj 5 2−j−11, and that 2−t−11 7
B 7 2−j+11. Additionally, we have that ‖Ej‖op ≤ 2γj .
Therefore the matrices A and Adiag satisfy the conditions of
Lemma VIII.4 with parameters c1 = 2−j−1, c2 = 2−t−1, and
η = 2γj . Note that Lemma VI.2 immediately implies that
η ≤ √c1c2, as necessary. Therefore we have that

F

((
τ

A

)
,

(
τ

Adiag

))
(42)

= tr(τ) + tr

(√
A1/2

diagAA1/2
diag

)
(43)

≥ tr(τ) + tr(A)− 2−t−1

(
t∑

i=1

rank(Πi)

)
(44)

≥ 1− 2−t−1 min(rt, d) , (45)

as claimed.

We can now finish the proof of Lemma VI.6.

Proof of Lemma VI.6. The desired statement follows by com-
bining Lemma VIII.1, Lemma VIII.3 and Corollary V.3 and
redefining γ appropriately (scaling down by a logarithmic
factor).
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IX. CONCLUSION

In this work we obtained the optimal lower bound of
Ω(d3/ε2) for state tomography in trace distance using adaptive
incoherent measurements. Our proof technique is based on
setting up a suitable Bayesian problem and arguing that the
posterior distribution over the underlying state, conditioned
on the measurement outcomes, places negligible mass on
the ground truth if o(d3/ε2) measurements are made. This
technique is a marked departure from existing approaches to
proving lower bounds for adaptive incoherent measurements,
which exclusively applied to the testing setting. We leave as
an open question whether one can refine this lower bound to
Ω(dr2/ε2) in the case where the unknown state is rank-r.

Additionally, for the problem of state tomography in infi-
delity, we gave an adaptive algorithm that achieves the optimal
rate of d3/γ, up to logarithmic factors. By a lower bound of
[18], this rate is superior to that of any nonadaptive algorithm.
Our algorithm uses logarithmically many rounds of adaptivity,
and we conjecture that this much adaptivity is necessary to
achieve the optimal rate for incoherent measurements.

a) Acknowledgments.: The authors would like to thank
Steve Flammia and Ryan O’Donnell for coordinating their
submission of [14] with ours. SC and JL would like to
thank Jordan Cotler and Hsin-Yuan Huang for illuminating
discussions about tomography with incoherent measurements.

REFERENCES

[1] Dorit Aharonov, Jordan Cotler, and Xiao-Liang Qi. Quantum algorithmic
measurement. Nature communications, 13(1):1–9, 2022.

[2] Greg Anderson, Alice Guionnet, and Ofer Zeitouni. An Introduction to
Random Matrices. Cambridge University Press, 2005.
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