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ABSTRACT
We introduce a method for solving the “inverse” phase equilibria problem: How should the interactions among a collection of molecular
species be designed in order to achieve a target phase diagram? Using techniques from convex optimization theory, we show how to solve this
problem for phase diagrams containing a large number of components and many coexisting phases with prescribed compositions. We apply
our approach to commonly used mean-field models of multicomponent fluids and then use molecular simulations to verify that the designed
interactions result in the target phase diagrams. Our approach enables the rational design of “programmable” fluids, such as biopolymer and
colloidal mixtures, with complex phase behavior.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147211

I. INTRODUCTION

The observation that proteins and nucleic acids can demix to
form “biomolecular condensates” within living cells1–3 has sparked
intense interest in understanding the phase behavior of com-
plex, multicomponent fluids.4–10 Although multicomponent phase
equilibrium is a foundational topic of chemical physics,11 and
many important theoretical contributions12–14 in this area pre-
date the current popularity of biomolecular condensate research,
intracellular phase separation provides compelling motivation for
the renewed focus on this question. In particular, intracellu-
lar phase separation can establish coexisting condensates with
distinct molecular compositions, which are required for carry-
ing out specific biological functions.15,16 Spontaneous intracellu-
lar phase separation is widely believed to be governed primar-
ily by thermodynamics,17–20 even though transport dynamics and
nonequilibrium processes may affect the phase behavior observed
in vivo.21,22 It is therefore important to understand the relation-
ship between biomolecular interactions and the capacity for bio-
logical fluids to self-organize into chemically diverse droplets via
thermodynamically driven phase separation. Despite considerable
progress toward dissecting the molecular determinants of phase sep-
aration in biological,23,24 synthetic,25–27 and theoretical28,29 models
with a few distinct species, improved theoretical tools are needed

for studying phase equilibria in complex mixtures with a large
number of molecular components and more than a handful of
coexisting phases.

Mean-field models serve as common starting points for
describing multicomponent fluid-phase equilibria.4–10 The simplest
mean-field models that can account for phase transitions invoke
the pairwise approximation for intermolecular interactions, mean-
ing that the net attractive or repulsive interactions between each
pair of molecular species can be described by a single interaction
parameter, or coupling coefficient, which is independent of the
local molecular concentrations. The Flory–Huggins30 and regular-
solution models31 are commonly used examples of such mean-field
models. Landau free energies32 and virial expansions of equa-
tions of state33 also satisfy this approximation when truncated
to lowest order. Although methods for computing phase coexis-
tence and constructing phase diagrams in binary and ternary fluids
are well established,31 predicting phase coexistence in multicom-
ponent fluids—whose phase diagrams exist in high-dimensional
spaces—is both conceptually and algorithmically challenging. The
purpose of this article is to introduce a new approach for solving
this problem.

Within the context of a pairwise-interaction model, the central
challenge is to map an interaction matrix of coupling coefficients to
an equilibrium phase diagram and vice versa. Given an interaction
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matrix and the total concentrations of all the molecular species in
a mixture, we wish to determine whether phase separation will take
place and, if so, the compositions of the coexisting bulk phases at
equilibrium. The mole fractions of the coexisting bulk phases can
then be determined frommass conservation.We refer to these calcu-
lations as solving the forward problem. However, carrying out these
calculations can be challenging due to the combinatorial complex-
ity associated with multicomponent phase coexistence. In order to
identify coexisting phases in a theoretical model of a multicompo-
nent mixture, it is first necessary to locate all the candidate phases in
the high-dimensional concentration space. This constitutes a search
problem whose complexity scales exponentially with the number of
molecular components. As a result, algorithms for solving the for-
ward problem are often limited to mixtures with a small number of
components, or they employ additional assumptions to simplify the
search problem.

Here, we focus on the inverse problem: designing an interaction
matrix to achieve a target phase diagram. Imposing a target phase
diagram means that the compositions of the coexisting bulk phases
are specified directly as design criteria, while the mole fractions of
the coexisting bulk phases can be determined a priori for a mix-
ture with specified total concentrations. Thus, solving the inverse
problem provides an alternative approach for associating an equi-
librium phase diagram with an interaction matrix, avoiding the
need to search for candidate phases. This approach can also provide
insight into the high-dimensional “design space” of pairwise inter-
action matrices that might map to the same, or extremely similar,
sets of coexisting phases. Furthermore, because the time-evolution
of complex fluids is often limited by slow kinetics, mapping the
relationship between interaction matrices and metastable coexist-
ing phases, which may be relevant when a phase-separating fluid
reaches a local (but not global) equilibrium, is a similarly important
goal. Inverse-problem approaches are also well suited for designing
complex fluids with prescribed metastable phases.6

In this article, we show that an inverse-problem approach can
be applied to design equilibrium phase diagrams with arbitrary
condensed-phase compositions. We first explain how this strategy
can be applied to generic mean-field models with pairwise inter-
molecular interactions. We then show that our approach reveals
several unexpected features of multicomponent phase diagrams,
demonstrating ways in which high-dimensional phase diagrams
can differ qualitatively from the intuitive phase behavior of simple
fluids. Finally, we perform molecular simulations and free-energy
calculations to confirm that the predictions of our approach apply
beyond mean-field theoretical models. Our ability to design coex-
isting phases in non-mean-field simulations suggests that pairwise
models, despite their simplicity, can be useful for understanding
and manipulating complex phase diagrams of chemically realistic
multicomponent fluids.

II. RESULTS AND DISCUSSION
Throughout this article, we consider incompressible fluids

comprising N solute species and a solvent. We refer to the solute
species interchangeably as either the molecular species or the com-
ponents in the multicomponent fluid model. Assuming that the
intermolecular interactions in the solution are pairwise additive, the

vector of excess chemical potentials for all molecular species can be
written in the form

μ⃗ex(ϕ⃗; ϵ, v⃗) = μ⃗v(ϕ⃗; v⃗) + ϵϕ⃗, (1)

where ϕ⃗ and v⃗ represent the volume fractions and molecular vol-
umes of the components, respectively, and μ⃗v is independent of
the symmetric interaction matrix, ϵ. We set the thermal energy
kBT = 1 for brevity. Importantly, we assume that the elements of
ϵ are independently tunable throughout this work. The osmotic
pressure, P(ϕ⃗; ϵ, v⃗), which can be determined from Eq. (1) via the
Gibbs–Duhem relation, is also linear with respect to ϵ. Equation (1)
describes the mean-field Flory–Huggins,30 regular solution,31 and
van der Waals33 models, as well as approximate field-theoretic
treatments of sequence-dependent heteropolymer mixtures,34 with
appropriate choices of μ⃗v. This formalism takes the chemical poten-
tial of the solvent and all pairwise interactions involving the solvent
to be zero; we make this choice without loss of generality, since
the reference states for the solvent and all pure components do not
affect the phase equilibria of incompressible mixtures.30 We further
note that the class of mean-field models represented by Eq. (1) only
describes the average molecular concentrations within each phase,
as ϕ⃗ is the sole independent variable.

A. Inverse design of phase equilibria in mixtures
with pairwise interactions

Our objective is to find an N ×N interaction matrix, ϵ, and an
N-dimensional chemical potential vector, μ⃗, that lead to phase coex-
istence among a dilute phase and K condensed phases. An inverse-
design problem is defined by the target volume fractions of each of
the condensed phases, {ϕ⃗ (α)}, indexed by α = 1, . . . ,K. For example,
a design problem involvingN = 5 components andK = 4 condensed
phases is illustrated in Figs. 1(a) and 1(b). Figure 1(c) shows the
designed interactionmatrix that we obtain using ourmethod, which,
along with a corresponding chemical potential vector, results in
coexistence among the prescribed phases. In general, we assume that
each target condensed phase consists of M(α) “enriched” compo-
nents, which comprise the majority of the total non-solvent volume
fraction of phase α, and N −M(α) “depleted” components, which are
found at much lower concentrations in phase α. Such a distinction
can always be made by comparing the concentration of a component
within the α phase to its concentration in the dilute phase; if the ratio
of these quantities, or partition coefficient, for a component is greater
than unity, then the component is considered to be enriched in the
α phase.

In this work, we compute phase equilibria among bulk phases
(i.e., in the thermodynamic limit), meaning that the contributions
of interfacial effects to the total free energy of the fluid are negligi-
ble. Bulk phase coexistence occurs when all K + 1 phases have equal
osmotic pressures and each molecular species has the same chem-
ical potential in each of the K + 1 phases. All K + 1 phases must
also be stable with respect to concentration fluctuations, such that
∂μ⃗(ϕ⃗)/∂ϕ⃗ is positive definite. Even for pairwise mean-field mod-
els of the form given by Eq. (1), these thermodynamic conditions
result in a system of nonlinear equations. Thus, solving for ϵ and μ⃗
given a prescribed set of condensed phases, {ϕ⃗ (α) ∀α = 1, . . . ,K}, is
a numerically challenging problem.
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FIG. 1. Example multicomponent phase-diagram design problem. (a) Schematic of the design problem. Each condensed phase (gray circles) has a distinct composition of
the five molecular components (represented by colors red, orange, yellow, green, and blue). The target compositions of these bulk phases are indicated by pie charts. (b) The
scenario illustrated in panel (a) corresponds to a phase diagram in a five-dimensional concentration space. The component volume fractions in each of the K = 4 condensed
phases, ϕ⃗ (α) for α = 1, . . . , 4, specify the design problem. At equilibrium, any mixture of the five components with a volume-fraction vector inside the convex hull of the
coexisting phases (shaded region) will phase-separate into bulk phases with the prescribed molecular compositions. (c) Solving the design problem yields a 5 × 5 interaction
matrix, ϵ, and a corresponding chemical potential vector, μ⃗, that result in coexistence among the K + 1 bulk phases shown in panel (b).

To find (ϵ, μ⃗) solutions that satisfy these thermodynamic con-
straints in an efficient manner, we perform a convex relaxation
that relies on two assumptions about the design problem. First, we
assume that the concentration of each depleted component within
each condensed phase is very small. This assumption is equivalent to
specifying the inverse-design problem in terms of only the enriched-
component concentrations in each of the condensed phases. We
therefore ignore the contributions of the depleted components to
the pairwise interaction term in Eq. (1) when it is evaluated in
a condensed phase. This assumption also implies that the equal-
chemical-potential constraint for each depleted component j in each
condensed phase α can be approximated as an inequality, such
that ϕ(α)j < ϕ

(α)
depl ≡ ϕ

(α)
T /M

(α)
(N −M(α)), where the total volume

fraction of non-solvent components in phase α is ϕ(α)T ≡ ∑
N
i=1 ϕ

(α)
i .

Second, we assume that every component is enriched in at least one
condensed phase and that ϕ(α)T ≫ ϕ(0)T for every condensed phase
α, where ϕ(0)T is the total volume fraction in the dilute phase. This
assumption implies that the osmotic pressure is approximately zero
at coexistence.

Relaxing the thermodynamic constraints in these ways alters
the design problem, such that (ϵ, μ⃗) solutions to the convex relax-
ation may not produce the target phase diagram precisely [Fig. 2(a)].
Nonetheless, we emphasize that this convex relaxation is only used
for identifying candidate solutions to the design problem. As we
discuss below, we subsequently verify whether a proposed solution
solves the actual design problem, meaning that we achieve numer-
ically precise phase coexistence among K + 1 phases and that the
K condensed-phase compositions closely resemble those prescribed
by the target phase diagram. The degree to which the approxima-
tions described above are valid for a particular design problem only
affects the ability of our method to suggest a useful candidate solu-
tion, which depends on the overlap of the actual and relaxed solution
spaces (see Sec. II B).

Taken together, the design problem and the relaxed thermo-
dynamic conditions define a semidefinite program (SDP)35 that is
convex with respect to the pairwise interaction matrix ϵ and the
chemical potential vector μ⃗,

μid,i(ϕ⃗
(α); v⃗) + μex,i(ϕ⃗ (α); ϵ, v⃗) ≥ μi ∀i,α (2a)

P(ϕ⃗ (α); ϵ, v⃗) = 0 ∀α, (2b)

∂[μ⃗id(ϕ⃗
(α); v⃗) + μ⃗ex(ϕ⃗ (α); ϵ, v⃗)]/∂ϕ⃗ ≻ λminI ∀α, (2c)

ϕ(0)T (μ⃗; v⃗) < ϕ
∗

T(v⃗), (2d)

where μid,i = v−1i log ϕ(α)i for any component i that is enriched in
the α phase and μid,i = v−1i log ϕ(α)depl for any component i that is
depleted in the α phase. The equality(inequality) in Eq. (2a) applies
to enriched(depleted) components, respectively. Equation (2b) is a
statement of the zero-osmotic-pressure approximation. In Eq. (2c),
the parameter λmin ≥ 0 places a lower bound on the smallest eigen-
value of the second-derivative matrix to guarantee thermodynamic
stability. The final constraint, Eq. (2d), ensures that the volume
fraction in the dilute phase, ϕ(0)T , is less than the critical volume
fraction, ϕ∗T(v⃗); this condition is independent of ϵ due to the
zero-osmotic-pressure assumption. While not strictly needed when
the true coexistence pressure is actually close to zero, Eq. (2d)
constrains μ⃗ to physically plausible solutions for arbitrary phase-
diagram design problems. This convex program is straightforward
to solve using modern convex optimization tools.36,37 Moreover, it
is possible to prove whether this convex relaxation is infeasible,35
meaning that no solution (ϵ, μ⃗) exists for the target condensed-
phase volume fractions {ϕ⃗ (α)}. Finally, as long as the assumptions
underlying the convex relaxation are appropriate for a proposed
design problem, we expect that there will be a close correspon-
dence between the feasible domain of {ϕ⃗ (α)} and the domain of sets
of target phases on which true thermodynamic coexistence can be
established [Fig. 2(a)].

In general, the SDP specified by Eq. (2) defines a continuous
space of interaction matrices that solve the convex relaxation of
the inverse-design problem, with a unique μ⃗ corresponding to each
point in this space. However, we have not yet considered the pos-
sibility that other “off-target” condensed phases may be equally or
even more stable than the target phases at the coexistence point
specified by (ϵ, μ⃗), meaning that the target phases are only in
marginal or metastable coexistence. More precisely, satisfying the
equal-chemical-potential and equal-osmotic-pressure conditions for
phase coexistence implies that the dilute and condensed target
phases all have precisely the same value of the grand potential,
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FIG. 2. Inverse-design approach to multicomponent phase coexistence. (a) Schematic of the N(N + 1)/2-dimensional interaction-matrix “ϵ-space.” Given a feasible design
problem [e.g., Fig. 1(b)], there exists a “solution space” (dark blue region) containing all interaction matrices that result in coexistence among the bulk phases specified by
the target phase diagram. If the design problem is infeasible, then this solution space does not exist. Every interaction matrix within the solution space has a corresponding
chemical potential vector at phase coexistence. Solutions to the convex relaxation (red region) may lie outside the solution space. Within the solution space, there may be
a subspace for which the target phases are globally stable (cyan region; see text for details). (b) Schematic of the regularization heuristic for eliminating globally stable (i.e.,
ΔΩ ≤ 0) off-target phases, illustrated here for target phases α and β and representative off-target phases γ and δ. Regularization is used to bias solutions toward the globally
stable subspace depicted in panel (a) (see text for details). (c) Due to the approximations employed in constructing the convex relaxation, the chemical potential vector that is
obtained via convex optimization may not yield precise phase coexistence (i.e., zero difference in the grand potential, ΔΩ, between phases). We therefore perform a common
tangent plane construction to correct the coexistence chemical potentials that are found via convex optimization. This procedure is shown schematically for a pair of target
phases α and β. Two grand-potential surfaces, projected along a path through concentration space between ϕ⃗ (α) and ϕ⃗ (β), are depicted before (gray curve) and after (blue
curve) computing the correction to the chemical potential vector, Δμ⃗.

Ω(ϕ⃗; μ⃗, ϵ, v⃗) ≡ ∑N
i=1 ∫ dϕi[v−1i log ϕi + μex,i(ϕ⃗) − μi]. It is nonethe-

less possible that an off-target phase has a lower grand potential
at the coexistence point specified by μ⃗ and is thus thermodynami-
cally favored relative to the coexisting phases specified in the design
problem. We address this possibility by introducing a regulariza-
tion heuristic that attempts to maximize Ω(ϕ; μ⃗, ϵ, v⃗) away from the
target phases [Fig. 2(b)]. Specifically, based on the form of Eq. (1),
we seek to minimize both the variance of the elements of μ⃗ and
the norm of ϵ − μ̄/⟨ϕ(α)T ⟩, where μ̄i j ≡ (μi + μ j)/2 and ⟨ϕ(α)T ⟩ is the
mean condensed-phase total volume fraction (see Appendix A for
details). Regularizing the SDP in this way tends to destabilize off-
target phases while also guaranteeing that the solution to our convex
relaxation is unique. We therefore use this heuristic to choose a
particular “regularized” candidate solution (ϵ, μ⃗), as illustrated in
Fig. 2(a).

Finally, to confirm that the precise thermodynamic condi-
tions for bulk phase coexistence are indeed satisfied by a candidate
interaction matrix, we perform a multicomponent generalization
of the common tangent construction. Starting from the SDP solu-
tion (ϵ, μ⃗), we adjust μ⃗ in order to fit a common tangent plane to
the local minima of the grand potential, Ω(ϕ⃗; μ⃗, ϵ, v⃗) [Fig. 2(c)].
The conditions specified in Eq. (2) imply that the grand potential
evaluated at the SDP solution has local minima close to the pre-
scribed condensed-phase and coexisting dilute-phase volume frac-
tions. Therefore, we can fit a common tangent plane by minimizing
the norm of {ΔΩ(α)(μ⃗)}, where ΔΩ(α)(μ⃗) is the difference between
Ω(ϕ⃗; μ⃗) evaluated at the local minimum near the dilute phase and
at the local minimum near the α condensed phase (see Subsection 1
of Appendix B). This procedure converges rapidly using standard
numerical methods,38 since the convex relaxation is constructed to
be a good approximation of this nonlinear hyperplane-fitting prob-
lem. In the extensive numerical tests described below, we indeed find
that a solution to the convex relaxation typically implies that the
conditions for coexistence can be satisfied for the target phases to
numerical precision.

B. Validation of inverse-design strategy
using the Flory–Huggins model

This algorithm provides a scalable means of predicting whether
prescribed target phases can be in simultaneous thermodynamic
coexistence and, if so, for determining a coexistence point (ϵ, μ⃗). To
validate our approach, we apply this algorithm to a Flory–Huggins
model30 of a multicomponent polymer solution. (See Appendix A
for the corresponding SDP definitions.) In this model, excluded
volume interactions between monomers are captured by the term
μ⃗v(ϕ⃗;L) = − log (1 − ϕT) − (1 − 1/L) in Eq. (1), where themolecular
volume is proportional to the degree of polymerization, L. In what
follows, we assume that the degree of polymerization is the same for
every component, and we perform calculations with L ranging from
1 to 100. For simplicity, we choose the same total volume fraction,
ϕαT = ϕ

(cond)
T , for each condensed phase.

In Fig. 3, we report the results of our algorithm for a diverse
collection of distinct phase diagrams with N = 6 species. This num-
ber of components turns out to be sufficient to uncover qualitative
differences with simple fluids (see Secs. II C and II D) while still
permitting exhaustive searches for off-target phases. To build a
diverse collection of test cases, we begin by considering phase dia-
grams with “equimolar” target phases, meaning that every enriched
component i within a target phase has the same volume fraction,
ϕ(α)i ≃ ϕ(cond)T /M(α). We first enumerate phase diagrams consisting
of K distinct equimolar target phases (see Appendix C for details).
To eliminate trivial test cases, we require that every component is
enriched in at least one condensed phase and that no two compo-
nents are enriched in precisely the same set of condensed phases.
Next, we identify all phase diagrams for which the correspond-
ing convex relaxation is feasible, using the Flory–Huggins model
with degree of polymerization L = 1. We then group the target
phase diagrams into isomorphic sets, within which phase diagrams
are equivalent under permutation of component and target phase
indices. By selecting a single target phase diagram from each iso-
morphic set, we end up with 107 unique N = 6 test cases, with
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FIG. 3. Validation of the inverse-design strategy using a diverse collection of
six-component phase diagrams and the Flory–Huggins polymer model. (a) Here,
we test our inverse-design approach on 107 unique test cases with N = 6 dis-
tinct non-solvent components and condensed-phase counts ranging from K = 3 to
K = 9 (left; see text for details). When the target phase diagrams have equimolar
condensed-phase compositions, we find that the feasibility of the convex relax-
ation is independent of the degree of polymerization, L (right, black). The fraction
of these convex-relaxation solutions that result in coexistence approaches one
as L increases (right, red). (b) Sensitivity of phase coexistence to perturbations
in the interaction matrix, ϵ. We add zero-mean Gaussian noise to the designed
interaction matrices and then attempt to re-establish coexistence by performing
a common tangent plane construction. The probability that coexistence among all
K + 1 phases in the original target phase diagram can be re-established, averaged
over many independent trials, decreases with the condensed-phase count. (c)
The probability that coexistence can be achieved with non-equimolar condensed-
phase compositions (black). Starting from the feasible equimolar phase diagrams,
we construct target phase diagrams by randomly scaling the enriched-component
compositions in each condensed phase. We also show the probability that the
coexistence point leads to global phase coexistence, meaning that no off-target
phases are stable (red). In panels (c) and (d), ϕ(cond)

T = 0.95 and L = 100.

condensed-phase counts ranging from K = 3 to K = 9 [Fig. 3(a)].
Each of these test-case phase diagrams is considered exactly once in
all the calculations that follow.

Using the test cases shown in Fig. 3(a), we find that the feasibil-
ity of the SDP for any particular target phase diagram is independent
of both L and ϕ(cond)T . This observation suggests that the feasi-
bility of the SDP does not depend on the contribution from μv
in Eq. (1). However, the probability that a solution to the reg-
ularized SDP results in phase coexistence (to machine precision,
ΔΩ ∼ 10−14) tends to increase with both L and ϕ(cond)T [Fig. 3(a)].
These trends can be explained by noting that the total dilute-
phase volume fraction ϕ(0)T → 0 as L→∞ and ϕ(cond)T → 1 in the

Flory–Huggins model.30 Under these conditions, the dilute phase is
nearly ideal. The coexistence pressure therefore tends to zero, and
the convex relaxation becomes amore accurate approximation of the
true inverse-design problem, as L→∞ and ϕ(cond)T → 1. Nonethe-
less, our algorithm succeeds in establishing coexistence among the
target phases for the vast majority of our test cases even when the
zero-pressure approximation is poor [e.g., with L = 1 and ϕ(cond)T
= 0.9 in Fig. 3(a)].

These equimolar-condensed-phase test cases demonstrate that
our approach is capable of identifying solutions to a variety of phase-
diagram design problems.We emphasize that these design problems
are nontrivial since individual components can be enriched in mul-
tiple immiscible phases. Furthermore, this algorithm can just as
easily be applied to phase-diagram design problems with arbitrary
condensed-phase volume fractions, as opposed to equimolar targets,
as we discuss below. Finally, we note that this approach is compu-
tationally efficient, returning SDP solutions with N = 6 components
in less than a second on a single core (see Appendix D for further
discussion of the computational requirements).

C. Unusual phase coexistence in mixtures with five
or more non-solvent components

Our calculations reveal a number of unexpected features of
multicomponent phase coexistence. Most strikingly, we identify
numerically precise coexistence points (ΔΩ ∼ 10−14) where the
condensed-phase count, K, is greater than the number of distinct
non-solvent species, N [Fig. 3(a)]. At first glance, these examples
might appear to conflict with the Gibbs Phase Rule (GPR), which
relates the number of coexisting phases to the number of thermo-
dynamic degrees of freedom.11 In the case of the incompressible
N-component fluids that we study here, the bound implied by a
standard interpretation of the GPR is K ≤ N. However, our results
indicate that this bound does not apply to all possible coexistence
points when N = 6 [Fig. 3(a)].

The resolution to this paradox is that, because the interactions
are free parameters, it is possible to design phase-coexistence con-
ditions that are linearly dependent. This linear dependence makes
it possible to perform a common tangent plane construction even
when K > N. We emphasize that this scenario does not violate a
rigorous derivation of the GPR that counts only linearly indepen-
dent thermodynamic constraints. A further consequence of linearly
dependent coexistence conditions is that the lever rule,31 which
relates the total concentrations in a mixture to the mole frac-
tions of the coexisting phases, does not have a unique solution
when K > N.

The origin of these unusual coexistence points can be most
easily understood by realizing that the design problem, with
N(N + 1)/2 tunable interaction-matrix parameters, is not neces-
sarily overdetermined when K > N. Thus, convex optimization is
able to identify interaction matrices that result in linearly depen-
dent coexistence equations, as required to have K > N condensed
phases. Our calculations indicate that these unusual coexistence con-
ditions can only occur in mixtures with at least N = 5 species and
that they become increasingly common as the number of compo-
nents increases. In fact, our inverse-design approach shows that it
is possible to find coexistence points with more than N2 condensed
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phases. (See Subsection 2 of Appendix C for further discussion and
scaling predictions based on graph-theoretical arguments.)

If these unusual coexistence points are allowed by linearly
dependent coexistence conditions, then we should expect that they
are sensitive to small changes in the interaction parameters. Consis-
tent with this expectation, we find that small, random perturbations
to the designed interaction matrices preclude phase coexistence of
the target phases when K > N [Fig. 3(b)]. Specifically, we add zero-
mean Gaussian noise to the designed matrix ϵ and then attempt
to perform a common tangent plane construction for phases close
to the original target phases by tuning μ⃗. Whenever K > N, only a
subset of the original K condensed phases can be brought into coex-
istence with the dilute phase after such a perturbation, while the
remaining condensed phases become metastable.

D. Designing mixtures with arbitrary
condensed-phase compositions

Next, we turn our attention to variations in the compositions
of the condensed phases. Intuition based on the phase behavior of
simple mixtures suggests that small changes in the target phase vol-
ume fractions, {ϕ⃗ (α)}, should result in small changes in ϵ, and vice
versa, unless the mixture is near a critical point where two or more
of the ϕ⃗ (α) merge. For example, small changes in the dimensionless
interaction parameter in an incompressible binary mixture perturb
the binodal but do not change the coexistence region qualitatively as
long as ϕT ≫ ϕ∗T .30 Since the calculations presented in Fig. 3 are per-
formed far from critical points (meaning that the Euclidean distance
between all pairs of target phases {ϕ⃗ (α)} is large and ϕ(cond)T ≫ ϕ(0)T ),
one might expect that this intuition should apply to mixtures with
many components as well.

To test this hypothesis, we randomly perturb the initially
equimolar compositions of the enriched components in each tar-
get phase and then apply our inverse-design algorithm. For most
phase diagrams with K < N, we find that the convex relaxation
with non-equimolar condensed phases is feasible and that phase
coexistence can be established by a common tangent plane construc-
tion [black curve in Fig. 3(c)]. Furthermore, exhaustive sampling
of the grand potential landscapes confirms that the target phases
of these designed phase diagrams are almost always globally stable
[red curve in Fig. 3(c)]. This observation provides evidence that our
regularization heuristic (see Sec. II A) is working as intended.

Yet, in other cases, the convex relaxation becomes infeasible
when non-equimolar compositions are prescribed, indicating that
phase coexistence is not always possible with arbitrary condensed-
phase compositions. In particular, we find that random condensed-
phase compositions are always infeasible whenK > N. We stress that
this observation does not imply that K > N coexistence points nec-
essarily require equimolar condensed-phase compositions. Rather,
linearly dependent coexistence conditions can still be achieved with
non-equimolar condensed-phase compositions, but these compo-
sitions cannot be chosen randomly. (See Appendix E for further
analysis.) Our calculations also show that random composition per-
turbations can render many phase diagrams infeasible when K ≤ N
as well.

Taken together, Figs. 3(b) and 3(c) suggest that unusual coex-
istence points, which are sensitive to small perturbations in ϵ, lie
on manifolds of lower dimension than the full space of interaction

matrices, or “ϵ-space.” Phase coexistence is not limited to K ≤ N
condensed phases on these special manifolds, although some of
these phases must become metastable if we move off the man-
ifold by perturbing the interaction matrix. These manifolds rep-
resent “interfaces” between volumes of ϵ-space that correspond
to condensed phases with different sets of enriched components.
In other words, crossing one of these interfaces by changing
ϵ entails a discontinuous transition from one set of condensed
phases to another, where phases from both sets are stable on the
interface itself.

E. Relationships between phase diagrams
in the space of pairwise interactions

To probe relationships between distinct multicomponent phase
diagrams in ϵ-space, we can analyze dissimilarities between pairs
of interaction matrices that solve different phase-diagram design
problems. For this purpose, we use the Frobenius norm, ∥ϵs
− ϵr∥fro, to measure the “distance” in ϵ-space between two inter-
action matrices ϵr and ϵs, which correspond to different phase dia-
grams with globally stable condensed phases {ϕ⃗ (α)}r and {ϕ⃗ (α)}s,
respectively. We can then represent the N(N + 1)/2-dimensional
ϵ-space in two dimensions via dimensionality reduction tech-
niques, which preserve the relative distances between the interaction
matrices.

A two-dimensional representation of the interaction-matrix
solutions to the equimolar design problems presented in Fig. 3(a)
is shown in Fig. 4(a). On the basis of this projection, we con-
clude that the similarity between a pair of interaction matrices is
not directly related to how many condensed phases they encode.
To see this more clearly, we plot the distribution of distances
between these pairs of interaction matrices as a function of the
difference in their condensed-phase counts, Ks − Kr [black distri-
butions in Fig. 4(b)]. In this way, we find that the typical distance
between pairs of interaction matrices tends to be relatively constant
regardless of whether they encode the same number of condensed
phases.

However, because the interaction matrix that stabilizes a par-
ticular phase diagram is typically not unique, it is more useful to
quantify the extent to which an interaction matrix must be changed
in order to switch to a different phase diagram. We can address
this question within our inverse-design framework by modifying
the regularization heuristic in one of two ways (see Subsection 4 of
Appendix A for details). In the first instance, we attempt to min-
imize the distance to a reference interaction matrix that solves a
different phase-diagram design problem. For example, starting from
the interaction matrix ϵr that solves the original regularized SDP for
phase diagram r, we can identify the “closest” matrix ϵs that solves
phase diagram s by minimizing the Frobenius norm ∥ϵs − ϵr∥fro [red
distributions in Fig. 4(b)]. In this way, we find that increasing the
number of condensed phases, such that Ks > Kr , tends to require
more substantial changes in the interaction matrix as measured
by this distance metric. Interestingly, this distance can in fact be
infinitesimal if the phase-diagram change r → s reduces the phase
count; this occurs whenever the initial interaction matrix ϵr resides
on a special low-dimensional manifold (see Secs. II C and II D)
where K > N and the two phase diagrams r and s differ by a single
condensed phase.
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FIG. 4. Relationships among phase diagrams in ϵ-space. (a) A low-dimensional
representation of the interaction matrices corresponding to the phase diagrams
considered in Fig. 3(a). Circles with black outlines indicate phase diagrams that
are sensitive to random perturbations in ϵ [see text and Fig. 3(b)]. Multidimen-
sional scaling39 has been used to preserve distances in ϵ-space, taken here as
the Frobenius norm of the difference between each pair of interaction matrices.
(b) Distributions of the distances between pairs of matrices in panel (a) (black
distributions) are compared to distributions of the minimum distance required to
switch from an initial reference phase diagram r to a new phase diagram s (red
distributions). Distributions are shown as a function of the condensed-phase-count
difference, Ks − K r . Box plots indicate the quartiles of the distance distributions.
(c) Distributions of the minimum number of entries of the symmetric ϵ-matrix
that must be changed to switch from a reference phase diagram r to a new
phase diagram s, Drs. The maximum number of elements that can be changed is
Dmax ≡ N(N + 1)/2. (d) The minimum number of elements changed when switch-
ing from a reference phase diagram r to the new phase diagram s is asymmetric
with respect to the condensed-phase-count difference, Ks − K r .

Alternatively, we can determine the smallest number of dis-
tinct matrix elements that must be changed in order to switch to
a new phase diagram. As should be expected, this minimal number
of elementwise changes, Drs, is always greater than zero, even when
the initial interaction matrix resides on a special low-dimensional
manifold with K > N [Fig. 4(c)]. Our calculations reveal that Drs
is asymmetric with respect to phase diagram changes r↔ s and
tends to increase with the net number of added phases [Fig. 4(d)].
Assuming that the reference interaction matrix is obtained using
the original regularization heuristic, this observation implies that
a larger number of distinct matrix elements typically need to be
modifiedwhen adding, as opposed to subtracting, condensed phases.

F. Validation of inverse-design strategy
in a molecular simulation model

Finally, we assess whether the predictions of our inverse-design
approach apply beyond mean-field models. We therefore investigate
whether we can design the phase behavior of non-mean-field fluid

FIG. 5. Transferable predictions validate the pairwise approximation. We per-
form free-energy calculations using a multicomponent lattice-gas model and pair
potentials derived from designed interaction matrices. Reweighting techniques
are then used to compute phase coexistence to within sampling accuracy (∣ΔΩ∣
≤ 0.007kBT). Examples are shown for mixtures with N = 5 species and (a) K = 4,
(b) 5, and (c) 6 condensed phases. The N-dimensional concentration spaces are
projected onto two coordinates, X1 and X2, for visualization in two dimensions.
The value of the grand potential, which is determined along a path connecting
each condensed phase to the dilute phase, is indicated by the color scale. Each
labeled phase on the projected landscape corresponds to a condensed phase in
the schematic to the left. The Pearson correlation coefficient, R, between the target
and simulated composition is shown for each condensed phase.

models in which the molecules interact via pair potentials, mean-
ing that the contribution to the total potential energy from every
pair of molecules depends on the distance between them.33 In mod-
els with pair potentials, the chemical potentials cannot be described
exactly by the mean-field pairwise approximation that has been cen-
tral to our discussion up to this point. In particular, Eq. (1) is only
a good approximation of the excess chemical potentials at low con-
centrations, since the higher-order virial coefficients depend on the
species-specific pair potentials.33
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To this end, we perform simulations and free-energy calcula-
tions to compute phase coexistence using a multicomponent lattice
gas. We first design a mean-field interaction matrix, ϵMF, for a tar-
get phase diagram using the L = 1 Flory–Huggins SDP. We then use
this matrix to define the pair potentials, uij, on a three-dimensional
square lattice with lattice constant a. Each lattice site can be occupied
by at most one solute molecule at a time, so that uij(r/a < 1) =∞,
where r is the distance between solutes of types i and j. We set
the well-depths for interactions between neighboring molecules to
be proportional to the designed mean-field interaction matrix, such
that ui j(1 ≤ r/a < 2)∝ ϵMF

i j . We first identify the free-energy basins,
which correspond to the (meta)stable phases of the lattice gas, by
running grand-canonical Monte Carlo simulations.40 We then sam-
ple reversible transitions between the dilute free-energy basin and
each of the condensed-phase basins.14 Finally, we reconstruct the
free-energy landscapes in the N-dimensional ϕ⃗-space and adjust the
chemical potentials to bring all phases into coexistence,41 at which
point the grand potentials of all basins are all equal (see Appendix F
for details).

Our lattice-gas simulations reveal free-energy landscapes that
are consistent with the target phase diagrams, even though the pair
potentials are designed using mean-field interaction matrices. In
order to test a variety of scenarios, we carry out simulations with
five components and condensed-phase counts that are less than,
equal to, and greater than the number of components. In Fig. 5,
projections of the high-dimensional grand-potential landscapes are
visualized in two dimensions for each of these test cases. These
landscapes indicate that phase coexistence is achieved to within sta-
tistical error (∣ΔΩ∣ ≤ 0.007kBT) among all the prescribed phases.
In particular, we find that phase coexistence is in fact achieved in
the K = 6 example, confirming that unusual phase coexistence with
K > N condensed phases is not only a feature of mean-field models.
We note, however, that minor quantitative differences in the phase
compositions do occur in the simulation model (Fig. 5). These inac-
curacies arise due to the mean-field approximations utilized in the
interaction-matrix design algorithm and appear to becomemore sig-
nificant as the number of enriched components within a condensed
phase grows. Nonetheless, the identities of the enriched compo-
nents, if not their precise target compositions, match the designs in
all the simulated phases in each test case.

III. CONCLUSIONS
Understanding how biomolecular interactions give rise to

many coexisting phases with distinct chemical compositions
remains an outstanding problem with significant implications for
intracellular biophysics. To address this challenge, we have intro-
duced an inverse approach for designing mixtures that demix into
phases with prescribed compositions. This methodology provides
insight into the structure of the interaction-matrix solution space,
revealing a number of qualitative differences between multicom-
ponent phase behavior and that of simple fluids. Our approach
also establishes an extensible framework for investigating relation-
ships between the physicochemical properties of biomolecules and
phase separation in complex mixtures. For example, we could
build on the approach described in Sec. II E to compute pairs of
interaction matrices that enable switching between different phase
behaviors with the fewest number of matrix-element changes. Our

approach could similarly be applied to design interfaces42,43 between
condensed phases.

Our inverse-design approach differs in a number of important
ways from existing numerical methods for analyzing phase coexis-
tence in multicomponent fluids.4,7,10 First, by employing a convex
relaxation of thermodynamic constraints, convex optimization can
be used to prove whether a proposed phase diagram is infeasi-
ble.6 This feature allows us to distinguish between the consequences
of actual physical constraints and the behavior of approximate
and/or nondeterministic algorithms for computing or designing
phase coexistence. Second, inverse design avoids the need to search
high-dimensional spaces to identify candidate phases when solving
the forward problem. In the context of iterative design schemes,
such as those based on genetic algorithms, such calculations must
be performed for every candidate interaction matrix. Third, inverse
design is well suited for solving highly nontrivial design problems.
For example, we have shown that we can design fluids by prescrib-
ing not only the number of coexisting condensed phases, but their
precise compositions as well. This distinction becomes important in
experimentally relevant scenarios where the total molecular concen-
trations are fixed. In this case, constraints on the compositions of the
condensed phases must be specified in the design problem to guar-
antee that the total concentration vector lies within the coexistence
region, ensuring that the mixture phase separates into the intended
number of coexisting phases [e.g., Fig. 1(b)].

Going beyond mean-field models, we anticipate that our
approach might be applied to design the phase behavior of more
realistic multicomponent fluids. Supporting this idea, our lattice-
model simulations—in which the interactions can be described as
only approximately pairwise—suggest that the predictions of our
approach may indeed translate to more complex systems. How-
ever, it may not always be possible to engineer or evolve molecu-
lar interactions with the independence and precision necessary to
construct all theoretically possible phase diagrams. In this regard,
our results indicate that the physically relevant constraints on
the phase behavior of multicomponent fluids arise primarily from
the properties of the intermolecular interactions since thermody-
namically allowed phase diagrams can be surprisingly complex.
Our results therefore highlight the need to understand the extent
to which molecular interactions can be tuned independently in
phase-separating (bio)chemical fluids. Addressing this challenge will
require the introduction of additional constraints on the physico-
chemical properties of the molecular components within our design
framework. In this way, we anticipate that our theoretical approach
will play an important role in ongoing efforts to unravel the con-
nections between molecular design and multicomponent phase
behavior.25,27,44–49
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APPENDIX A: APPLICATION TO THE
MULTICOMPONENT FLORY–HUGGINS MODEL

In the numerical examples presented in Secs. II B–II E, we
consider the special case of the multicomponent Flory–Huggins
polymer model,30 for which

μ⃗v(ϕ⃗; v⃗) = − log (1 − ϕT) − (1 − 1/Li), (A1)

and we introduce the degree of polymerization, Li, in place of the
molecular volume vi. In this section, we first define the thermody-
namic quantities for this model explicitly. We then formulate the
corresponding SDP.

1. Model definition
The Helmholtz free-energy density, F; chemical potential,

μ⃗; osmotic pressure, P; and Hessian matrix, ∂μ⃗(ϕ⃗)/∂ϕ⃗, in the
multicomponent Flory–Huggins model are

F =
N

∑
i=1

ϕi
Li

log ϕi + (1 − ϕT) log (1 − ϕT) +
1
2

N

∑
i=1

N

∑
j=1

ϵi jϕiϕ j , (A2)

μi =
1
Li

log ϕi − log (1 − ϕT) − (1 −
1
Li
) +

N

∑
j=1

ϵi jϕ j , (A3)

P = − log (1 − ϕT) +
N

∑
i=1

ϕi
Li
− ϕT +

1
2

N

∑
i=1

N

∑
j=1

ϵi jϕiϕ j , (A4)

∂μi
∂ϕ j
=

δi j
Liϕi
+

1
1 − ϕT

+ ϵi j , (A5)

respectively, where Li is the degree of polymerization of polymeric
species i.

Before writing down the SDP constraints for a particular set of
condensed-phase volume fractions, {ϕ⃗ (α)}, we consider a mixture
with a fixed composition x⃗. The resulting expressions will be utilized
in subsequent sections. Themixture composition is normalized such
that ∑N

i=1 xi = 1. In order to calculate the total volume fraction at

the critical point, ϕ∗T(x⃗), we set the projection of the Hessian matrix
along x⃗ to zero,

N

∑
i=1

N

∑
j=1

xi
∂μi
∂ϕ j

x j =
1
ϕT

N

∑
i=1

xi
Li
+

1
1 − ϕT

+
N

∑
i=1

N

∑
j=1

xiϵi jx j = 0, (A6)

and differentiate with respect to ϕT,

−
∂⟨ϵ⟩x
∂ϕT

= −
1
(ϕT)2

N

∑
i=1

xi
Li
+

1
(1 − ϕT)2

= 0, (A7)

where ⟨ϵ⟩x ≡ ∑N
i=1∑

N
j=1 xiϵi jx j . The critical volume fraction at fixed

composition x⃗ is thus

ϕ∗T(x⃗) =
1

1 + ⟨1/L⟩−1/2x
, (A8)

where ⟨1/L⟩x ≡ ∑N
i=1 xi/Li.

Assuming that the chemical potential vector is known, the total
volume fraction of a condensed phase with composition x⃗ can be
approximated by setting the osmotic pressure equal to zero and
projecting μ⃗ along x⃗,

N

∑
i=1

xiμi ≡ ⟨μ⟩x =
N

∑
i=1

xi
Li

log ϕi + ⟨1/L⟩x − 1 − log (1 − ϕT) + ϕT⟨ϵ⟩x,

(A9)
to yield a nonlinear equation for ϕT,

2
ϕT

log (1 − ϕT) + ⟨1/L⟩ log ϕT − log (1 − ϕT) + 1 − ⟨1/L⟩x

+
N

∑
i=1

xi
Li

log xi − ⟨μ⟩x = 0. (A10)

We can also solve for the mean interaction, ⟨ϵ⟩x, in a condensed
phase with composition x⃗,

⟨ϵ⟩x =
2
(ϕT)2

[log (1 − ϕT) + ϕT(1 − ⟨1/L⟩x)]. (A11)

We can similarly obtain an expression for dilute-phase volume frac-
tions in terms of μ⃗ by assuming that the osmotic pressure is nearly
zero, such that ϕ(0)T is very small,

ϕi ≃ exp [Liμi + (Li − 1)]. (A12)

2. SDP formulation
In this section, we use the notation {ϕ⃗ (α)} to refer to the target

volume fractions in the K condensed phases, α = 1, . . . ,K. We fur-
ther assume that M(α) species are enriched in the α phase and that
the target volume fractions of the depleted components are set to
zero. We can therefore denote the set of enriched components in
phase α by

S(α) ≡ {i∣δ(ϕ(α)i ) = 0}, (A13)

where δ(⋅) is the Dirac delta function. Thus, M(α) = N −∑N
i=1

δ(ϕ(α)i ) is the cardinality of the vector ϕ⃗ (α), and the target total
volume fraction in phase α is ϕ(α)T = ∑i∈S(α) ϕ

(α)
i .
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The equal-chemical-potential constraints for enriched and
depleted components, respectively, take the form

N

∑
j=1

Liϕ(α)j ϵi j − Liμi + log ϕ(α)i − Li log (1 − ϕ(α)T )

−(Li − 1) = 0, δ(ϕ(α)i ) = 0, (A14a)

N

∑
j=1

Liϕ(α)j ϵi j − Liμi + log
⎡
⎢
⎢
⎢
⎢
⎣

ϕ(α)T ζ
M(α)(N −M(α))

⎤
⎥
⎥
⎥
⎥
⎦

−Li log (1 − ϕ(α)T ) − (Li − 1) ≥ 0, δ(ϕ(α)i ) = 1 (A14b)

for each species index i = 1, . . . ,N and each condensed phase
α. We set the adjustable parameter ζ = 10−2 in this work. The
zero-osmotic-pressure constraint for each condensed phase α is

1
2

N

∑
i=1

N

∑
j=1

ϕ(α)i ϕ(α)j ϵi j − log (1 − ϕ(α)T ) − ϕ
(α)
T +

N

∑
i=1

ϕ(α)i
Li
= 0. (A15)

In order to place constraints on the Hessian matrices in the
condensed phases, we define the regularized target volume fractions

ϕ̃(α)i = ϕ(α)i +
ϕ(α)T ζ

M(α)(N −M(α))
δ(ϕ(α)i ), (A16)

so that we have ϕ̃(α)i > 0 for all i and all α. Each condensed-phase
scaled Hessian matrix must then satisfy

δi j
ϕ̃(α)i

+

√
LiL j

1 − ϕ(α)T

+
√
LiL jϵi j ≽ λminδi j , (A17)

where λmin is the smallest allowed eigenvalue. We choose λmin = 1
in this work. Finally, we constrain the chemical potentials such that
the approximate total volume fraction of a roughly equimolar dilute
phase is below the critical volume fraction by utilizing Eqs. (A12)
and (A8),

log
N

∑
i=1

exp (Liμi + Li − 1) ≤ log{0.9 ϕ∗T[x⃗ = (
1
N
, . . . ,

1
N
)]}.

(A18)

Within the approximations of this convex relaxation, these con-
straints define the joint space of interaction matrices, ϵ, and chem-
ical potential vectors, μ⃗, for which bulk phase coexistence can be
established among the target condensed phases and a dilute phase.

3. Regularization for global stability of target phases
Next, we regularize our convex optimization problem in order

to identify an interaction matrix, ϵ, and chemical potential vector, μ⃗,
that are least likely to result in stable off-target phases [Fig. 2(a)].
Off-target condensed phases correspond to local minima of the
grand-potential, Ω(ϕ⃗; μ⃗, ϵ, v⃗), that lie below the grand potential of
the dilute phase, Ω(0). We therefore aim to maximize the grand
potential everywhere in the domain ϕ⃗, except at the dilute and tar-
get phases, {ϕ⃗ (0), ϕ⃗ (1), . . . , ϕ⃗ (K)}, where Ω(α)

= Ω(0). Since the μ⃗

and ϵ-dependent contributions to the grand potential have the form
ω(ϕ⃗) ≡ (ϕ⃗⊺ϵ − μ⃗) ⋅ ϕ⃗, we define the objective function

L0 = ∥(1 + δi j)1/2
ω̄i j

⟨ϕT⟩{α}
∥

fro

+ ∥Li(μi −
1
N

N

∑
k=1

μk)∥
2

. (A19)

The first term is a scaled and shifted Euclidean norm of the unique
ω̄i j elements,

ω̄i j

⟨ϕT⟩{α}
= ϵi j −

1
⟨ϕT⟩{α}

(
μi + μ j

2
−

1
N

N

∑
k=1

μk), (A20)

where ⟨ϕT⟩{α} ≡ (1/K)∑K
α=1 ϕ

(α)
T , while the second term is a scaled

standard deviation of the μ⃗ elements. The notations ∥ ⋅ ∥fro and
∥ ⋅ ∥2 indicate the matrix Frobenius norm and vector Euclidean
norm, respectively.

In the calculations presented in Secs. II B–II D, we solve an SDP
in which we minimize L0 while obeying the constraints described
in Subsection 2 of Appendix A. In order to suppress off-target
condensed phases that are enriched in a single component, we also
introduce an additional constraint on the on-diagonal elements of ϵ,

min
i∈S(α)

ϵii ≥ ⟨ϵ⟩x(α) , (A21)

where ⟨ϵ⟩x(α) is defined in Eq. (A11). As shown in Fig. 3(c), this
regularization heuristic has the intended effect of biasing the SDP
solution toward coexistence points for which no off-target phases
are stable.

4. Regularization for minimum interaction-matrix
dissimilarity

In Figs. 4(b)–4(d), we illustrate how interaction matrices must
be changed in order to switch from a reference phase diagram to
a new phase diagram while making minimal modifications to the
interaction matrix. Let us assume that ϵr is the interaction matrix
that solves the original SDP, regularized by Eq. (A19), for a set of
target phases {ϕ⃗ (α)}r . To identify the interaction matrix ϵs that is
“closest” to this given initial matrix ϵr while satisfying phase coexis-
tence among a different set of target phases {ϕ⃗ (α)}s, we define a new
objective function

Ld(w) = w∥(1 + δi j)
1/2 ω̄i j

⟨ϕT⟩{α}
∥

fro

+ ∥Li(μi −
1
N

N

∑
k=1

μk)∥
2

+ ∥ϵs − ϵr∥, (A22)

where w ≥ 0 is an adjustable parameter. When minimizing the
distance between ϵs and ϵr [see Fig. 4(b)], we use the Frobenius
norm for the final term in Ld. When attempting to minimize the
number of distinct elements of the symmetric matrix ϵr that must be
changed in order to establish coexistence among the target phases
{ϕ⃗ (α)}s [see Figs. 4(c) and 4(d)], we make use of the convex relax-
ation of vector cardinality; consequently, we use the L1 norm of
the upper triangle of ϵs − ϵr as the final term in Ld in this case.
In both cases, we find the smallest value of the adjustable para-
meter, w∗, for which ϵs results in the target phase diagram s with
no off-target phases. This calculation is carried out to a precision
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of w∗ ± 10−3. The distributions shown in Figs. 4(b)–4(d) are com-
puted using Ld(w

∗
), with w∗ calculated independently for each

phase diagram change r → s.

APPENDIX B: NUMERICAL VERIFICATION OF PHASE
COEXISTENCE IN MEAN-FIELD MODELS

Given a solution to the SDP, we identify the exact coexistence
point for the target condensed phases {ϕ⃗ (α)}, if it exists, by solv-
ing the nonlinear coexistence equations to numerical precision. In
this section, we describe the numerical procedures that we follow to
establish bulk phase coexistence and to check for stable off-target
phases.

1. Nonlinear phase coexistence solver
The grand potential, Ω(ϕ⃗), of a mean-field model with an

excess chemical potential in the form of Eq. (1) can be written as

Ω(ϕ⃗; μ⃗, ϵ, v⃗) ≡
N
∑
i=1
∫ dϕi[

log ϕi
vi
+ μex,i(ϕ⃗) − μi]

=
N
∑
i=1

⎡⎢⎢⎢⎢⎣

ϕi(log ϕi − 1)
vi

+∫ dϕi μv(ϕ⃗) +
1
2

N
∑
j=1

ϵi jϕiϕ j − μiϕi
⎤⎥⎥⎥⎥⎦
.

(B1)

In order to find a hyperplane that is cotangent to the local min-
ima of the grand potential corresponding to the dilute and target
condensed phases, we define the grand potential difference for each
condensed phase α = 1, . . . ,K,

ΔΩ(α)(μ⃗; ϵ, v⃗) ≡ Ω(ϕ(α)sp ; μ⃗, ϵ, v⃗) −Ω(ϕ(0)sp ; μ⃗, ϵ, v⃗), (B2)

where Ω(ϕ(α)sp ) and Ω(ϕ(0)sp ) indicate the grand potential evaluated
at the stationary point (i.e., the local minimum) of Ω(ϕ⃗; μ⃗, ϵ, v⃗)
nearest to phase α or the dilute phase, respectively. In practice, we
identify these stationary points by minimizing Ω(ϕ⃗; μ⃗, ϵ, v⃗), start-
ing from either a target condensed-phase volume fraction or from
the approximate dilute-phase volume fraction, Eq. (A12), using the
Newton conjugate gradient trust-region algorithm.50 We then min-
imize the Euclidean norm of the K-dimensional Δ⃗Ω(μ⃗) vector by
iteratively updating the chemical potential vector μ⃗ and locating
the stationary points to calculate ΔΩ(α)(μ⃗; ϵ, v⃗) for each condensed
phase. Minimization of this Euclidean norm is carried out using the
Levenberg–Marquardt nonlinear least squares (NLLS) algorithm.38
The conditions for bulk phase coexistence are satisfied when this
norm reaches machine precision (≲10−14).

2. Identification of stable off-target condensed phases
We can perform a brute-force search for off-target stable phases

by minimizing the grand potential at coexistence, starting from ran-
domly generated initial points in ϕ⃗-space. The grand potential at
coexistence, Ω(ϕ⃗; μ⃗), is first determined via the nonlinear phase
coexistence solver described above, which fixes μ⃗. To perform one
trial of the search, we generate an initial point ϕ⃗trial by sampling uni-
formly from the N-dimensional unit simplex, such that ϕtrial,i > 0
for all components i = 1, . . . ,N and ∑N

i=1 ϕtrial,i < 1. We then use
the Newton conjugate gradient trust-region algorithm50 to mini-
mizeΩ(ϕ⃗) starting from this initial point. This algorithm terminates

upon reaching a local minimum, ϕ⃗sp, on the grand-potential sur-
face. If ϕ⃗sp differs from the dilute, ϕ⃗(0)sp , and target phase, ϕ⃗(α)sp , local
minima, then we compare the grand potential evaluated at this new
local minimum, Ωsp = Ω(ϕ⃗sp; μ⃗), to the coexistence grand poten-
tial, Ω(ϕ⃗(0)sp ; μ⃗). A new local minimum is deemed to be a stable
off-target phase if Ωsp ≤ Ω(ϕ⃗(0)sp ) to within a numerical tolerance
of 10−3.

In Secs. II D and II E, we carry out 104 trials in order to
determine whether any off-target stable phases exist at a proposed
coexistence point (ϵ, μ⃗). We find that this number of trials is suffi-
cient to yield consistent, reproducible results for mixtures with N ≤
6. However, we emphasize that this approach is computationally
expensive, since each trial involves an N-dimensional minimiza-
tion, and the number of trials must scale exponentially with N
in order to carry out a sufficiently exhaustive search. Thus, while
we can use this algorithm to validate the results of our inverse-
design regularization heuristic for small N, any direct usage of this
brute-force approach (or any brute-force approach, for that matter)
would not be scalable to mixtures with a much larger number of
components.

APPENDIX C: GENERATION OF TARGET PHASE
COMPOSITIONS
1. Enumeration of target sets

In an effort to explore a wide variety phase diagrams, we enu-
merate “target sets” with a fixed number of components in Sec. II B.
As in Eq. (A13), target sets label each of the N components as
being either enriched or depleted in each of the K condensed
phases. We shall therefore refer to target sets as specifying the
“topology” of the phase diagram. We enumerate all phase-diagram
topologies by generating (K,N) target sets that satisfy the following
conditions:

1. Each of the N components is enriched in at least one of the K
targets.

2. No two components are enriched in precisely the same targets.

The second condition prevents consideration of phase dia-
grams that have fewer than N independent components. In other
words, if two components were to be enriched in precisely the
same target phases, then the rows and columns of ϵ associated
with these components would also be directly related; therefore, a
phase diagram with smaller N but an equivalent topology could
be constructed by grouping these components together. Note that
these conditions result in a finite lower bound on K. For exam-
ple, these conditions cannot be satisfied using N = 6 components
if K < 3.

Two (K,N) targets sets are isomorphic if they can be made
identical by permuting the ordering of the components and/or tar-
get phases. To account for this, we sort all target sets into isomorphic
groups and consider one member of each group in all calculations.
Specifically, we choose a target set within an isomorphic group
by sorting the target phases in decreasing order of the enriched-
component cardinality, M(α), and the components in decreasing
order of the number of target phases in which each component
appears. Sorting in this way allows us to compute the minimum
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ϵ-space distance and the minimum number of changed ϵ elements
between target phase diagrams [Figs. 4(b)–4(d)].

In the results presented in Secs. II B–II E, we generate
“equimolar” target phases by choosing the target volume fractions
in the condensed phases to be ϕ(α)i = ϕ(cond)T /M(α) if component i is
enriched in phase α and ϕ(α)i = 0 otherwise. We then generate “non-
equimolar” target phases by randomly scaling the volume fractions
of the enriched components in each phase of an equimolar target
set. To this end, we define a scale factor, s > 0, and scale each volume
fraction by ϕ(α)i ← ϕ(α)i [1 + exp (sη)], where η is a random num-
ber between 0 and 1. Finally, we adjust each target phase such that
the total volume fraction is equal to ϕ(cond)T using the transformation
ϕ(α)i ← (ϕ(cond)T /ϕ(α)T )ϕ

(α)
i .

2. Scaling of the maximum phase count based
on graph theory

In Ref. 6, we showed that the feasibility of a related convex opti-
mization problem can be predicted on the basis of graph-theoretical
arguments. Specifically, we showed that the problem of designing
a mean-field free-energy landscape with prescribed local minima
reduces to a quadratic program (QP) if all the condensed phases are
enriched in exactly the same number of components, M, and the
composition of each target phase is equimolar. Under these special
conditions, the feasibility of the QP can be predicted by considering
the maximal cliques51 within a graph, G, as follows: The vertices of
G correspond to the N species, and the adjacency matrix is defined
according to

Gi j =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if components i and j are both enriched
in any phase α,
0 otherwise.

(C1)

The components enriched in each target phase define a subset of the
vertices of G, as noted in Eq. (A13). If any of these subsets are not
maximal cliques in G, then the QP is infeasible.

Extending this argument to the present work, we propose that
the feasibility of phase coexistence among K equimolar condensed
phases that satisfy the equal-M condition described above can be
predicted using the same graph-theoretical approach. Thus, for these
special cases, determining the phase count reduces to the problem of
finding maximal cliques in G. For example, to construct phase dia-
grams in which the phase count scales quadraticallywith the number
of components, N, we can enrich every condensed phase with pre-
cisely two components. This scaling follows fromTurán’s theorem,52
which states that the maximum number of edges of a graph free of
three-cliques is N2

/4, in which case every edge is a maximal clique
corresponding to a target phase.

We can also apply this argument to estimate the largest possible
condensed-phase count in an N-component mixture. Graphs with
extremal clique counts can be realized by partitioning the N compo-
nents into subsets of size 3 (assumingN is divisible by 3) and creating
edges between all pairs of components that are not in the same sub-
set.53 This construction results in target phases enriched in precisely
M = N/3 components, while the combinatorial nature of this con-
struction gives rise to a phase-count scaling that is exponential with

respect toN,K ∼ 3N/3. We have verified that equimolar target phases
generated via this construction lead to phase coexistence with the
prescribed phase count. For example, applying our inverse-design
approach to equimolar target phases with N = 15 and M = 5 results
in numerically precise phase coexistence (ΔΩ < 4 × 10−13) among
K = 243 condensed phases.

APPENDIX D: SCALING ANALYSIS
OF COMPUTATION TIME

We benchmark the computational cost of solving the convex
relaxation by running our algorithm, implemented using state-of-
the-art convex optimization software,36,37 on randomly generated
target sets with an increasing number of components, N. To ensure
that the probability of generating a feasible target set does not go to
zero as the number of components grows, we consider two sampling
schemes for which the average total number of enriched compo-
nents across all condensed phases, ∑K

α=1M
(α), scales linearly with

the number of components. In the first scheme, we sample target
sets with a constant number of condensed phases, K. In practice, we
choose K = 6 random integers from the domain [1, 2N] uniformly
without replacement, and then use the bit-string representation of
each integer to define a target phase (where a 1 indicates an enriched
component and a 0 indicates a depleted component in each phase
α = 1, . . . ,K). This approach maintains a constant number of conic
constraints, Eq. (2c), in the design problem. In the second scheme,
we scaleK linearly withN, such that the number of conic constraints
increases with the number of components. In practice, we generate
K = N/2 phases, with enriched-component cardinality M(α) chosen
uniformly on the domain [1, 5] for each phase α. We then construct
the set of enriched components in each phase α via Bernoulli tri-
als with probability M(α)

/N. Since the mean enriched-component
cardinality ⟨M(α)

⟩ is constant, the mean total number of enriched

FIG. 6. The median computation time required to solve the convex relaxation
or to prove the infeasibility of randomly generated design problems as a func-
tion of the number of components, N. (a) In the first scheme, the number of
condensed phases, K, is constant. (b) In the second scheme, the number of
condensed phases grows proportionally to N. Error bars are computed via boot-
strapping. Dashed lines, indicating approximate power-law scalings, are guides
to the eye.
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components across all phases is proportional to K, and thus to N.
In both schemes, we always ensure that there is at least one compo-
nent enriched in each phase and that every phase has a unique set of
enriched components.

Figures 6(a) and 6(b) show the median computation time
required to solve the design problems generated in these two
ways, respectively, with error bars computed via bootstrapping.
In both schemes, the median computation time needed to obtain
the regularized solution to a feasible convex relaxation is consis-
tent with power-law scaling. However, the median time required
to prove infeasibility appears to increase exponentially with N
in the second scheme [Fig. 6(b)]. In all cases, the computa-
tion time required to solve the common tangent plane construc-
tion is small by comparison (i.e., ≲10% of the total computation
time when N = 20, and ≲1% of the total computation time when
N = 40).

APPENDIX E: UNUSUAL FEATURES OF MULTIPHASE
COEXISTENCE
1. Sensitivity analysis of designed interaction matrices

As described in Secs. II C and II D, we analyze the sensitivity of
designed equimolar-target phase coexistence points to random per-
turbations in both the interactionmatrices and the condensed-phase
volume fractions. Extended results are shown in Fig. 7, where we sys-
tematically vary the strength of the zero-mean Gaussian noise added
to the designed interaction matrices, and in Fig. 8, where we sys-
tematically vary the scale factor used to alter the initially equimolar
enriched-component compositions in the target condensed phases
(see Subsection 1 of Appendix C). In both cases, increasing the
magnitude of the perturbation, either by increasing the standard
deviation of the Gaussian noise (Fig. 7) or by increasing the com-
position scale factor (Fig. 8), tends to reduce the probability that

FIG. 7. The probability that phase coexistence among target phases with N = 6 species can be re-established after zero-mean Gaussian noise is added to the interaction
matrix, as a function of the condensed-phase count, K, and the noise standard deviation. Calculations are performed using the Flory–Huggins polymer model with ϕ(cond)

T
= 0.95 and L = 100 [cf. Fig. 3(b)].

FIG. 8. The probability that phase coexistence (black points) can be established for condensed phases with N = 6 species and randomly generated non-equimolar com-
positions, assuming that the associated equimolar phase diagram (i.e., the phase diagram with equimolar condensed phases having the same enriched components) is
feasible. We also report the probability that the target non-equimolar phases are globally stable at the designed coexistence point (red points). Results are shown as a
function of the condensed-phase count, K, and the scale factor s (see Subsection 1 of Appendix C) used to randomize the compositions of the enriched components in the
condensed phases. Calculations are performed using the Flory–Huggins polymer model with ϕ(cond)

T = 0.95 and L = 100 [cf. Fig. 3(c)].
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coexistence can be re-established among the same number of target
phases.

If the perturbations in ϵ-space or ϕ⃗-space are sufficiently large,
then it is not possible to re-establish coexistence for any set of ini-
tial target phases. (See, e.g., results with a noise standard deviation
of 1 in Fig. 7.) This behavior can be understood by noting that large
perturbationsmay cross a critical manifold, at which point the topol-
ogy of the phase diagram changes and it becomes impossible to
re-establish coexistence among the original K target phases. In the
case of smaller perturbations (e.g., a noise standard deviation of 0.01
in Fig. 7 or a composition scale factor of 1 in Fig. 8), random per-
turbations tend to destabilize one or more of the target phases in all
cases when K > N, as well as in select cases when K ≤ N. Nonethe-
less, we emphasize that the perturbations considered in Figs. 7 and 8
are random. In the following section, we analyze how the situation
changes when the interaction matrix is perturbed in a nonrandom
manner.

2. Analysis of compositional constraints via iterative
perturbation

The results shown in Fig. 7 suggest that the interaction-matrix
solution space, corresponding to a target phase-diagram topology,
can have a lower dimension than the full ϵ-space. In these cases,
random perturbations to the interaction matrix destabilize one or
more phases—changing the phase-diagram topology—because the
perturbed coexistence point is moved off of this lower-dimensional
manifold. This scenario is illustrated schematically by phase-
diagram topology s in Fig. 9(a). However, this picture suggests that
it should be possible to maintain the target phase-diagram topology
by proposing perturbations that move along the lower-dimensional
manifold. In this section, we show how this can be done, allowing us
to find non-equimolar coexistence points on such low-dimensional
manifolds.

One method for finding non-equimolar coexistence points
makes direct use of the nonlinear coexistence solver introduced in
Subsection 1 of Appendix B. Specifically, we use NLLS to mini-

mize Δ⃗Ω(μ⃗, ϵ), except here we allow both μ⃗ and ϵ to change. To
this end, we further modify the least-squares objective function to
force the NLLS solver to find a coexistence point involving all K
condensed phases that are present in target phase-diagram topology.
This brute-force approach [Method I, Fig. 9(b)] generically leads to a
new coexistence point among non-equimolar condensed phases.We
note that for phase-diagram topologies lying on low-dimensional
manifolds in ϵ-space [e.g., topology s in Fig. 9(b)], the changes in
the volume fractions between the equimolar and non-equimolar
coexistence points tend to be correlated across target phases and
components.

Alternatively, we can obtain non-equimolar phase diagrams by
systematically perturbing μ⃗ [Method II, Fig. 9(c)]. Starting from a set
of feasible equimolar target phases {ϕ⃗ (α)}0 at a designed coexistence
point (ϵ0, μ⃗0), we can expandΩ and μ⃗ to linear order in Δϵ and Δϕ⃗,

Ω(α) = Ω(α)0 +

⎡
⎢
⎢
⎢
⎢
⎣

∂F
∂ϕ⃗
∣

(α)

0

⎤
⎥
⎥
⎥
⎥
⎦

⊺

⋅ Δϕ⃗ (α) + [
∂F
∂ϵ⃗
∣

(α)

0
]

⊺

⋅ Δϵ⃗ − μ⃗⊺0 ⋅ Δϕ⃗
(α)

− Δμ⃗⊺ ⋅ ϕ⃗(α)0 = Ω(α)0 + [
∂F
∂ϵ⃗
∣

(α)

0
]

⊺

⋅ Δϵ⃗ − Δμ⃗⊺ ⋅ ϕ⃗(α)0 , (E1)

where ϵ⃗ denotes the vector containing the independent elements of
ϵ. Here, we have assumed that (ϵ0, μ⃗0) is located far from a critical
manifold. For phase coexistence to be maintained (to linear order)
for some perturbation Δϵ, Ω(α)

= Ω(0) must hold for all condensed
phases α = 1, . . . ,K. Thus, from Eq. (E1), we obtain a system of lin-
ear equations of the form AΔϵ⃗ = BΔμ⃗ = b⃗, where A ∈R K×N(N+1)/2,
B ∈R K×N , Δϵ⃗ ∈R N(N+1)/2, and Δμ⃗ ∈R N ,

[
∂F
∂ϵ⃗
∣

(α)

0
−

∂F
∂ϵ⃗
∣

(0)

0
]

⊺

⋅ Δϵ⃗ = [ϕ⃗ (α)0 − ϕ⃗ (0)0 ]
⊺

⋅ Δμ

∀α = 1, . . . ,K.
(E2)

The matrices A and B may be rank deficient when the volume frac-
tions of the equimolar target phases are linearly dependent. When

FIG. 9. (a) Schematic of subspaces, each corresponding to a different phase-diagram topology, within the full ϵ-space. In this illustration, the solution space corresponding to
phase-diagram topology s has a lower dimension than the full ϵ-space. (b) and (c) Schematics of two methods for iteratively perturbing a coexistence point while maintaining
a given phase-diagram topology. The equimolar coexistence point is indicated by a red star. In Method I, we randomly perturb ϵ (empty star) and then use NLLS minimization
to re-establish phase coexistence consistent with the target phase-diagram topology (green star). In Method II, we perturb ϵ and μ⃗ in accordance with linearized coexistence
equations (see text). (d) Repeated application of Method II results in diffusive behavior of the root-mean-squared distance between the condensed-phase volume fractions
at the perturbed and initial coexistence points, averaged over all condensed phases, ⟨∥Δϕ(α)∥2⟩α. Projecting the interaction matrices at the perturbed coexistence points
via multidimensional scaling39 shows the path taken through ϵ-space.
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col(A) = col(B), solutions are guaranteed for arbitrary perturba-
tions, corresponding to cases in which rank(A) = rank(B) = K ≤ N.
If K > N, then rank(B) < rank(A) ≤ N, and random perturbations
will in general fail. However, it is still possible to find solutions for
some perturbation Δϵ⃗ if col(A) ∩ col(B) ≠ ∅.

To perturb an equimolar coexistence point via Method II,
we rotate μ⃗ ∈R N by a small angle θ in the plane specified by
two orthonormal vectors n̂1 and n̂2. To this end, we define the
rotation

Rn̂1n̂2(θ) = I + (n̂2n̂
⊺

1 − n̂1n̂
⊺

2 ) sin θ + (n̂1n̂⊺1 + n̂2n̂
⊺

2 )(cos θ + 1)
(E3)

such that the perturbed chemical potential vector is

μ⃗ = μ⃗0 + Δμ⃗ = Rn̂1n̂2(θ)μ⃗0. (E4)

For example, if we choose n̂1 = (1, 0, . . . , 0) and n̂2 = (0, 1, . . . , 0),
then we only perturb μ1 and μ2, leaving the chemical poten-
tials of the other components unchanged. In practice, we apply a
sequence of rotations with uniformly distributed random angles
in the range [0, 0.005π) for all pairs of axes and then solve for
the perturbed interaction matrix via AΔϵ⃗ = b⃗. Finally, since this
approach is only accurate to linear order, we fine-tune the coexis-
tence point using the nonlinear phase coexistence solver described
in Subsection 1 of Appendix B. Applying this method repeatedly
produces a random walk in ϵ-space, in which every interaction
matrix corresponds to a coexistence point with the target phase-
diagram topology but, in general, non-equimolar condensed-phase
volume fractions [Fig. 9(d)]. As noted above, the changes in the
condensed-phase volume fractions relative to the initial equimolar
coexistence point tend to be correlated across phases and compo-
nents when the target phase diagram manifold in ϵ-space is low
dimensional.

APPENDIX F: FREE-ENERGY CALCULATIONS IN A
MOLECULAR MODEL WITH PAIR POTENTIALS
1. Model definition

We consider a multicomponent three-dimensional square
lattice-gasmodel in which solutemolecules interact via short-ranged
pair potentials. Specifically, if two lattice sites separated by a distance
r are occupied by solute molecules of types i and j, then the additive
contribution to the potential energy is

ui j(r) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

r < a, ∞,

a ≤ r < 2a, (
10
z
)ϵMF

i j ,

r ≥ 2a, 0,

(F1)

where a is the lattice constant, z = 26 is the number of neigh-
boring lattice sites within a distance 1 ≤ r/a < 2, and ϵMF is
the designed interaction matrix obtained from the regularized
L = 1 Flory–Huggins SDP. All solute molecules of type i are
assigned a chemical potential μi. Vacant lattice sites, which rep-
resent solvent, are noninteracting and have chemical potential
μ0 = 0.

2. Free-energy calculations at phase coexistence
Weuse grand-canonicalMonte Carlo simulations40 to calculate

the grand-potential landscape (also referred to as the “free-energy
landscape” in what follows) at coexistence in this lattice model. Fol-
lowing the method described in Refs. 6 and 14, we define an order
parameterΔϕ0α between the dilute phase and the α condensed phase,

Δϕ0α(ϕ⃗) ≡ (ϕ⃗ − ϕ⃗ (0)) ⋅ ν̂0α, (F2)

where ν̂0α ≡ (ϕ⃗ (α) − ϕ⃗ (0))/∣ϕ⃗ (α) − ϕ⃗ (0)∣ and ϕ⃗ (0) and ϕ⃗ (α) are the
volume fractions at the grand-potential minima in the dilute and
α-phase free-energy basins, respectively. To sample trajectories
that reversibly transit between these two free-energy basins, we
add a constraining potential in directions of concentration space
orthogonal to ν̂0α,

U0α(ϕ⃗) ≡ k�∣(ϕ⃗ − ϕ⃗ (0)) − [(ϕ⃗ − ϕ⃗ (0)) ⋅ ν̂0α]ν̂0α∣
6
. (F3)

The efficiency of the simulation is improved by proposing particle
exchanges from a lattice site occupied by a particle (or a vacancy) of
type i to a particle (or a vacancy) of type j with probability

pgen(i→ j) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.5 if j is a vacancy,
0.5 − 0.01

Mα if j is enriched in phase α,
0.01

N −Mα if j is depleted in phase α

(F4)

and then accounting for pgen in the Metropolis acceptance criteria.40

We first performWang–Landau simulations6,54 to compute the
projected free-energy landscape, F0α(Δϕ0α), under the combined
potential,HLG +U0α,

F0α(Δϕ′) = − log∑
x
δ{Δϕ0α[ϕ⃗(x)] − Δϕ′}

× exp{−HLG(x) −U0α[ϕ⃗(x)]} + const., (F5)

where x represents a lattice configuration and HLG(x; μ⃗, ϵ) is the
multicomponent lattice-gas Hamiltonian for the model described in
Subsection 1 of Appendix F.We use an L × L × L periodic lattice with
L = 6 and k� = 406. Next, we perform multicanonical simulations,55
using −F0α[ϕ⃗(x)] as a biasing potential to “flatten” the free-energy
barrier separating the dilute and α phases. We then use MBAR41 to
combine samples from the K multicanonical simulations, one for
each condensed phase. Reweighting the combined samples to the
unbiased distribution, in which the probability of a lattice configura-
tion x is proportional to exp [−HLG(x)], yields the grand-potential
landscape,Ω(ϕ⃗; μ⃗), from which we can calculate the grand-potential
differences between pairs of free-energy basins. Finally, we deter-
mine the coexistence point by tuning μ⃗ and reweighting Ω(ϕ⃗; μ⃗)
such that the grand-potential differences among all pairs of phases
vanish to within statistical uncertainty. This final step is accom-
plished using the algorithm described in Subsection 1 of Appendix B.
The landscapes shown in Fig. 5 are constructed by projecting the
grand potential at coexistence onto a two-dimensional space defined
by the first two principal components of the reweighted simulation
samples.
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