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ABSTRACT: Biomolecular condensates constitute a newly recog-
nized form of spatial organization in living cells. Although many
condensates are believed to form as a result of phase separation, the
physicochemical properties that determine the phase behavior of
heterogeneous biomolecular mixtures are only beginning to be
explored. Theory and simulation provide invaluable tools for probing
the relationship between molecular determinants, such as protein
and RNA sequences, and the emergence of phase-separated
condensates in such complex environments. This review covers
recent advances in the prediction and computational design of
biomolecular mixtures that phase-separate into many coexisting
phases. First, we review efforts to understand the phase behavior of
mixtures with hundreds or thousands of species using theoretical
models and statistical approaches. We then describe progress in developing analytical theories and coarse-grained simulation models
to predict multiphase condensates with the molecular detail required to make contact with biophysical experiments. We conclude by
summarizing the challenges ahead for modeling the inhomogeneous spatial organization of biomolecular mixtures in living cells.

I. INTRODUCTION
The discovery that intracellular “organelles” can exist without
membranes has revolutionized molecular and cellular biology.1,2

Many such intracellular structures, now collectively referred to
as “biomolecular condensates,” have been proposed to form via
phase separation.2−5 Physically, this means that a surface tension
holds the phase-separated condensate together, while individual
biomolecules�including proteins, RNAs, and other small
molecules�exchange between the condensate and the
surrounding fluid in dynamic equilibrium. Phase-separated
condensates represent a unique form of biological organization
compared to traditional membrane-bound organelles, since the
absence of a membrane allows for rapid assembly and
disassembly in response to stimuli.3

Over the past 15 years, an increasingly large number of
biomolecular condensates have been identified.6 Because of the
wide range of biological phenomena in which condensates play a
role, including both fundamental biological processes7−14 and a
variety of pathological conditions,15,16 it is important to
understand the biophysical mechanisms that control which
biomolecules partition into specific condensates. Theoretical
advances are needed to guide experiments probing the
relationship between the properties of individual biomolecules
and emergent condensate structures in complex environments.
In particular, the physicochemical determinants of condensate
composition and stability in heterogeneous intracellular
environments�where thousands of biomolecular species are

present�are only beginning to be explored. This review
summarizes theoretical and simulation efforts in this direction
using approaches based on equilibrium thermodynamics.

I.A. Linking Physicochemical Properties and Con-
densate Thermodynamics. How do biomolecular determi-
nants such as amino acid or nucleotide primary sequence,
secondary/tertiary structure, and chemical modifications
control the compositions and spatial organization of phase-
separated intracellular condensates (Figure 1)? This question
has been addressed primarily within the context of equilibrium
thermodynamics, in which the phase behavior of a macro-
molecular mixture is governed by free energies at thermal
equilibrium. Within this framework, the partitioning of
biomolecules into phase-separated condensates is determined
by equilibrium chemical potentials, while condensate (dis)-
assembly dynamics are governed by free-energy gradients close
to equilibrium and/or transitions between metastable states.
Predictions based on this near-equilibrium assumption generally
hold up well when tested against in vitro experiments.3,4,17 Thus,
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while living systems may be more accurately characterized as
nonequilibrium steady states under some conditions,18 we will
restrict our attention to near-equilibrium approaches for
predicting biomolecular phase separation in this review. We
will also use the common terminology liquid−liquid phase
separation (LLPS)2,19−22 to describe reversible thermodynamic
phase transitions between (potentially complex) fluid phases
with different macromolecular concentrations, as our discussion
will focus on static properties such as condensate composition
and spatial organization. Nonetheless, we note that condensed
phases in biology often exhibit viscoelastic dynamical properties
and may irreversibly age into solid phases due to the complexity
of the interactions among biological macromolecules.6,22−27

Concepts from polymer physics have helped shape the
prevailing view that transient associations among biomolecules
give rise to the overall net attractive interactions required to
bring about LLPS.28 These interactions are commonly referred
to as “multivalent,” since biomolecules can associate through
multiple interaction sites via a variety of forms of noncovalent
bonding. Particular attention has been given to conformationally
heterogeneous proteins, including intrinsically disordered
proteins (IDPs) and multidomain proteins containing intrinsi-
cally disordered regions (IDRs).28 In the context of IDPs,
multivalency refers to the ability of an unfolded protein to
engage in many residue−residue contacts with nearby proteins
in a condensed phase. Folded domains within multidomain
proteins can also contribute to the multivalency required to
drive LLPS, either through protein−protein interactions
(PPIs)29 or, in the case of RNA binding domains (RBDs),
through interactions with RNA.30 Finally, nucleic acid mixtures
can phase separate under certain conditions due to intermo-
lecular base-pairing31−33 and nonspecific association.34 Impor-
tantly, the strengths of the net interactions among biopolymers
in liquid-like condensates are typically comparable to the
thermal energy, since the protein and nucleic acid constituents

of biomolecular condensates can often remain fluid on
biologically relevant time scales.

I.B. Emergence of Multiphase Coexistence in Complex
Biomolecular Mixtures. Biological LLPS results in an
enormous diversity of condensates in living cells. Each of
these condensates is associated with a specific chemical
composition35 and may be enriched in many distinct
biomolecules relative to the surrounding intracellular fluid.36

The biological functions of condensates derive directly from this
compositional specificity, since the biochemical reactions that
take place within the spatial confines of a condensate are
dependent on the molecular concentrations that define the local
environment. Theoretical descriptions of in vivo condensate
assembly must therefore account for complex intracellular
mixtures comprising thousands of protein and RNA species,
which can all potentially interact with one another.
At the simplest level, it is important to distinguish between

homotypic and heterotypic interactions between species of the
same or different types, respectively. In multicomponent
mixtures with strong heterotypic interactions, the tendency of
any particular species to partition into a condensate depends on
the concentrations of all its potential interaction partners.37 A
consequence is that the equilibrium compositions of coexisting
phases may depend on the concentrations of all the components
in the mixture, even when there are only two phases in
coexistence. This feature can be used to detect the influence of
multiple components on phase separation and to infer the
relative strengths of homotypic and heterotypic interactions by
measuring the volume fractions of coexisting phases at different
overall mixture concentrations.33,38

Multiple immiscible condensates are commonly found to
coexist within a single intracellular compartment.6 Moreover,
depending on the properties of the interfaces between pairs of
condensates and between condensates and the surrounding
fluid, immiscible condensates can self-organize into spatially
organized structures.39 Well characterized examples include the
nucleolus11,40 and stress-granule/P-body condensates.29,41,42 It
has also become clear that subtle changes in protein and RNA
concentrations can perturb the interfacial properties and thus
dramatically alter the architecture of multiphasic conden-
sates.29,43 Nonetheless, predicting multiphase coexistence in
the context of heterogeneous intracellular fluids remains a
formidable challenge.

I.C. Aims and Scope of this Review. Developing
theoretical and computational models of multiphasic, multi-
component biomolecular mixtures is essential for understanding
the relationship between molecular determinants and biological
self-organization via LLPS. The purpose of this article is to
highlight a number of advances in this direction. Many recent
reviews focusing on theory and simulation, including refs 4, 44,
and 45, have described coarse-grained modeling approaches for
IDPs, multidomain proteins, and nucleic acids. These
approaches have primarily been applied to study the properties
of single molecules and to mimic in vitro experiments on
condensate formation. By contrast, we focus here on theoretical
challenges that arise when considering multiphase coexistence,
especially in mixtures with thousands of components. Studies
along these lines have provided complementary insights that are
needed to understand biomolecular condensates in an intra-
cellular context (Figure 2). For broader context, we encourage
the reader to consult other recent works, including reviews that
emphasize the biological functionality and regulation of
condensates,15,46 the interplay between physical gelation and

Figure 1. Multivalent interactions among a wide variety of biological
macromolecules, including intrinsically disordered proteins (with
amino acids represented by colored circles), multidomain proteins,
and nucleic acids, contribute to the thermodynamic driving forces
responsible for liquid−liquid phase separation. Phase-separated
condensates, including higher-order structures composed of multiple
immiscible phases, resemble “membraneless organelles” whose
interfaces are stabilized by surface tensions. The molecular
compositions within each phase (α−ϵ) are distinct as a result of
specific interactions among the constituent biomolecules.
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phase separation of multivalent macromolecules,47 and the
conformational dynamics of macromolecules within conden-
sates.48

In this review, we begin in Section II by covering the
thermodynamic principles of phase separation in multi-
component fluids. We highlight recently devised numerical
methods for calculating multiphase coexistence in both mean-
field and classical molecular simulation models. We then discuss
theoretical results obtained from mean-field multicomponent
mixture models in Section III. These studies have provided
important insights into phase-behavior scaling relations,
although they lack molecular detail and, as such, require
assumptions on the statistical properties of intermolecular
interactions in complex fluids. In Section IV, we examine efforts
to describe multicomponent condensates with both analytical
and computational models that capture the molecular sequence
dependence or the structure of a PPI network. The implications
of these studies for the mean-field multicomponent mixture
models introduced in Section III, and potential extensions
thereof, are discussed. Finally, in Section V, we identify key
challenges that must be overcome in order to describe
inhomogeneous spatial organization in living cells with
molecular realism.

II. THERMODYNAMIC PRINCIPLES OF
MULTICOMPONENT LLPS

Phase coexistence describes an equilibrium state in which a
material or fluid exists in multiple phases with distinct
physicochemical properties, such as oil droplets suspended in
aqueous solution. Thermodynamic equilibrium between coex-
isting phases is established when the temperature, (osmotic)
pressure, and chemical potentials of all molecular species are
constant throughout the system. Considering a biomolecular
solution at constant volume and temperature, the thermody-

namic state of the system can be described by the Helmholtz
free-energy density, f. This free energy is a function of the
concentrations, {ρi}, of all the molecular components in the
mixture. (Latin indices will be used throughout to indicate
molecular components, while Greek indices will be used to
indicate phases. Analogous arguments apply to the Gibbs free-
energy density in the case of fluids at constant pressure.) Phase
separation can occur when the free-energy density is a
nonconvex function of the molecular concentrations (Figure
3). In such a case, the free energy can be minimized by forming

two or more distinct phases�for example, a condensed droplet
and the surrounding cytoplasm�each with different concen-
trations. A mixture phase separates when the overall
concentrations of the solution lie within the coexistence region,
which is bounded by the concentrations of the coexisting phases.
Droplets that emerge as a result of this spontaneous process are
stabilized by positive surface tensions at the interfaces that form
between the coexisting phases.Whenever f is nonconvex, there is
also a spinodal region within which the free-energy surface has
negative curvature.
In a heterogeneous system comprising many different types of

biomolecules, the free-energy surface is a high-dimensional
object. Nonetheless, coexistence and spinodal regions can still
be determined by examining the convexity and local curvature of
the free-energy surface. More precisely, the Hessian matrix ∂2f/
∂ρi∂ρj is not positive definite within the spinodal region,
implying that a homogeneous mixture within this region is
unstable with respect to concentration fluctuations in one or
more directions of concentration space. These directions are
described by the eigenvectors that correspond to the negative
eigenvalues of ∂2f/∂ρi∂ρj. The region of a high-dimensional
concentration space in which concentration fluctuations are
locally unstable is bounded by a spinodal locus, where the
determinant |∂2f/∂ρi∂ρj| = 0.
The molecular concentrations of coexisting bulk phases can

be determined by considering the equal pressure and chemical
potential conditions. Inmulticomponent fluids, these conditions
can be satisfied by performing a “common tangent plane

Figure 2. Computational and theoretical complexity increases with
both the level of molecular detail and the number of distinct
components in a mixture. Simulation approaches to biomolecular
LLPS range from pairwise-interaction mean-field models to sequence-
specific coarse-grained (CG) models. However, mixtures with more
than three nonsolvent components have so far been studied almost
exclusively using pairwise mean-field models.

Figure 3. Left: Nonconvex free-energy surfaces lead to phase separation
at thermodynamic equilibrium. The inflection points and global
minima of the grand potential density, Ω ≡ f−∑i = 1

N ρiμi, determine the
spinodal points and coexistence points, respectively. Right: Approx-
imate phase diagrams can be obtained by computing the convex hull
(solid line) of a discretized free-energy surface; points on the hull (filled
circles) are in one-phase regions, while points not on the hull (empty
and red-filled circles) are within a coexistence region. The approximate
spinodal region can be determined by identifying points where the
Hessian is not positive definite (red-filled circles). Approximate
coexistence points can then be refined via nonlinear minimization
(see text). This scheme generalizes to higher-dimensional concen-
tration spaces.
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construction,” in which a hyperplane is tangent to the free-
energy surface at each point in concentration space that
corresponds to a coexisting stable phase. A homogeneous
mixture with an overall, or “parent”, concentration vector inside
the convex hull of the coexisting-phase concentrations can lower
its Helmholtz free energy by phase-separating. This convex hull
therefore defines the coexistence region, which necessarily
encompasses the spinodal region, in a multicomponent fluid.
Because the tangent at any point on the free-energy surface is
equal to the chemical potential vector, {μi} = ∂f/∂ρi, the
common tangent plane construction ensures equal chemical
potentials for each species across all phases that are in
coexistence. Furthermore, the common tangent plane con-
struction implies that the coexisting phases are all global minima
of the grand potential density, Ω({ρi}; {μi}) ≡ f({ρi}) − ∑iρiμi.
This fact ensures equal pressures among all bulk phases.
In general, the coexistence concentrations in a multi-

component fluid are not specified uniquely without also
prescribing the parent concentrations, i

(parent){ } . The con-
nection between the parent and coexisting-phase concentrations
is provided by the conservation law

x i( )i

K

i j
(parent)

0

( ) ( )= { }
= (1)

where α indexes the phases in a phase-separated state with K + 1
phases, the concentrations {ρi

(α)} indicate coexisting phases with
coexistence chemical potentials {μj}, the volume fractions of the
bulk phases are given by {x(α)}, and ∑α =0

K x(α)=1. (This indexing
convention is chosen for later convenience, since we are often
interested in phase equilibria involving a solvent-majority phase,
α = 0.) Equation 1 simplifies to the well-known lever rule for
binary mixtures (e.g., fluids comprising one macromolecular
component plus a solvent).
The spinodal locus coincides with the boundary of the

coexistence region at a critical point, where the concentrations of
two coexisting phases merge into a single stable phase. Unlike
binary mixtures, there is typically no unique critical point in a
multicomponent fluid. Instead, multicomponent critical points
lie on a temperature-and-concentration-dependent manifold
with dimension one less than the number of nonsolvent
components. Higher-order critical points, where more than two
phases simultaneously merge into a single stable phase, are also
possible in multicomponent fluids.49

Multicomponent phase equilibria can equivalently be
determined from the excess chemical potential, μex,i, of each
molecular species i. This quantity represents the contribution to
the chemical potential that captures all interactions�both
enthalpic and entropic�among the molecules, and is thus a
function of all the component concentrations.50 The excess
chemical potential is directly related to the partition coefficient,
PC, defined as the ratio of a molecule’s concentration inside (in)
and outside (out) of a phase-separated droplet:

PC exp( )i
i

i
i i

(in)

(out) ex,
(out)

ex,
(in)=

(2)

where β ≡ 1/kBT, kB is the Boltzmann constant, and T is the
absolute temperature. Partition coefficients are experimentally
accessible and biologically relevant quantities, since they
quantify the tendency of specific biomolecules to partition
spontaneously into phase-separated condensates.

II.A. Mean-Field Models with Pairwise Interactions.
The simplest theoretical descriptions of LLPS are based on
mean-field models, which introduce effective parameters to
describe how molecules interact with one another. A mean-field
model prescribes an approximate free-energy surface in terms of
the effective interaction parameters and the component
concentrations. The most widely used mean-field models,
both in the condensate literature and more generally in
biophysics and materials science, make the assumption that
the excess chemical potential of species i can be written in the
form

B( ) ( )i j j
j

N

ij jex, v
1

1

{ } = { } +
= (3)

where μv is a monotonically increasing function that depends
only on the concentrations and the excluded volume associated
with each molecular species. The second term embodies the
assumption of “pairwise interactions” among the N nonsolvent
components, where {Bij} is an N × N symmetric matrix of
interaction parameters. This assumption underlies the regular
solution model of phase-separating mixtures,51 the Flory−
Hugginsmodel of homopolymer phase separation,19 and the van
der Waals model of nonideal fluids.52

The Flory−Huggins model19 is commonly used to fit
experimental data on biomolecular LLPS.53 Assuming an
incompressible fluid with N nonsolvent species, the Flory−
Huggins free-energy density is

fv
L

log log
1
2i

N
i

i
i

i

N

j

N

ij i j0
1

0 0
1 1

= + +
= = = (4)

where the volume fraction occupied by species i isϕi = Liv0ρi, the
degree of polymerization of species i is Li, the size of a monomer
is represented by v0, and the solvent-occupied volume fraction,
ϕ0, is determined by the incompressibility constraint, ∑i = 0

N ϕi =
1. We note that, within the context of this model, the “solvent”
may itself represent a mixture including non-interacting
macromolecules. The interaction parameters {ϵij} are dimen-
sionless. Negative interaction parameters imply that molecules
attract one another, while positive interaction parameters imply
repulsion. Homotypic and heterotypic interactions are encoded
in the on- and off-diagonal elements of {ϵij}, respectively.
Equation 4 is consistent with eq 3, since the interaction
parameters only enter the free-energy density in a quadratic
form. The contribution to the free-energy density from the
pairwise interactions can also be written in terms of Flory χ
parameters, χij = ϵij − (ϵii + ϵjj)/2, by extending the sums in the
final term of eq 4 to include the solvent (component 0) and
replacing ϵij with χij. This change of variables introduces terms
that are linear in {ϕi} into the free-energy density, which have no
effect on the phase behavior. With this alternate notation, the
on-diagonal elements {χii} are zero by definition, and the
homotypic interactions are encoded by the interactions with the
solvent, {χi0}.
Two nonsolvent components are sufficient to reveal generic

effects of homotypic versus heterotypic interactions. In such a
mixture, two distinct types of phase transitions can occur: A
“condensation” transition can occur if attractive heterotypic
interactions are comparable to or stronger than any attractive
homotypic interactions, while a “demixing” transition can occur
if the heterotypic interactions are significantly less attractive than
one or both of the homotypic interactions.54 Both behaviors
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have been observed in numerical investigations of two-
component-plus-solvent mean-field (e.g., ref 55) and molecular
simulation models (e.g., ref 56). Condensation transitions are
analogous to LLPS in simple one-component-plus-solvent
fluids, implying that the phase diagram can be fully described
by projecting the concentrations onto the parent composition
vector.54 By contrast, mixtures with dissimilar homotypic and
heterotypic interaction strengths have more complex phase
diagrams. For example, the implications of this complexity for
concentration buffering have recently been explored in ref 57
using a two-component-plus-solvent Flory−Huggins model.
Concentration buffering was shown to be effective when the tie
lines connecting the coexisting condensed and dilute phases are
parallel to the concentration “noise distribution.” This
observation follows from the generalized lever rule, eq 1, with
K = 1, which implies that fluctuations of the parent
concentrations in the direction (1) (0) only modify the
volume fraction of the condensed phase, x(1), leaving the
“buffered” concentrations of both nonsolvent species in the
dilute phase unchanged.
II.B. Constructing Phase Diagrams ofMulticomponent

Mean-FieldModels.Moving beyond two-solute scenarios, the
construction of high-dimensional phase diagrams becomes
considerably more challenging (Figure 3). An elegant approach
for solving this problem in mixtures with up to approximately
five nonsolvent components was provided in ref 58. This
method exploits the fact that the common tangent plane
construction is equivalent to convexification of a nonconvex
free-energy surface. In this method, the free energy of a mean-
field model is first evaluated at every point of an N-dimensional
grid over the physical domain ϕi ≥ 0 ∀i and ∑i = 1

N ϕi ≤ 1. The
volume fractions at each grid point and the corresponding free-
energy value constitute a single point within an (N + 1)-
dimensional space. The convex hull of all the points within this
(N + 1)-dimensional space can then be determined using
standard algorithms.59 Importantly, grid points that lie within
coexistence regions are not part of the convex hull. Furthermore,
the facets of the convex hull can be analyzed to determine the
number of coexisting phases in a coexistence region. This
algorithm can be used as a “black-box” method for identifying
coexistence regions, up to the resolution specified by the
concentration-space grid, for any mean-field model.
In order to perform coexistence calculations to greater

precision, it is necessary to identify the coexistence chemical
potential vector that results in a grand potential with multiple
global minima. An efficient approach described in refs 29 and 60
involves an iterative two-step algorithm. First, assuming a fixed
chemical potential vector, the local minima of the grand
potential are identified using initial guesses of each of the
coexisting-phase concentrations. Then, the chemical potential
vector is adjusted to bring the variance among the values of the
grand potential at these local minima to zero. This second step
establishes the coexisting phases as global minima of the grand
potential. It is advantageous to use estimates of the coexisting-
phase concentrations obtained from the convex-hull method as
initial guesses when performing these nonlinear minimizations.
A similar approach, in which the initial guesses for the
coexisting-phase concentrations are obtained from a grid-
based search for the spinodal region, was proposed in ref 61.
An alternative strategy for calculating phase coexistence has

been provided in ref 62. This method uses a nonphysical
dynamical scheme, inspired by swapping molecules between

metastable phases, in order to eliminate differences between the
chemical potentials and the pressures of the phases. Starting
from an initial guess of the component volume fractions in each
of theK + 1 coexisting phases, the dynamical scheme evolves the
volume fractions in each phase α according to

t
P P( ) ( )i

i

K

i i i

( )
( )

0

( ) ( ) ( ) ( ) ( )= [ + ]
=

(5)

where {μi
(α)} and P(α) are the component chemical potentials

and the pressure, respectively, evaluated in the α phase with the
instantaneous volume fractions i

( ){ } , and t is the fictitious time
associated with these dynamics. At steady state, when ∂ϕi

(α)/∂t =
0, eq 5 ensures that the phases meet the thermodynamic criteria
for coexistence. Crucially, the results of this numerical approach,
like the nonlinear minimization scheme described above,
depend sensitively on the initial guesses for the coexisting-
phase concentrations. In particular, if a candidate phase is not
represented in the K + 1 initial concentration vectors, then it is
unlikely to be captured in the final set of coexisting phases.

II.C. Multicomponent Phase Coexistence in Molecular
SimulationModels via Free-Energy Calculations. Efficient
approaches for calculating coexistence among an arbitrary
number of fluid phases have also been devised for molecular
simulation models. Such models specify a potential energy
function that depends on the coordinates of all particles in the
simulation volume. As such, Monte Carlo or molecular
dynamics (MD) simulation methods are required to sample
the configurational phase space. A wide variety of methods are
available for computing coexistence between pairs of phases.63

Within the condensate literature, direct coexistence simulations
utilizing a “slab geometry”44 have become popular due to the
ease with which this approach can be implemented. However, in
order to compute phase coexistence among a larger number of
phases, it is advantageous to work in the grand-canonical
ensemble. Grand-canonical phase-coexistence calculations are
also ideal for minimizing finite size effects.64

A robust approach for carrying out multiphase coexistence
calculations utilizes a generalization of the multicanonical
sampling method.65 Influenced by earlier simulations of
polydisperse fluids,66 ref 67 introduced a method to sample an
isolated pair of phases in a grand-canonical simulation with
multiple free-energy basins (Figure 4). First, an order parameter

( )( ) ·

where ( )/( ) ( ) ( ) ( )| |, is defined to measure
the distance along a linear path between the α and β phases, with
concentration vectors ( ) and ( ), respectively. A biasing
potential is then added to constrain fluctuations in orthogonal
directions of concentration space,

U k( ) ( ) ( ) p( ) ( )| [ · ] | (6)

where k⊥ > 0 and p⊥ > 0 are user-defined constants. An
additional biasing potential in the direction of concentration
space parallel to , U∥(Δραβ), can then be calculated using
grand-canonical Wang−Landau simulations,68

xU 1( ) log d ex
x xU

( ) ,
( ) ( )= [ ]

[ ]
(7)
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where x represents a particle configuration, is the
Hamiltonian of the unbiased model, and 1 is the indicator
function. The biasing potential U∥ is optimal for “flattening” the
free-energy barrier between the α and β-phase regions of phase
space.68 Finally, performing a multicanonical simulation under
the combined potential U U+ + allows the simulation to
transit reversibly between the α and β phases.
Refs 69 and 60 have demonstrated how this method can be

applied to calculate multiphase coexistence points for multi-
component lattice models. Samples obtained from multi-
canonical simulations between different pairs of phases can be
combined via reweighting methods such as MBAR70 as long as
one of the phases is sampled in every simulation. Grand potential
differences between all pairs of phases can then be determined,
and the chemical potentials can be adjusted in order to find the
coexistence point at which all phases have identical pressures at
equilibrium. This approach has been successfully applied to
compute coexistence points involving more than five phases.
Nonetheless, this method also requires prior knowledge of the
approximate concentrations of all phases in order to construct
the required biasing potentials and sample all the coexisting
phases.

III. PREDICTING AND DESIGNING PHASE BEHAVIOR
IN MULTICOMPONENT FLUIDS

We now turn to theoretical studies of mixtures governed by
pairwise interactions. We first discuss efforts to predict phase
behavior inmixtures with hundreds or thousands of components
based on the statistical properties of the pairwise interactions.
We then describe recently devisedmethods to design or “evolve”
pairwise interactions in order to stabilize a target phase diagram.
III.A.MulticomponentMixtureswith RandomPairwise

Interactions. Pairwise interaction models, due to their
simplicity, are a natural place to begin exploring how the
presence of many distinct molecular components influence the
phase behavior of a mixture. However, theoretical progress
cannot be made without specifying the form of the interaction
matrix, and limited systematic experimental data exist for
parametrizing heterotypic interactions. To deal with this lack of
information, ref 71 proposed that the pairwise interactions can
be modeled using a random matrix. Specifically, ref 71
considered symmetric random matrices in which the elements
are chosen independently from a Gaussian distribution with a

prescribed mean and standard deviation. An ensemble of
“random mixtures” is thus associated with a particular Gaussian
distribution and the number of distinct componentsN, such that
each mixture in the ensemble is defined by a particular
realization of the N × N interaction matrix.
Reference 71 assumed for simplicity that the mixture free-

energy density can be described by eq 3 with μv = 0. The
resulting free-energy density, f, is applicable to solutions in
which all components are present at low concentrations, and the
{Bij} elements in eq 3 are referred to as second-virial
coefficients.52 By restricting the study to mixtures with
equimolar parent concentrations, ii

(parent) (parent)= , it
was shown that the spinodal locus can be predicted directly
from the second-virial matrix. The central idea is that unstable
concentration fluctuations can be determined from a linear
stability analysis of the mean-field free-energy landscape (Figure
5). With the equimolar parent-concentration assumption, the

eigenvalue spectrum of theHessianmatrix, ∂2f/∂ρi∂ρj, is equal to
the spectrum of {Bij} plus a constant 1/ (parent). Instabilities
therefore occur when the minimum eigenvalue of {Bij} is less
than 1/ (parent). Applying results from random matrix theory,
it was shown that the existence and nature of the dominant
instability, which coincides with the minimum eigenvalue of the
Hessian matrix, can be determined from the mean, b, and
standard deviation, σ, of the Gaussian distribution of matrix
elements in the limit of large N. Two distinct cases were
observed. If the standard deviation among the matrix elements is
sufficiently small, such that N1/2b/σ ≲ −1, then the dominant
instability involves concentration fluctuations that are parallel to
the equimolar parent concentration vector. This type of
instability is consistent with a condensation transition driven
by similar homotypic and heterotypic interaction strengths. By
contrast, if the standard deviation among the matrix elements is
sufficiently large, such that N1/2b/σ ≳ −1, then the dominant
instability is orthogonal to the parent concentration vector, and
individual components demix into phases with differing
compositions. Importantly, these behaviors are self-averaging,
meaning that the tendency of any particular random-mixture
realization to undergo a condensation or demixing transition
converges in probability as N → ∞.

Figure 4. Multiphase coexistence points can be determined from
molecular simulations by sampling the grand-potential landscape. In
order to sample two specific phases α and β, biasing potentials parallel,
U∥, and perpendicular, U⊥, to are introduced. Reweighting
techniques can then be used to tune the component chemical potentials
in order to establish equal grand potentials among all coexisting phases
(see text).

Figure 5. Spinodal loci, where the mixture becomes unstable with
respect to concentration fluctuations, can be predicted using a linear
stability analysis. Left: Computing the eigenspectrum of the Hessian
matrix, ∂2f/∂ρi∂ρj, at the parent concentrations reveals the number of
unstable modes, each of which is associated with an orthogonal
direction in concentration space. Right: Analytical predictions in the
large-N limit provide insight into the relationship between the structure
and statistical properties of an interactionmatrix and the phase behavior
of the associated biomolecular mixture.
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Reference 72 extended these results to mixtures with
nonequimolar parent compositions. This work considered a
regular-solution free-energy density, in which μv =− log ρ0 in eq
3. This additional contribution to the free energy accounts for
the entropy of the solvent, providing a better physical model of
solutions at nondilute concentrations. Modifying the free-
energy density in this way does not qualitatively alter the
conclusions of ref 71 regarding condensation and demixing in
equimolar mixtures. However, consideration of nonequimolar
parent compositions reveals a third type of spinodal instability:
Demixing transitions can now be classified as either “random,” in
which all the components of the eigenvector associated with the
instability are of similar order, or “localized,” in which the
demixing transition is dominated by only a few species. Random
mixtures with a large interaction-parameter variance and
equimolar parent compositions tend to undergo random
demixing. By contrast, mixtures in which one component has
a much higher parent concentration than all the others can
undergo a composition-driven transition, in which demixing is
localized to the dominant species. The authors emphasized that
the direction of composition-driven instabilities cannot be
predicted simply by considering the relative parent concen-
trations of the components; instead, the interplay between
entropic effects and random pairwise interactions tends to
amplify the contribution of the dominant component to the
unstable concentration fluctuations. In other words, the nature
of the instabilities at the spinodal locus of a random mixture
depends on both the interaction matrix and the parent
concentrations.
Simulation support for the qualitative predictions of ref 71 was

provided in refs 67 and 54. In these studies, the free-energy
calculation strategy described in Section II.C was applied to
compute coexistence between an equimolar dilute phase and a
condensed phase in random mixtures with up to 64 nonsolvent
components. Simulations were conducted using a multi-
component lattice model, with the nearest-neighbor interactions
between particles on the lattice specified by a random
interaction matrix generated according to the Gaussian
prescription of ref 71. Coexistence calculations were then
performed to investigate the nature of the phase transition that
occurs at the lowest total parent concentration, meaning that the
simulated coexistence point represents the lowest-concentration
intersection of the equimolar parent concentration vector with
any coexistence region. The average phase behavior of the
random-mixture ensemble was analyzed by repeating these
calculations for many independent realizations of random
mixtures with the same interaction mean and variance.
Although the lattice-based coexistence calculations of refs 67

and 54 are not directly comparable to theoretical predictions
regarding instabilities at the spinodal locus, analogous
condensation and demixing transitions were observed in this
molecular simulation model. First, the phase behavior at each
simulated coexistence point was classified as condensation or
demixing according to the angle, θ, between the equimolar
parent concentration vector and the unit vector connecting the
coexisting phases, . This angle was found to be self-averaging
with respect to the number of components, N, as suggested by
random matrix theory.67 Second, ref 54 observed that the
distribution of θ is bimodal, signifying a sharp transition between
these two qualitatively distinct types of phase transitions as the
mean and/or variance of the random-interaction distribution
was changed. Third, increasing the number of components was
found to shift the phase behavior at the simulated coexistence

points toward condensation transitions, in line with the
predictions of ref 71. This finding implies that the mixing
entropy of multicomponent fluids acts to suppress demixing
instabilities. However, by contrast with ref 71, simulation results
indicated that the extreme values of the interaction matrix are
more predictive of the simulated coexistence concentrations
than the eigenspectrum of the mean-field Hessian matrix. This
observation was exploited to propose a scaling relation for the
transition between condensation and demixing behaviors at the
phase boundary, (log N)1/2 ∼ σ, that differs from the random-
matrix-theory prediction for the condensate−demixing cross-
over at the spinodal locus, N1/2 ∼ σ/b. This idea has since been
followed up in ref 73, which suggested that the coexistence
points can be strongly influenced by the tails of the distribution
from which the elements of the random interaction matrix are
chosen.
Phase separation in mean-field models of mixtures with many

components has also been analyzed using phase-field
simulations.74 Deterministic phase-field simulations evolve the
spatially varying component volume fractions, r( )i{ }, on a
three-dimensional grid in accordance with linear irreversible
thermodynamics.75 As such, phase-field simulations reach a
steady state when the free energy of the simulated volume
reaches a local minimum; this steady state may be spatially
inhomogeneous if phase separation occurs. Reference 74
considered a regular-solution free-energy density consistent
with eq 3, with r rlog ( ) ( )iv 0

2= . The second term
in μv, which penalizes the formation of interfaces between phases
in a component-independent manner, arises from square-
gradient contributions to a Cahn−Hilliard free-energy func-
tional with κ > 0.76 Simulations then implemented “Model B
dynamics”,77 where ∂ϕi/∂t = ∇·(Mϕi∇μi), with a component-
independent mobility coefficient M > 0. Upon reaching steady
state, compositionally distinct phases were identified by
performing a principal component analysis of the spatially
varying component concentrations.
Since phase separation in a deterministic phase-field model

proceeds via spinodal decomposition, ref 74 was able to provide
a direct test of the analytical predictions of ref 71. Both
condensation and demixing were observed in simulations
initialized with equimolar parent concentrations. Consistent
with a linear stability analysis at these initial conditions (Figure
5), ref 74 found that the number of phases identified at steady
state correlates with the number of negative eigenvalues of the
Hessian matrix. Furthermore, the number of steady-state phases
could be estimated from the limiting (N → ∞) spectral density
predicted by random matrix theory. This trend was shown to
hold for a variety of random-mixture ensembles in which the
standard deviation of the independently sampled interaction-
matrix elements was either held constant or scaled proportion-
ally to N1/2. Nonetheless, some caution is warranted in
interpreting these results, since the steady-state found via
spinodal decomposition may reflect a metastable configuration
that does not represent all the equilibrium phases. We shall
return to this important consideration below in Section III.C.

III.B. Multicomponent Mixtures with Structured
Pairwise Interactions. Although random-mixture models are
useful for investigating generic features of high-dimensional
phase diagrams, they may not reflect the structure of pairwise
interactions among real biomolecules. In particular, the
assumption that the elements of a {Bij} matrix are independently
and identically distributed implies that N( )2 pairwise
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coefficients characterize the mixture, even though there are only
N chemically distinct biomolecules. Physical interactions arising
from the physicochemical features of the biomolecules are
instead likely to introduce correlations into the {Bij} matrix.
To address this critical issue, “structured” pairwise interaction

models have been introduced and studied using linear stability
analysis. Reference 78 took the approach of grouping
components into distinct families, whereby all members within
a particular family have similar physicochemical properties. The
authors proposed that this relationship could be described via by
an interaction matrix of the form B =D +C*Z, where * indicates
element-wise multiplication. D and C are block matrices
specifying the mean and standard deviation of the interactions
between families, respectively, while Z is a Gaussian random
matrix with zero mean and unit variance. This model reduces to
the random-mixture model of ref 71 when there is only one
family, in which case all interactions have the same mean and
variance. Intuitively, a single family of components can demix
from a mixture with equimolar parent concentrations if the
intrafamily interactions are sufficiently more attractive than
interfamily interactions. Such “family demixing” tends to
dominate over random demixing when the noise amplitude,
governed by C, is small.
Reference 79 explored an alternative approach in which

structured interaction matrices are assumed to have a lowmatrix
rank. This assumption implies that the interaction matrix can be
written in the form Bij = ∑l = 1

r c(l)si(l)sj(l), where the index l is
bounded by thematrix rank, r. This low-rank decomposition was
inspired by a toy model in which each molecular species can be
described by r “molecular features,” which interact according to
diagonalized coupling coefficients {c(l)}. The matrix {si(l)}
specifies the value of each molecular feature for each component
i. In fact, anyN×N interactionmatrix can be written in this form
via eigendecomposition, assuming that N − r of its eigenvalues
are negligible. If all the nonzero eigenvalues of {Bij} are negative,
representing net attractive interactions among the molecular
features, then the linear-stability condition for the spinodal locus
can be recast in terms of a feature covariance matrix. Specifically,
this rank-r matrix measures the covariance among the values of
the molecular features, weighted by the concentrations of the
components expressing these features, in a homogeneous
mixture with fixed parent concentrations. The directions of
the unstable concentration fluctuations can then be determined
from the first principal component of the concentration-
weighted molecular-feature distribution. This result bears
resemblance to related studies of polydisperse fluids, in which
phase transitions have been predicted using so-called “moment
free energies”.80,81 When {Bij} has both positive and negative
eigenvalues, covariance matrices for the net-attractive and net-
repulsive molecular features must be considered separately. The
extent to which the net-repulsive features modify the phase
behavior depends on whether their concentration-weighted
distribution correlates with that of the net-attractive feature
distribution. The authors also showed that this analysis can be
extended to predict ordinary and higher-order critical points,
whose occurrence depends on higher-order cumulants of the
concentration-weighted feature distribution.
An important insight gained from this theory79 is that the

phase behavior of a mixture can be predicted by analyzing
properties of the r-dimensional feature space, which may be
much simpler than the N-dimensional concentration space if r
≪N. Since intermolecular interactions among conformationally
disordered biomolecules are widely believed to arise from a

limited number of chemical interactions, such as electrostatic
interactions among charged amino acids and hydrophobic forces
involving amino acids with aromatic side chains, it is plausible
that this is indeed the case. The relationship between this ansatz
and findings from sequence-dependent theories will be
discussed in Section IV. The work of ref 79 has also suggested
a useful method for coarse-graining a multicomponent fluid into
an equivalent binary mixture with the same spinodal and critical
points by preserving the second and third cumulants along the
first principal component of the concentration-weighted feature
distribution. However, it is unclear whether the coexistence
manifolds of multicomponent mixtures with low-rank inter-
action matrices can be simplified in the same way.

III.C. Iterative Design of Multicomponent Phase
Behavior. Taking the next step toward biologically realistic
mixtures requires consideration of specific interactions that have
emerged due to evolutionary processes. Recent efforts60,62,69 to
explore the thermodynamic consequences of evolved interaction
specificity have shown that multicomponent mixtures can be
designed with the goal of stabilizing a prescribed number of
condensed phases. The logic behind this approach is that
immense size of the space of possible biomolecular interactions
limits the probability that a random-mixture model will produce
a phase diagram comparable to the observed complexity of
intracellular phase-separated condensates. Indeed, even in the
simplest pairwise-interaction models, the “design space” has a
dimension of N(N + 1)/2 when all interactions are
independently controllable. By contrast, treating multicompo-
nent LLPS as an optimization problem in which the interactions
can be systematically tuned has the potential to discover regions
of this design space that are relevant to multiphasic condensates.
Reference 62 demonstrated that the number of coexisting

phases in a mean-field pairwise-interaction model can be
designed by iterative application of a genetic algorithm. This
design process necessitates finding all coexisting phases given a
candidate interaction matrix at each iteration. The genetic
algorithm is then applied to evolve a population of interaction
matrices in order to identify matrices that result in a target
“phase count” of condensed phases. It turns out that this goal is
surprisingly easy to achieve owing to the size of the design space
when all pairwise interactions are independently tunable. An
intuitive strategy of designing block-diagonal matrices, along the
lines of ref.,78 reliably results in phase counts equal to the
number of blocks of strongly attractive interactions. However,
the genetic algorithm finds solutions to this design problem that
are less obviously structured. The authors further showed that
designed mixtures with low phase counts tend to be stable with
respect to small random perturbations in the interaction
energies and that the genetic algorithm can rapidly alter the
phase count of a designed mixture, finding new solutions within
a few tens or hundreds of iterations.
This iterative design approach comes with a number of

caveats, however. First, optimizing for a target phase count does
not guarantee that different solutions identified by the genetic
algorithm correspond to condensates with similar molecular
compositions. Second, although the phase count of a candidate
interaction matrix should depend on the parent concentrations
according to eq 1, ref 62 employed a strategy of sampling
coexistence points at random parent concentrations. This
approach suggests an implicit design goal of maximizing the
volume of the (K + 1)-phase coexistence region within the N-
dimensional concentration space. Third, the reliability and
performance of the iterative design algorithm are sensitive to the
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computational cost and accuracy, respectively, of the inter-
mediate phase-coexistence calculations, which must be repeated
for each candidate interaction matrix. This is in fact a very
general problem: Regardless of the mixture model, phase-
coexistence calculations first require a search for candidate
phases, whether by exhaustive grid-based sampling (e.g., ref 58;
see Section II.B), randomized initial conditions (e.g., ref 62; see
Section II.B), Monte Carlo sampling (e.g., ref 54; see Section
II.C ), or physical dynamics (e.g., ref 74; see Section III.A). The
computational cost of this search problem scales exponentially
with the dimension of the concentration space.
III.D. Inverse Design of Multicomponent Phase

Behavior. Many of the drawbacks of iterative design
approaches can be overcome by directly solving the inverse
problem�designing interactions to yield target phase behavior.
Inverse design entails working out constraints on the solution
space of biomolecular interactions that correspond to desired
collective properties, such as the compositions of condensed
phases (Figure 6). Suitable interactions can be identified in this

way without explicitly performing phase-coexistence calcula-
tions. As a result, the computational requirements may scale
more favorably with the number of components, in particular
because the initial search for candidate phases can be avoided.
An inverse design strategy for mixtures with pairwise

interactions was first introduced in ref 69. Because eq 3 is linear
with respect to {Bij}, the inverse problem can be solved
approximately using a convex relaxation. It is therefore possible
to prove, within the convex relaxation, whether a pairwise
interaction matrix exists for a prescribed set of immiscible
phases, and if so, to calculate a suitable interaction matrix with
efficient convex programming algorithms.82 Reference 69
showed that the thermodynamic requirements for establishing
metastable phases with prescribed compositions yield a convex
relaxation known as a semidefinite program (SDP). The SDP

constraints comprise both affine and eigenvalue inequalities,
since the Hessian matrix must be positive definite in each target
phase. Solutions to this SDP were shown to result in metastable
phases with the desired compositions in mixtures with up to 200
distinct components, both in the context of a Flory−Huggins
mean-field model and in Monte Carlo simulations of an
associated multicomponent lattice model.
Exploiting the ability to prove feasibility of the SDP, ref 69

then studied the probability of finding a feasible solution for an
inverse problem with randomly assigned target-phase compo-
sitions. This probability was found to drop sharply beyond a
certain number of target phases, revealing a thresholding
transition reminiscent of the storage capacity in the Hopfield
model of neural networks83 and “multifarious” self-assembly of
finite-sized structures.84 The critical number of condensed
phases associated with this thresholding transition could be
predicted using graph-theoretic arguments and depends on both
the number of components in the mixture and the fraction of
components whose concentrations are enriched in each target
phase relative to the surrounding fluid.
A similar convex optimization approach was then applied to

design mixtures with prescribed equilibrium phases.60 A two-
step procedure for designing pairwise interaction matrices was
proposed. First, a convex relaxation was used to specify an SDP
for both the interaction matrix and the approximate coexistence
chemical potential vector. Then, the chemical potentials were
adjusted to ensure coexistence among the target phases using the
nonlinear algorithm described in Section II.B. A regularization
heuristic was also introduced to pick out a unique interaction
matrix from within the solution space, eliminating competing
condensed phases that were not specified in the phase-diagram
design problem. Applying this approach to the Flory−Huggins
model, eq 4, ref 60 provided numerical evidence that while the
feasibility of the SDP is independent of the degree of
polymerization, the convex relaxation becomes a better
approximation of the phase-diagram design problem as the
degree of polymerization increases (Figure 6). Interestingly,
coexistence regions with more condensed phases than distinct
mixture components can be designed in this way. Furthermore,
this inverse design approach is easily extended to include
additional optimization goals or constraints on the interactions;
for example, it is possible to compute the minimum number of
matrix-elements that must be changed in order to switch from
one phase diagram to another using this method. Reference 60
also demonstrated that by mapping interaction matrices to
molecular pair potentials, interactions designed using mean-field
models can be used to establish coexistence among phases with
prescribed compositions in molecular simulation models.
In another application of inverse design, ref 85 devised an

algorithm to engineer pairwise interactions that produce phase-
separated condensates with target morphologies, such as those
observed in the nucleolus.40 At equilibrium, surface tensions
control the tendency of macroscopic droplets to exist in
nonwetting, partial wetting, or complete wetting configurations
(separated, fused, and enveloped droplets, respectively, in Figure
1). Furthermore, within the Cahn−Hilliard framework,76 the
surface tensions between phases of mutually immiscible
components are directly related to the pairwise interactions.
Reference 85 showed that predicting multiphase morphologies
in multicomponent fluids corresponds to a graph decomposition
problem, in which vertices indicate phases and edges indicate
shared interfaces between phases. Designing interaction
matrices for multicomponent mixtures that phase separate

Figure 6. In the inverse design approach, restrictions on the solution
space of pairwise interaction matrices are determined directly from the
concentrations of the target phases and the thermodynamic criteria for
phase coexistence. Left: The target phase diagram consisting of
condensed phases ( ){ }. Any mixture with parent concentrations
inside the convex hull of the target phases will phase-separate at
equilibrium to establish coexisting phases with the prescribed
concentrations. Right: Convex programming can be applied to
compute the subspace containing interaction matrices that are
consistent with the target phase behavior. The convex volume (red
dashed line) bounded by the convex-optimization constraints (black
lines) closely approximates the solution space to the inverse problem
(red solid line). Because many interaction matrices may yield the same
phase behavior, regularization is needed to select a particular matrix
from the solution space.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.3c00198
J. Chem. Theory Comput. 2023, 19, 3429−3445

3437

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00198?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


into droplets with prescribed (non)wetting architectures can
therefore be achieved by encoding the desired morphology in a
graph, enumerating affine inequality constraints on the
interactions via graph decomposition, and solving the resulting
linear program. Phase-field simulations were then used to
demonstrate the efficacy of this design algorithm.

IV. SEQUENCE-DEPENDENT THEORIES AND
COARSE-GRAINED MOLECULAR MODELS

In parallel with efforts to understand the phase behavior of
simplified mixtures with many components, theoretical models
have been developed to describe LLPS at a greater level of
chemical detail in solutions with a small number of distinct
biomolecular species (Figure 2). In the condensate literature,
such models can be broadly classified as sequence-specific
coarse-grained (CG) IDP models, which represent nonbonded
interactions between amino acids86−91 or chemical functional
groups92 using pair potentials, and “patchy-particle”93−95 or
“patchy-polymer”96,97 CG models, which encode specific
interactions between discrete binding sites on each molecule
(Figure 7). We first describe key insights into multicomponent

phase behavior from theoretical analyses of these types of
models before reviewing recent multicomponent molecular
simulation studies.
IV.A. Multicomponent Field-Theoretic Approaches.

Field-theoretic approaches have been used to predict the
sequence-dependent phase diagrams of heteropolymers, with a
particular emphasis on polyampholytes. By accounting for chain
connectivity, and thus the primary sequence of the hetero-
polymer, these approaches improve upon mean-field treatments
that consider all monomer−monomer interactions in a polymer
solution independently.45 Field-theoretic approaches incorpo-
rate sequence information bymodeling the correlations between
monomers within a single chain, which decay with increasing
separation between monomers along the primary sequence
(Figure 7).
Reference 98 treated the spatial correlations between

monomers with the random-phase approximation (RPA) by
assuming that the polymer configurations obey the Gaussian

statistics of ideal chains. This assumption means that monomers
on different chains are not spatially correlated and that the
heteropolymer sequences affect the potential energy, but not the
polymer conformations, of a mixture at finite concentration.
Despite this simplification, RPA predictions correlate well with
experimental measurements of the phase behavior98 and single-
chain properties99 of charge-neutral polyampholytes. Of
particular importance, the RPA theory rationalizes the observed
increase in LLPS propensity of charge-neutral sequences with
“blocky” as opposed to homogeneous charge patterns.100 Blocky
charge patterns also correlate with smaller radii of gyration of
chains in the dilute phase, in line with prior studies using the
“sequence charge decoration” order parameter101,102 and related
blockiness metrics.103,104 The RPA theory was extended to
charged polyelectrolytes in ref 105.
Of relevance to multicomponent mixtures, ref 106 applied

RPA to mixtures of two distinct charge-neutral polyampholytes.
Because RPA ignores spatial correlations between monomers on
different chains, the electrostatic contribution to the RPA free
energy can be factored into terms arising from each chain
individually. The RPA free energy can therefore be mapped at
low concentrations to a pairwise-interaction model in which the
effective heterotypic interaction, B12, is the geometric mean of
the two homotypic interactions, B11 and B22. The homotypic
interaction coefficients can be calculated by applying RPA to
each heteropolymer sequence individually. In light of the
discussion in Section III.B, these results indicate that RPA
predicts a rank-1 pairwise interaction matrix for charge-neutral
polyampholyte mixtures, since Bij = Bii

1/2Bjj
1/2 ∀i,j. This

observation further suggests that spatial correlations between
different chains are needed to predict higher-rank interaction
matrices for charge-neutral polyampholytes.
RPA has also been applied to mixtures of polyelectrolyte

mixtures. In solutions with two positively charged and one
negatively charged polymer, ref 107 predicted that multiphase
coacervates can form due to the repulsive heterotypic
interactions between two positively charged sequences with
differing linear charge densities. Reference 108 then predicted
that differences in the charge patterning between two positively
charged sequences with identical linear charge densities is
sufficient to drive the formation of two immiscible condensed
phases.
An analogous field-theoretic treatment of heteropolymers

interacting via short-ranged hydrophobic forces revealed that
the leading order contribution to the interaction free energy is
given by the sum of the interactions between all pairs of
monomers in the mixture.109 Although this model was not
explicitly applied to multicomponent solutions, it suggests that,
to leading order, the pairwise interaction matrix for hetero-
polymers interacting via short-ranged interactions is independ-
ent of their primary sequences. In other words, only the
frequency of eachmonomer type in a heteropolymer sequence is
relevant at this level of theory,110 and the rank of the interaction
matrix cannot exceed the rank of the monomer−monomer
interaction matrix, which may itself be rank-deficient.109,111

IV.B. Multicomponent Associating Fluid Models.
Concepts from associating fluid theory112,113 have been adopted
to describe the interactions between binding sites on
biomolecules that can only engage in one physical bond at a
time. While the methods of refs 112 and 113 were originally
developed to describe site-specific associative interactions
between small molecules, this physical picture extends naturally
to multidomain proteins or protein complexes whose con-

Figure 7. Left: Sequence-dependent CG models represent IDPs as
chains of simplified amino acids. Typically, the nonbonded interactions
between amino acids of types A and B are modeled using a pair
potential, uAB(r). Analytical theories of sequence-dependent hetero-
polymer interactions also require a model of the spatial correlations
between monomers that are spaced a distance |a − b| apart in the
primary sequence. Right: Patchy-particle models of multidomain
proteins implement a higher level of coarse-graining by treating the
PPI or RNA-binding interfaces on folded domains as specific binding
sites on simplified particles; binding sites engage in at most one
interaction at a time. Analytical theories associate an interaction volume
with each pair of distinct binding-site types.
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stituent domains contain interfaces that interact specifically with
other proteins or RNA sequences.93,114 The number of such
binding sites therefore establishes the coarse-grained “valence”
of the multidomain protein or complex (Figure 7).
Associating fluid theory treats the attractive interactions

between pairs of binding sites as perturbations to the free energy
of a reference model, which represents the molecular mixture in
the absence of binding sites. For example, the Flory−Huggins
homopolymer model can serve as a reference model for a
mixture of multidomain proteins, with the degree of polymer-
ization Li taken to be equal to the number of domains in each
protein species i.93 The concentration-dependent site−site
binding probabilities are then determined from the chemical
equilibrium equations

X X X i A1 ,iA iA
j

N

j
B

m

jB iA jB
1 1

,

j

+ =
= = (8)

where XiA represents the probability that the binding site of type
A on a molecule of type i is not engaged in any associative
interaction, and mi is the valence of molecule type i. The matrix
{ΔiA,jB} represents the interaction volumes (i.e., the reciprocals
of the dissociation constants) for the associative interactions
between binding sites A and B, which can in principle depend on
spatial correlations in the reference model. Finally, the
contribution to the free-energy density due to associative
interactions is113
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Reference 115 showed that eq 8 has a unique solution and that
eq 9 leads to a particularly simple expression for the associative
contribution to the excess chemical potential when ΔiA,jB is
concentration-independent, Xlogi A

m
iAassoc, 1

i= = . Further-
more, in the limit of weak associative interactions, eq 9 reduces
t o a s i m p l e p a i r w i s e f o r m , s u c h t h a t

i j
N

j A
m

B
m

iA jBassoc, 1 1 1 ,
i j

= = = . With regard to the
discussion in Section III.B, the maximum rank of the pairwise
interactionmatrix is therefore given by the rank of {ΔiA,jB} in this
limit.
The associating fluid framework has been widely applied to

model biomolecular LLPS involving folded domains that
interact via specific binding sites. A notable application of the
associating fluid framework to multiphase condensates was
provided in ref 29 which used a simplified representation of an
experimentally determined PPI network to predict the
compositions and morphologies of coexisting stress granule
and P-body condensates. Agreement between theory and
experiment regarding the effects of concentration changes and
binding-site modifications provided strong evidence that the
phase behavior of these condensates is indeed governed by
specific PPIs and interactions between RBDs and mRNA.
When the binding sites are assumed to represent individual

amino acids of IDPs or short sequence motifs of IDPs and/or
RNAs, associating fluid theory is commonly referred to as the
“stickers-and-spacers” model of heteropolymer associa-
tion.4,116−118 In this case, a Flory−Huggins homopolymer
model with a degree of polymerization much greater than the
binding-site valence (i.e., the number of “stickers”) is typically
taken as the reference model. Stickers-and-spacers applications
of associating fluid theory have been successfully used to

rationalize experimental observations of IDP-driven phase
separation, including both thermodynamic and dynamical
properties, in many contexts.4,119,120 The assignment of the
“stickers” to specific amino acids or short sequence motifs has
varied depending on context across different studies, however,
suggesting that additional contextual information may be
required to predict the phase behavior of multicomponent
IDP and RNA mixtures from their sequences. For further
discussion of applications of associating fluid theory to
biopolymers, we direct the reader to recent reviews on this
subject, including refs 4 and 47.

IV.C. Insights from Coarse-Grained Molecular Simu-
lations of Multiphase Condensates. IV.C.1. Polymer
Simulations with Pair Potentials. Molecular simulations have
provided insights into the accuracy of analytical theories for
describing sequence-dependent multicomponent phase behav-
ior. In order to test the RPA predictions of ref 106 (see Section
IV.A), ref 121 used a combination of field-theoretic and CGMD
simulations to study the phase behavior of polyampholyte
mixtures. These simulations demonstrated that pairs of charge-
neutral sequences only exhibit demixing when the chains have
sufficiently different (i.e., blocky versus uniform) charge
distributions. These results are in line with the predictions of
the RPA theory. Nonetheless, the authors found that excluded
volume interactions�which are present in the MD simulations
but are not included in the RPA calculations�are essential for
observing demixing in MD simulations. The qualitative
agreement with the theoretical predictions was therefore
ascribed to the assumption of incompressibility in the RPA
calculations. Nonetheless, this observation points to the need for
more accurate theoretical treatments that account for excluded
volume and interchain correlations.
Moving to systems with a third nonsolvent component, ref 43

performed simulations of a three-component system comprising
a prion-like polypeptide (PLP), an arginine-rich polypeptide
(RRP), and RNA. In this system, competition between PLP and
RNA for binding to RRP results in the demixing of PLP+RRP
condensates into immiscible PLP and RNA+RRP phases when
RNA is added. This experimental observation, which bears
qualitative resemblance to the competing heterotypic model of
ref 107 (see Section IV.A), was reproduced using MD
simulations of a CG IDP/RNA model. These simulations also
rationalized the experimental observation that the RNA parent
concentration controls the morphology of the coexisting
condensates.
In an attempt to uncover general sequence determinants of

multiphase mixtures, ref 122 proposed a computational
approach to design IDP sequences that result in multilayered
condensates. To this end, the authors used a genetic algorithm to
optimize pairs of sequences that form immiscible phases and a
stable shared interface, starting from naturally occurring IDP
sequences. The authors found that the net homotypic and
heterotypic interactions must differ between the optimized
IDPs, as expected. In many cases, these net interactions were
found to depend primarily on the monomer frequencies, such
that the immiscibility of the two phases was not affected by
randomizing the sequences of the designed IDPs. However,
when the genetic algorithm was initialized using a particular
naturally occurring IDP sequence in one of the coexisting
phases, the patterning of the amino-acid residues in the
optimized partner sequence was found to be crucial for
achieving immiscibility. The reasons for this dependence on
sequence patterning in some, but not all, optimization scenarios
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are poorly understood. Nonetheless, sequences generated via
this approach could provide challenging test cases for the further
development of analytical sequence-dependent theories.
IV.C.2. Patchy-Polymer Simulations. “Patchy-polymer”

models, which encode one-to-one interactions between binding
sites on specific monomers, are appropriate CG models for
testing the predictions of associating fluid theory. To explore the
design rules underlying multiphasic systems with this class of
models, ref 123 introduced a lattice-based CG model of poly-
PRM and poly-SH3multidomain proteins. Proline-richmodules
(PRMs) are short IDR sequence motifs that engage in specific
interactions with folded SH3 domains,124 and as such form one-
to-one binding interactions. Meanwhile, the linkers between
motifs in the poly-PRM molecules and between the folded
domains in the poly-SH3 molecules, respectively, were modeled
either implicitly, representing ideal chains with Gaussian
conformational statistics, or explicitly, using a variable number
of lattice-site-occupying monomers. Simulations were con-
ducted using two types of poly-SH3 molecules, which competed
for binding to the PRMs. The authors found that differences in
the linker properties, which tune the effective pairwise
interactions between the molecules in the absence of the
associative PRM/SH3 interactions, strongly affect the ability of
the mixture to form immiscible condensed phases. This
observation is consistent with the finding of ref 121 that
excluded volume interactions are necessary for demixing. By
contrast, the interaction volume associated with the attractive
PRM/SH3 interactions was found to play a less important role
in determining the degree of immiscibility, in line with the
predictions of associating fluid theory in the strong-binding limit
(ρΔ ≫ 1) of eq 8. Reference 123 also showed that the interfaces
of immiscible condensates are similarly affected by the linker
properties, since molecules containing linkers with greater
excluded volumes are preferentially driven toward interfaces
with the dilute phase.
IV.C.3. Patchy-Particle Models. “Patchy-particle” models

allow for simulations with a larger number of distinct molecular
species, along with a greater diversity of associative interactions,
due to their simplicity. In complex mixtures with a variety of
different associative interactions, it is useful to describe the
collection of all possible one-to-one binding interactions by
introducing an “interaction network”.29 Reference 125 explored
this network concept using MD simulations of a 6-component
mixture comprising 2, 3, and 4-valent patchy particles. The
authors considered a nearly fully connected network with almost
all equivalent interaction strengths, leading to the formation of a
single condensed phase in mixtures with equimolar parent
concentrations. Unsurprisingly, the density of associative
bonding interactions in the condensed phase was found to
correlate with the condensate stability, as measured by the
critical temperature. Simulations further revealed that high-
valence molecules, which phase separate with high critical
temperatures in single-component solutions, tend to increase
the critical temperature of multicomponent condensates when
added tomixtures of components with lower average valence. Of
direct experimental relevance, positive correlations were
observed between the critical point of a molecular species in a
single-component solution, its binding-site valence, and its
partition coefficient with respect to a multicomponent
condensate in a mixture with equimolar parent concentrations.
These observations can be understood qualitatively within the

framework of associating fluid theory. Making the simplification
that all binding sites interact with one another via the same

interaction volume, such that i A j B, , ,iA jB, = , the
solution to eq 8 simplifies to X X i A,iA = . The associative
contribution to the excess chemical potential (see Section IV.B)
is thus m Xlogi iassoc, in the condensed phase and negligible
in the dilute phase, implying that the partition coefficient, eq 2, is
related to the binding-site valence by PCi ∝ exp(mi). An
approximate relationship between the stability of the condensed
phase and the average valence of the mixture follows by a similar
argument. The relatively small variations in interaction strengths
in the simulated interaction network125 can be considered as
perturbations on these predictions. However, variations in the
geometric arrangements of the binding sites, and their relatively
minor effects on the partition coefficients, are not captured at
this level of theory.
The patchy-particle model of ref 125 was then extended to

examine multiphase mixtures in ref 126. The authors modified
the interaction network by eliminating heterotypic associative
interactions between select molecular species in order to
construct immiscible condensates and multilayered structures.
Analogously to the results of ref 123, simulations demonstrated
that strong homotypic associative interactions lead to the
formation of multiple immiscible condensates, while the
introduction of strong heterotypic associative interactions
tends to stabilize a single condensed phase. However, mixtures
with competing heterotypic interactions between weakly and
strongly associating species showed evidence of multiphase
condensate formation.

V. OUTLOOK AND CHALLENGES
We have reviewed recent progress in the development of
statistical and sequence-specific theories of multicomponent
fluids and multiphase condensate formation. Further advances
in this area have the potential to reveal quantitative relationships
between the molecular determinants of biomolecules, whether
naturally occurring or engineered, and phase-separated self-
organization in heterogeneous mixtures. In particular, inverse-
design strategies offer a promising approach for rationally and
systematically identifying the physicochemical properties of
biomolecular mixtures responsible for the assembly of
complex�and biologically functional�condensates. These
theoretical and computational efforts will help to provide a
roadmap for future experiments on heterogeneous biomolecular
mixtures.
Nonetheless, many significant theoretical challenges remain

to be explored, particularly with regard to the assumption of
thermal equilibrium. Future directions for theoretical and
simulation advances in this field include:

1. Structuring and parametrizing multicomponent mixture
models. Further development of statistical mixture models
(see Section III) will require incorporating information
from sequence-dependent theories and simulations. In
this way, it will be possible to investigate the
thermodynamic consequences of physically motivated
and biomolecularly relevant correlations among inter-
action parameters in multicomponent fluids, as well as to
move beyond pairwise mixture models. Physicochemi-
cally motivated constraints should also be incorporated
into inverse design approaches.

2. Extending sequence-dependent coarse-grained simulations
and theories to multicomponent mixtures. Complementary
insights can be gained by increasing the number of
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components in biomolecular mixtures treated using
analytical theories or studied via coarse-grained molecular
simulation (see Section IV). Simulations of recently
developed CG IDP models86−92 have demonstrated
impressive agreement with experiments on both single-
chain and individual condensed-phase properties, sug-
gesting that multicomponent simulations using these
models may also be capable of predicting multiphase
coexistence122 with similar accuracy. Further improve-
ment in the chemical accuracy of multicomponent
simulations is likely to be achieved through multiscale
approaches that incorporate all-atom simulations of
ribonucleic condensates.127−129 In future simulation
studies, it will also be important to consider the role of
competition between sequence-dependent clustering,
aggregation, and LLPS behaviors, as observed in simple
models of single-component heteropolymer solu-
tions,130−132 in multicomponent mixtures.

3. Accounting for nonequilibrium ef fects due to kinetic barriers.
Within the near-equilibrium framework, kinetic effects
can lead to differences between the phase behavior that is
observed in simulations and experiments and what is
predicted at global thermodynamic equilibrium. For
example, nucleation pathways133 and slow rates of
transitions between metastable states134−136 can affect
the molecular compositions and multiphasic organization
of phase-separated condensates on biologically relevant
time scales. The consequences of these nonequilibrium
effects in systems with many components require further
exploration.

4. Exploring dif ferences in phase behavior at nonequilibrium
steady states. Phase separation can also occur in fluids at
nonequilibrium steady states (NESSs), which can arise
due to chemostatted chemical reactions.18 Differences
between thermal equilibrium and a NESS can manifest,
for example, in the nucleation behavior137,138 as well as
the growth and coarsening dynamics139−143 of phase-
separated droplets. The implications of chemically driven
NESSs for multiphase self-organization are largely
unexplored.

5. Developing theoretical tools for emerging experimental
applications. A variety of experimental platforms for
manipulating biomolecular LLPS have recently been
developed using “designer” peptides,144−147 nucleic
acids,32,33,148 and nonbiological polymers.149 Chemically
specific computational tools are needed to guide the
rational design of multicomponent, multiphasic mixtures
using these experimental platforms. With a better
understanding of condensate compositional control in
heterogeneous environments, combined theoretical and
experimental engineering approaches have the potential
to bring about practical techniques for manipulating
complex biological processes in vivo.150

In summary, LLPS can give rise to highly nontrivial spatial
organization in multicomponent biomolecular fluids. Never-
theless, considerable gaps persist in our understanding of the
relationship between molecular-level properties and emergent
phase behavior in heterogeneous mixtures. Addressing this
multifaceted question therefore represents an important way in
which chemical theory and simulation can contribute to research
at the forefront of molecular and cell biology, while helping to
elucidate the origins of self-organization in living systems.
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