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Interplay between self-assembly and phase separation in a polymer-complex model
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We present a theoretical model for predicting the phase behavior of polymer solutions in which phase

separation competes with oligomerization. Specifically, we consider scenarios in which the assembly of polymer
chains into stoichiometric complexes prevents the chains from phase-separating via attractive polymer—polymer
interactions. Combining statistical associating fluid theory with a two-state description of self-assembly, we
find that this model exhibits rich phase behavior, including reentrance, and we show how system-specific phase

diagrams can be derived graphically. Importantly, we discuss why these phase diagrams can resemble—and yet
are qualitatively distinct from—phase diagrams of polymer solutions with lower critical solution temperatures.
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I. INTRODUCTION

Predicting the phase behavior of biopolymer systems
is challenging due to the diversity of conformational and
oligomeric states that biopolymers can populate [1,2]. In this
context, oligomers refer to small molecular clusters that form
due to attractive interactions among biomacromolecules, in-
cluding proteins [3,4] and nucleic acids [5,6]. The interplay
between oligomerization and phase separation is complex
and can give rise to qualitatively different behaviors in dif-
ferent scenarios. In some cases, phase separation correlates
with oligomer stability, either because phase separation is
enhanced by the presence of oligomers [3,4,7-10] or because
phase separation promotes oligomer formation in condensed
phases [1,11]. Yet in other cases, phase separation appears to
compete with oligomer formation, meaning that the presence
of stable oligomers tends to inhibit demixing into condensed
biopolymer-rich phases [12].

Here we explore this latter scenario—competition between
the self-assembly of oligomers and phase separation—using a
thermodynamically consistent mean-field model. We consider
polymer solutions in which multiple polymer chains can as-
semble into a stoichiometric complex, which is an oligomer
comprising a precise number of chains in a well-defined
geometry [13]. A theoretical challenge is that this scenario
cannot be described in terms of pairwise interactions alone,
since the assembly of discrete stoichiometric complexes im-
plies that spatial correlations among multiple polymer chains
cannot be ignored [14,15]. We therefore propose a coarse-
graining strategy in which a two-state model of stoichiometric
complex self-assembly is coupled to a mean-field model
of interacting, yet spatially uncorrelated, polymer chains
within the framework of statistical associating fluid theory
(SAFT) [16].

This theoretical approach treats self-assembly and phase
separation in a self-consistent framework [17,18], allowing
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us to predict the effects of self-assembly on the equilibrium
phase behavior of associating polymer solutions [19]. In the
present article, we systematically develop this theoretical ap-
proach and study the implications of the resulting model
under wide-ranging scenarios. In a closely related article [20],
we separately provide validation of our theoretical predic-
tions in a particular DNA-based experimental system, which
utilizes the programmability of Watson-Crick base pairing
[21] to tune both the thermodynamic stability of a designed
stoichiometric complex and the phase behavior of the DNA
oligonucleotides. Taken together, the results of these studies
demonstrate the validity of the assumptions employed in our
theoretical approach and confirm the quantitative accuracy of
our model’s predictions.

The key theoretical results of our approach are presented
in this article as follows. In Secs. IIA and IIB, we de-
scribe the mean-field model and our numerical strategy for
calculating its phase behavior in various parameter regimes.
Then, in Secs. IIC and IID, we investigate two scenarios
in which the excluded volume of a stoichiometric complex
is either the same as or greater than the total excluded vol-
ume of its constituent chains. Both of these scenarios exhibit
reentrant phase behavior, in which a constant-concentration
polymer solution transitions from one phase to two co-
existing phases and back to a single phase as a single
control parameter is tuned monotonically. This control pa-
rameter represents an experimentally accessible quantity such
as, but not limited to, temperature, ionic strength, pH, or
a cosolvent concentration. Importantly, although many fea-
tures of the phase behavior resemble qualitative aspects of
phase diagrams with a lower critical solution temperature
(LCST), we find that competition between self-assembly
and phase separation does not result in a critical point of
this type. Instead, we find that phase coexistence can ter-
minate at a first-order transition due to the competition
between self-assembly and phase separation. Our approach
shows how qualitatively different phase diagrams can arise
by altering the dependence of key dimensionless parameters
on experimentally controllable variables. A more thorough
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FIG. 1. Schematic of the theoretical model. (a) Biopolymers
can either assemble into stoichiometric complexes or form a con-
densed phase via phase separation. Polymers are represented as
freely jointed chains of blobs (yellow circles), each of which contains
a single binding site (blue dots). Here we consider stoichiometric
complexes consisting of n = 4 polymers. (b) The model involves two
independent free-energy parameters, € and AG, which govern the
pairwise association between binding sites on blobs and the assembly
of chains into stoichiometric complexes, respectively. Associative
interactions between blobs are treated using statistical associating
fluid theory (SAFT), while the two-state model of stoichiometric
complex assembly is treated as an equilibrium chemical reaction
between the polymer (P) and complex (S) states.

discussion of the implications of these results is provided in
Sec. III.

II. THEORETICAL MODEL AND RESULTS
A. Two-state self-assembly and phase separation

We first develop a mean-field model of coupled self-
assembly and liquid—liquid phase separation Fig. [1(a)]. We
consider a polymer solution consisting of a single polymeric
species in an implicit solvent. Polymers are coarse grained
into chains of N, “blobs,” each of which represents a Kuhn
segment [22] of the polymer with excluded volume vy. This
coarse-graining allows us to treat polymers as freely jointed
chains, meaning that the relative orientations of adjacent blobs
are uncorrelated. The total excluded volume of a free polymer
is vp = N,vo. To account for “specific” short-ranged attrac-
tive interactions, such as hybridization of DNA oligomers
[21] or screened electrostatic interactions between charged
sidechains of polypeptides [23], we introduce N, distinct
binding sites on each polymer. Each blob can accommodate
a single coarse-grained binding site within this framework,
since the orientations of monomers within a Kuhn-segment
blob are highly correlated and thus not independent of one
another [22]. Specific interactions between pairs of binding
sites therefore represent coarse-grained, effective interactions
between two Kuhn-length groups of monomers.

This modeling approach relies on three key assumptions.
First, we assume that each binding site can participate in at
most one specific attractive interaction at a time. Second, we
assume that the assembly of n polymers into a stoichiometric
complex is highly cooperative, such that partially assembled
intermediates involving fewer than n polymers are vanishingly
rare at equilibrium (i.e., two-state self-assembly). Third, we
assume that all binding sites engage in specific interactions
within a stoichiometric complex in the assembled state. This

final assumption can be relaxed, leaving additional binding
sites on assembled complexes available for interactions with
binding sites either on other complexes or on free poly-
mers [20], but we do not consider this possibility in the
present work.

Taken together, these assumptions imply that self-assembly
and phase separation are mutually exclusive [Fig. 1(a)]: As-
sociative interactions between available binding sites are
required to drive phase separation, and yet these binding
sites are completely saturated by the formation of a complete
stoichiometric complex. We note that, in practice, satisfy-
ing the second, “two-state” assumption typically requires a
stoichiometric mixture of n different polymers with distinct
binding sites, such that each polymer species is used exactly
once in constructing a unique stoichiometric complex [24,25].
The model that we describe here treats all polymers as being
indistinguishable for simplicity, which means that the specific
interactions between free polymers represent effective inter-
actions that average over all possible pairs of binding sites.

We implement these assumptions within a mean-field
theory by combining SAFT [16] with a variation of the
Flory—Huggins model of a polymer solution [22]. In ac-
cordance with the second key assumption of two-state
self-assembly, chains can either exist in the free polymer state
(P) or as part of a stoichiometric complex (S) consisting of n
chains. The excluded volume of a complex is vg, which we re-
late to the excluded volume of a polymer blob via Ny = vs/vg
for notational convenience. Importantly, because our parti-
tioning of chains into either P and S states allows us to treat
the configuration of an assembled complex independently
from that of individual polymers, it is not necessarily the
case that v, = nv,. We shall consider both scenarios, where
the excluded volume is either conserved or not conserved, in
Secs. II C and II D, respectively.

The free-energy density, f, comprises four terms,

f — fid + fev +fass0c +fim, (1)

accounting for the ideal (id), excluded-volume (ev), associa-
tive (assoc), and internal (int) contributions, respectively. Each
term has units of energy per volume. The ideal contribution
depends on the concentrations (i.e., number densities) of poly-
mers in both the P and S states,

B = 2y — 1)+ Lang,— 1), (2)

N, N

where ¢; = v;p; is the volume fraction and p; is the con-
centration (or number density) of state i € {P, S}. To avoid
discussing explicit temperature dependence at this point, we
use the inverse temperature § = 1/kgT, where kg is the
Boltzmann constant and 7 is the absolute temperature, to ex-
press all free energies as dimensionless quantities. We employ
a mean-field formula for the excluded volume contribution
that accounts for the fact that assembled complexes are essen-
tially rigid bodies, whereas free polymers are freely jointed
chains,

S 1— S
Bf v = ]% + N:b In(1 — ¢) + ]%[1 —In(1 — ¢y)]
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where ¢p =1 — ¢ — ¢p is the volume fraction not occu-
pied by either free polymers or stoichiometric complexes.
A derivation of this formula is presented in Appendix A,
and a comparison to the Flory-Huggins model is provided in
Appendix B.

Following the two-state assumption, the associative con-
tribution only accounts for interactions among binding sites
on P-state polymers. The free-energy density is given by
Wertheim’s thermodynamic perturbation theory [14], taking
the P/S mixture without attractive interactions [i.e., Egs. (2)
and 3)] as the reference state [15],

ﬁfaSSOCUO — ¢p <ln Xp _ 2 2

X, 1

2o “)
where X, is the fraction of binding sites on P-state polymers
that are not associated. X, is determined by the chemical
equilibrium expression

Xp + ppe P XS = 1, (5)

where € is the association free energy between a pair of
binding sites [Fig. 1(b)]. Equation (4) can be derived by min-
imizing the Helmholtz free energy of a mixture of reactive
binding sites; Eq. (5) follows directly from the derivation of
f355°¢, We refer the reader to Ref. [26] for an elegant derivation
and a thorough discussion. Multiplying Eq. (5) by ¢, we can
easily identify this chemical equilibrium condition as a mass-
action expression relating the volume fraction of blobs that
are not associated, Xp¢,, and the volume fraction of blobs that
are associated, (1 — X;,)¢p, subject to an equilibrium constant
exp(—pBe). Association does not occur in the limit Se — 0.
Importantly, Egs. (4) and (5) assume that the association states
of different binding sites are uncorrelated. This requirement is
consistent with our coarse-grained treatment of association,
in which we assume that each Kuhn-segment blob accommo-
dates a single binding site.

By contrast with the associative interactions, the internal
contribution to the free-energy density only depends on the
concentration of S-state complexes,

B ™= L BAG +n(1 ~ Ny ©)
S

where AG represents the free-energy change (excluding trans-

lational entropy) associated with the self-assembly reaction

nP = S [Fig. 1(b)]. This reaction is at equilibrium when

Ny = [, (7

where the P- and S-state chemical potentials are u, = 9f/9 0,
and us = 90f/0dps, respectively. Intuitively, Eq. (6) says that
the contribution to the free energy due to polymer—polymer
interactions within an S-state complex is proportional to the
concentration of S-state complexes, ps = ¢s/N;vy. We moti-
vate the particular definition of BAG established by Eq. (6)
by discussing a limiting case at the end of this section.

This treatment allows us to study the consequences of
stoichiometric complex self-assembly within a mean-field
theory. In reality, both self-assembly and association among
free polymers are driven by the same physical interactions
among binding sites [Fig. 1(a)]. These interactions among
binding sites can be assumed to be essentially pairwise in

nature. However, the probability that a specific pair of bind-
ing sites is associated is highly correlated with the binding
status of proximal binding sites on the same chains when
self-assembly takes place. Such correlations are challenging
to capture within mean-field models via thermodynamic per-
turbation theory. By contrast, including a discrete S state via
the two-state approximation and the equilibrium condition
Eq. (7) allows us to account for these correlations, while still
treating the associative interactions between binding sites on
P-state polymers as uncorrelated in Eqs. (4) and (5).

Nonetheless, the common physical origin of polymer as-
sociation and self-assembly implies that the association free
energy, €, and the assembly free energy, AG, are coupled
parameters that must change in tandem when a control pa-
rameter is tuned. To be precise, AG depends on both the sum
total of the nN,/2 binding interactions with strength € within
a stoichiometric complex, as well as entropic considerations
related to the geometry and flexibility of the stoichiometric
complex. In Secs. II C and II D, we show how system-specific
relationships between € and AG can be used to derive a phase
diagram as a function of a single control parameter.

Before proceeding, it is instructive to consider the behavior
of this model in three limiting scenarios. If Se is finite and
BAG — 00, then self-assembly cannot occur and the model
reduces to that of an associative polymer solution in which the
polymers obey the statistics of freely jointed chains [19,22].
This polymer solution has a critical point at a dimensionless
associative free energy (B¢). and polymer volume fraction ¢..
This critical point is commonly described as an upper critical
solution temperature (UCST), since phase separation only
occurs at temperatures below 7. = ekg 1(;86);1 if € is taken
to be a temperature-independent constant [22]. Alternatively,
if Be is finite and BAG — —o0, then the solution is a fluid
of S-state complexes in implicit solvent. The model reduces
to a regular solution [27] with excluded volume interactions
only in this case, since we have assumed that there are no
associative interactions among completely assembled com-
plexes. Lastly, if B¢ — oo and BAG is finite, then there are no
associative interactions among free polymers, and the model
reduces to a concentration-dependent description of two-state
self-assembly. In this case, Eq. (7) simplifies to an expression
of chemical equilibrium for a reaction involving ideal gases in
the dilute limit, ¢, < 1 and ¢ < 1:

P _ a0, (8)

%
This limiting scenario justifies our expression for the internal
free energy in Eq. (6).

B. Phase-coexistence calculations and master phase diagrams

Our aim is to compute the phase behavior of the mean-
field model introduced in the previous section. This model is
completely specified by the five independent parameters n, N,
Ns, Be, and BAG, which are all considered to be constants
when carrying out phase-coexistence calculations. We shall
assume that the number of chains per stoichiometric complex
is n = 4 throughout this article, and then consider representa-
tive scenarios for various combinations of the remaining four
parameters. Although the free-energy density, f, is a function
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of both ¢, and ¢, the concentrations of free polymers and
stoichiometric complexes are related via the chemical equi-
librium constraint, Eq. (7). The total polymer concentration,
P = pp + nps, is therefore the sole independent variable when
performing phase-coexistence calculations. For convenience,
we present our results in terms of a dimensionless total con-
centration pN,vo, which is equal to the volume fraction if all
polymers are in the P state, since this dimensionless quantity
is bounded by O and 1. We present the composition of a
solution with fixed total concentration in terms of the fraction
of polymers in the S state, i.e., the S fraction, which is equal
to nps/p. The S fraction is also bounded by 0 and 1.

For a given set of parameters, we determine the concen-
trations and compositions of coexisting phases by computing
and analyzing a free-energy landscape as a function of p. This
calculation is carried out in two steps. In the first step, we
determine the equilibrium S fraction and the corresponding
free-energy density at a fixed value of p by solving Eq. (7).
In cases where there are multiple solutions to this chemical
equilibrium equation, we choose the one with the lowest
free-energy density; this choice is equivalent to performing
a global minimization of f as a function of the S fraction at
constant p. An example calculation showing the equivalence
between constrained free-energy minimization and chemical
equilibrium is illustrated in Fig. 2(a).

In the second step, we repeat this chemical-equilibrium cal-
culation for many values of the total concentration to construct
the equilibrium free-energy landscape f(po) numerically. We
then use the common-tangent construction [27] to identify one
or more coexistence regions, where two total concentrations
have the same chemical potential u = df/dp and osmotic
pressure P = f — (3f/dp)p, if any such regions exist. An
example landscape with two coexistence regions is illustrated
in Fig. 2(b). In practice, we compute the convex hull of a
free-energy landscape computed on a grid of discrete total
concentration points, {(p, f(p))} [28]. Any point (p, f(p))
that is not part of the convex hull must be within a coexistence
region, in accordance with the common-tangent construction;
adjacent grid points that are not part of the convex hull must
be within the same coexistence region. In this way, we are
able to identify the number of coexistence regions and obtain
estimates of the total concentrations of the coexisting phases
for each region. We then refine these estimates to compute the
total concentrations and compositions of each pair of coex-
isting phases o and B. This final refinement step is achieved
by solving the equal-chemical-potential, ® = u®, and
equal-osmotic-pressure, P@ = p®_ conditions to numerical
precision. The results of these calculations are most easily
visualized by examining the grand-potential density, f — up,
with © chosen to be equal to the chemical potential of the
two coexisting phases. The grand-potential density is equal
to the osmotic pressure at equilibrium. For example, the case
shown in Fig. 2(c) corresponds to the lower-concentration co-
existence region found in Fig. 2(b), in which a dilute solution
consisting primarily of assembled stoichiometric complexes
coexists with a condensed phase of disassembled polymers
stabilized by their associative interactions.

To summarize the dependence of the phase behavior on the
parameters Be and BAG, we introduce the concept of a master
phase diagram. Specifically, for fixed choices of N, and N,
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FIG. 2. Schematic of phase-coexistence calculations. (a) For a
given chain concentration p, we first calculate the equilibrium
composition by minimizing the free energy with respect to the
stoichiometric complex (S) fraction (left). This calculation satisfies
the condition of chemical equilibrium, @, = nu,, where n =4 in
this example (right). The equilibrium free energy is indicated by the
orange diamond (pN,vy = 0.093), assuming N, = 6, N, = 24, Be =
—4.025, and BAG = —27 [corresponding to point d in Fig. 3(a)].
(b) Performing chemical equilibrium calculations at various total
concentrations results in a free-energy profile. Points on this pro-
file are colored according to the equilibrium fraction of chains that
assemble into stoichiometric complexes. Common-tangent construc-
tions (red dashed lines) are then used to identify coexistence regions
(shaded regions). Red points indicate the concentrations and free
energies of the coexisting phases. In this example, there are two
distinct coexistence regions at different ranges of the total con-
centration. (¢) The common-tangent construction ensures that the
coexisting phases have the same chemical potential, u = df/dp, and
the same grand potential, f — up. As an illustrative example, we
show the grand potential at the coexistence chemical potential of the
first coexistence region defined in (b). The equilibrium compositions
indicate that a dilute phase of mostly assembled complexes coexists
with a condensed phase of mostly free chains.

we determine the number of distinct coexistence regions
that exist over the complete range of total concentrations,
0 < pNpvy < 1, as a function of Be and BAG. Example
master phase diagrams are shown in Figs. 3(a) and 5(a), and
are discussed in the following sections. In this representation,
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FIG. 3. Phase-behavior predictions when self-assembly conserves the excluded volume of the constituent chains. (a) The master phase
diagram predicted by our model exhibits rich phase behavior. The parameter space is shaded according to the number of distinct coexistence
regions at a given fe and BAG. In the unshaded regions, the system is homogeneous at all concentrations. Gray shaded regions indicate
that phase separation occurs in a single coexistence region, while the gold region indicates the existence of two distinct coexistence regions
within different concentration ranges. These regions are bounded by dashed curves (i), (ii), and (iii), as described in the text. Solid blue
curves show where the dilute phase (of the lower-concentration coexistence region, if there are two) has the indicated total concentration.
The path taken by a hypothetical control parameter, which relates Se to BAG, is shown by a solid red line; labeled points correspond to the
free-energy profiles in (c)—(h). (b) The phase diagram mapped out by the hypothetical control parameter shown in panel a. Points representing
the concentrations of coexisting phases are colored according to the equilibrium composition of stoichiometric complexes. The coexistence
regions terminate at the points (iv), (v), and (vi), as described in the text. (c)—(g) Representative free-energy profiles (points) along the path taken
by the control parameter shown in panel a. For comparison, we also show the free-energy profiles of pure chains (100% P, solid blue curves)
and pure complexes (100% S, solid green curves). Red dashed lines indicate common-tangent constructions, red points indicate coexisting
concentrations, and gray shaded regions indicate coexistence regions. (h) A representative free-energy profile in two-phase region (2) of the

master phase diagram, (a).

the boundaries between parameter regimes in the Se—BAG
plane that have differing numbers of coexistence regions
indicate lines of either first-order or second-order transitions
where coexistence regions terminate. In other words, crossing
one of these boundaries on the master phase diagram means
that one or more coexistence regions either appear or
disappear within some range(s) of total concentration as Be
and/or BAG are tuned.

Master phase diagrams are useful for understanding how
different relationships between the association and assem-
bly free energies can result in qualitatively different phase
diagrams when calculated as a function of a single con-
trol parameter. For example, consider a biopolymer solution
in which temperature controls both B¢ and SAG. Depend-
ing on the precise chemical details of the biopolymers,
changing temperature traces out a curve in the Be-BAG
plane [see, e.g., Figs. 3(a) and 5(a)]. Computing the phase

behavior as a function of the total concentration at points
along this temperature-parameterized curve therefore allows
us to construct a conventional temperature-concentration
phase diagram [see, e.g., Figs. 3(b) and 5(b)]. The topol-
ogy of this conventional phase diagram is determined by
the way in which the temperature-parameterized curve inter-
sects the boundaries between parameter regimes with different
numbers of coexistence regions in the Se—B AG plane. Impor-
tantly, this approach allows us to disentangle the predictions
of the mean-field model, which depend on the free-energy pa-
rameters Be and BAG, from system-specific parametrizations
of these quantities.

C. Self-assembly with conserved excluded volume

We first consider the scenario where the self-assembly
of n polymers into a stoichiometric complex conserves the
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FIG. 4. Coexistence regions terminate at a first-order phase tran-
sition in the conserved-excluded-volume scenario. (a) Here we
examine the nature of the transition from a one-phase region to two
two-phase regions along line (ii) in Fig. 3(a), which corresponds to
point (vi) in this zoomed-in portion of the phase-diagram shown
in Fig. 3(b). (b) The concentration-dependent chemical potential,
1, at fixed Be = —2.303 and variable BAG. Coexisting phases are
indicated by circles and connected by dashed lines. The transition
from two coexistence regions (BAG 2 —16.015) to zero coexis-
tence regions (BAG < —16.02) does not involve a critical point,
which would imply a concentration where du/dp = 0. Instead, the
two coexistence regions move towards one another as SAG is de-
creased and vanish at the azeotrope concentration pN,vy >~ 0.271
(dashed line), where du/dp jumps discontinuously. (c) When no
coexistence regions are present (8AG = —16.03), the composition
is a continuous function of p. Yet when two coexistence regions
are present (BAG = —16), the composition changes discontinuously
across each coexistence region. (d) The first-order nature of this
transition at finite BAG (dashed line), corresponding to line (ii) in
Fig. 3, is clear from the discontinuity in the composition at the
azeotrope concentration. Moving from left to right across this plot
is analogous to moving through point (vi) in Fig. 3(b) at constant p
from below to above.

excluded volume, such that vy = nv,. Here we compute phase
diagrams for an example case with N, = 6 blobs per polymer
chain. Conservation of the excluded volume thus implies that

Ns = nN, = 24, since we assume that n = 4 chains comprise
each stoichiometric complex.

The master phase diagram for this scenario is shown
in Fig. 3(a). The model predicts five parameter regimes in
the Be—BAG plane: two distinct regimes, (1) and (3), in
which only one phase exists at all concentrations; two distinct
regimes, (2) and (5), in which a single coexistence region
exists over a finite range of concentrations; and one regime,
(4), in which two different coexistence regions exist over
different concentration ranges. We discuss the physical origin
and significance of these various regimes in the remainder of
this section.

1. Phase diagram construction as a function
of a control parameter

As discussed in Secs. I A and II B, the free-energy pa-
rameters Be and BAG must be related to one another due
to their common dependence on the interactions between
pairs of binding sites [Fig. 1(a)]. We therefore construct a
conventional concentration-dependent phase diagram by trac-
ing a path through the Be—BAG plane that depends on a
control parameter. For example, if the control parameter is
temperature, then the resulting conventional phase diagram
depicts the phase behavior in the temperature—concentration
plane. We show a possible parametrization of Se and BAG
in Fig. 3(a), which results in the conventional phase diagram
shown in Fig. 3(b). This example curve is chosen because it
passes through four of the five regimes on the master phase
diagram. Importantly, this example also satisfies the relation
dBe/dBAG > 0, since both free energies should typically be
expected to increase or decrease in tandem. Specific points
along the parameterized curve are labeled c—g in Fig. 3(a) and
are indicated on the conventional phase diagram in Fig. 3(b).

The appearance and disappearance of various coexistence
regions in Fig. 3(b) is determined by the intersections between
the control-parameter curve and the boundaries of the distinct
regimes in Fig. 3(a). Starting from low values of the control
parameter, the polymer solution is initially in a one-phase
region at all concentrations at point (c). Upon crossing line
(i1) in Fig. 3(a), two distinct coexistence regions appear simul-
taneously at point (vi) in Fig. 3(b). These coexistence regions
imply that a polymer solution at a total concentration within
a shaded region will phase separate at equilibrium into two
coexisting phases with different concentrations and composi-
tions, as indicated by the equilibrium S fraction shown on the
coexistence-region boundaries in Fig. 3(b). Thus, while the
number of coexistence regions is the same at points (d) and
(e), phase coexistence in the lower-concentration coexistence
region is qualitatively different at these two points. Specifi-
cally, the dilute phase at point (d) is dominated by assembled
stoichiometric complexes, while the dilute phase at point (e) is
primarily composed of free polymers. The control-parameter
curve then crosses line (iii) in Fig. 3(a), which indicates the
termination of the high-concentration coexistence region at
point (v) in Fig. 3(b), leaving only the lower-concentration
coexistence region at point (f). Finally, the control-parameter
curve crosses line (i) in Fig. 3(a), corresponding to point (iv)
in Fig. 3(b), so the polymer solution exists in a single phase at
all concentrations once again at point (g).
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FIG. 5. Phase-behavior predictions when self-assembly does not conserve the excluded volume of the constituent chains. (a) A single
one-phase region (unshaded), where the system is homogeneous at all concentrations, lies to the right of dashed curve (i) and above dashed
curve (ii), as described in the text. A two-phase region exists within some concentration range everywhere else within the master phase diagram.
See Fig. 3(a) for explanations of the control parameter path and total concentration curves. (b) When the excluded volume is not conserved by
the two-state model of self-assembly, the lone coexistence region terminates at a single point (iii), as described in the text. This phase diagram
is constructed analogously to that shown in Fig. 3(b). (c)—(h) Representative free-energy profiles along the path taken by the control parameter
shown in (a), and at the additional labeled point (h) in panel (a). See the description of Figs. 3(c)-3(h) for details. Because of the excluded
volume difference, the 100% S curves terminate at the total concentration where the complexes are close-packed, pN,vo/n = 1, where n = 4
in this example. Consequently, condensed phases with pN,vy > nN, /N, are always polymer-dominated.

Both the higher-concentration and the lower-concentration
coexistence regions in Fig. 3(b) exhibit reentrance, since a
polymer solution at constant total concentration can pass from
a single phase to two phases and back to a single phase as the
control parameter is varied monotonically from point (c) to
point (g). However, reentrance only occurs over a finite range
of total concentrations. To determine whether reentrance will
occur at a specific total concentration, we also plot curves of
constant dilute-phase concentration on the master phase dia-
gram in Fig. 3(a). These curves indicate the conditions in the
Be—BAG plane at which the dilute phase has the indicated to-
tal concentration, and thus where the binodal intersects a line
of fixed total concentration in a control parameter versus total
concentration phase diagram [e.g., Fig. 3(b)]. Because the
example control-parameter curve shown in Fig. 3(a) crosses
the curve of a 1% dilute-phase concentration twice but does
not cross the curve of a 0.1% dilute-phase concentration, we
can easily predict that reentrance will occur for pNyvg = 1%

but not at pN,vg = 0.1% in Fig. 3(b). These examples demon-
strate how the essential features of the conventional phase
diagram can be inferred graphically by comparing a control-
parameter curve, which is specific to a particular system,
with the master phase diagram, which depends only on the
parameters N, N, and 7 in this model.

2. Free-energy landscapes

Representative free-energy landscapes at various points in
the fe—BAG plane, corresponding to each labeled point on
the control-parameter curve as well as the additional labeled
point (h), are shown in Figs. 3(c)-3(h). Equilibrium land-
scapes are indicated by points whose coloring reflects the
composition, as in Fig. 3(b). Coexistence regions and tie-line
constructions are indicated for each equilibrium landscape.
For comparison, we also show free-energy landscapes com-
puted assuming a nonequilibrium composition of either 100%
S or 100% P.
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We find that we can predict the qualitative phase behavior
at each point along the control-parameter curve in Fig. 3(b)
by examining the relationship between these nonequilibrium
landscapes, despite the fact that the composition is never
exactly 100% S or 100% P due to the entropy of mixing.
In Fig. 3(c), the equilibrium landscape is close to the 100%
S curve, which is always below the 100% P curve. Thus,
the polymer solution primarily consists of assembled stoi-
chiometric complexes in a single phase at all concentrations.
In Fig. 3(d), the lower-concentration coexistence region is
approximately given by a common-tangent construction be-
tween the 100% S curve (on the left) and the 100% P curve
(on the right). However, the lower-concentration coexistence
region in Fig. 3(e) and the sole coexistence region in Fig. 3(f)
are approximately given by a common-tangent construction
using the 100% P curve alone, since this curve is nonconvex
due to the associative contribution to the free energy, Eq. (4).
This nonconvexity in the 100% P curve disappears at high Se,
resulting in no phase separation in Fig. 3(g). By contrast, the
higher-concentration coexistence region in Figs. 3(d) and 3(e)
and the sole coexistence region in Fig. 3(h) are approximately
given by a common-tangent construction between the 100% P
curve (on the left) and the 100% S curve (on the right).

3. Parameter-regime boundaries on the master phase diagram

The nature of the boundaries between regimes in the master
phase diagram can be understood by examining the behavior
of the system at points where the coexistence regions termi-
nate in Fig. 3(b). Point (iv) in Fig. 3(b) is a critical point, since
the derivatives duu/dp and 3%u/dp* vanish. As noted at the
end of Sec. II A, this critical point is typically referred to as an
UCST. Line (i) in Fig. 3(a) is therefore a line of critical points
that bound the lower-concentration coexistence region. Since
the two phases that merge at point (iv) are composed mostly
of free polymers, line (i) is nearly independent of SAG. The
value of fe along this line is thus approximately equal to
the critical association free energy of an associating polymer
solution in the absence of self-assembly (i.e., BAG — 00).

By contrast, point (v) in Fig. 3(b) is a first-order transition,
where the composition changes discontinuously from mostly
assembled stoichiometric complexes to mostly free polymers
upon a change in Be and/or B AG. This transition occurs when
the free energy of a 100% P solution drops below that of a
100% S solution at pN,vo = 1, which we can see by compar-
ing the free-energy landscapes shown in Figs. 3(e) and 3(f).
We can therefore predict the line of first-order transitions in-
dicated by line (iii) in Fig. 3(a) by equating the free energies of
100% P and 100% S solutions at pN,vo = 1. To the left of line
(iii), both coexisting phases have total concentrations less than
one, as evidenced by the example coexistence region shown
in Fig. 3(h). To the right of line (iii), the higher-concentration
coexistence region does not exist.

4. Physical origin of reentrance

We now focus on the physical origin of the reentrant
behavior that occurs at relatively low values of the total
concentration in Fig. 3(b). In essence, reentrance manifests
because a solution of free polymers phase separates at high
values of the control parameter, but a single-phase solution of

predominantly assembled stoichiometric complexes becomes
stable at low values of the control parameter. Reentrance
therefore results from mutually exclusive competition be-
tween polymer phase separation and stoichiometric complex
self-assembly. More precisely, reentrance occurs when the
control-parameter curve crosses a line of constant dilute-phase
concentration (e.g., pNpvg = 1%) twice in Fig. 3(a). These
constant dilute-phase concentration curves are bounded by
lines (i) and (ii), so this form of reentrance can only appear in a
limited portion of the Be—f AG plane. While the upper bound
of the lower-concentration coexistence region with respect to
the control parameter is set by point (iv) in Fig. 3(b), the
lower bound on this lower-concentration coexistence region is
determined by point (vi). This lower bound corresponds to the
intersection between line (ii) and the control-parameter curve
in Fig. 3(a).

Yet unlike point (iv) in Fig. 3(b), point (vi) is not a criti-
cal point. Instead, point (vi) indicates a first-order transition
where the composition jumps from a high value to a low
value of the equilibrium S fraction as the control parameter
is increased. The distinction between the behavior at point
(vi) and a LCST can be understood by examining the chem-
ical potential in the vicinity of the transition [Fig. 4(a)]. In
Fig. 4(b), we show the chemical potential as a function of
the total concentration at fixed Se. As we tune SAG near
the transition point, we see that the two coexistence regions
converge at a crossover concentration [vertical dashed line
in Fig. 4(b)]. However, the derivative of the chemical po-
tential at the crossover concentration does not vanish, as
would be required for a second-order transition. By con-
trast, the equilibrium S fraction at the crossover concentration
changes discontinuously, as shown in Figs. 4(c) and 4(d).
Since the composition is determined from a first derivative of
the free energy, this behavior is consistent with a first-order
transition.

We propose that this behavior can be understood intuitively
by drawing an analogy to a positive azeotrope [29]. In a binary
mixture of two fluids, a positive azeotrope occurs at a specific
composition at which the two fluids share the same boiling
point; thus, raising the temperature of the mixture at the
azeotrope composition causes the liquid mixture to transform
directly into a mixture of gases with the same composition.
Qualitatively, the free-energy landscape of a fluid mixture
with an azeotrope is analogous to that of the nonequilibrium
100% S and 100% P curves shown in Figs. 3(c) and 3(d),
whereby the liquidlike 100% S curve is stable below a transi-
tion point (8AG, Be¢) and the vaporlike 100% P curve is stable
above. We therefore propose that the crossover concentration
shown in Fig. 4(b) is analogous to an azeotrope composi-
tion, even though there is technically only one equilibrium
free-energy landscape as a function of the total concentra-
tion in our model due to the chemical equilibrium constraint,
Eq. (7). Finally, we note that line (i) terminates at line
(i1) in Fig. 3(a) for a similar reason: For sufficiently negative
BAG, the 100% S free-energy landscape curve becomes more
stable than the 100% P curve at all concentrations. Conse-
quently, the nonconvex portion of the free-energy landscape,
which describes a polymer solution composed of mostly
free polymers, becomes metastable to the left of line (ii) in
Fig. 3(a).
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5. Dependence of the master phase diagram on N, and n

Up to this point, we have discussed the master phase dia-
gram assuming the specific parameter choices N, = 6 andn =
4. These calculations can easily be repeated using alternative
parameters. In this way, we find that the topology of the master
phase diagram remains unchanged as long as n > 1 and the
excluded volume is conserved, such that N; = nN,. However,
changing the parameters N, and n alters the positions of the
phase boundaries in the Se—AG plane, as we discuss next.

The line of critical points (i) is nearly independent of the
degree of complexation n because these critical points only
depend on the properties of free polymers, except when in
close proximity to the intersection of lines (i) and (ii). Line
(i) shifts upward in the Be—BAG plane as the degree of
polymerization N, increases, since the critical per-binding-site
association free energy becomes weaker as the number of
binding sites per polymer increases. This behavior is anal-
ogous to that of the Flory-Huggins homopolymer model, in
which the critical interaction strength weakens as the degree
of polymerization increases [22].

By contrast, the two first-order phase boundaries, lines
(ii) and (iii), depend on both n and N,,. The slope of line (iii) is
exactly proportional to nN,; this can be shown by equating
the free energies of the 100% P and 100% S solutions at
PNyvo = 1. The slope of line (ii), as well as the difference
in BAG between lines (ii) and (iii) at constant Se, also scales
roughly linearly with nV,,. This dependence can be understood
by considering the transition between regions (1) and (4) in
Fig. 3(a) in the strong association limit, B¢ — —oo [20]. In
this limit, the relative stabilities of the 100% P and 100% S
solutions are primarily determined by the balance between
the association free energy in the P state, in which nearly
all binding sites are associated since X, — 0, and the internal
contribution to the free energy in the S state, which is nearly
proportional to 8 AG. Consequently, 8 AG must scale with the
total number of associative interactions in which the complex-
forming polymers could potentially engage, which is equal
to nN,. Thus, nN, sets the scale for both lines (ii) and (iii).
Increasing nN, tends to stretch the master phase diagram in
the horizontal direction.

D. Self-assembly with nonconserved excluded volume

Next, we consider the alternative case in which self-
assembly does not conserve the excluded volume. This
scenario can be motivated by considering the second-virial
coefficient between two assembled stoichiometric complexes
in solution, which is given by Bg = Nsvp/2 in our model
(see Appendix B). This second-virial coefficient represents
the total volume (divided by two) that the center of mass of
one stoichiometric complex cannot access due to the pres-
ence of the other complex. If the polymers self-assemble into
a structure that has a lower density than a polymer melt,
then it is possible to have v, = 2B > nv,. For example, this
scenario is relevant in the case of nucleic-acid complexes, be-
cause secondary-structure formation increases the persistence
length of duplexes relative to free strands [30,31]; nucleic-acid
complexes can therefore have a relatively low density of poly-
mer within a relatively large pervaded volume. We therefore

consider an example scenario in which Ny = 200 > nN, = 24
in this section.

1. Similarities and differences with the
conserved-excluded-volume scenario

The master phase diagram for this scenario is shown in
Fig. 5(a). The control-parameter curve, which is the same as
that in Fig. 3(a), maps out the conventional concentration-
dependent phase diagram shown in Fig. 5(b). In contrast with
the conserved-excluded-volume scenario, this master phase
diagram only exhibits two parameter regimes: one regime, (1),
in which the solution exists in a single phase at all concentra-
tions; and one regime, (2), with a single coexistence region.
Yet, despite these drastic changes in the topology of the master
phase diagram relative to the conserved-excluded-volume sce-
nario, the coexistence region in Fig. 5(b) strongly resembles
the lower-concentration coexistence regime in Fig. 3(b) for
values of the control parameter above point (c).

These differences can be understood by noting that the
increased excluded volume of the stoichiometric complex
means that chains must exist in the free-polymer state at
high total concentrations. More precisely, since the volume
fraction ¢ cannot exceed one, the maximum total concen-
tration at which stoichiometric complexes can exist is given
by pNpvo = nN,/N;. This upper limit on the concentration of
stoichiometric complexes is reflected in the free-energy land-
scapes shown in Figs. 5(c)-5(h), where the 100% S landscapes
do not extend over the full range of total concentrations.
Consequently, there is no analog of a higher-concentration
coexistence region, as observed in the conserved-excluded-
volume case, when we consider the nonconserved scenario.
However, the phase behavior at low total concentrations,
PNpvg K nN, /N, is qualitatively the same in both excluded-
volume scenarios. We also note that the boundary between the
two regimes, line (i) in Fig. 5(a), is a single, continuous line
of critical points. This critical line is the same as line (i) in
the conserved-excluded-volume case at large SAG, but turns
into a continuous transition between assembled stoichiometric
complexes and free polymers when it bends upward near point
(h) in Fig. 5(a).

2. Physical origin of re-entrance

Reentrance occurs in the nonconserved-excluded-volume
scenario due to the same competition between self-assembly
and polymer phase separation discussed in the context of
the conserved-excluded-volume scenario. Minor quantitative
differences, such as the maximum total concentration at which
reentrance occurs, appear between the two scenarios due to
the differences in the excluded-volume and internal contri-
butions to the free energy, f¢' and f™, in Egs. (3) and (6).
However, the absence of a one-phase parameter regime at
low BAG in the nonconserved case means that the coexis-
tence region does not terminate at low values of the control
parameter in Fig. 5(b). Instead, the maximum concentration
at which re-entrance can occur tends to ¢ = 1 in the limit
BAG — —oo. In this limit, phase coexistence occurs between
a lower-concentration phase composed entirely of assembled
stoichiometric complexes and a higher-concentration phase of
free polymers, regardless of the value of Be.
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III. DISCUSSION

We have demonstrated how competition between self-
assembly and liquid-liquid phase separation can emerge from
the same set of molecular interactions among biopolymers in
solution. Our theoretical approach captures the many-body
interactions that are inherent to this competition by coarse-
graining the conformational states of polymers into either free
chains and assembled stoichiometric complexes. The resulting
mean-field model predicts that reentrance can emerge from
the competition between self-assembly and phase separation,
both of which involve only attractive associative interactions.
Our results provide insight into the key features that control
the phase behavior of these systems, providing a unified view
of different phase diagrams that can result given a paramet-
ric dependence on temperature, ionic strength, pH, or other
experimentally controllable variables.

Importantly, we find that reentrance in this model is not
a consequence of a LCST, despite qualitative similarities be-
tween the phase diagrams predicted by our model and those
involving UCST+LCST miscibility loops [22,32]. In the
conserved-excluded-volume scenario, the lower termination
of the coexistence regions occurs at a first-order transition,
which is qualitatively different from an LCST. By contrast,
when self-assembly does not conserve excluded volume, the
coexistence region does not terminate at all in the limit of
stable stoichiometric complexes. Nonetheless, the physical
origin of reentrance is the same in both cases, and the phase
behavior at low polymer concentrations is essentially un-
changed between these two scenarios. We therefore believe
that the qualitative predictions of our model—particularly the
absence of an LCST—are robust despite the approximations
invoked in our mean-field treatment. We note that analogous
behavior has also been observed in conceptually similar mean-
field models of monomeric as opposed to polymeric solutions,
in which phase separation either competes with self-assembly
[17] or a unimolecular chemical reaction [33]. In the case
of unimolecular chemical reactions [33], however, the low-
temperature terminus of the coexistence region [i.e., point
(vi) in Fig. 3(b)] always occurs at ¢ = 1.

A key approximation in this article is the use of a two-
state model of self-assembly. In principle, the accuracy of our
model could be improved by accounting for additional inter-
mediate states between completely dissociated polymers and
completely assembled stoichiometric complexes. Our model
also assumes that the excluded volume of the stoichiometric
complexes, vs, is a constant. A more versatile model could ac-
count for variations in v as a function of concentration, which
would provide a better description of complexes that deform
at high concentrations in the nonconserved-excluded-volume
scenario. However, we do not believe that these modifica-
tions would affect our qualitative conclusions regarding the
nature of the various phase transitions. In particular, the first-
order transitions that we observe emerge, fundamentally, from
the cooperative nature of the self-assembly process, which
implies the existence of a free-energy barrier between the free-
polymer (P) and assembled stoichiometric-complex (S) states.
We therefore believe that the phase behavior will remain
qualitatively unchanged as long as this essential feature is
preserved. For the same reason, we believe that this model can

apply to a wide variety of self-assembling polymer solutions
in which self-assembly is cooperative and mutually exclusive
with phase separation. Our approach would be less appropri-
ate for modeling the phase behavior of polymer solutions in
which less cooperative intramolecular bonding competes with
associative polymer phase separation, as is the case in many
experiments on nucleic-acid repeat sequences [34].

In conclusion, we have introduced and analyzed a broadly
applicable mean-field model of biopolymer assembly and
phase separation. Our master-phase-diagram approach makes
it possible to derive system-specific phase diagrams in a uni-
fied and intuitive fashion. It is also straightforward to extend
our theoretical framework to model more complex scenarios
involving hierarchical assembly and phase separation, such
as polymer solutions in which self-assembled complexes can
themselves undergo phase separation via associative interac-
tions [20]. Most importantly, the simple manner in which our
model can be parameterized makes this framework useful for
generating experimentally testable predictions for complex
biopolymer solutions.

ACKNOWLEDGMENTS

This paper was supported by a grant from the National
Science Foundation (No. DMR-2143670) to W.M.J., as well
as support from the Human Frontier Science Program (No.
RGP0029) and the Smith Family Foundation to W.B.R.
Source code is provided at Ref. [35].

APPENDIX A: EXCLUDED VOLUME FORMULAE

To derive an expression for the excluded-volume contri-
bution to the mixing free energy, we consider a cubic lattice
with N lattice sites. Each lattice site has the same volume, vy,
as a monomer (i.e., a blob) of the polymer, P. Each polymer
chain occupies N, lattice sites. Each stoichiometric complex,
referred to as an S molecule in this section, occupies an
excluded volume of vy = Nyvg. We compute the free energy of
mixing, in the absence of associative interactions or chemical
reactions, in a two-step manner (Fig. 6). An empty lattice,
with a free energy equal to zero, is chosen as the reference
state. At each step, the free-energy change is purely entropic

Adding S Adding P

DVS=NSVO l:E'va=va0

—_— —_—
Af, Af,

FIG. 6. Two-step calculation of the excluded-volume contribu-
tion to the free energy. Starting from the reference state of an empty
lattice (state 0, left), stoichiometric complexes (S) are added in step
one. Stoichiometric complexes occupy N contiguous lattice sites.
The free-energy change associated with this process is A f, resulting
in the intermediate configuration (state 1, middle). In step two, poly-
mers (P) are added to reach the final configuration (state 2, right).
Polymers occupy N, noncontiguous lattice sites. The free-energy
change associated with this second process is A f5.
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due to the increase in the number of microstates, 2;,_; — £,

AS; Q;
ﬁNAﬁv():—k—:—ln (—), (AD)

B Qi
where AS; is the entropy change associated with step i from
state i — 1 to state i.

First, we consider the free-energy change due to the
addition of S molecules occupying a volume fraction ¢. Im-
portantly, each S molecule is considered to be a compact,
rigid unit, and must therefore occupy N; contiguous lattice
sites. We therefore compute the approximate entropy change
associated with step 1 (Fig. 6) by coarse graining the lattice
into super sites of volume vgN;, and then applying the standard
regular-solution formula [27]:

1_¢s

S

In(1 — ).  (A2)

pafive = R ing. +
Second, we add P molecules occupying a volume fraction ¢,
into the system. Following the Flory—Huggins derivation [22],
we ignore chain connectivity when assigning polymer blobs
to noncontiguous unoccupied lattice sites. This leads to the
mean-field result

BAfrvy = ]%m (%) +¢oln <1 f°¢s>, (A3)

where ¢ = 1 — ¢ — ¢, represents the volume fraction not
occupied by either free polymers or stoichiometric complexes.
Summing the free-energy changes of the two steps, we find
that the total free-energy difference is

B+ = B g+ B - g

ﬂ ¢p ¢0
N, ln<1 —¢s) +¢°ln<1 —¢s>’

(A4)

which accounts for both the ideal-gas and the excluded-

volume contributions to the free energy. Taking partial

derivatives of Eq. (A4) with respect to p, and ps, and sub-

tracting the ideal chemical potentials 87! In ¢, and 87" In ¢,

gives the excluded-volume contributions to the excess chemi-
IBHSV = —In(1 — ¢) + NsIn (

cal potentials:
1- ¢s>
%o
1
— Ns<1 _ _> &7
Ny ) 1 — ¢

,BMEV =1—-N, + N, — DIn(l — ¢) — N, In .

(AS5)
(A6)

Both S’ and ,B,ug" diverge as ¢po — 0. Since ¢ + ¢, < 1,
this means that both Sug’ and ,B,uf;v diverge if ¢; — 1 or
¢p — 1.

APPENDIX B: COMPARISON WITH THE
FLORY-HUGGINS POLYMER MODEL

The excluded-volume contributions embodied in
Egs. (A4)-(A6) differ from those implied by the standard

Flory—Huggins free-energy density [22],

By = %lmﬁs + %ln% +golngo, (B
s p

which treats both the S and P species as mean-field polymers.
The excluded-volume contribution to the chemical potential
of species i € {s, p} is

Bui™ =1—N; — NiIn gy (B2)

in the Flory—Huggins model. Focusing on the case of the
S molecule, Eq. (B2) highlights the problem with applying the
Flory—Huggins model to our system: The chemical potential
of the S molecule depends on N; regardless of the polymer
concentration. As a result, the Flory—-Huggins equation of
state of a pure solution of S molecules depends on the ratio
of the excluded volume of a rigid S molecule to the excluded
volume of a polymer blob, even when no polymer is present in
the system. This is an undesirable feature, which necessitates
the use of the formulas derived in Appendix A.

It is also instructive to compare the second-virial coeffi-
cients, By, Bgp, and By, of the two models. To this end, we
expand the pressure, P = —f + 505 + tp0p, to second order
in the concentrations ps and pp, such that P = Zie{s,p} pi +
Y jetsp) Bijpipj + O(p?). For the Flory—Huggins model, this
yields the coefficients
@ ra_ NsNpo BFH — gvo

2 7 sp T 2 pp o

B = (B3)
whereas the coefficients derived from our excluded-volume
model, Egs. (A6) and (AS), are

N.vo N,vo NZvy
ev __ S ev S ev __ p
B = o BY = o B = S (B

The By, coefficients are the same in both expressions as
expected, since the polymers are treated equivalently in the
two models. However, the second-virial coefficients involving
the S molecules differ. B is a more physically reason-
able result than BESH, since the S molecules are assumed
to be compact, rigid units. In fact, B, is the correct re-
sult for monodisperse hard particles (such as hard spheres
[36]) that exclude a volume of N;vy. The cross term, Bg;,
is less obvious, but we can build intuition by consider-
ing the insertion of polymers into a low-density gas of S
molecules. For simplicity, let us assume that the S molecules
are hard spheres with diameter D ~ Ny/ 3vé/ 3. The average
end-to-end distance of the freely jointed polymer chains is
d >~ v(l)/ 3Np1/ A simple approximation of the cross term

is therefore By ~ (D + d)?/2 = Ny(1 + r)*vy/2, where r =

Npl/ */NJ”. Our excluded-volume model of S/P mixtures is
therefore most accurate when the S molecules are large com-
pared to the individual polymer chains (such as in the case
considered in Sec. IID), while the standard Flory-Huggins
model is more appropriate when the size of an S molecule
is comparable to that of an individual polymer blob. We there-
fore conclude that the excluded-volume formulas Egs. (A6)
and (AS) are the more appropriate choice for the model and
parameter regimes considered in this article.
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