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Meta-analysis reveals less sensitivity of 
non-native animals than natives to extreme 
weather worldwide

Shimin Gu    1,4, Tianyi Qi    1,2,4, Jason R. Rohr    3 & Xuan Liu    1,2 

Extreme weather events (EWEs; for example, heatwaves, cold spells, 
storms, floods and droughts) and non-native species invasions are two 
major threats to global biodiversity and are increasing in both frequency 
and consequences. Here we synthesize 443 studies and apply multilevel 
mixed-effects metaregression analyses to compare the responses of 187 
non-native and 1,852 native animal species across terrestrial, freshwater 
and marine ecosystems to different types of EWE. Our results show that 
marine animals, regardless of whether they are non-native or native, are 
overall insensitive to EWEs, except for negative effects of heatwaves on 
native mollusks, corals and anemone. By contrast, terrestrial and freshwater 
non-native animals are only adversely affected by heatwaves and storms, 
respectively, whereas native animals negatively respond to heatwaves, 
cold spells and droughts in terrestrial ecosystems and are vulnerable 
to most EWEs except cold spells in freshwater ecosystems. On average, 
non-native animals displayed low abundance in terrestrial ecosystems, and 
decreased body condition and life history traits in freshwater ecosystems, 
whereas native animals displayed declines in body condition, life history 
traits, abundance, distribution and recovery in terrestrial ecosystems, and 
community structure in freshwater ecosystems. By identifying areas with 
high overlap between EWEs and EWE-tolerant non-native species, we also 
provide locations where native biodiversity might be adversely affected by 
their joint effects and where EWEs might facilitate the establishment and/or 
spread of non-native species under continuing global change.

Climate change and invasive species are two major threats to global 
biodiversity1,2. Understanding how climate change influences inva-
sions of non-native species is crucial for mitigating their joint impacts 
in the context of accelerating global change3. In addition to gradual 
shifts in temperature and precipitation, scientists have recognized that 
the increasing frequency and magnitude of extreme weather events 
(EWEs), such as heatwaves, cold spells, storms, floods and droughts4, 

can result in even greater biological consequences than changes to 
climate means5. Comparison of the responses of native and non-native 
species to EWEs is crucial for developing early and effective strategies 
for native species conservation and non-native species prevention 
under accelerating EWEs associated with climate change6.

Considerable evidence from native species has shown that EWEs 
can cause declines in population abundances and species richness, 
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Sevastopol Bay26. Non-native species showed less susceptibility and 
recovered more quickly than native species in the marine epibenthic 
fouling community of Bodega Harbor, California, USA27. Despite these 
striking case studies, a thorough understanding of the general effect 
of EWEs on non-native and native species across ecosystems, types of 
EWE and multiple taxonomic groups is still lacking, impeding forecasts 
of the responses of non-native species to climate change and their 
joint impacts on native species. It is critical to fill this literature gap 
because resources for managing and mitigating biological invasions 
and climate change are limited. Thus, it is crucial to identify the most 
affected regions and problematic taxa so that those resources are 
targeted properly.

Here we applied a multilevel mixed-effects metaregression to 
conduct a global synthesis of non-native and native animal responses 
to EWEs (Supplementary Fig. 1). These species spanned terrestrial, 
freshwater (mammals, birds, amphibians, reptiles, fish and inverte-
brates) and marine ecosystems (surface and benthic fishes and benthic 
invertebrates). Each measured effect size was assigned to one of eight 
major response categories: physiology, body condition, behaviour, 

restructure community composition and limit post-event recovery 
across ecosystems7–13. However, published studies also found that 
non-native arthropods, mammals, shellfishes and fishes might be 
relatively tolerant of, or even respond positively to EWEs14–17. There 
are several possible mechanisms to explain different responses of 
non-native and native species to EWEs18. First, EWEs often result in 
considerable mortality of native species and could thus create more 
vacant niches to facilitate non-native species invasions19,20. For exam-
ple, severe drought events decreased native invertebrates and fishes by 
increasing water salinity, facilitating the establishment of non-native 
salt-tolerant counterparts14,15. Second, invaders can have more rapid 
growth rates, stronger competitive abilities, higher phenotypic plastic-
ity, broader tolerance of disturbance and quicker recovery and prolif-
eration than natives21–24. For example, the abundance of most native 
fish in the Rio Minho estuary, Portugal, declined but abundance of 
non-native fish increased after extreme droughts and floods, and thus 
the fish assemblage there was dominated by a few invasive fish species 
after extreme weather events25. Non-native mesozooplankton species 
exhibit higher flexibility to marine heatwaves than native species in the 
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Fig. 1 | Distribution of non-native and native species under EWEs from  
443 studies. a–e, Point colours indicate different types of EWE in 235 locations 
for non-native species (a) and 394 locations for native species (b). The bar chart 

shows the number of effect sizes for different EWE groups of non-native (c) and 
native species (d), and the proportions of sample effect sizes across taxa (e). 
Animal silhouettes in e were obtained from PhyloPic (www.phylopic.org).
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life history traits, abundance, distribution, community structure and 
recovery after EWEs. Our analyses covered five main types of EWEs: 
heatwaves, cold spells, storms, floods and droughts. Furthermore, 
on the basis of the results of our meta-analyses, we quantified the 
spatial overlap between the distributions of EWE-tolerant non-native 
species and the EWE hotspots. These overlap analyses should identify 
locations where native biodiversity might be adversely affected by the 
joint effects of non-native species and EWEs, and where EWEs might 
facilitate the future establishment and/or spread of non-native species.

Results
Overall EWE distributions
Across the globe, there were a total of 973 measured effect sizes from 
177 peer-reviewed studies across 187 non-native species and 4,330 
measured effect sizes from 335 peer-reviewed studies across 1,852 
native species (Supplementary Fig. 1). These reported studies on the 
effects of EWEs on animals were mainly distributed in North America 
and Europe, and sporadically distributed in South America, southern 
Africa, East Asia and southeast Australia (Fig. 1a,b). Eighty four per-
cent of studies on non-native species (149/177) and 95% of studies on 
native species (317/335) focused on responses to only one type of EWE  
(Fig. 1c,d and Supplementary Data 1). Overall, our analyses included 
effect sizes of EWEs on non-native animals and native animals span-
ning 6, 7 and 10 classes of terrestrial, freshwater and marine organ-
isms, respectively (Fig. 1e) and three orders of magnitude in body size  
(for example, smallest mean body size, Insecta: 0.81 ± 0.22 mm; largest 
Mammalia: 1,531.33 ± 211.00 mm).

Species can differ in their exposure to EWEs that may influence 
selection for EWE tolerance. We assessed exposure differences by 
comparing the average magnitude of the EWEs within the geographic 
ranges of each native and non-native species in our database. We 
found limited evidence that non-native and native species experi-
ence significantly different magnitudes of EWE exposures (Sup-
plementary Fig. 2). We also found little evidence in our samples that 
ecosystem types differed significantly in their magnitudes of EWEs 
(Supplementary Fig. 2), except that oceans have more days of heat-
waves and cold spells than terrestrial and freshwater ecosystems 
(Supplementary Fig. 2).

Responses of non-native and native animals to EWEs
Overall, we found that non-native species had 24.8% positive, 31.8% 
negative and 43.4% neutral responses (confidence intervals (CIs) cross-
ing zero) to EWEs. Native species had 12.7% positive, 20.5% negative 
and 66.8% neutral responses to EWEs. Both non-native and native 
species exhibited positive, negative and neutral responses to each 
type of EWE (Fig. 2). Further multilevel mixed-effects metaregression 
models showed that non-native species only responded negatively 
to heatwaves in terrestrial ecosystems, whereas native species were 
adversely affected by heatwaves, cold spells and droughts (Fig. 3a). In 
freshwater ecosystems, non-native species only responded negatively 
to storms, but native species responded negatively to heatwaves, 
storms, floods and droughts. We even observed positive effects of 
heatwaves and cold spells on freshwater non-native species (Fig. 3b). 
Marine animal species overall were insensitive to EWEs, regardless 
of whether they were non-native or native (Fig. 3c). Egger’s test indi-
cated limited evidence for publication bias associated with the overall 
responses of non-native and native animals to EWEs (Supplementary 
Table 1). In addition, the omnibus Wald-type test showed a good fit of 
the model to the data (Supplementary Table 4). Hence, the greater 
tolerance of non-native animals than natives to EWEs does not appear 
to be artefactual.

To assess whether the responses of non-native and native species 
were dependent on certain taxa or biogeographic realms (Nearctic, 
Neotropic, Palaearctic, Indomalayan, Afrotropic and Australasian 
in terrestrial and freshwater ecosystems; Agulhas, Cold Temperate 

Northeast Pacific, Lusitanian, Northern European Seas, Tropical North-
western Atlantic, Warm Temperate Northeast Pacific and Warm Tem-
perate Northwest Atlantic in marine ecosystems), we reconducted the 
analyses above including taxonomic group and realm as independent 
variables interacting with non-native/native status (Supplementary  
Figs. 3 and 4). Analyses across taxonomic groups (Supplementary  
Fig. 3) and biogeographic realms (Supplementary Fig. 4) produced sim-
ilar results as the overall analyses. One insight revealed from this sepa-
rate analysis was that the negative response of terrestrial non-native 
animals to heatwaves was only a product of the sensitivity of non-native 
insects (mean effect size: −1.188, P < 0.001, Supplementary Fig. 3).

Among response variables, in terrestrial ecosystems, EWEs only 
had negative effects on abundance of non-native species, but adversely 
affected body condition, life history traits, abundance, distribution 
and post-event recovery of native species (Fig. 4a). In freshwater eco-
systems, EWEs had negative effects on body condition and life history 
traits of non-native species, and on community structure of native 
species (Fig. 4b). Across terrestrial and freshwater ecosystems, we did 
not observe negative effects of EWEs on the distribution, abundance 
(except terrestrial insects: mean effect size −0.844, P = 0.004), commu-
nity structure or recovery of non-native animals (Fig. 4a,b), which thus 
appear to maintain population stability and community structure dur-
ing and after EWEs. We even observed a positive response of non-native 
species’ physiology, behaviour and recovery to EWEs in terrestrial and 
freshwater ecosystems (Fig. 4a,b). In marine ecosystems, non-native 
species presented overall positive responses to EWEs except for body 
condition and life history traits (Fig. 4c).

Overlap between non-native species and EWEs
We further conducted spatial overlap analyses between EWE hotspots 
and suitable habitat for non-native animals to identify where native spe-
cies might be particularly vulnerable to the combined effects of EWEs 
and non-native species. To do so, we first applied species distribution 
modelling to predict those grids with suitable areas for establishment of 
non-native animals and overlaid these grids with maps of EWE hotspots 
(see more details in Supplementary Methods). We then calculated the 
net effect of each non-native animal to EWEs in each overlapped grid 
as the proportions of positive plus neutral responses minus negative 
response on the basis of the sample effect sizes in the meta-analyses. 
The accumulative net effect for each grid was obtained to reflect the 
overall tolerance of all potential non-native species to EWEs.

Our analyses show that overlapping areas of highly EWE-tolerant 
non-native species and EWEs hotspots are generally distributed in 
mid-to-high latitudes, but these patterns did depend on EWE type. For 
heatwaves, overlapping areas were mainly distributed in mid-latitude 
regions, including west and east-southern United States, southern 
Brazil, southern Mediterranean, South Africa, east-southern Asia, 
south Australia, New Zealand, west-northern coast and islands in 
the Indian Ocean, and west coast and islands in the Pacific Ocean  
(Fig. 5a). For cold spells, overlapping areas were mainly distributed in 
high-latitude regions, including northern areas of the United States 
and Canada, southern Argentina, northern Europe, western coastal 
regions of Australia, east coast of the North Atlantic Ocean, south 
coast of the Baltic Sea and east coast of the Arctic Ocean (Fig. 5b). For 
storms, overlapping areas were sporadically distributed from low to 
high latitudes, including Latin America, India, high-latitude European 
countries (that is, the United Kingdom and Norway), south-western 
and north-eastern Australia, Northern Atlantic Ocean and the west 
coast of the Pacific Ocean (Fig. 5c). For floods and droughts, overlap-
ping areas were distributed in mid latitudes of the Mediterranean 
region, mid-Asia, southern Australia, and East and Southeast Asia. 
In South America, overlap was associated with floods in western 
Amazon and southern Brazil but with droughts in northern Amazon 
and southern Argentina. In Africa, overlap coincided with floods in 
the middle of Africa but with droughts in northern Africa (Fig. 5d,e).  

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 7 | December 2023 | 2004–2027 2007

Article https://doi.org/10.1038/s41559-023-02235-1

Heatwave eventsa

b

c

Cold-spell events Storm events Flood events

−40

−20

0

20

40

−100

−300
−200

1 187

−60

−40

−20

0

1 109

−20

−10

0

10

1 80

0

5

10

1 22

−50

−10

30

−120
−80

1 233

−10

−5

0

5

1 437

−20

−10

0

10

1 866

−10

0

10

1 108

−40

−20

0

20

40

−1,700
−1,200

1 121

−4

16

−1,000
−500

1 16

−10

0

10

1 43

Drought events

−20

−10

0

10

20

−60
−40

−200
−100

−600
−400

1 52

2,000
6,000

−20

0

20

−1,000
−500

1 301

−30

−20

−10

0

10

20

30

−1,200
−700

1 33

−20

−10

0

−60
−40

1 286

−10

0

10

−1,800
−800

1 345

−5

0

5

10

1 63

−15

−10

−5

0

5

1 459

−20

−10

0

10

20

30

−430
−230

1 140

−10

0

10

1 55

0

20

40

1 50

−20

0

20

40

1 207

190
390

85
125

−35

−15

5

25

1 76

−20

−10

0

10

20

1 676

Number of sample e­ect sizes

Number of sample e­ect sizes

Number of sample e­ect sizes

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0.0

0.4

0.8

0

0.4

0.8

0.0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

Sa
m

pl
e 

e­
ec

t s
iz

es
 fo

r n
on

-n
at

iv
es

Sa
m

pl
e 

e­
ec

t s
iz

es
 

fo
r n

on
-n

at
iv

es
Sa

m
pl

e 
e­

ec
t s

iz
es

 fo
r n

at
iv

es
Sa

m
pl

e 
e­

ec
t s

iz
es

 fo
r n

at
iv

es
Sa

m
pl

e 
e­

ec
t s

iz
es

 
fo

r n
on

-n
at

iv
es

Sa
m

pl
e 

e­
ec

t s
iz

es
 

fo
r n

at
iv

es

Te
rr

es
tr

ia
l e

co
sy

st
em

Fr
es

hw
at

er
 e

co
sy

st
em

M
ar

in
e 

ec
os

ys
te

m

Fig. 2 | Sample effect sizes of non-native and native species in responding to 
EWEs. a–c, Sample effect sizes in terrestrial (a), freshwater (b) and marine (c) 
ecosystems. The horizontal dashed lines represent the position where the sample 

effect size is zero. The heights of barplots are relative proportions of positive 
(blue), negative (pink) and neutral (grey) (CIs crossing zero) effect sizes, and were 
standardized, ranging from 0 to 1.
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Fig. 3 | A comparison of non-native (circle) and native species (triangle) 
responses to five different types of EWE. a–c, Effect sizes (Hedges’ d) for non-
native and native species’ responses to heatwave, cold-spell, storm, flood and 
drought events in terrestrial (a), freshwater (b) and marine (c) environments, 
estimated from metafor. Error bars are 95% CIs. A Wald-type test was used to 
detect whether a mean effect size estimate was significant when the 95% CI did 
not encompass zero. In a, P values of non-native species responses to EWEs 
were: heatwave (0.0001), cold spell (0.004), storm (0.298) and drought (0.763); 
P values of native species responses to EWEs were: heatwave (<0.0001), cold 
spell (<0.0001), storm (0.079) and drought (<0.0001). In b, P values of non-
native species responses to EWEs were: heatwave (0.0002), cold spell (0.002), 
storm (0.027), flood (0.842) and drought (0.698); P values of native species 

responses to EWEs were: heatwave (0.042), cold spell (0.635), storm (0.023), 
flood (0.032) and drought (0.011). In c, P values of non-native species responses 
to EWEs were: heatwave (0.592), cold spell (0.079) and storm (0.001); P values 
of native species responses to EWEs were: heatwave (0.442), cold spell (0.856) 
and storm (0.132). Numbers in parentheses represent the number of studies 
and measured effect sizes, respectively. Blue, significantly positive mean effect 
sizes; pink, significantly negative mean effect sizes; grey, non-significant mean 
effect sizes. The asterisks and ‘NS’ indicate significant and non-significant 
differences, respectively, between non-native and native species to the particular 
EWE; *P < 0.05, **P < 0.01, ***P < 0.001, performed using an omnibus test 
(Supplementary Table 2). Multiple comparisons were not performed in data 
analyses. The two-sided P value was used to judge significance.
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Our results were robust to different criteria used to define overlap hot-
spots (Supplementary Fig. 5, see details in Supplementary Methods).

Discussion
The present study provided a comparative evaluation of the responses 
of non-native and native animals to historical EWEs across taxa and 
ecosystems at the global scale. Although there were both ‘winners’ 
and ‘losers’ across both non-native and native species and ecosys-
tems (Fig. 2), proportionally there were more positive responses of 
non-native than native animals to EWEs, making the mean response to 
EWEs less negative for non-native than for native species. Our further 
meta-analyses that controlled for spatial and taxonomic pseudorep-
lication generally showed that non-native species are less sensitive to 
most EWEs than their native counterparts, especially in terrestrial and 
freshwater ecosystems. This high tolerance of non-native species to 
EWEs compared with native species particularly represented a strong 
capacity of non-native species to maintain population stability after 
EWEs across ecosystems. We found limited evidence of publication 
bias associated with the overall responses of non-native and native 
animals to EWEs. However, there was detectable publication bias for 
non-native animal responses to terrestrial cold spells, and for native 
animal responses to terrestrial heatwaves and cold spells, and fresh-
water floods and droughts (Supplementary Table 1), which is a com-
mon phenomenon in meta-analyses when disciplines are partial to 
studying certain effects28.

There are several possible explanations for why non-native animals 
tend to be less sensitive to most EWEs than native species within the 
same taxonomic class. First, many non-native species exhibit rapid 
growth rates, long spawning seasons, short longevities, high competi-
tive abilities, rapid population recolonization and trophic preference 
for detritus that could help them take advantage of limited resources 
and maintain population sizes during and after EWEs18,29,30. Non-native 

species also often have higher plasticity than native species18,31,32. For 
example, the abundance of the invasive South American tomato pin-
worm was tolerant of acute and chronic temperature stress because 
of high thermal plasticity in invaded ranges33. As another example, an 
invasive prawn showed higher plasticity of upper thermal limits than 
native prawns and was thus less vulnerable to extreme thermal events34. 
Finally, the high propagule pressure and meta-population structure 
(that is, connectivity) of many non-native species35 often make their 
populations more resilient to the adverse effects of EWEs than native 
species18,36. Indeed, population-level response variables of non-native 
species, such as their abundance, distribution and recovery, were gen-
erally insensitive to EWEs (Fig. 4). Nevertheless, we also observed some 
negative responses of terrestrial non-native animals to heatwaves, 
particularly for Insecta (Fig. 3 and Supplementary Fig. 3). Additional 
analyses further showed that heatwaves could negatively impact insect 
body size, development time, growth rate, longevity, reproduction 
and survival rate (Supplementary Table 5). These findings support a 
previous insect study revealing that life history plasticity was weak in 
insect responses to extreme temperatures37.

Freshwater non-native animals responded positively to heat-
waves and cold spells, consistent with some previous studies on fresh-
water crustaceans38 and mussels39,40. Given that 90.8% (109/120) of 
non-native freshwater animals in heatwave studies are warm-adapted 
and cold-adapted fishes and invertebrates (including Bivalvia, Gas-
tropoda and Malacostraca) introduced through aquaculture (Supple-
mentary Data 1)41, one potential explanation for the positive response 
of freshwater non-native animals to heatwaves and cold spells is eco-
logical memory theory42. This theory predicts that adaptations to 
environmental change are positively related to the past disturbance 
events experienced by a species43,44. Future studies should test whether 
native species exposed to more severe historical EWEs are indeed more 
tolerant of EWEs.
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Fig. 4 | A comparison of non-native (circle) and native (triangle) species 
responses to EWEs for eight response variables. a–c, Effect sizes (Hedges’ 
d) for the non-native and native species responding to EWEs in terrestrial (a), 
freshwater (b) and marine (c) ecosystems, estimated from metafor. Error 
bars are 95% CIs. A Wald-type test was used to detect whether a mean effect 
size estimate was significant when the 95% CI did not encompass zero. In a, 
P values of non-native species response variables to EWEs were: physiology 
(<0.0001), body condition (<0.0001), behaviour (<0.0001), life history traits 
(<0.0001), abundance (0.0003), distribution (0.597) and recovery (<0.0001); 
P values of native species response variables to EWEs were: physiology (0.854), 
body condition (<0.0001), behaviour (<0.0001), life history traits (<0.0001), 
abundance (<0.0001), distribution (0.003) and recovery (<0.0001). In b, P values 
of non-native species response variables to EWEs were: physiology (0.026), 
body condition (0.0004), behaviour (<0.0001), life history traits (<0.0001), 
abundance (0.630), community structure (0.839) and recovery (0.021); P values 
of native species response variables to EWEs were: physiology (<0.0001), body 

condition (0.0004), behaviour (0.882), life history traits (0.337), abundance 
(0.224), community structure (<0.0001) and recovery (0.463). In c, P values of 
non-native species response variables to EWEs were: physiology (0.003), body 
condition (0.003), behaviour (0.011), life history traits (0.005), abundance 
(0.0005) and recovery (<0.0001); P values of native species response variables 
to EWEs were: physiology (0.009), body condition (0.487), behaviour (0.003), 
life history traits (0.143), abundance (0.950) and recovery (0.690). Numbers 
in parentheses represent the number of studies and measured effect sizes, 
respectively. Blue, significantly positive mean effect sizes; pink, significantly 
negative mean effect sizes; grey, non-significant mean effect sizes. The asterisks 
and ‘NS’ indicate significant and non-significant differences, respectively, 
between non-native and native species in their responses to EWEs; *P < 0.05, 
**P < 0.01, ***P < 0.001, performed using an omnibus test (Supplementary Table 3).  
Multiple comparisons were not performed in data analyses. The two-sided  
P value was used to judge significance.
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Interestingly, in contrast to terrestrial and freshwater species, 
both non-native and native marine species were insensitive to EWEs. 
Importantly, this finding was not a product of the lower magnitude of 
EWEs in marine than in terrestrial and freshwater environments, as we 
observed few differences in the magnitude of EWEs among ecosystem 
types within the geographic ranges of each native and non-native 
species in our meta-analysis (Supplementary Fig. 2). The only differ-
ence we did observe suggested that oceans had significantly more 
days experiencing heatwaves and cold spells than terrestrial and 
freshwater ecosystems (Supplementary Fig. 2). The tolerance of 
non-native marine species to EWEs supports previous findings that 
marine invaders were generally insensitive to ocean heatwaves26,27, 
cold spells45,46 and storms16,47. For instance, non-native bryozoans and 
crustaceans maintained their community composition and popula-
tion abundance, respectively, in response to marine heatwaves26,27. 
In contrast, it has been reported extensively that marine heatwaves 
are pervasive stressors to native ocean species, especially anemones 
and corals (Anthozoa)7,48. Indeed, we observed a negative response 
of native Anthozoa to marine heatwaves (mean effect size −1.632, 
P < 0.001), consistent with past studies7,48. In addition, our results 
support a recent review on the negative response of benthic inver-
tebrates (that is, Bivalvia) to marine heatwaves (mean effect size 
−0.869, P = 0.028), which was possibly due to their limited abilities 

to disperse to more suitable habitats7. Regarding the insensitivity of 
marine native and non-native species to cold spells, Maxillopoda and 
Polychaeta dominated the effect sizes for this test and the literature 
reports that these taxa tend to be cold-adapted species and thus 
have high performance at low temperatures45,46. Finally, we found 
that marine non-native and native species were also insensitive to 
storm events. Teleostei and Bivalvia dominated the effect sizes for 
this test. Our finding is consistent with previous studies that showed 
that fishes and Bivalvia were insensitive to storms, possibly because 
they are either mobile enough49 or use ocean currents50 to seek refuge 
during storms, respectively.

Our global analysis of spatial overlap between non-native species 
and EWE hotspots identified several vulnerable areas in mid-to-high 
latitudes including North America, Europe, Oceania, temperate 
Asia inland, East and Southeast Asia, South America and Africa and 
marine regions in low-to-mid latitude areas of the Atlantic Ocean, 
west-northern coast of the Indian Ocean, south coast of the Baltic 
Sea, east coast of the Arctic Ocean and west coast of the Pacific Ocean 
where native species might face joint impacts of invasive species and 
EWEs. Although the invasion hotspots we identified were only based 
on habitat suitability for establishment, we found that these predicted 
hotspots have also been reported as areas with frequent non-native spe-
cies introductions35,51, which imply a potentially high overall invasion 
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Fig. 5 | Overlapping areas between potential distributions of non-native 
species that are tolerant of EWEs and EWE hotspots worldwide. a–e, Global 
maps showing the accumulative net effects of predicted non-native animals in 
areas with the top 20% occurrences of heatwaves (a), cold spells (b), storms (c), 
100-yr floods (d) and extreme droughts (SPI ≤ −1.5) (e) at 5-arcmin resolution. 
Higher values indicate greater combined risks of invasions and EWEs, and 
negative values mean that there are more negative responses of non-native 
species to EWEs than positive and neutral responses in those areas. The ‘white’ 
colour in the maps indicates land areas without overlaps between predicted 
distributions of non-native species and EWEs. Taxonomic information for 
animals in each corresponding EWE type used in the overlap analyses: for 
heatwaves, terrestrial (Amphibia, Aves, Euchelicerata and Insecta), freshwater 

(Bivalvia, Branchiopoda, Gastropoda, Malacostraca and Teleostei) and marine 
(Ascidiacea, Bivalvia, Gastropoda, Gymnolaemata, Malacostraca, Maxillopoda, 
Polychaeta and Teleostei) species were included; for cold spells, terrestrial 
(Amphibia, Insecta, Mammalia and Reptilia), freshwater (Gastropoda and 
Teleostei) and marine (Bivalvia, Malacostraca, Maxillopoda and Polychaeta) 
species were included; for storms, terrestrial (Amphibia, Aves, Insecta, 
Mammalia and Reptilia), freshwater (Bivalvia, Clitellata, Gastropoda and 
Teleostei) and marine (Malacostraca and Teleostei) species were included; 
for floods, terrestrial (Amphibia and Aves) and freshwater (Bivalvia, Insecta, 
Malacostraca and Teleostei) species were included; for droughts, terrestrial 
(Insecta) and freshwater (Bivalvia, Gastropoda, Malacostraca and Teleostei) 
species were included.
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risk in these regions. Furthermore, our identified EWE epicentres have 
also been validated by several predictive models52–55.

Our present study also provided some useful directions for future 
studies. First, this study focused on the direct effect of EWEs to native 
and non-native species, but EWEs can also have indirect impacts on 
biota. For example, prolonged heatwaves can promote lethal hypoxic/
anoxic conditions56. EWEs can cause severe population declines by 
damaging habitat-forming species, such as corals, forests, mangroves 
and mussel7, or by removing key prey species from food webs57. Further-
more, for marine species, the effects of EWEs might be more severe in 
intertidal and shallow subtidal zones than in deeper/offshore marine 
waters owing to increased exposure to EWEs. Indeed, we found that 
non-native species in deeper water (species recorded maximum depth 
>200 m) exhibited positive responses to EWEs (mean effect size 2.262, 
P = 0.009). However, we did not detect the negative effect of EWEs on 
either non-native or native species in intertidal and shallow subtidal 
zones. As we only have 41 samples (3.3% of all marine species samples) 
for deeper/offshore species, a larger sample size would be useful to 
more rigorously compare the responses of nearshore vs offshore spe-
cies. Finally, the invasion and EWE overlap areas in the present study 
were based on non-native animal tolerance to EWEs. We acknowledge 
that some EWE-sensitive non-native species might still have the poten-
tial to exert ecological forces on existing ecosystems. However, under 
the limited resources that can be used to manage biological invasions 
and climate change, we suggest that future studies should prioritize 
these less-sensitive animals in locations of overlap so that timely mitiga-
tion strategies can be implemented if native species exhibit declines 
associated with biological invasions and intensified EWEs driven by 
global change. Our present analyses could facilitate early prevention 
schemes against biological invasions and climate change globally and 
improve the development of sustainable policies in the era of global 
change.

Methods
Literature search
We conducted a systematic literature search on ISI Web of Science (all 
databases) and Scopus to collect published papers from the year 1864 
to 24 April 2023. The following search terms were entered into the 
‘Topic’ field in ISI Web of Science and in ‘All fields’ for Scopus: (‘storm’ 
OR ‘hurricane’ OR ‘cyclone’ OR ‘typhoon’ OR ‘tornado’ OR ‘wildfire’ 
OR ‘extreme snow’ OR ‘extreme ice’ OR ‘extreme heat’ OR ‘heat wave’ 
OR ‘extreme high temperature’ OR ‘extreme cold’ OR ‘cold wave’ OR 
‘extreme’ OR ‘extreme drought’ OR ‘extreme rainfall’ OR ‘extreme 
precipitation’ OR ‘flood’) AND (‘abundance’ OR ‘behaviour’ OR ‘rich-
ness’ OR ‘reproduction’ OR ‘mating’ OR ‘*diversity’ OR ‘composition’ 
OR ‘predation’ OR ‘parasit’ OR ‘herbivory’ OR ‘activity’ OR ‘timing’ OR 
‘physiology’ OR ‘development’ OR ‘trophic’ OR ‘biomass’ OR ‘survival’ 
OR ‘growth’) AND (‘species’ OR ‘population’ OR ‘ecological community’ 
OR ‘ecosystem*’). This resulted in a total of 147,212 unique studies that 
were screened for inclusion in our meta-analysis. We also combined 
studies from four previous meta-analyses of the animals’ responses 
to EWEs8,13,58,59 (Supplementary Fig. 1).

Screening process and data exclusion criteria
First, we screened the title, key words and abstract to determine can-
didate studies that focused on effects of EWEs on non-native or native 
species. Review papers and those without quantitative analyses were 
excluded. We excluded studies on the basis of the following criteria: 
(1) no statistical comparisons of EWE effects to controls, insufficient 
information on sample size, mean or variance, or no reporting of 
the animal species; (2) only lab work simulating the EWE-associated 
changes in salinity but no direct test of the EWE effects on aquatic or 
saltmarsh living organisms; (3) intra- or interspecific interactions under 
changed microclimatic or soil habitats induced by EWEs; (4) sea-level 
or manipulated water-level rise that resulted in further submergence 

or inundation; (5) human burning practices in managed grassland or 
forests; and (6) comparison of differences in litter or carrion of species 
along a gradient of EWEs. We excluded these studies because there 
were either no measured response variables of species to EWEs (2 to 5),  
or the reported measured variables were only based on the species’ 
litter or carrion but not the living organisms (6). We then divided the 
studies14–16,25–27,38,39,45–47,50,60–490 that passed this screening into those on 
non-native and native species.

Data extraction and measurable categories of response 
variables
We extracted sample size, mean and variance values in the control (that 
is, those samples that did not experience EWEs) and treatment groups 
(that is, those samples that experienced EWEs) from each study. Par-
ticularly, for studies based on successive or long-term observational 
data, the value at the closest time before EWEs was the control, and the 
averaged value around the time of EWE was the treatment491. We only 
extracted the most extreme EWE level from manipulative experiments 
testing more than two EWE levels. GetData graph Digitizer (v.2.24) 
was used to extract values from figures in the studies. We extracted 
median and interquartile range in boxplots to quantify the mean and 
deviation values when studies reported statistical results of parametric 
tests or when the data had been transformed to meet normality in the 
literature492. From each study, we also recorded species name, taxon, 
ecosystem, type of EWE, coordinates of study/sampling sites and refer-
ence information.

We categorized response variables into eight categories. At the 
population level, categories included life history traits (that is, sur-
vival rate, reproduction, longevity, development time, growth rate), 
abundance (that is, population density or size, capture or encounter 
rate, number count and relative abundance), distribution (that is, occu-
pancy, home range, spatial distribution, foraging zone, territory size), 
biodiversity (that is, number of species, richness index, population 
genetic structure) and recovery (that is, recovery of population abun-
dance and/or community composition after EWEs). At the individual 
level, categories included physiology (that is, gene expression, immune 
responses, protein and hormone-related chemical compounds, respi-
ration and critical thermal limits), body condition (that is, body mass 
and size) and behaviour (that is, activity, dietary, feeding or foraging 
amount, inter-/intraspecific competition, migration or movement and 
habitat selection) (Supplementary Table 6). These eight groups were 
only included in our main analyses if they contained at least 10 effect 
sizes from multiple studies for each class or biogeographic realm493. 
The response variables were standardized before the analyses to ensure 
that all reported responses were in the same direction; that is, larger 
was always better and smaller worse for each response variable.

Meta-analysis
We used a standardized mean difference with heteroscedastic popu-
lation variances (SMDH) in the two groups, which is a widely used 
and robust method to calculate effect sizes494. Hedges’ d effect sizes 
were obtained after correcting for sample bias in SMDH using the 
‘escalc’ function in the ‘metafor’ (v.3.0-2) package495. To evaluate 
responses of mean effect sizes to moderator variables, we ran multi-
level mixed-effects metaregression models using the ‘rma.mv’ function 
in the ‘metafor’ (v.3.0-2) package, which allowed us to account for the 
nested structure and non-independence of observations from a single 
study. To control for non-independence among variables within a 
study, we adopted the method used in ref. 28 and set paper ID (a set of 
numbers used to distinguish different studies) as a random intercept. 
In addition, we included different taxonomic levels (Class, Order and 
Family) as a random effect to control for phylogenetic covariance in 
EWE tolerances among species. We used Family in our main analysis 
because of its lower Akaike information criterion value than models 
using Class or Order as random intercept (Supplementary Table 7). 
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We also included response variable category as a random effect to 
control for the pseudoreplication issue of different samples among 
categories of variables. We included interaction between non-native/
native status and the occurrence of a given EWE as a fixed effect to test 
for differences in responses of native and non-native species to EWEs. 
We considered the mean effect size estimate to be significant when the 
95% confidence interval (CI) did not encompass zero. The approximate 
residual heterogeneity of models was assessed using Cochran’s Q (QE), 
and the omnibus Wald-type test (QM) was used to assess model perfor-
mance in explaining the heterogeneity attributed to a given moderator 
variable496. We ran Egger’s regression test for publication bias497 and 
an omnibus test to compare the responses of non-native and native 
species to each EWE498.

Sensitivity analyses
Previous studies suggested that sample outliers might influence the 
results of meta-analyses499. To test the robustness of our results to 
sample outliers, we removed those outliers and re-ran meta-analytic 
models to check the outcome of mean effect sizes. Outliers were clas-
sified as any standardized residual for a study whose absolute value 
was >3 (ref. 500) and were determined using the ‘metaoutliers’ func-
tion in the ‘altmeta’ (v.4.1) package501. Neither the direction nor the 
significance of mean effect sizes changed when outliers were removed 
(see details in Supplementary Tables 8 and 9) except for the following: 
a significant negative response of native species to terrestrial storms 
became non-significant (Supplementary Table 8), and two significant 
positive responses (behaviour and life history traits) and one significant 
negative response (abundance) of native freshwater species to EWEs 
became non-significant (Supplementary Table 9).

To test whether the overall response to different EWEs was robust 
across taxa and biogeographic realms (Nearctic, Neotropic, Palaearctic, 
Afrotropic, Australasian) for terrestrial and freshwater species, and 
across provinces (Agulhas, Cold Temperate Northeast Pacific, Lusita-
nian, Northern European Seas, Tropical Northwestern Atlantic, Warm 
Temperate Northeast Pacific and Warm Temperate Northwest Atlantic) 
for marine species, we conducted two additional sets of sensitivity anal-
yses specifically focusing only on those taxonomic classes and realms 
reporting both non-native and native animals (Supplementary Data 1).

Identifying areas of overlap between hotspots of invasions 
and EWEs
We finally explored overlap areas suitable for establishment of 
EWE-tolerant non-native animals and frequent EWEs. To achieve this, 
we first collected occurrence data for each non-native species and pre-
dicted their habitat suitability for establishment worldwide. We then 
overlapped those grids with suitable habitats for non-native species 
establishment with EWE hotspots (10%, 20% and 30% grids at a spatial 
resolution of 5 arcmin with the highest frequency of EWEs in history). 
For these overlapped grids, we calculated the net effect of positive, 
negative and neutral responses for each non-native animal to focal 
EWEs (that is, net effect = proportion of positive response + proportion 
of neutral response − proportion of negative response) on the basis of 
the sample effect sizes in the meta-analyses above. The accumulative 
net effect of EWEs on non-native species in each grid was obtained, with 
higher values indicating greater potential combined risks of invasions 
and EWEs. Details for predicting non-native species habitat suitability 
and the distributions of historical EWEs are summarized below.

Habitat suitability for non-native animal establishment. We first 
generated a non-native species list from the literature used in the 
meta-analysis (see non-native species list in Supplementary Data 2). 
Species occurrence records were then gathered from the online data-
base of the Global Biodiversity Information Facility502, and we added 
additional records from the literature (see distribution data source in 
Supplementary Data 2). We excluded those records without precise 

coordinates and withunclear establishment status. Next, we applied 
the ‘scrubr’ R package to remove duplicate coordinates503. For further 
spatial modelling analysis, occurrence data were thinned to 5-arcmin 
resolution (~9.2 km at the equator) using the ‘spThin’ package504 to 
reduce sampling bias from disproportional survey efforts among taxa 
or regions505. We identified the native and non-native ranges for each 
of species on the basis of the following databases: Global Invasive Spe-
cies Database (GISD, http://www.iucngisd.org/gisd/), Invasive Species 
Compendium on CABI (https://www.cabi.org/ISC/), World Register of 
Introduced Marine Species (WRiMS, https://www.marinespecies.org/
introduced/), SeaLifeBase (https://www.sealifebase.se/search.php), 
IUCN (https://www.iucnredlist.org/), and extra information from Wiki-
pedia, Google Scholar and published literature (Supplementary Data 
3). We further quantified the potential distribution of the non-native 
species using ecological niche modelling (ENM), which is a widely 
used method to provide robust predictions of potential distributions 
of species506. ENMs for potential species distributions under current 
climatic conditions were constructed using MaxEnt507 on the basis of a 
standard protocol following a previous study508. Details on modelling 
steps, predictor selection, method to account for sample bias and 
assessments of model performance are provided below.

ENM
To quantify potential distributions of non-native species, the Max-
Ent algorithm was used to fit the models. The MaxEnt algorithm has 
generally shown high predictive performance and has been exten-
sively applied in conservation, invasion and biogeography studies, 
and recent research shows that tuned MaxEnt models can perform 
comparably to ensemble models509. Training data contained both of a 
species’ native and non-native ranges to eliminate biases in evaluating 
species’ realized niches as some non-native species can shift their real-
ized climatic niches in invaded areas510,511. A minimum convex polygon 
with two-degree buffers was chosen to define the background extent 
where distribution occurrences of non-native species are located512. 
A target-group method was used to account for the potential effect of 
sampling bias in species occurrence data on results513.

For land species, both climate and habitat factors including vegeta-
tion and water availability were used to predict their potential distribu-
tions, considering the important role of habitat variables in reflecting 
species’ requirements for food and reproduction514. Details on variable 
selection differed across taxa on the basis of their main physiological 
requirements following previous studies (Supplementary Table 10).

For marine non-native species, the Bio-ORACLE database (v.2.2, 
https://www.bio-oracle.org/downloads-to-email.php) was used to col-
lect current environmental data for both surface and benthic species515. 
Sea water depth information was accessed from Global Marine Envi-
ronment Datasets (https://gmed.auckland.ac.nz/)516. The Bio-ORACLE 
database supplied averaged outputs of predictors on the basis of three 
atmosphere–ocean general circulation models (AOGCMs) including 
CCSM4, HadGEM2-ES and MIROC5 at 5-arcmin (~9.2 km at the equator) 
resolution that was then used for further analyses515. As climate warm-
ing effects on marine ecosystems depend on ocean depths517, potential 
distributions of benthic and shallow-water species were predicted 
separately. Water depth, salinity and seasonal water temperature were 
necessarily used to predict distributions of benthic invertebrates 
and fishes518,519. Specifically, a total of six candidate predictors were 
used to predict benthic species distributions, including water depth 
(m), annual mean current velocity (m−1 yr−1), annual mean sea benthic 
salinity (PSS yr−1), annual range of sea benthic salinity (PSS yr−1), annual 
mean sea benthic temperature (°C yr−1) and annual range of sea ben-
thic temperature (°C yr−1). For surface water fishes, water depth, sea 
surface temperature and salinity, and sea ice were used to predict 
spatial distributions520–522. Potential distributions of marine surface 
fishes were predicted by seven candidate predictors, including water 
depth (m), annual mean current velocity (m−1 yr−1), annual mean ice 

http://www.nature.com/natecolevol
http://www.iucngisd.org/gisd/
https://www.cabi.org/ISC/
https://www.marinespecies.org/introduced/
https://www.marinespecies.org/introduced/
https://www.sealifebase.se/search.php
https://www.iucnredlist.org/
https://www.bio-oracle.org/downloads-to-email.php
https://gmed.auckland.ac.nz/


Nature Ecology & Evolution | Volume 7 | December 2023 | 2004–2027 2013

Article https://doi.org/10.1038/s41559-023-02235-1

thickness (m yr−1), annual sea surface salinity (PSS yr−1), annual range 
of sea surface salinity (PSS yr−1), annual mean sea surface temperature 
(°C yr−1) and annual range of sea surface temperature (°C yr−1). These 
predictor variables did not show high correlations (Pearson’s correla-
tion coefficient |r| < 0.70)523.

Multiple predictor combinations from simple to full models were 
fitted using the MaxEnt algorithm. Cross-validations for the fitted 
models were performed on the basis of a spatial partitioning strat-
egy using the ‘block’ method524. Three representative measures (area 
under the receiver operating characteristic curve (AUC), true skill 
statistic (TSS) and Boyce index) were used to evaluate the performance 
of fitted models525–527. First, AUC is a threshold-independent meas-
ure; an AUC value between 0.7 and 0.9 indicates good model perfor-
mance and a value >0.9 indicates excellent performance528. Second, 
TSS is a threshold-dependent measure with summing of sensitivity 
and specificity minus one529; a TSS value from 0.4 to 0.8 indicates 
good model performance and a value >0.8 indicates excellent perfor-
mance. Third, the Boyce index is useful for evaluating fitted models 
with presence-only data to overcome potential overfitting issues. This 
index ranges from −1 to 1 and a higher value indicates better model 
performance527. All ENMs analyses were conducted using the ‘ENMeval’ 
package in R530. Overall, the ENMs used in our present study had good 
performance in predicting potential distributions of the non-native 
species (with minimum values of AUC > 0.75; TSS > 0.40; more than 83% 
of species with Boyce > 0.70; see details in Supplementary Table 11).

EWEs distribution. Distributions of different types of EWEs were col-
lected from open data sources and publications.

Heatwave and cold-spell events on land
HadEX3 is a newly updated product generated through the coordina-
tion of the joint World Meteorological Organization (WMO) Expert 
Team on Climate Change Detection and Indices (ETCCDI). HadEX3 
(https://www.metoffice.gov.uk/hadobs/hadex3/) supplies a set of 17 
monthly metrics of extreme weather events gridded (1.875° × 1.25° 
longitude–latitude) for global land surfaces from 1901 to 2018 (ref. 531). 
Four of those metrics were selected owing to their long-term record-
ings by stations and representation of the frequency and intensity of 
thermal extremes531. Proportions of extreme warm days and duration 
of warm days are commonly used to evaluate global-scale heatwave 
conditions532,533. TX90p (percentage of time when daily maximum 
temperature is >90th percentile) and WSDI (annual count when at least 
6 consecutive days of maximum temperature is >90th percentile) were 
used to quantify heatwave events in terrestrial and freshwater systems. 
TN10p (percentage of time when daily minimum temperature is <10th 
percentile) and CSDI (annual count when at least 6 consecutive days 
of minimum temperature is <10th percentile) were used to quantify 
cold-spell events.

Marine heatwave and cold-spell events
Historical marine heatwave events from 1980 to 2019 were recently 
reported534 as averaged days of heatwaves per decade at 1° × 1° resolu-
tion at the global scale. Reference 535 provides mean annual frequency of 
marine cold-spell (days) from 1982 to 2020 at 0.2498264° × 0.2496528° 
resolution globally.

Storm events
The Global Risk Data Platform supplies historical recorded storm 
events and tracks from satellite remote-sensing from 1970 to 2015 
(https://preview.grid.unep.ch/index.php?preview=data&events=
cyclones&evcat=1&lang=eng). Available polygon layers in this plat-
form contain information on country names, the year of storm events, 
starting and ending dates and the category per event. In addition, the 
coordinates of storm tracks per event are provided. Therefore, duration 
and category data of storm events at 0.5° × 0.5° resolution were used.

Extreme flood events
Aqueduct Flood Hazard Maps provide global historical flood haz-
ard grid datasets at 5’ × 5’ resolution (https://www.wri.org/data/
aqueduct-floods-hazard-maps). The historical dataset supplies times 
of recorded coastal and riverine floods with returning periods of 2, 5, 
10, 25, 50, 100, 250 and 1,000 yr (ref. 536). Sums of times of coastal 
and riverine flooding events with 100-yr returning periods were used 
in the data analysis.

Extreme drought events
The global monthly average standardized precipitation index (SPI) 
dataset is available from the National Center for Atmospheric Research 
(NCAR)/University Corporation for Atmosphere Research (UCAR) 
platform (https://www.ucar.edu/) at 1° × 1° resolution for the years 
1942–2012. Monthly SPI is a widely used index to describe meteoro-
logical drought, and monthly SPI ≤ −1.5 was used to define an extreme 
drought event537. The SPI data for a 12-month timescale were selected 
to assess drought events. Furthermore, to better quantify multiple-year 
averages of drought events, we calculated the frequency of extreme 
dryness per year (that is, (1/12) × number of month(s) with SPI ≤ −1.5). 
The annual mean frequency of extreme dryness from January 1950 to 
December 2012 was used in the data analysis. We standardized all the 
EWEs layers with different to the same 5-arcmin resolution using the 
‘resample’ function in the ‘raster’ (v.3.5-21) package538. Animal silhou-
ettes in the PhyloPic database (www.phylopic.org) were accessed and 
visualized using the ‘add_phylopic_base’ function in the ‘rphylopic’ 
(v.1.1.1) package539. All data540 analyses were conducted in R (4.2.1)541.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data have been deposited in a public structured data depository 
(https://doi.org/10.6084/m9.figshare.23587695). Source data are pro-
vided with this paper.

Code availability
The R code for running the main analyses is available at https://doi.
org/10.6084/m9.figshare.23587695.
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