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Abstract

The Sloan Digital Sky Survey IV Mapping Nearby Galaxies at APO (MaNGA) program has been operating from
2014 to 2020, and has now observed a sample of 9269 galaxies in the low redshift universe (z∼0.05) with
integral-field spectroscopy. With rest-optical (λλ0.36–1.0 μm) spectral resolution R∼2000 the instrumental
spectral line-spread function (LSF) typically has 1σ width of about 70 km s−1, which poses a challenge for the
study of the typically 20–30 km s−1velocity dispersion of the ionized gas in present-day disk galaxies. In this
contribution, we present a major revision of the MaNGA data pipeline architecture, focusing particularly on a
variety of factors impacting the effective LSF (e.g., under-sampling, spectral rectification, and data cube
construction). Through comparison with external assessments of the MaNGA data provided by substantially
higher-resolution R∼10,000 instruments, we demonstrate that the revised MPL-10 pipeline measures the
instrumental LSF sufficiently accurately (�0.6% systematic, 2% random around the wavelength of Hα) that it
enables reliable measurements of astrophysical velocity dispersions σHα∼20 km s−1 for spaxels with emission
lines detected at signal-to-noise ratio>50. Velocity dispersions derived from [O II], Hβ, [O III], [N II], and [S II]
are consistent with those derived from Hα to within about 2% at σHα>30 km s−1. Although the impact of these
changes to the estimated LSF will be minimal at velocity dispersions greater than about 100 km s−1, scientific
results from previous data releases that are based on dispersions far below the instrumental resolution should be
reevaluated.

Unified Astronomy Thesaurus concepts: Spectroscopy (1558); Galaxy kinematics (602); Astronomy data
analysis (1858)

1. Introduction

The design of astrophysical instruments is always a trade-off

between various competing factors. With limited detector real

estate, there is an inherent tension between (i) the number of

spectra that can be observed, (ii) the wavelength range that they

can cover, and (iii) the spectral resolution (or the effective

information content per wavelength).
The first is obviously attractive; the more spectra that can be

observed simultaneously, the faster any survey can be completed,

or the larger its eventual sample of objects. The second is similarly

obvious; the rest-optical and NIR wavelength range is replete with

a wealth of spectral features encoding information about the

kinematics, stellar populations, chemical abundances, and sources

of ionizing radiation. For the Sloan Digital Sky Survey (SDSS)-IV

Mapping Nearby Galaxies at APO (MaNGA) survey for instance

(Bundy et al. 2015; Blanton et al. 2017), the design of the

instrument has allowed the survey to observe a sample of 10,000

galaxies with integral field unit (IFU) spectroscopy (roughly a

factor ∼10 larger than previous such surveys), at the same time as

spanning a wide and contiguous wavelength range from 3600 to

10300Å. This wavelength range crucially includes classic strong-
line emission features from [O II] λ3727 to [S III] λ9531 that can
characterize the mechanisms of ongoing star formation, stellar
absorption features such as the Mg triplet at 5170Å and the Ca
triplet at 8550Å that characterize the evolved population, and
faint indices such as Na I at 8120Å and FeH at 9916Å that are
sensitive to the initial mass function (e.g., Conroy & van Dokkum
2012; Parikh et al. 2018).
At the same time, high spectral resolution is critical to both

separate spectral features that are close together in wavelength
(e.g., the [O II] 3727 doublet) and to study the range of
velocities present in gas or stellar populations along a given
line of sight. Given the necessity of high spectral resolution in
studies of galaxy kinematics, IFU surveys such as the Sydney-
AAO Multi-object Integral field spectrograph survey (SAMI;
Croom et al. 2012; Allen et al. 2015) have opted to trade
spectral coverage for higher spectral resolution R∼4500
around key diagnostic features such as Hα. In contrast, at the
spectral resolution of MaNGA (R∼2000), it is much more
difficult to extract kinematic data as the astrophysical ionized-
gas velocity dispersions are typically σHα∼20–30 km s−1 for
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main-sequence star-forming galaxies. These astrophysical
dispersions are dwarfed by the ∼70 km s−1 line widths
produced by the instrumental line-spread function (LSF; i.e.,
the projection of the detector point-spread function onto the
spectral axis).14 Complicating matters further, MaNGA is a
critically sampled (∼2 pixels per FWHM) fiber-based instru-
ment that feeds a pair of two-arm, Cassegrain-mounted
spectrographs subject to varying gravitational flexure. As we
show here, this leads to an instrumental LSF that is highly
variable, spatially (from fiber to fiber), spectrally (both between
arms and within each arm), and temporally.

To reliably recover astrophysical line widths on the order of
20 km s−1, this instrumental contribution must be modeled in
exquisite detail and accurately removed from the measured line
widths (emphasizing that each of these requirements presents
unique challenges). In this contribution, we present a major
update to the original MaNGA data pipeline (Law et al. 2016)
and demonstrate that the most recent MPL-10 survey data
products meet (and indeed exceed) the 1% level of precision in
the LSF necessary to study such astrophysical signals (see
Figure 1).

This paper is organized as follows: In Section 2 we provide
an overview of the MaNGA instrument and observing program,
and highlight major changes that have been made to the data
reduction pipeline (DRP) since the initial description by Law
et al. (2016). In Section 3 we discuss the revised derivation of
the instrumental LSF in the latest version of the MaNGA DRP
(MPL-10; see Table 1), noting differences from earlier
calibrations and publicly released data products. We describe
changes that have been made to the MaNGA data analysis
pipeline (DAP) since the earlier description by Westfall et al.
(2019) in Section 4 and use internal tests to demonstrate the
reliability of our estimates of the astrophysical gas and stellar

velocity dispersions. We extend this discussion to consider the
effects of beam smearing in Section 5. Finally, in Section 6 we
compare the MaNGA data directly against independent
external calibrators at much higher spectral resolution (up
to R∼11,000) and demonstrate that the instrumental LSF
estimates provided by the pipeline are accurate to better than
1% around the wavelength of Hα. We summarize our
conclusions in Section 7.
Throughout our analysis we adopt a Chabrier (2003) stellar

initial mass function and a ΛCDM cosmology in which H0=
70 km s−1 Mpc−1, Ωm=0.27, and ΩΛ=0.73.

2. Observational Data

The MaNGA hardware design is described in detail by Drory
et al. (2015), and consists of 1423 optical fibers feeding the two
BOSS spectrographs (Smee et al. 2013) installed at the Cassegrain
focus of the Sloan Digital Sky Survey 2.5 m telescope at Apache
Point Observatory (Gunn et al. 2006). Each of the six removable
cartridges interfaces with a plugplate system, and contains a full
complement of optical fibers bundled into hexagonal IFUs
ranging in size from 19 to 127 fibers along with a set of 12
seven-fiber minibundles for photometric calibration (Yan et al.
2016) and 92 individual fibers used for sky subtraction. In each
cartridge the fibers are permanently mounted in a series of
v-groove blocks attached to two pseudo-slits that align with the
BOSS spectrograph slitheads. Since BOSS is a dual-beam
spectrograph, a dichroic beamsplitter divides the light into blue
(λλ3600–6300) and red (λλ5900–10300) cameras. In order to
mitigate the effects of atmospheric differential refraction on the
effective sampling of the MaNGA fiber bundles (see Law et al.
2015), each plate is typically observed in sets of three 15-minute
dithered exposures with similar seeing, transparency, and hour
angle, and repeated as necessary on multiple MJDs (modified
Julian dates) to reach a target effective depth.
The main MaNGA survey galaxies are drawn from a flat mass

distribution in the range M*=109–1011Me, with subsamples
reaching 1.5 and 2.5 effective radii and a “color-enhanced”
subsample designed to obtain sampling of sparser regions of
color–magnitude space (see discussion by Wake et al. 2017).
Since its original conception as a dark-time galaxy survey

Figure 1. Systematic error in derived σHα as a function of σHα for various
assumed errors in the MaNGA instrumental LSF. This is estimated analytically
from the standard assumption that the instrumental and astrophysical dispersion
add in quadrature. In order to achieve better than 10% accuracy in the regime of
cold gas disks, the LSF must be known to better than 1%.

Table 1

MaNGA Data Releases and Pipeline Versions

Version Internal External Year Galaxiesa

3.1.1 MPL-11 DR17 2021 10010b

3.0.1 MPL-10 ... 2020 9269

2.7.1 MPL-9 ... 2019 7823

2.5.3 MPL-8 ... 2018 6293

2.4.3 MPL-7 DR15 2018 4532

2.3.1 MPL-6 ... 2017 4529

2.1.2 ... DR14 2017 2689

2.0.1 MPL-5 ... 2016 2691

1.5.4 ... DR13 2016 1330

1.5.1 MPL-4 ... 2015 1329

1.3.3 MPL-3 ... 2015 624

1.1.2 MPL-2 ... 2014 118

1.0.0 MPL-1 ... 2014 58

Notes.
a
Number of unique galaxy targets (discounting special Coma, M31, IC342,

and globular cluster targets) with high-quality data cubes.
b
Based on preliminary reductions of the final survey data.

14
For reference, a 20 km s−1 broadening of an R=2000 LSF results in a 5%

increase in the width of the observed line, whereas this same broadening results
in a 22% increase at R=4500.
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(Law et al. 2015; Yan et al. 2016), the MaNGA program has since

grown to also encompass a variety of ancillary programs (e.g.,

observations of M31, IC342, and the Coma cluster) as well as a

bright-time survey of a large library of stellar spectra (MaStar;

Yan et al. 2019). The MaNGA DRP has thus also evolved

substantially since the initial DR13 public data release (v1.5.4)

described by Law et al. (2016) to accommodate both this new

observing mode and a variety of improvements that have been

made for the main galaxy program.
In brief, the DRP extracts individual fiber spectra from the

four detectors via row-by-row optimal extraction, performs sky

subtraction and flux calibration (Yan et al. 2016) using

dedicated calibration fibers and fiber bundles, and resamples

each calibrated spectrum onto a common wavelength grid.

While the majority of these algorithms are identical between

MaNGA and MaStar, some minor differences exist since the

targets range over 20 magnitudes in brightness (from g∼6 for

bright stellar library targets to g∼26 arcsec−2 for observations

of intracluster light in the Coma cluster; Gu et al. 2018) and

from dark-sky conditions to mere degrees away from the full

moon. Additionally, for MaNGA galaxy observations, the DRP

also combines the individual fiber spectra into a composite

rectified data cube, while for MaStar stellar targets, the DRP

extracts a composite 1D spectrum corrected for atmospheric

differential refraction and geometric fiber-bundle losses from

the individual fiber spectra. As discussed by Law et al. (2016),

the DRP is written almost entirely in IDL, with some C

bindings for runtime optimization.
In Table 1 we list the versions of the MaNGA pipeline data

products available both internally to the SDSS collaboration

(through MaNGA product launches, i.e., “MPL”) and exter-

nally to the broader astronomical community (through data

releases, i.e., “DR”). Some of the changes made for DR13,

DR14, and DR15 have already been described by Albareti et al.

(2017), Abolfathi et al. (2018), and Aguado et al. (2019),

respectively. Compared to the DR13 pipeline described by Law

et al. (2016), the major changes that have been made to the

DRP include:

1. Visual yearly inspection of all IFU exposures failing

comparisons against established SDSS broadband pre-

imaging data. Identification and flagging of IFU frames

affected by terrestrial satellite trails allow recovery of

high-quality composite data cubes from many that were

previously flagged as not of science quality.
2. More extensive identification and masking of foreground

stars via Galaxy Zoo 3D (K. Masters et al. 2020, in

preparation)
3. Production of composite single-object spectra for MaStar

stellar library targets (v2.0.1), and de-redshifting of the

resulting spectra (v2.3.1) to the stellar rest frame (see

details given by Yan et al. 2019)
4. Inclusion of full spatial covariance matrices for the

galaxy data cubes (v2.0.1).
5. Modification of straylight and bias routines to reduce

systematics effects highlighted by ultra-deep observations

for the Coma cluster ancillary program (Gu et al. 2018,

2020, v2.3.1)
6. Adoption of the BOSZ flux-calibration templates (Bohlin

et al. 2017) instead of the Kurucz model atmospheres

(Gray & Corbally 1994; v2.3.1; see Yan et al. 2019).

7. Adjustments to the IFU fiber-bundle metrology to
compensate for a ∼2.5% scale error in laboratory
measurements (v2.5.3, v2.7.1; see Section A).

8. Adoption of the Fitzpatrick (1999) extinction curve for
standard star calibrations instead of the O’Donnell (1994)
curve (v2.5.3).

9. Modification to handle short (5–300s) exposures for
bright MaStar targets (v2.5.3).

10. Addition of special processing to model, subtract, and flag
data affected by a bright “blowtorch” artifact resulting
from an electronics failure in the r1 detector during the
final year of the survey (v2.7.1, v3.0.1; see Section B).

11. Substantial revisions to the spectral LSF estimation
affecting the recovered galaxy velocity dispersions (see
discussion in Section 3.6).

The most recent version of the MaNGA DRP data products
(MPL-10) consists of all MaNGA and MaSTAR plates
completed up to MJD 58933 (2020 March 25). As determined
from the MPL-10 drpall summary file (drpall-v3_0_1.fits), it
contains 10,529 data cubes corresponding to 630 plates, and
33,360 MaSTAR spectra (26618 unique stars) across 1534
plates. Of the 10,529 data cubes, 9556 represent galaxies (i.e.,
discounting the Coma, IC342, M31, and globular cluster
ancillary programs and a few other non-galaxy special plates).
A small number of these data cubes (162) are flagged by the
pipeline as “DONOTUSE” for science based on significant
differences between the MaNGA photometry and prior SDSS
imaging. These differences can be due to, e.g., poor focus (in
which an IFU partially fell out of the plate during observa-
tions), unmasked cosmic rays, satellite trails, supernovae, etc.
Of the remaining 9394 galaxy data cubes, there are 9269
unique galaxies, roughly 100 of which have two or more
independent observations.
The MaNGA MPL-10 data products are available internally

to collaboration members both in flat FITS file form15 and via a
python-based API and web application16 (Marvin; Cherinka
et al. 2019). Similarly, DR15 data products are available
publicly via the same sources.

3. Spectral LSF in the MaNGA DRP

In order to measure the astrophysical stellar or gas velocity
dispersion, e.g., σHα from the observed Hα emission-line
profile in a given spaxel, it is critical to have accurate and
precise knowledge of the spectral LSF (i.e., the projection into
the wavelength domain of the detector point-spread function
convolved with the top-hat pixel sampling). Since MaNGA
uses spectrographs mounted at the Cassegrain focus of the
SDSS 2.5 m telescope, the LSF modulates due to time-variable
gravitational flexure in the fibers, camera optics, and detector
focal plane; these temporal variations complicate efforts to
obtain a robust LSF measurement.
In this section, we discuss the MPL-10 approach taken by the

DRP to measure the initial LSF from calibration arc-lamp spectra
(Section 3.1), account for pixel broadening (Section 3.2), adjust
the measurements to match co-temporal night-sky features
(Section 3.3), and account for spectral resampling (Section 3.4)
and IFU cube building algorithms (Section 3.5). Overall

15
http://www.sdss.org

16
https://sas.sdss.org/marvin/
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differences from the initial MaNGA data products provided in
previous data releases are summarized in Section 3.6.

3.1. Arc-line Model

The spectral LSF of the MaNGA data is first estimated using
4s observations of a Neon–Mercury–Cadmium arc-lamp
spectrum taken at the beginning of each series of MaNGA
observations of a given plate and roughly every 2hr thereafter.
This arc frame provides a well-populated series of bright
unresolved emission lines spanning the wavelength range of
the instrument. Since the wavelength zero-point is curved along
the pseudo-slit (see, e.g., Figure 22 of Law et al. 2016), this
means that a given arc line lies at a range of different “pixel
phases” (i.e., centroid locations within a pixel) for different
fibers, and as the relative fiber-to-fiber wavelength solution is
accurate to better than 0.024 pixels rms (see Section 10.3 of
Law et al. 2016), it is therefore possible to combine the
observed spectra from multiple fibers to obtain a super-sampled
realization of the arc-line profile.

As shown in Figure 2, these line profiles are well described
by a simple Gaussian model for both the blue and red cameras
across a wide range of wavelengths. While the residuals from
the simple Gaussian fit show evidence for intrinsic kurtosis in
the line profile (consistent with expectations for the convolu-
tion of a 2D Gaussian with the circular image of the optical
fiber), the peak amplitude of this residual is sufficiently small
(∼5% relative to the peak intensity of the line) that it is
expected to have a negligible effect on our analysis.17 We
therefore fully characterize the shape of the LSF by a single
value ω18 giving the 1σ width of a Gaussian profile fit to the
observed pixel values (after first subtracting off the small
continuum signal using the median in a 100-pixel window
surrounding the line).

As illustrated by Figure 3, ω varies over each of the four
detectors as a complicated function of both wavelength and fiberid
along the pseudo-slit. Similarly, it can change from exposure to
exposure with varying telescope/spectrograph focus, gravitational
flexure, and changing observing conditions. The DRP therefore
constructs a model of ω in pixel units using the individual arc lines
in each calibration frame that will be used as the base calibration
for nearby science exposures (the median science exposure is
within 34 minutes of the nearest arc frame, 86% of exposures are
within 1hr, and 99.5% are within 2hr).

First, we assume that any variation in ω for a given arc line
should be approximately linear within a given v-groove block
of fibers mounted to the pseudo-slit. This is because all fibers in
a given block will have a common telecentricity with common
alignment errors, and should vary in profile only smoothly with
the gradual curvature of the slithead. Figure 3 (left-hand panels)
shows that this is the case; while individual measurements for a
given fiber are noisy, they describe smooth well-defined trends
within a given block with discrete jumps between adjacent
blocks corresponding to alignment differences in their mount-
ing on the pseudo-slit. We therefore replace the individual
measurements of each arc line in a given fiber with the linear
polynomial fit to the fibers in each block; this polynomial fit

reduces the typical ω uncertainty by a factor of about 30 (as
there are roughly 30 fibers in each block), corresponding to an
improvement from ∼1% to ∼0.2% in the wavelength range
λλ6500–7000Å. This replacement also has the added benefit
of allowing us to be robust against occasional critical failures of
the Gaussian-fitting algorithm (resulting, e.g., from bad pixels
or cosmic rays).
Next, we assume that ω within each fiber should vary

smoothly as a function of wavelength within the range
λλ3500–6300Å (blue cameras) and λλ5900–10300Å (red
cameras). We therefore fit the linearly interpolated ω in each
fiber with an nth-order polynomial, where n=5/6 for the
blue/red cameras, respectively.19 As illustrated in Figure 3
(middle panels), these trace-sets can be evaluated throughout
the entire MaNGA wavelength range, and they do a good job of
reproducing the observed widths at individual arc lines. In the
6000–7000Å range, the density of arc lines is particularly high,

Figure 2. Super-sampled observational arc-line profile for characteristic
spectral lines in the blue and red cameras. Colored points represent flat-fielded
spectra for ∼30 fibers in a single v-groove block for which the LSF is constant
across fiberid to <1% but the change in zero-point of the wavelength solution
results in the arc line falling at a variety of different pixel phases for different
fibers (color-coded by fiber number). The solid blue line in both panels
represents a Gaussian model fit to the observed data points similar to that used
by the MaNGA DRP to describe the line profile, while the solid black line
shows the residual difference between the observational data points and the
Gaussian model. These residuals demonstrate that the true line profile is
modestly platykurtic due to the circular image of the undispersed optical fiber
spot; for comparison, a model line profile composed of a Gaussian convolved
with a top-hat response function can reproduce the observations with negligible
residuals (top panel, red solid line).

17
Although some early commissioning observations showed optical coma at

the longest wavelengths in the red camera of spectrograph 1, this was resolved
by realignment of the camera optics prior to the start of the majority of the
survey.
18

Typically the instrumental LSF is represented as σinstr, but to avoid a
proliferation of subscripts, we assign the LSF its own variable.

19
These orders are determined empirically to be the minimum necessary to fit

the observed variation.
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and ω varies particularly slowly with wavelength; the scatter of
individual arc lines about the model relation suggests that the
overall uncertainty of the fit in the Hα wavelength regime is
about 0.5%.

Figure 3 (right panels) illustrates the resulting arc-lamp
model for ω across the blue and red cameras; we note that while
ω in the red cameras is relatively flat as a function of both
fiberid and wavelength (rms ∼0.01 pixels below 9000Å), ω in
the blue cameras shows significantly more structure (rms
∼0.03–0.04 pixels between 4000 and 6000Å), corresponding
both to the overall curvature of the focal plane and global
alignment differences between blocks of fibers. The details of
this structure are cartridge-dependent since the slithead on each
of the six cartridges has its own mechanical alignment.
Generally, however, fibers ∼25% and 75% of the way along
each slit have up to a factor ∼2 lower and more constant ω with
wavelength, while fibers near the middle or ends of the slit
show larger variations.

3.2. Pixel Broadening

As indicated by Figure 3, MaNGA is nearly critically sampled
since spectrally unresolved arc lines typically have a 1σ width of
about ω=1.0–1.2 pixels (2.4–2.8 pixels per FWHM). As
discussed extensively by Robertson (2017, see their Figure 16),
such pixels are sufficiently large compared to the intrinsic LSF
delivered by the telescope/spectrograph optics that the effective
LSF is broadened by the convolution with the top-hat response
of the detector pixels. Our post-pixellized measurements of ω
that were obtained by simply evaluating a Gaussian profile

model at the midpoint of each pixel are therefore systematically
biased relative to the “true” intrinsic instrumental dispersion
before convolution with the pixel response function (i.e., the pre-
pixellized ω).
We compute the magnitude of this effect using Monte Carlo

simulations in which we constructed 10x over-sampled
Gaussian models of known width, convolved them with the
pixel response function at a variety of pixel phases, and then
measured the resulting profiles using the commonly available
Gaussian-fitting techniques that simply evaluate the Gaussian
function at the pixel midpoints. As illustrated in Figure 4, post-
pixellized widths are systematically broader than the pre-
pixellized values by ∼1%–10%, and they define an extremely
tight mathematical relation in which the pixel-sampling phase
drives the scatter but is of negligible importance (<0.1%) in the
range of line widths observed by MaNGA. The DRP therefore
computes pre-pixellized estimates of the MANGA LSF (ωPRE)

from the measured post-pixellized values (ωPOST) using a
fourth-order polynomial fit to this relation (red line in Figure 4).
As motivated and discussed in Section 4, the MaNGA DAP

adopts these pre-pixellized estimates of ω and rigorously
accounts for pixel convolution. However, since many third-
party analysis routines ignore pixel convolution and instead rely
on simple Gaussian-fitting approximation, the DRP provides
both ωPOST and ωPRE with all of the survey data products.

3.3. Skyline Model

In practice, differences in the telescope focus (due to, e.g.,
changing weather conditions), gravitational flexure of the

Figure 3. Estimates of the MaNGA LSF (ω) derived from observations of Neon–Mercury–Cadmium calibration lamps. Left-hand panels: measured values of ω (black
line) as a function of fiberid for the indicated lamp line in the blue (top row) and red (bottom row) cameras. Extreme outliers are due to failures in the fitting routine
caused by cosmic rays, detector artifacts, and similar effects. The solid red line shows the fit assuming linear variation within each v-groove block and allowing for
arbitrary jumps between blocks. Middle panels: measured values of ω as a function of wavelength for two example fibers (fiberid 60/430, black/red points,
respectively) in each camera. The solid black and red lines represent the polynomial traceset fit to the observations. Right-hand panels: polynomial traceset fits to ω

evaluated across all fiberid and wavelengths in the scientifically relevant sections of the detectors (3600–6300 Å and 6000–10300 Å for the blue/red cameras,
respectively). All data shown here are taken from exposure 204255, plate 7960, MJD 57280 (spectrograph 1, cartridge 4).
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spectrographs, and various other effects mean that the LSFs

derived from arc-lamp exposures are only an approximation to

the actual LSF of any given science exposure. We therefore use

the well-known bright sky emission-line features to refine the

LSF estimate for each individual science exposure.20

Unlike the arc spectra, however, the night-sky emission

features are not ideally distributed in wavelength (there are very

few bright skylines at blue wavelengths), and they can

frequently be biased by continuum emission and blends of

multiple atomic and/or molecular transitions. While such

blending may be weak, even weak blending can bias apparent

measurements of the LSF at the few-percent level. Rather than

re-deriving the LSF solution from the skylines, the DRP

therefore uses them to simply make low-order adjustments to

the arc-line model.
Using the extracted, flat-fielded science frame spectra, we fit

each skyline in our list of reliable lines (see Table 2) with a post-

pixellized Gaussian model that includes a linear polynomial term

to account for wavelength gradients in the sky continuum level.

We then compute the difference Δω=ωsky−ωarc, where ωarc

is the arc-line LSF model evaluated at the wavelength of the

skyline features. Even in the cases for which the sky and arc line

measurements differ substantially, the difference Δω between

the measurements shows an extremely smooth variation along

the slit with no noticeable block-to-block jumps and only

statistical noise from the individual fiber measurements

(Figure 5). We therefore fit (unmasked) values of Δω with a

cubic basis spline with breakpoints every 150 fibers to obtain our

initial estimate of the difference between skyline and arc line

LSF models.

In the blue camera (λλ=3600–6300 Å), only the bright O I

λ5577.339 skyline is deemed to be a reliable LSF calibrator
since all of the other lines used to adjust the MaNGA
wavelength solution are marginally blended at the few-percent
level, and the Δω derived from this line is therefore assumed to
be constant for all wavelengths. In the red camera

(λλ=5900–10300 Å), there are multiple skylines, but since
we observe no unambiguous trends in Δω with wavelength, we
simply median combine each of the estimates to obtain our
final correction value. The resulting sky-adjusted LSF models
are typically different from the original arc-line models by less
than 0.01 pixels, although in some extreme cases can differ by
around 0.05 pixels (Figure 6, middle and right-hand panels,
respectively). Based on the >22,000 individual science
exposures in MPL-10, we note that the arc-line model tends
to systematically underestimate the observed skyline width by

Figure 4. Systematic overestimate of the true spectral LSF (ωPRE) as a function
of the LSF derived from fitting a Gaussian profile (ωPOST) to a series of Monte-
Carlo-generated mock arc-lamp spectra. Each black “+” symbol represents a
single test with a different pixel phase; differences between pixel phases are
only apparent at the smallest ωPOST∼0.8 pixels, at which the peak-to-peak
scatter is about 1%. In the typical MaNGA range (ωPOST=1.02/1.11/1.31
pixels for the 5th/50th/95th percentiles of the MPL-10 distribution), pixel
phase effects are less than 0.1%. The solid red line represents the fourth-order
polynomial fit to this relation used by the DRP; the coefficients of this fit are
given in the inset text. Also shown for comparison (dashed green line) is the
similar relation derived by Robertson (2017).

Table 2

Night-sky Calibration Lines

Wavelength (Å) Transition

4046.56a Hg I

4358.33a Hg I

5460.94a Hg I

5577.339 O I

6300.304a O I

6363.776 O I

7571.75 OH

7794.12 OH

7821.51 OH

8399.16 OH

8430.17 OH

8885.83 OH

8919.61 OH

9439.65 OH

9872.13 OH

10124.01 OH

Note.
a
Used only for adjustment of the wavelength solution, not adjustment of

the LSF.

Figure 5. Difference Δω between the measured O I λ5577.339 skyline LSF
and the arc-lamp model evaluated at the skyline wavelength for a typical case
(7960-57280-204255-b1; black solid line) and for a large-shift case (7960-
57458-216817-b2); blue solid line). In each case, the solid red line shows the
cubic spline fit to the observed values used by the MaNGA DRP.

20
Such refinements are not possible for the shortest MaStar exposures in

which even strong skylines are relatively faint, but since these exposures are
obtained much closer in time to the calibration exposures, focus drifts are much
less common than in longer MaNGA observations, which can differ by an hour
from the calibration exposures.
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∼0.5% on average in the b1, r1, and r2 cameras, and
overestimates the skyline width by about the same amount in
the b2 camera (Figure 6, left-hand panels), possibly due to
systematic differences in optical alignment between the
cameras. In contrast, the skyline-adjusted models have a
negligible systematic offset from the skyline measurements and
a significantly smaller width to the distribution that is
dominated by the uncertainty in individual lines.

3.4. Wavelength Rectification and Dichroic Recombination

As discussed in detail by Law et al. (2016), the MANGA DRP
processes each camera of data independently up to the point of
producing flux-calibrated, sky-subtracted spectra for each fiber.
Once all four cameras have been thus processed, the DRP stitches
together the natively sampled spectra from the blue and red
cameras across the dichroic break to produce final calibrated
spectra for each fiber that cover the entire MaNGA wavelength
range. This is achieved via high-order cubic basis spline modeling
of the blue and red spectra with a tapered inverse variance
weighting21 in the 5900–6300Å dichroic window to provide a
smooth transition between the cameras. This spline model is
evaluated on two different output grids: a linear solution with a
constant Δλ=1Å and a logarithmic wavelength solution with
a constant Δlog (λ/Å)=10−4. While the linear wavelength
solution products are used for some MaNGA value added
catalogs (e.g., Pipe3D; Sánchez et al. 2016), the MaNGA DAP

(Section 4) uses the products with a logarithmic wavelength
solution.
The combination of the per-camera LSF vectors onto the

final rectified wavelength grid uses the same algorithm as for

the spectra themselves. In the 5900–6300Å dichroic overlap
region, the gradual tapering of the weights applied to the blue/
red cameras serves to produce a smooth transition between the

LSF solutions of the individual cameras, but the spectra are
nonetheless a composite of individual spectra whose LSF

widths differ from each other by about 15%. As we show in

Figure 7 however, the non-Gaussianity introduced as a result is
insignificant, especially compared to the known intrinsic line

profile (Figure 2).
In addition to simply mapping the LSF onto the output

wavelength grid however, the wavelength rectification also

broadens the effective LSF slightly compared to the original
spectra that were sampled by the native detector pixels. We

compute the magnitude of this broadening using a series of
Monte Carlo simulations for a statistically large grid of Gaussian

“comb” spectra, in which artificial spectra with emission lines of

known width are created every 100Å throughout the MaNGA
wavelength range. These artificial spectra are produced using the

wavelength solution of a typical natively sampled exposure and

then combined together across the dichroic to produce composite
spectra using the spline algorithm described above. The widths

of the resulting lines are then computed via Gauss-fitting
techniques to compare to the known input widths. By repeating

this experiment across the 700+ fibers per MaNGA spectro-

graph, shifting the input line centroids by sub-pixel values to
consider ten different input pixel phases, and covering a range of

Figure 6. Left column: histogram of the median ratio per exposure between the arc-line and skyline LSF models, and between the skyline LSF models and the
individual skyline measurements for the ∼22,000 individual science exposures in MPL-10. While the width of the arc-line histograms is dominated by the differences
between the arc model and the skyline measurements, the skyline histogram width is dominated by the uncertainty in the skyline measurements. Note that the blue
histograms are narrower than the red as they are based on a single skyline. Middle column: measured skyline widths (black solid line) as a function of fiberid compared
to the arc-line and skyline models (solid red and blue lines, respectively) for a typical case in the blue and red cameras. Right column: the same as the middle column,
but for a large-shift example. Note that the skyline model does not always go through the middle of the observed skyline measurements for a given line in the red
camera, because individual lines can have systematic biases due to blending and continuum-fitting problems.

21
Smoothed to mitigate the well-known systematic biases that inverse

variance weighting can introduce in the median counts of combined spectra.
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12 different input widths from 0.9 to 2.0 pixels, we are therefore
working with a grid of >6 million simulated lines.

As shown in Figure 8, the effective broadening factor (post-
pixel to post-pixel) is a strong function of wavelength,
increasing from near unity at the shortest wavelengths in both
the blue and red cameras to a ∼10% effect at the longest
wavelengths in the red camera for input ωPOST=1.0 pixels.
The exact correction factor is strongly dependent on the input
pixel phase, particularly for values of ωPOST�1.0 pixel. Since
any DRP correction to the LSF cannot take pixel phase into
account (since this will be different for every emission line in
the science data in a manner that cannot easily be modeled), we
fit the median relation as a function of wavelength22 for each of

our 12 input widths with a cubic basis spline to compute a grid
of correction factors for both the logarithmic and linear
wavelength solutions. The DRP then corrects the composite
LSF vectors for each fiber by the appropriate value interpolated
from this reference grid (applying the same factor to both ωPRE

and ωPOST estimates). Given the typical range of ωPOST=
1.1–1.2 pixels in the vicinity of Hα, the range of correction
factors across different pixel phases indicated by Figure 8
suggests that the rms uncertainty of the applied correction is
typically around 1%.
The corrected pre-pixel instrumental LSFs for all individual

calibrated exposures (∼30 million individual fiber spectra) in
MPL-10 are shown in Figure 9. We conclude that the typical
instrumental resolution improves from 80 to 90 km s−1 at the
bluest wavelengths to about 55 km s−1 at the red end of the
MaNGA wavelength range, with the largest rms variation
between fibers around 5000–6000Å and the smallest rms
variation of just a few percent around Hα.

3.5. Data Cube Construction

The DRP additionally reformats the calibrated fiber spectra
into a rectilinear data cube in which the individual fiber spectra
have been coadded to produce a single 3D data cube with two
spatial axes and one spectral axis. Working with these data
cubes is significantly easier than working directly with the
individual calibrated fiber spectra (provided by the DRP as

Figure 7. Comparison between Gaussian LSF models produced by summing Gaussians of various widths. In each panel, the solid and dashed black lines, respectively,
show Gaussian profiles whose widths differ by the indicated amount at fixed integrated line intensity. The blue line indicates the profile produced by summing the
solid/dashed black profiles, while the red line indicates the profile of a single Gaussian whose width is given by the average of the first two. The dotted black line
shows the residual difference between the true summed profile (blue line) and the approximate Gaussian model profile (red line). These residuals are small compared
to the known non-Gaussianity of the instrumental profile (Figure 2) for the typical difference in LSF widths (15%) combined by the MaNGA DRP.

Figure 8. Effective LSF broadening factor (i.e., the ratio of the post-pixellized
LSF in units of angstroms measured before and after rectification) introduced
by the spectral rectification of the native-pixel blue and red camera spectra onto
a fixed logarithmic wavelength grid. Solid red, blue, and gold lines show the
median broadening as a function of wavelength computed via Monte Carlo
analysis of artificial spectra for input widths of ω=1.0, 1.2, and 1.5 pixels,
respectively. In each case, the shaded region shows the 1σ variation about the
mean traced by input lines with different effective pixel phases. The
corresponding curves for the linear wavelength grid (not shown) are generally

similar except in the 9000–10000 Å range where the logarithmic output grid
under-samples the typical input LSF.

Figure 9. Density plot of the pre-pixellized instrumental LSF (in velocity units)
reported by the MaNGA DRP for all ∼31 million individual fiber spectra in
MPL-10 (for the LOG wavelength solution).

22
We do not include the dichroic overlap region in our fit since different LSF

widths from the blue and red cameras are being combined here into a single
line profile, but instead simply ensure that the spline model smoothly joins
between the blue and red camera solutions.
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“row-stacked spectra,” or RSS) as the latter suffer from
chromatic differential refraction while the spectra in the
rectified data cubes are directly associated with a specific
location on the sky. For this reason, the vast majority of the
MaNGA science team has thus used the composite data cubes
for science analyses, as does the MaNGA DAP.

However, the algorithm used to construct these data cubes
produces complications of its own. In addition to introducing
strong spatial covariance between adjacent data cube spaxels,
as explored in detail by Law et al. (2016, Section 9) and
Westfall et al. (2019, Section 6), the data cube construction also
combines spectra with a variety of different spectral resolu-
tions. Since the effective LSF can vary strongly from fiber to
fiber, exposure to exposure, and night to night, the range of
input resolutions contributing to any given data cube spaxel can
be non-negligible.

Figure 10 shows a density plot of the rms variation in ω of all
fibers contributing to a given data cube as a function of
wavelength for all 10,523 data cubes in MPL-10. As discussed
in Law et al. (2016), typical IFUs show variability at the 1%–

2% level in the blue cameras with rare worst-case outliers at
about 10%–15% at some wavelengths for IFUs on the edges of
the slit. In contrast, driven by the flatter focal plane across the
CCDs, the focus in the red cameras is significantly flatter than
in the blue, with the majority of all data cubes showing <1%
variability in the component fiber spectra. Given this relatively
small LSF variability, we avoid the complexity of attempting to
convolve all fiber spectra to the same resolution (i.e., the
difficulty in making such small adjustments to the wavelength-
dependent resolution, the loss of information by degrading the
majority of the data cube spectra, and the introduction of more
spectral covariance; see, e.g., Pace et al. 2019) and instead
construct an LSF width metric for the combined spectra. In
other words, assuming a Gaussian function for the astro-
physical line-of-sight velocity distribution (LOSVD), we want
a simple metric that can be used to accurately remove the
influence of the LSF on our measurement of the astrophysical
velocity dispersion.

To understand the influence of the LSF metric, we perform
an experiment by constructing two Gaussian profiles, each with
a width defined by perturbing ω by a small percentage above
and below 70 km s−1

(e.g., we denote a 1% change as δω/
ω=0.01). We then construct an “observed” profile by
summing these two Gaussian profiles and convolving the
result with a third Gaussian with dispersion σin that represents
the LOSVD of the gas in the galaxy. We then fit a fourth

Gaussian to the result, mimicking the typical procedure when
fitting galaxy data. The dispersion of the best-fitting Gaussian
is then corrected for the LSF width to produce σout; any
difference between σin and σout indicates a measurement bias.
The experiment is performed with highly over-sampled noise-
less profiles so as to explore the intrinsic bias in each approach.
In Figure 11, we show the results of this test for four values of

δω/ω (differentiated by line color) and three different methods of
estimating the combined LSF metric: (1; dotted lines) the second

moment of the summed profile w w w= + 22
lo
2

hi
2( ) , where w lo

2

and whi
2 are the values for the narrow and broad Gaussian

components, (2; solid lines) the mean ω of the two components,
and (3; dashed lines) the width of a new Gaussian profile fit
directly to the summed profile.
Figure 11 demonstrates that when the range in LSF widths

for combined spectra is 1% (true for the majority of MaNGA

data cubes, particularly for λ  6000Å), the method used to
estimate the combined LSF is largely irrelevant; any bias
is <1% for σin>10 km s−1 for all methods. For larger
differences in the LSF widths, fitting the composite LSF to
define ω is generally better than the other two definitions.
However, given that this method requires significantly more
computational overhead—requiring us to construct the compo-
site profile and fit a Gaussian for every pixel with valid spectral
data in the full MaNGA data set—and the fact that it indeed
introduces biases of its own, we instead adopt the simple mean
method, which performs modestly better than using the second
moment. Combined with Figure 10, we expect that this simple
mean method of combining the fiber LSFs will rarely introduce
more than a 1 km s−1 bias for σ  20 km s−1 even in the
extreme case of 5% variation in the fiber ω, and will more
typically be <0.1 km s−1

(far below the typical uncertainty in
the individual measurements; see Figure 15). As illustrated by
Figure 7, differences in the LSF of the input spectra at such
levels will have a negligible impact on the overall Gaussianity
of the composite spectrum.
We therefore construct LSF data cubes using the same

algorithm and weighting scheme as adopted to construct the
science data cube. That is, with the modified Shepard
algorithm, the image of the galaxy at a given wavelength slice
is a weighted sum of the input fiber spectra at that wavelength,
and the LSF “image” is constructed from the same weights
applied to the LSF vectors of the individual fibers.

Figure 10. rms variation of ωPRE as a function of wavelength between all fiber
spectra contributing to a given data cube for all 10,523 data cubes in MPL-10.

Figure 11. Numerical tests of the bias in the recovered astrophysical velocity
dispersion (σout) compared to a known input value (σin) for three different
descriptions of a composite LSF width. Line types indicate the method used to
construct the composite LSF width (see the text) while line color indicates the
variation in the LSFs combined to construct the composite LSF (δω/ω; see
legend). From Figure 10, we know that the MaNGA LSF variation is typically
1%–2% (blue lines), such that the exact definition of the composite LSF
width is effectively irrelevant for σin>10 km s−1.
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The MaNGA DRP provides both a summary averaged LSF
vector for each data cube (as small variations will be unimportant
to science cases studying astrophysical line widths in excess
of 100 km s−1), as well as a full 3D LSF data cube so that
downstream analysis programs can use the effective LSF
appropriate for each spaxel in the cube. For illustrative purposes,
we show in Figure 12 examples with 1%, 2%, and 6% LSF
variation across the face of the IFU as calculated by the DRP.
Such spatial variation in the effective LSF of integral-field data is
well known for slit-type and lenslet-type spectrographs as well
(see, e.g., Figure 6 of Law et al. 2018) and must be taken into
account when measuring velocity dispersions near the instru-
mental resolution or below. As suggested by Figure 10, 99.9% of
cubes resemble the 1% or 2% rms examples at red wavelengths,
while 80% resemble these examples at blue wavelengths.

3.6. LSF Differences from Prior Data Releases

As the MaNGA DRP has evolved over the survey, the
estimated instrumental LSF too has changed. Rather than
representing significant changes in the data, as outlined in the
previous sections, this instead reflects our evolving under-
standing of the instrument and improvements to our methods of
characterizing the data. These changes are summarized in
Figure 13, which plots the ratio between ω for all MPL-10 fiber
spectra that were included in four of the major internal/external
MaNGA data releases and shows that the MaNGA LSF
estimates have generally been converging over the lifetime of
the survey.

Relative to MPL-10, MaNGA’s initial public data release
(DR13, released Summer 2016) systematically overestimated
the pre-pixellized LSF in the far blue by 10%–15% while
underestimating it in the red by 5%–10%. This changed with
the release of DR14 (Summer 2017), which made an initial
correction to broaden the pre-pixellized LSF measurements to
post-pixellized values during the skyline adjustment stage, in
addition to including a term to account for the broadening
factor contributed by the wavelength rectification of fiber
spectra (see Abolfathi et al. 2018). These changes generally
improved performance at red wavelengths but were an
overcorrection, leading to a ∼5% effective overestimate of
the LSF around Hα.

DR15 (Summer 2018) for the first time provided simulta-
neous measurements of the pre-pixellized and post-pixellized
LSF in full cube format, fixed the LSF overestimate in the far

blue (by rejecting the partially blended Cd I λλ3610 and low-
quality Hg II λλ3984 arc-lamp lines and substituting Hg I

λλ3663 instead), and implemented a Gaussian-comb solution
for measuring the broadening due to wavelength rectification
(instead of relying upon measurements of individual lines). As
illustrated by Figure 13, the combination of these changes
brought all wavelengths relatively well in line with MPL-10,
but with a ∼4% underestimate of the LSF around Hα. Minor
additional changes to polynomial fitting orders and rejection of
additional skylines implemented in MPL-9 in turn decreased
this difference to around 2%–3%.
Relative to MPL-9, MPL-10 completely overhauled many

aspects of the LSF estimation. Most fundamentally, instead of
using legacy C code dating back to the original SDSS spectro
survey to measure the pre-pixellized LSF (and later bootstrap
the corresponding post-pixellized LSF), it instead uses new
code to measure the post-pixellized LSF and later bootstraps
the pre-pixellized values based on extensive Monte Carlo
simulations (Section 3.2). Additionally, MPL-10 introduced
further modifications to the reference arc and skyline lists and
polynomial fitting orders.
The scientific impact of this evolution in the estimated LSF

will depend on the range of astrophysical velocity dispersions
considered by a given analysis. Above σHα=100 km s−1, the
systematic error in recovered velocity dispersions after correct-
ing for the instrumental resolution will be less than 3%. At
velocity dispersions far below the instrumental resolution
though, the changes in the estimated LSF become increasingly
important, and around σHα=30 km s−1, analyses using DR13,
DR14, or DR15 data will have derived values that are
systematically too high by ∼30%, too low by ∼30%, and too
high by ∼20%, respectively compared to MPL-10.

4. Spectral LSF in the MaNGA DAP

The MaNGA DAP is the survey-led software package that
derives astrophysical measurements from the DRP data cubes.
These measurements are produced by five core modules with
the following primary purposes: (1) spatially bin the data to
meet a g-band continuum signal-to-noise ratio (S/N) using the
Voronoi binning method of Cappellari & Copin (2003); (2)
measure stellar kinematics by performing full-spectrum fitting
using pPXF (Cappellari & Emsellem 2004; Cappellari 2017)
with the emission lines masked; (3) calculate moments of the
emission-line profiles to obtain nonparametric (pixel-summed)

Figure 12. Spatial variability in ω for three example data cubes at various wavelengths (left to right: 1%, 2%, and 6% rms variability). The visible structure traces the
mapping of the IFU fibers to discrete V-groove blocks on the BOSS spectrograph pseudo-slit (see Figure 9 of Drory et al. 2015, with a horizontal flip in orientation).
Inset text gives the MANGAID and wavelength of each example.
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fluxes and equivalent widths; (4) fit single-component Gaussian
profiles to the emission lines with simultaneous readjustment of
the stellar continuum using pPXF; and (5) measure spectral
indices, including both absorption-line indices (e.g., HδA;
Worthey & Ottaviani 1997) and “break” indices (e.g., D4000;
Bruzual 1983). Detailed descriptions of these modules and tests
of the efficacy and performance of the DAP are provided by
Westfall et al. (2019) and Belfiore et al. (2019), with the latter
focusing specifically on the emission-line modeling. Below, we
discuss the full-spectrum-fitting modules of the DAP (i.e.,
modules 2 and 4 above) and their corresponding treatment of
the spectral LSF.

4.1. Overview of Spectral Fitting in the DAP

The pPXF approach operates on the fundamental assumption
that a galaxy spectrum is composed of a linear combination of
template spectra convolved with a template-dependent LOSVD.
Ignoring any multiplicative (e.g., attenuation, flux-calibration) or
additive (e.g., sky-subtraction) effects and explicitly including
the convolution by the pre-pixel spectral-resolution kernel,
l( ), and the pixel-sampling kernel, l( ), we can write the

underlying pPXF assertion as (see Cappellari 2017, Equation
(11)):

åº ¢ * * » ¢ * ¢ * *    G G w T , 1j j

i

i i i j( ) ( )

where ∗denotes a wavelength-dependent convolution, ¢i is the

intrinsic LOSVD kernel, G′ and ¢Ti are the intrinsic spectra of the
galaxy and template object, respectively, and the summation runs

over each of the individual template objects. We have additionally

subscripted the observed galaxy spectrum, G, and the associated

spectral-resolution kernel with the index j to emphasize that

MaNGA observations have a range in spectral resolution that vary

both between observations and between spaxels in a given data

cube (Figure 12). Except for templates based on theoretical

models, the ¢Ti are not generally known; instead we have observed
spectra that are taken with their own spectral-resolution and

sampling kernels; i.e., º ¢ * * T Ti i i i. Solving for ¢Ti ,
Equation (1) becomes

å» * ¢ * * * *    G w T , 2j

i

i i i j i i{ ( ) ( )} ( )

where we use * to signify a wavelength-dependent deconvolu-

tion. Although pPXF allows for template spectra with a pixel

sampling that is a fixed integer factor smaller than the sampling

of the galaxy spectrum,23 any differences in the (pre-pixelized)

spectral resolution of the templates and the galaxy data are

ignored.
Standard practice is to use templates that have been

convolved to exactly the same spectral resolution as the galaxy
data, either by observing templates with the same instrument
setup or by degrading the spectral resolution of a set of
templates to match the resolution of the galaxy data. As we
note in Westfall et al. (2019), however, this is hard to do in
practice for many reasons: the reproducibility of the instrument
setup, the uncertainty in the determination of the wavelength-
dependent LSF for both the galaxy and template spectra, and
the redshift difference between the galaxy and template objects.
Moreover, an analysis of the relevant error propagation implies
that it is almost always better to use templates with higher
spectral resolution than the galaxy spectra (Westfall et al. 2019,

Figure 13. Evolution of the MaNGA LSF estimate over the lifetime of the survey. Each panel shows a density plot of the ratio between the LSF vectors for all fiber
spectra in common between MPL-10 and prior data releases DR13, DR14, DR15, and MPL-9.

23
In this case, the convolution by * i( ) is accomplished via a simple

integer rebinning of the convolved template spectra. This functionality ensures
that the LSF of the template spectra is still well sampled, even when the
templates have substantially higher spectral resolution compared to the galaxy
spectrum.
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Appendix B). In the MaNGA DAP, we therefore chose to use
pPXF to fit the galaxy data using templates at their native
spectral resolution. This means that we must construct a
correction that accurately removes the effect of the template-
galaxy spectral-resolution difference to recover the parameters
of the astrophysical LOSVD. In terms of Equation (2), our
approach is to have pPXF fit = ¢ * *   ij i j i( )—the
kernel composed of the astrophysical LOSVD convolved with
the template-galaxy instrumental resolution difference—and
then we construct a correction to ij that yields ¢i. The details
of how the DAP constructs the corrections are different for the
ionized gas and the stars; however, both currently assume that
the template LSF, the MaNGA LSF, and the LOSVD are
single-component Gaussian profiles. This means that the only
parameter of ij that requires correction is the velocity
dispersion.

The key difference between the velocity-dispersion correc-
tions derived for the stars and ionized gas is that the former
ignores the wavelength dependence of * j i( ), whereas the
latter is effectively treated on a line-by-line, wavelength-
dependent basis.

The construction of the emission-line templates is described
in detail by Westfall et al. (2019, Section 9.1). Taking
advantage of the analytic Fourier transform of a Gaussian line
profile (Cappellari 2017), we set the spectral resolution of the
emission-line templates to match the resolution of the MaNGA
data cube up to a quadrature offset in ωPRE, to first order. This
is only done once per data cube, meaning that there are second-
order differences between the resolution of the emission-line
templates and the data given the spaxel-to-spaxel variations in
the LSF and the spectral variation in the LSF over the velocity
scale of the galaxy’s internal motions. That is, * j i( ) is
nearly constant for the emission-line templates. Regardless, the
DAP fits the velocity dispersion of each line (except for the line
doublets listed in Section 4.2.2) independently, which allows
pPXF to account for the second-order LSF effects during the
fit. Moreover, by adding the template-line velocity dispersion
to the pPXF measurement in quadrature, the measurement
reported by the DAP for each emission line is exactly the pre-
pixelized velocity dispersion of the observed line profile
( ¢ * i j from Equation (1)).24 The corrections needed (and

provided by the DAP) to calculate the velocity dispersion of ¢i
consist of, therefore, the pre-pixelized width, ωPRE, of the
instrumental line profile (j from Equation (1)) at exactly the
best-fitting centroid of the line. Specifically, the corrected
velocity dispersion of, e.g., the Hα line is:

s s w= -a a , 3H H ,obs
2

PRE
2 ( )

where σHα,obs is the pre-pixelized velocity dispersion of the

observed line.
In DR15 and subsequent MPLs, the templates used to measure

stellar kinematics are based on a set of 42 composite spectra
generated by the hierarchical clustering of the 985 empirical stellar
spectral of the MILES library (Falcón-Barroso et al. 2011;
Sánchez-Blázquez et al. 2006), i.e., the “MILES-HC” library
(Westfall et al. 2019, Section 5). The MaNGA spectra are fit only
over the MILES spectral range (3575Å<λrest<7400Å). We
adopt a wavelength-independent instrumental resolution of

Δλ=2.5Å for the MILES library (Falcón-Barroso et al. 2011,
see, by way of comparison, Beifiori et al. 2011).25 Given the
MaNGA resolution from Figure 9, * j i( )—and therefore
ij— is wavelength dependent; however, we use pPXF to
instead fit a wavelength-independent parameterization of ij.
Given the complications involved in allowing for a wave-
length-dependent ij and the fact that the stellar kinematics are
determined by all of the absorption features in the MaNGA
spectra, we adopt a simple correction for the stellar velocity
dispersion derived from the average difference in the pre-
pixelized MaNGA and MILES resolution over the fitted
spectral range. The corrected velocity dispersion of the stars
is therefore:

s s w w= - á - ñl , 4,obs
2

PRE
2

MILES
2

* *
( )

where σ*,obs is the velocity dispersion of ij, ωMILES is the pre-

pixelized instrumental dispersion of the MILES spectra, and the

average quadrature difference in the instrumental dispersion

( w wá - ñlPRE
2

MILES
2 ) is computed over the fitted wavelength

range. This approach is shown to be sufficiently accurate for

our purposes (Figure 17 from Westfall et al. 2019, see also

Section 6.2).

4.2. Updates to the DAP since DR15

Since DR15 we have made a few key improvements to the
DAP compared to the algorithms described by Westfall et al.
(2019) and Belfiore et al. (2019). Here we update this
information briefly before discussing the reliability of the
velocity-dispersion measurements in Section 4.3.

4.2.1. Updated Stellar-continuum Templates during Emission-line

Modeling

Measurements of the stellar and emission-line kinematics are
performed by separate modules in the DAP (i.e., modules 2 and
4, respectively). The stellar kinematics are measured first, with
the expected locations of any emission lines masked such that
only stellar templates are included in the pPXF fit. For the
emission-line kinematics, the stellar and emission-line tem-
plates are combined for the pPXF fit with the stellar kinematics
fixed to the results obtained by the previous module. An
advantage of performing the measurements in separate modules
is to, e.g., ensure that the stellar kinematics are uncorrelated
with and insensitive to the modeling of the gas components.
Although the stellar kinematics are held fixed during the
emission-line modeling, the relative weights of the stellar-
continuum templates are re-optimized jointly with the emis-
sion-line templates to ensure the emission-line properties are
not biased by the previous fit (see Belfiore et al. 2019, Section
5.2). This is particularly important when the DAP is used in its
“hybrid binning” mode, where the spatial bins used to
determine the stellar kinematics (g-band S/N10) are

24
Tests have shown that this approach provides results that are virtually

identical to a direct fit of a pixelized Gaussian profile to each line profile.

25
We assume that this is the pre-pixelized LSF width, consistent with our

results in Section 6.2. We note the subtle difference between the value used by
the DAP from Falcón-Barroso et al. (2011) and the value of Δλ=2.54 Å
quoted by Beifiori et al. (2011). The difference between these two
measurements amounts to a 1.6% difference in the MILES instrumental
FWHM, which leads to a ∼3% difference in σ* around 50 km s−1. However,
note that this uncertainty in the MILES spectral resolution has no effect on the
ionized-gas velocity dispersions.
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deconstructed, and the emission-line parameters are fit per
spaxel (Westfall et al. 2019, Section 9.2).

In DR15, both full-spectrum fitting modules used the
MILES-HC templates to model the stellar continuum. How-
ever, given that the templates are re-optimized, this is not
strictly required (see, e.g., discussion by Belfiore et al. 2019,
Section 4). Therefore, for MPL-9 and later, we switch from the
MILES-HC templates in the stellar-kinematics module to a set
of templates derived from our own stellar template library
(MaStar; Yan et al. 2019) in the emission-line module. This
template switch allows us to continue to leverage the higher
resolution of the MILES-HC spectra for the stellar kinematics,
while taking advantage of the longer spectral range of the
MaStar spectra to allow fits to lines such as [S III]λλ9071,9533
lines. Although the details are still being explored, we expect
the use of the MaStar spectra to be subject to systematic
uncertainties that are of the same order as those found by
Belfiore et al. (2019, Section 4).

4.2.2. Updated Line List and Tied Parameters

Since DR15 we have fit additional emission lines to the
MaNGA data beyond those listed by Westfall et al. (2019,
Table 3) and Belfiore et al. (2019, Table 1), in part to take
advantage of the spectral range of the MaStar templates.

These additional lines include the Balmer lines H12λ3750
and H11λ3771, He Iλ3889, [N I]λλ5198,5200, He Iλ7065,
[Ar III]λλ7136,7751, Pa-η λ9015, Pa-ζ λ9229, and [S III]
λλ9069,9531. We have also changed the adopted fixed flux
ratios of some doublets based on an improved calculation (see
Table 3).

While the MaNGA DAP treats the stellar component as a
single kinematic component (see Tabor et al. 2019; Shetty et al.
2020), each emission line is allowed to be largely independent
with a few exceptions. First, the redshift is forced to be the
same for all emission lines in a given spaxel by tying all of the
velocities together, which helps stabilize the fit (particularly for
lines with relatively low flux) against results biased by noise.
Second, virtually all of the 35 velocity dispersions are left free,
allowing us to mitigate systematic errors due to the second-
order wavelength dependence of * j i( ) for the emission-
line templates. The only exceptions to this are the eight line
doublets listed in Table 3; note that He I λ3888.6 and
Hζ λ3889.1 are tied as a practical matter, given that they are
unresolved by MaNGA.

4.3. Precision and Accuracy of the Velocity-dispersion
Measurements

Using a combination of idealized recovery simulations and
analysis of repeat observations (i.e., galaxies observed on more
than one plate and processed into independent data cubes), in
Westfall et al. (2019, Section 7.5) and Belfiore et al. (2019,
Section 3) we explored the precision and accuracy of the
observed line width measurements σ0 for the stars and emission
lines, respectively. Specifically, we found that the formal
uncertainties ε0 reported by the DAP26 were generally reliable
based on comparison with repeated observations, albeit some-
what underestimated at S/N > 100 due to small uncertainties
in the astrometric registration of individual MaNGA exposures
(see discussion by Belfiore et al. 2019).
However, neither Westfall et al. (2019) nor Belfiore et al.

(2019) explored the propagation of these uncertainties in the
observed line widths (along with uncertainties in the estimated
spectral LSF) to the effective uncertainties in the underlying
astrophysical LOSVD. Here, we explore the influence of the
LSF measurements on the accuracy of the emission-line and
absorption-line velocity dispersions, and specifically target the
accuracy of astrophysical measurements of the LOSVD σHα
(Equation (3)) and σ* (Equation (4)). The uncertainty εrec of
these astrophysical widths will be a strong function of both the
total S/N and the astrophysical width itself (as measurements
will become less reliable far below the instrumental resolution).
In Figure 14, we plot the error in the observed velocity

dispersion as a function of the S/N for both the Hα line and the
stellar continuum. For the Hα line, there is a very tight
correlation between the fractional error and the S/N—i.e.,
ε0∝σ0(S/N)

−1
—as expected when fitting a Gaussian line

profile. The distribution for σ* is more complicated because ε0
becomes increasingly independent of σ0 as σ0 becomes small
relative to the instrumental resolution; this effect is illustrated
by analysis of both idealized simulations and repeat observa-
tions by Westfall et al. (2019, Figures 19 and 20).
We use the tight relationship between the fractional error in

ε0/σ0 and S/N for the emission lines to explore the precision
and accuracy of the astrophysical measurements of σHα using a
series of Monte Carlo simulations. The input for each
simulation is the astrophysical LOSVD σHα (for which we
adopt a grid from 1 to 100 km s−1 stepped every 1 km s−1

),
the emission-line S/N (for which we adopt a range from
S/N=5–100), the instrumental LSF wPRE (which, for simplicity,
we fix to be 67.6 km s−1, the median at the wavelength of Hα for
the MPL-10 sample), the fractional error in the observed line
width ε0/σ0 at a given S/N from the relation shown in Figure 14,
and an estimated 3% statistical uncertainty in the LSF (see
Section 6.3). For each combination of σHα and S/N, we draw 105

samples from the error distributions27 for both σ0 and ωPRE, and
compute the mean (σrec) and rms (εrec) of the 10

5 astrophysical
velocity dispersions recovered following Equation (3).
The stellar velocity dispersions are significantly more

complicated to model in detail as they are derived from a
simultaneous fit across a wide range of different wavelengths.

Table 3

Tied Emission Linesa

Doublet/pair Flux ratio

[O II] λλ3726,3729 L

[Ne III] λλ3869,3967 1/0.3

He I λ3889, Hζ L

[O III] λλ4959,5007 0.35

[N I] λλ5198,5200 L

[O I] λλ6300,6364 1/0.32

[N II] λλ6548,6583 0.34

[S III] λλ9069,9531 0.41

Note.
a
All pairs listed have their velocity dispersions tied. Only those lines with data

in the second column have their fluxes tied.

26
That is the errors determined from the fit covariance matrix (see, e.g., Press

et al. 2007, Section 15.5) and the inverse variance vectors provided by
the DRP.
27

We test both an inverse gamma distribution (MacKay 2003, Section 24.1)
and a simplified Gaussian distribution model with matched mode and rms. The
differences between these distributions are negligible for high S/N, but become
appreciable when the fractional error in σ0 is 10%.
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However, we obtain a rough estimate of their reliability by

performing a similar series of Monte Carlo simulations using

ωPRE=74 km s−1
(i.e., an average value throughout the

wavelength range of interest), combined with the observed

error distribution in the observed stellar line widths.
As illustrated by Figure 15, the recovered line widths are

most reliable at high S/N and high intrinsic astrophysical

velocity dispersions, and the effective errors εrec in the

recovered line width increase dramatically toward lower S/N.
In addition, below the instrumental resolution, we note a

systematic positive bias in the recovered velocity dispersions

whose strength increases toward lower S/N and lower σHα or

σ*. This expected behavior arises because of the asymmetric

error distribution; namely, data points whose measured line

widths (after application of mock measurement errors) are less

than the instrumental line width produce imaginary astro-

physical widths following Equations (3) or (4) and are thus

preferentially lost from the sample.
In a per-spectrum sense, Figure 15 can be interpreted as

giving the S/N cut required in order for the measurements to

reach a given accuracy. In order to obtain velocity dispersions

at σHα=20 km s−1 for which all data points have less than

1 km s−1 systematic error, for instance, the spaxel sample must

be restricted to those with Hα S/N > 50, for which the typical

statistical uncertainty εrec will be about 5 km s−1. Although

more stringent cuts in S/N would produce samples with less

systematic bias, the gain in such cases must be weighed against

the dramatically decreased sample size at larger S/N
thresholds.
We note that similar analyses have been performed for both

the SAMI and CALIFA surveys, for which qualitatively similar
trends are observed. Falcón-Barroso et al. (2017), for instance,
note that the recovered stellar velocity dispersions in CALIFA
are systematically larger than expected below σ*=40 km s−1,
at which point the random typical uncertainty in individual
measurements is about 20%. Likewise, Fogarty et al. (2015)
and van de Sande et al. (2017) find that systematic uncertainties
in the instrumental resolution dominate the SAMI error budget
for stellar velocity dispersions below σ*=35 km s−1 and
recommend a variety of quality cuts in both S/N and σ*
accordingly.

4.4. Consistency between Multiple Lines

In Belfiore et al. (2019, see their Figure 21) we noted that the
astrophysical velocity dispersions computed from a variety of
nebular emission lines were broadly consistent with those
estimated using Hα. In Figure 16 we repeat this exercise for the
MPL-10 data products and plot LOSVD ratios as a function of
σHα for all star-forming spaxels28 in which both emission line
are detected with S/N > 50. Given the large wavelength
difference between [O II] and Hα, we additionally restrict [O II]
observations to those with a Balmer decrement indicative of
minimal dust attenuation ( fHα/fHβ<3.5).
We find that [O II], Hβ, [O III], [N II], and [S II] velocity

dispersions all match σHα to within a few percent, suggesting
that there are no significant wavelength-dependent errors in
the MaNGA LSF compared to the performance around Hα.
Indeed, for σHα>30 km s−1, the small offsets that we see
between the dispersions of different ions may be genuinely
astrophysical in origin as the relative offset appears to be
correlated with the ionization energy. The S+ ion for instance
has an ionization energy of 10.4 eV, and median σ[S II]/σHα=
0.989, while the H+ and O+ ions (both with 13.6 eV ionization
energy) have median σHβ/σHα=1.004 and σ[O II]/σHα=1.014,
respectively. Likewise, the N+ and O++ ions have ionization
energies of 14.5 and 35.2 eV, respectively, and median σ[N II]/
σHα=1.027 and σ[O III]/σHα=1.038.
We note, however, that all four lines except [O III] show a

∼10% turnup in their velocity dispersion relative to Hα at
the lowest values of σHα∼20 km s−1. If this were due to a
systematic error in the LSF, it would imply a ∼0.8% offset
relative to Hα. However, this appears implausible given the
small separation between Hα and [N II] in wavelength, and the
well-sampled, well-behaved LSF in this range (see, e.g.,
Figure 9). Likewise, interpolation of the positivity bias from
Figure 15 due to the differential S/N of Hα and the other
emission lines suggests that this could account for at most a 1%
deviation rather than the 10% observed.
The few-percent trends visible in Figure 16 may therefore

be telling us more about the ionization structure of H II regions
in the MaNGA galaxy sample rather than any low-level,
systematic, and wavelength-dependent uncertainty in the
spectral LSF of the instrument. Indeed, as we demonstrate in
a forthcoming contribution (Law et al. 2020), typical gas-phase
velocity dispersions can vary substantially depending on the

Figure 14. Top panel: fractional uncertainty ε0/σ0 in the observed emission-
line width reported by the DAP as a function of emission-line S/N (colored
density map). Bottom panel: uncertainty ε0 in the stellar absorption-line
measurements as a function of the g-band continuum S/N. In both panels, the
white solid line indicates our functional fit to the relation. Note that the sharp
feature around S/N=10 for the stellar absorption-line measurements is an
artifact of the Voronoi binning.

28
Defined here as those with [O III]/Hβ versus [N II]/Hα line ratios below the

relation defined by Kauffmann et al. (2003); see further discussion in Law et al.
(2020).
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selection method since these kinematics are strongly correlated
with the ionization mechanism as traced by line ratios such as
[N II]/Hα, [S II]/Hα, and [O III]/Hβ.

5. Beam Smearing

An additional consideration in the use of any velocity
dispersions provided by the MaNGA DAP is the impact of
beam smearing, or the effective broadening of velocity
dispersions in a given spaxel by velocity gradients in the
galaxy on scales comparable to the MaNGA point-spread
function. The DAP does not correct for this effect, but given

the typical MaNGA spatial resolution of 2 5 FWHM (see,
e.g., Figure 17 of Law et al. 2016), beam smearing can be
significant, especially for edge-on high-mass galaxies at
the high redshift end of the sample.
This problem is well known in the literature (e.g., Weiner

et al. 2006; Epinat et al. 2010; Stott et al. 2016; Johnson et al.
2018; Varidel et al. 2019), and a variety of techniques have been
developed to attempt to correct for it ranging in sophistication
from simply ignoring the most-affected spaxels (e.g., Zhou et al.
2017) to quadrature subtraction of the local velocity gradient
(Varidel et al. 2016; Oliva-Altamirano et al. 2018), Bayesian
inference modeling (Varidel et al. 2019), and dynamical (e.g.,
Cappellari 2008) or 3D forward modeling of the observed data
(e.g., Bouché et al. 2015; Bekiaris et al. 2016; Di Teodoro &
Fraternali 2015). In the present study, we are bounded by our
desire to make as robust a correction as possible, minimize loss
of data, and also use a technique that can be practically applied
to all ∼10,000 galaxies in the MaNGA sample without requiring
substantial computing resources.29 We therefore adopt a hybrid
approach in which we correct for beam smearing estimated
from a 3D model based on the observed velocity field of each
galaxy, and additionally mask out from our analysis all spaxels
within 4″ radius of the center of each galaxy for which the
beam smearing correction will be most uncertain.
For each MaNGA galaxy, we first mask out all spaxels in the

DAP Hα velocity map that have Hα S/N < 3, or that have
nonzero data quality bits set in the flux, velocity, or velocity-
dispersion mask extensions. Next, we create a 3D model cube
matched to the galaxy spaxels in which each non-masked

Figure 15. Top panels: sigma-clipped mean recovered velocity dispersion σrec as a function of the intrinsic astrophysical velocity dispersion for Monte Carlo
simulations of emission lines and stellar absorption lines at a variety of S/Ns. Recovered velocity dispersions σrec are systematically larger than the astrophysical
velocity dispersions (σHα and σ*) at low dispersion due to the preferential loss of spaxels with observed line widths below the instrumental resolution from the sample.
Bottom panels: typical fractional rms error εrec/σHα and εrec/σ* as a function of intrinsic dispersion for Monte Carlo simulations at a variety of S/Ns. In all panels,
dashed lines represent simulations that adopt an inverse gamma error distribution, while solid lines represent simulations that adopt a simplified Gaussian distribution.

Figure 16. Ratio between Hα velocity dispersion and velocity dispersions of
[O II] λ3727, Hβ [O III] λ5008, [N II] λ6584, and [S II] λ6717 as a function of
σHα. For each emission line, the sample is limited to star-forming spaxels for
which both Hα and the other emission line are detected with S/N > 50. Filled
points show the sigma-clipped mean of the distribution while the error bars
indicate the 1σ width of the observed distribution (uncertainties in the mean are
smaller than the symbols).

29
At 450hr per galaxy for instance, applying the BLOBBY3D bayesian

mixture algorithm described by Varidel et al. (2019) to our data would require
roughly 20 times the computing time required to generate the full DRP+DAP
survey results from the raw observational data for MPL-10.
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spaxel has a spectrum composed of a single emission line
normalized to unity with a 1σ width 40 km s−1 and central
wavelength shifted by the Doppler velocity given by the DAP
velocity map.30 This data cube is spatially convolved with the
effective r-band PSF of the galaxy, effectively smearing
together individual spectra in a manner that mimics the
observed beam smearing. The resulting spectrum in each
spaxel of the convolved cube is then fit with a Gaussian, and
the initial 40 km s−1 line width is subtracted in quadrature from
the measured width in order to determine a map of the effective
beam smearing.

We illustrate this process in Figure 17, showing the observed
velocity field and velocity-dispersion corrections for four example
galaxies that span the range of MaNGA observations from nearby
face-on objects (a best-case scenario) to distant edge-on objects (a
worst-case scenario). As expected, beam smearing corrections vary
significantly from ∼5–10 km s−1 at large radii for face-on galaxies
such as 11944–12704 to 50 km s−1 or more in the centers of
highly inclined galaxies such as 8996–12705. As illustrated by
Figure 17, corrected velocity-dispersion maps in which the beam
smearing contribution has been subtracted in quadrature from the
observed values are relatively constant outside the central regions
of MaNGA galaxies (peaking again in low-S/N regions toward the
edges of the IFUs).

In addition to astrophysical processes, e.g., active galactic
nuclei (AGNs) and spheroidal populations of old stars, that can
produce broadened values of σHα in the central regions of our
galaxies, these central peaks may also be due in part to
limitations in our beam smearing correction. Strictly, in the
approach described above, the true galaxy velocity field has
been convolved with the observed PSF twice; once to produce
the observed velocity map, and again during the model cube
convolution. This effectively produces shallower velocity
gradients in central regions of the galaxy, causing us to
underestimate the true beam smearing in these regions. If we
instead use a forward model (similar to that used by Westfall
et al. 2014) to simultaneously fit the gas velocity and velocity-
dispersion fields for the example galaxies shown in Figure 17,
we derive beam smearing corrections for which the median
absolute difference is just 2 km s−1

(i.e., insignificant when
subtracted in quadrature), suggesting that outside the central
regions, the difference between using the two models is
small.31 It may nonetheless be advisable for some science
analyses to exclude spaxels within a 3″–4″ radius (i.e., ∼1.5
times the typical PSF FWHM; black circles in Figure 17) from
consideration.

The effective beam smearing correction appropriate for stellar
kinematics is more complicated to derive in detail, since the stellar
kinematics provided by the DAP are derived from a simultaneous
fit to multiple absorption lines at different wavelengths. However,
we obtain a first-order estimate by repeating the same analysis as
above and simply using the stellar velocity field in place of the
ionized-gas velocity.

6. External Assessment of the MaNGA Kinematics

6.1. Comparison to High-resolution Stellar Spectra

As a part of the MaStar stellar library program, we observed
six bright stars (HD 284248, HD 37828, NGC 2682 108, NGC
6838 1009, HD 23924, and [W71b] 008-03) that had previously
been observed at higher spectral resolution by X-Shooter. Since
these stars have visual magnitudes g=6–13 that are signifi-
cantly brighter than typical MaNGA/MaStar targets, observa-
tions were made using custom 10–250s exposures instead of the
usual 900s exposures. Since night skylines are too faint to be
observed reliably in such short exposures, the DRP skips the
skyline adjustment step (Section 3.3) for these observations and
relies entirely upon the arc-lamp LSF solution.
We compared the final 1D spectra of these six stars produced

by the DRP to high-resolution template spectra drawn from the
X-Shooter Spectral Library (XSL; Chen et al. 2014). Spectra
for HD 284248 and HD 37828 were taken from XSL DR1
(Chen et al. 2014) and have been processed with a unified
resolution of R=7000 across the wavelength range λ=
3000–10185Å, while the remaining four stars were taken from
XSL DR2 (Gonneau et al. 2020) and have spectral resolution
R=9793/11573 in the MaNGA blue/red wavelength ranges,
respectively. After converting the X-Shooter templates to the
MaStar vacuum rest-frame wavelength solution and rebinning
them to a constant pixel size of 30 km s−1, we broke the spectra
into 200–400Å windows stepped every 100Å and measured
the effective spectral resolution based on a convolution of
the high-resolution templates. After rejecting wavelength
regions for which the MaStar and X-Shooter spectra do not
match each other well (e.g., due to differences in the correction
from telluric absorption bands), we plot the X-Shooter-derived
LSF of the MaStar spectra against the DRP estimates in
Figure 18.
As indicated by Figure 18, the effective spectral LSF derived

from the X-Shooter spectra is generally in excellent agreement
with the DRP-estimated LSF throughout the entire wavelength
range. Although there are small systematic deviations for some
of the stars (e.g., 12185–3703), these are generally within the
uncertainty of the convolution technique given calibration
differences between the spectra.

6.2. Comparison to the MILES Spectral Library

While Section 6.1 qualitatively suggested that the MaNGA
LSF estimate was reasonable in the case of a single object with
extant high-resolution data, the MaSTAR stellar spectral library
provides an opportunity to test the pipeline-estimated LSF in a
statistical manner as well. Barring unusual broadening due to
stellar rotation and atmospheric features, the observed absorp-
tion-line width in a given MaSTAR spectrum should be similar
to other stars of similar spectral type. Hence, comparing these
MaSTAR spectra to those from a spectral template set with an
established LSF we can test the robustness of the MaNGA LSF
measurements.
For this test we conduct full-spectrum fitting of a large

sample of MaSTAR spectra using the pPXF algorithm
(Cappellari 2017) and the MILES-HC spectral template set
(see Section 4.1, and Section 5 of Westfall et al. 2019). Since
the LSF of the MILES stellar library is both well studied
(ωMILES=2.54Å FWHM; Beifiori et al. 2011) and has
slightly higher resolution than MaSTAR, a strong test of the
accuracy of the MaNGA LSF estimate can be provided by

30
The choice of 40 km s−1 is unimportant, and chosen to be small enough that

broadening effects are easy to measure without producing double-peaked line
profiles; the resulting beam smearing correction changes by just <1 km s−1 on
average for any choice of model widths from 20 to 70 km s−1. Likewise, the
derived correction is insensitive to whether or not we rebin the velocity field to
a smaller pixel scale prior to constructing the 3D model.
31

Indeed, while the simple correction from the observed velocity map is
imperfect in regions where the velocity gradient is extremely steep, it can
nonetheless capture non-rotational kinematic effects missed by the method that
assumes a fixed intrinsic form for the underlying velocity field.
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comparing the broadening required to reproduce the MaSTAR
spectra using the MILES-HC templates:

w w= -A 5Fit
2

MILES
2 ( )

against the expected broadening factor based on ωMILES and the

pipeline-reported LSF ωPRE:

w w= -B . 6PRE
2

MILES
2 ( )

In this test we compute A for a random sample of 5000
spectra from the MaSTAR sample of “Good Visit” spectra,

which are single-visit observed spectra without extinction

issues, having a median S/N per pixel greater than 15 and that

pass a visual inspection for other quality problems (Yan et al.

2019). Due to the limited wavelength coverage of the MILES

stellar library (and hence the MILES-HC templates), for this

test we fit the MaSTAR spectra within a wavelength range of

3620–7400Å. The full-spectrum fit is conducted using eight

additive and multiplicative polynomials in order to account for

issues of flux-calibration errors, reddening, template mismatch,

etc. (see, e.g., Westfall et al. 2019).

Figure 17. Beam smearing correction for four example galaxies selected to be widely representative of the MaNGA star-forming galaxy sample. Left to right, each
panel shows the DAP Hα velocity map, our derived beam smearing correction σbeam, the gas velocity dispersion before (σ1) and after (σ2) application of the beam
smearing correction, and a color image of the galaxy from SDSS imaging with the hexagonal IFU footprint overlaid in purple. The red circle in the second panel from
the left indicates the FWHM of the MaNGA data, while the solid black circles in the four left-most panels illustrates the region with radius 4″ that we exclude from our
future dispersion analyses. Examples are shown for a high-mass face-on galaxy (11944–12704; log(M*/Me)=11.1, i=36°, z=0.069, 1.5 Re sample), a high-mass
edge-on galaxy (8996–12705; log(M*/Me)=10.8, i=64°, z=0.048, 1.5 Re sample), a low-mass face-on galaxy (9193–3701; log(M*/Me)=9.2, i=41°,
z=0.023, 1.5 Re sample), and a distant high-mass edge-on galaxy (11019–12701; log(M*/Me)=11.1, i=71°, z=0.12, 2.5 Re sample).
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Defining w w d= +1Fit PRE ( ) for some small δ, we can then
write

w d w
w w

=
+ -
-

A

B

1
. 7

2

2

PRE
2 2

MILES
2

PRE
2

MILES
2

( )
( )

Dropping terms d 2( ), we can solve Equation (7) for δ and find
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In Figure 19, we show the distribution of w w =
d+PRE Fit

1

1

for the 5000 MaSTAR spectra in our sample. For MPL-9, we
find that the distribution has a sigma-clipped mean of 0.97 and
1σ width of 0.05; i.e., suggesting that the the MPL-9 LSF is
underestimated by about 3%. In contrast, for MPL-10, the
distribution has a sigma-clipped mean of 0.99 and a 1σ width
of 0.04, indicating that both the scatter of the distribution has
decreased and the overall agreement between the pipeline and
MILES estimates has improved to within 1%.32 This result is
broadly consistent with Figure 13, which found that the MPL-9
LSF estimate was ∼2%–3% narrower than the MPL-10
estimate in the wavelength range covered by the MILES
library.

We note a few important caveats to this result however. First,
the stellar absorption-line kinematics are the product of a
convolution across a wide range of wavelengths across which
the MaNGA LSF varies substantially. As such, the actual
accuracy of the pipeline LSF at a given wavelength may be
better or worse than 1%, depending on the effective weight of
that wavelength range in driving the stellar population model
fit. Likewise, our result is predicated upon the assumption that

the MILES spectral resolution itself has <1% systematic error
(statistical uncertainties are known to be ∼3%, see Falcón-
Barroso et al. 2011), and that there are negligible systematic

Figure 18. Internal pre-pixel DRP estimate of the spectral LSF for six bright MaStar targets (solid black lines) compared to empirical estimates derived via comparison
of the MaStar spectra with previous R=7000–11,000 X-Shooter spectra (red points, with 1σ uncertainties). Points are shown only for spectral bins in which the
MaStar and convolved X-Shooter spectra are visibly well matched. No high-quality X-shooter spectra are available for short wavelengths in [W71b] 008-03.

Figure 19. Ratio of the MaNGA LSF estimated from the pipeline (ωPRE) vs.
that derived from full spectral fitting with a series of MILES-HC templates
(ωFit) for 5000 MaSTAR stellar spectra in MPL-9 and MPL-10. In each panel
the solid red line indicates the sigma-clipped mean of the distribution, while the
dotted red lines indicate the 1σ width of the distribution.

32
Westfall et al. (2019, Figure 17) shows the results of a similar test, finding

A/B=1.00 for MPL-9, corresponding to ωMPL−9/ωFit=1.00. However, our
previous analysis mistakenly used the post-pixel LSF estimate ωPOST instead of
ωPRE as should have been applied for a spectral convolution kernel, which
approximately canceled out the error in the MPL-9 LSF (Figure 13).
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differences due to template mismatch between MILES-HC and
the MaSTAR sample.

6.3. Comparison to the DiskMass Survey

Perhaps the strongest possible test of the MaNGA LSF
model for emission-line kinematics is to compare the derived
galaxy-resolved velocity-dispersion profile σHα in the face of
LSF variations, beam smearing, and other factors against prior
observations of the same galaxies from higher-resolution IFU
observations. We therefore compared the MaNGA data against
Hα observations33 from the DiskMass survey (Bershady et al.
2010a, 2010b; Westfall et al. 2011, 2014; Martinsson et al.
2013), which used the SparsePak IFU (Bershady et al. 2004,
2005) on the 3.5 m WIYN telescope to obtain R∼10,000
(σinst=12.7 km s−1

) fiber spectroscopy of 176 spiral galaxies
oriented nearly face-on to the line of sight. SparsePak fibers
have 4 7 diameters. As of MPL-10, MaNGA has observed
seven galaxies in common with DiskMass (see Table 4), which
can be identified via targeting bit 216 in the ancillary target flag
MANGA_TARGET3.

We compare the MaNGA and DiskMass samples by
extracting kinematic data for all good-quality spaxels with
S/N > 50 in the common region of overlap 4″<r<15″. This
radial cut is designed to exclude the central regions of the
galaxies for which beam smearing is most significant and for
which at least one galaxy (UGC 4368) exhibits Seyfert-I type
AGN contributions to the Hα emission. In Figure 20 we plot a
histogram34 of the raw DiskMass and MaNGA measurements
(i.e., uncorrected for beam smearing) for both MPL-9 and
MPL-10. As illustrated in the left-hand panel, MPL-9 is
appreciably biased with respect to the DiskMass data, peaking
at 23.3 km s−1 instead of 16.7 km s−1, indicative of a 2.9%
systematic underestimate in the LSF. In contrast, the MPL-10
histogram peaks at 18.2 km s−1, matching the DiskMass data to
within a 0.6% systematic error in the LSF around Hα. If we
account for the expected positivity bias in the MaNGA
observations from Figure 15, this agreement improves further
to about 17.4 km s−1, or about 0.3% systematic error in the
LSF. Similarly, this level of agreement is largely insensitive to

whether or not we apply a beam smearing correction to the
MaNGA data; following the method described in Section 5, the
corrected MPL-10 data matches the DiskMass observations to
within 0.3%, and we obtain a comparable result if we instead
estimate the beam smearing correction using a Bayesian
forward model of a disk-like rotation curve.
We can also use the relative widths of the DiskMass and

MaNGA MPL-10 distributions to assess the statistical error in
individual estimates of the LSF. Assuming that the DiskMass
histogram represents the true astrophysical range of σHα

35, we
construct a Monte Carlo simulation with line width values
drawn from the DiskMass distribution and convolve them with
our median LSF of 68.5 km s−1 to create a mock set of
observations. We then perturb these values by random errors
combining the DAP-reported uncertainties in individual
measurements (accounting for the plateau at high S/N
discussed in Section 4.3) and some statistical uncertainty in
the LSF. After subtracting the LSF from these perturbed values
in quadrature, we compare the width of the simulated
distribution to the MPL-10 observations. This exercise suggests
that the statistical uncertainty in the LSF around Hα for a given
spaxel is about 2%, corresponding to 1.4 km s−1

(i.e.,
comparable to the uncertainty in the measured line widths at
high S/N).

6.4. Comparison to the SAMI Survey

As a final consistency check, we additionally compare the
MaNGA data against similar observations obtained by the SAMI
survey (Bryant et al. 2015) using the Sydney-AAO integral field
spectrograph (Croom et al. 2012) on the Anglo-Australian
Telescope. While SAMI has a similar spectral resolution to
MaNGA in its blue arm, around Hα, SAMI has a spectral
resolution R∼4300 delivering a 1σ LSF ωSAMI=30 km s−1.
In MPL-10 we find that there are 74 targets observed in

common between MaNGA and SAMI DR2 (Scott et al. 2018),
and we select the 23 that have been observed with MaNGA’s
largest IFU bundle size (12 of which have significant Hα
emission) for comparison. For each of these 12 galaxies, we
extract the DAP kinematic measurements for all good-quality
spaxels with S/N > 50 in the common radial range
3″<r<7 5, where the upper boundary is set by the size of
the SAMI field coverage. Similarly, we extract all of the Hα
kinematic measurements for these same galaxies provided by the
SAMI DR2 public data products, introducing a limiting flux cut
of 2×10−17 erg s−1 cm−2 Å−1 spaxel−1, which visual inspec-
tion suggests selects a nearly identical range of spaxels for SAMI
as the S/N>50 cut does for MaNGA.
As we demonstrate in Figure 21 (top panels), despite the 2.3x

higher spectral resolution of SAMI, the MaNGA MPL-10 Hα
velocity dispersions are in excellent agreement with the values
provided by SAMI DR2, with the centroids of the respective
histograms matching each other to within 0.7 km s−1. As
expected, the MPL-9 velocity dispersions are, in contrast,
systematically too large by about 7 km s−1, consistent with our
comparison against the DiskMass observations.
In addition to the statistical agreement between the MaNGA

MPL-10 and SAMI DR2 velocity dispersions, we note also the
excellent agreement in terms of the resolved spatial structures.
In Figure 21 (bottom panels), we show an illustrative example

Table 4

MaNGA DiskMass Overlap Sample

Plate-IFU Name Redshifta Inclinationa Stellar massa

(log(M*/Me)

8566–12705 UGC 3997 0.0198 32° 10.1

8567–12701 UGC 4107 0.0117 24° 10.4

8569–12705b UGC 463 0.0148 28° 10.8

8570–9101b UGC 1087 0.0152 16° 10.3

8939–12704 UGC 4368 0.0129 36° 10.5

10494–12705 UGC 4380 0.0249 16° 10.8

10510–12704 UGC 6918 0.0037 30° 10.0

Notes.
a
Derived from the NASA Sloan Atlas (Blanton et al. 2011) assuming h=0.7

and a Chabrier (2003) IMF.
b
Not observed prior to MPL-10.

33
Although the DiskMass survey observed [O III] as well, MaNGA does not

detect [O III] from DiskMass galaxies at a sufficiently high S/N to enable a
robust comparison.
34

Strictly, we sum the normalized histograms of σHα for each galaxy to ensure
that no one galaxy dominates the distribution if it has more high-S/N spaxels
than the others.

35
Accounting for the median 1 km s−1 uncertainty in the DiskMass

measurements has a negligible impact on our results.
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of the Hα flux, velocity, and velocity-dispersion maps
produced independently by the two surveys. The level of
agreement between the two is exquisite, with even small and
apparently insignificant features in the dispersion map appear-
ing nearly identically in both sets of observations.

7. Summary

We have presented a major update to the MaNGA DRP that
dramatically revises the treatment of the spectral LSF compared
to both previous versions of the MaNGA DRP and the prior
SDSS spectroscopic pipeline from which many original
MaNGA routines were derived. After demonstrating that the
LSF can be reliably parameterized as a Gaussian function with
1σ width ω (Figure 2), we showed in Section 3 that it is
possible to use individual arc-lamp exposures in combination
with unresolved night-sky emission features to construct a
model of the LSF for all of the MaNGA fiber spectra. These
models retain both pre-pixellized and post-pixellized measure-
ments (i.e., measurements that either do or do not account for
the contribution of the top-hat pixel response function to the
effective LSF) and are carried through the pipeline accounting
for various broadening terms to produce 3D LSF cubes
corresponding to each of the MaNGA galaxy data cubes.

These LSF data cubes are then used by the MaNGA DAP
(see Section 4) to produce kinematic maps that robustly
subtract the instrumental contribution to the observed spectral
line profiles. An important additional ingredient in such
analyses that is not accounted for in the default DAP products
is beam smearing, wherein the ∼2 5 FWHM MaNGA spatial
PSF in the reconstructed data cubes can inflate the apparent line
width from unresolved velocity gradients. As we demonstrated
in Section 5, although typical beam smearing corrections in the
radial range studied here (i.e., r>4″) are small, they are
nonetheless important at the few kilometers per second level
and must be taken into account by science analyses that aim to
study the cold disk regime around σHα=10–30 km s−1.

Using Monte Carlo simulations, we demonstrated that the
MaNGA DAP data products are reliable down to at least
σHα=20 km s−1for spaxels with S/N > 50 with a typical
statistical uncertainty of 4–6 km s−1 and <1 km s−1 systematic

bias (Figure 15). At lower σHα and/or lower S/N, the data

exhibit increasingly large systematic biases toward larger values

of σHα due to the asymmetric error distribution (i.e., spaxels

whose measured line width scatters to below the nominal

instrumental resolution are effectively lost from the sample). At

other wavelengths, we showed in Section 4.4 that σ[O II], σHβ,
σ[O III], σ[N II], and σ[S II] are consistent with σHα to within 2% at

σHα>30 km s−1, with possible evidence for systematic varia-

tion as a function of ionization energy (Figure 16).
We have confirmed these findings by direct comparison of the

MANGA data against higher-resolution external data. Qualita-

tively, we showed in Section 6.1 that the pipeline-estimated LSF

is consistent to within the uncertainty with the LSF derived from

comparing MaSTAR spectra of six bright stars against

R∼7000–11,000 X-Shooter spectra. Quantitatively, we demon-

strated in Section 6.2 that the overall pipeline LSF estimate is

consistent at the 1% level with external assessments using the

MILES stellar spectral library to perform full spectral fitting of

5000 stars drawn at random from the MaSTAR sample. Further,

in Section 6.3 we demonstrated that the end-to-end derived

MaNGA data products give Hα velocity dispersions peaking

around σHα=18.2 km s−1 for seven galaxies in common with

the R∼11,000 DiskMass IFU survey (Figure 20). Given the

DiskMass result of σHα=16.7 km s−1, this implies that the

MaNGA LSF in the vicinity of Hα has a systematic uncertainty

of�0.6% and a statistical uncertainty of 2%. Finally, we showed

in Section 6.4 that the MaNGA Hα velocity dispersions are

consistent with those derived from R∼4300 observations from

the SAMI survey, with the distribution of values for a sample of

12 galaxies observed in common by the two surveys agreeing to

within 0.7 km s−1.
We therefore conclude that the MaNGA data products

provided with internal release MPL-10 are sufficiently well

calibrated to allow scientific analysis of the ionized-gas

velocity dispersions down to about 20 km s−1 with sufficient

care and attention to detail. Previous public MaNGA data

releases (DR13, DR14, DR15) exhibit few-percent systematic

biases in the instrumental LSF however (see Figure 13) that

will complicate efforts to perform such analyses. Updated

MaNGA products will be released publicly in DR17.

Figure 20. Distribution of Hα gas-phase velocity dispersions in the radius range 4″<r<15″ for the seven galaxies observed in common with the DiskMass survey.
The peak of the MPL-9 distribution is offset from the DiskMass distribution by about 7 km s−1, while the peak of the MPL-10 distribution matches to within
1.5 km s−1. Note that the DiskMass histograms differ slightly between panels as there are fewer galaxies in common with MPL-9 than with MPL-10.
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indicate the SAMI field of view. Note how even small irregularities in the velocity-dispersion maps are seen in both the MaNGA and the SAMI data.
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Appendix A
Changes to MaNGA Fiber-bundle Metrology

The relative positions of individual fibers within each
MaNGA IFU were measured in the lab to an accuracy of
∼0.3 μm, corresponding to 5 mas projected on the sky (Drory
et al. 2015, their Section 4.5). However, the overall scale factor
of the lab measurements was less well calibrated, resulting in a
few-percent systematic uncertainty in the size of the IFU as a
whole. With the advantage of years of on-sky observations, it
has been possible to use MaNGA observations to empirically
constrain any such systematic scale factor offsets and correct
them in the survey metadata.

As discussed by Law et al. (2016, see their Section 8.2), the
MaNGA DRP includes an “extended astrometry module”
(EAM) that compares the galaxy images reconstructed from the
IFU data to pre-existing SDSS broadband imaging photometry
in each of the griz bandpasses. While the EAM is used
automatically to determine any astrometric pointing or
rotational offsets in individual exposures (due, e.g., to
inaccuracies in the drilled plate hole locations, telescope
pointing/guiding, and clocking biases from the tension of the
IFU fibers within a given cartridge), it is also possible to adapt
it to solve for any global scale factor offsets as well.

In Figure A1 we show the results of running the EAM with a
global scaling term on all 6779 data cubes in MPL-8 using the
original lab-based fiber metrology, and averaging over all
galaxies observed with a given one of the ∼100 MaNGA
science IFUs (17 science IFUs in each of six carts, with some
additional spares swapped in over the lifetime of the survey).
Although the optimal scale factors derived from individual
galaxies can by noisy (particularly for relatively featureless
galaxies), the average over many tens of galaxies per fiber
bundle is extremely well behaved and shows that while the
initial 30 IFUs built for MaNGA commissioning were correct
to better than 1%, the remaining IFUs built during production
had lab-measured scale factors that were systematically too
large by 2%.

In v2.5.3 of the MaNGA DRP, we corrected the fiber-bundle
metrology for this 2% scale error, along with an additional
0.5% in v2.7.1 based on an improved analysis permitted by the

increasing number of galaxy observations. After applying these
corrections, all scale factors derived by the EAM are consistent
with unity to within 0.3%.
In practice, the impact of these changes between DR15

(v2.4.3) and MPL-10 are minimal and too small to detect for
individual galaxies since a 2% scale factor change corresponds
to a 0 5 astrometric shift at the edges of the largest MaNGA
fiber bundles. However, since the metrology of the calibration
minibundles also changed, there was a corresponding change in
the derived flux calibration. Since the bundles effectively got
slightly smaller, the derived PSF shrank, corresponding to
reduced throughput at fixed recovered values, causing a
correction that produces data cubes whose fluxes are system-
atically brighter. In combination with the change from the
O’Donnell (1994) to Fitzpatrick (1999) extinction curves, the
typical galaxy thus became brighter by about 3% in v2.5.3
compared to v2.4.3.

Appendix B
Mitigation of the r1 “blowtorch” Artifact

Starting in Summer 2019, the r1 detector (one of the four
BOSS CCDs) developed a persistent electronic artifact dubbed
the “blowtorch” in which a region of extremely bright pixels
produced a widespread glow that contaminated the lower-left
region of the detector. Although multiple efforts were made to
identify and fix the physical cause of the artifact, none of these
efforts were wholly successful, and the MaNGA DRP therefore
had to be modified to satisfactorily model and subtract this
artifact from much of the final year of observational data.
As illustrated in Figure B1 (left column), the strength of the

artifact was variable with time ranging from low (median signal
�30 e- pixel−1 in the peak affected region), to moderate
(median signal �1500 e- pixel−1

), to severe (up to about 9000
e- pixel−1

). Of the 1878 MaNGA science exposures from the
final year of the survey, 157/1471/250 fall into each of these
three categories, respectively.
As of DRP v3.0.1, for all frames in which the artifact is

greater than 30 e- pixel−1 in strength, the DRP creates a model
for the blowtorch component by first masking out all pixels
near the fiber traces and then going row by row through the

Figure A1. Fiber-bundle size scaling factor derived from comparing
reconstructed MaNGA IFU data against SDSS broadband imaging as a
function of the IFU harness identifier. Values shown represent averages over all
galaxies observed with a given IFU. Note the 2% offset between empirical
measurement and lab-derived scaling factors for harnesses in the MaNGA
production run (MA part numbers greater than 30) compared to the
commissioning harnesses. Gaps in the plotted points correspond to seven-
fiber minibundles for which no scaling information is available.
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data, fitting a cubic spline function to the unmasked data points.
This spline is constrained to have more closely spaced
breakpoints in the region nearest to the artifact and widely
spaced breakpoints at larger distance to avoid unphysical
structure in the model far from the artifact. These row-by-row
models are then fit with a second spline model running column-
by-column in order to enforce smoothness of the final model in
both detector dimensions.

Figure B1 (middle column) demonstrates that the residual
detector image after subtraction of the spline model is relatively
clean. Indeed, for moderate severity artifacts, the Poisson-
normalized image (i.e., the residual count image divided by the
shot noise) in Figure B1 (right column) shows that the
subtraction leaves no artifacts in the region of the fiber traces
other than a slightly higher noise. The DRP flags all data cubes
with science exposures in this moderate category with the
“BLOWTORCH” flag in the DRP3QUAL maskbit, although it is
not expected to appreciably impact the science data quality.

Even in the most severe cases (Figure B1, bottom row) the
subtraction does an excellent job, although the S/N degradation is
significant (a factor∼2–3), and there are residual spokes extending
into the science data that were unable to be modeled. These spokes

will manifest as unidentified emission features in the 6100–6300Å
range for the three IFUs on the left edge of the detector, and the
DRP therefore flags all data cubes with science exposures in this

category with the “SEVEREBT” and ‘UNUSUAL’ flags in
DRP3QUAL. These data cubes are not included in the count of
high-quality galaxy data cubes, although they will nonetheless be
acceptable for the vast majority of science use cases.
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