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Relativistic Mott insulators known as “Kitaev materials” potentially realize spin liquids hosting non-
Abelian anyons. Motivated by fault-tolerant quantum-computing applications in this setting, we introduce a
dynamical anyon-generation protocol that exploits universal edge physics. The setup features holes in the
spin liquid, which define energetically cheap locations for non-Abelian anyons, connected by a narrow
bridge that can be tuned between spin liquid and topologically trivial phases. We show that modulating the
bridge from trivial to spin liquid over intermediate time scales—quantified by analytics and extensive
simulations—deposits non-Abelian anyons into the holes with O(1) probability. The required bridge
manipulations can be implemented by integrating the Kitaev material into magnetic tunnel junction arrays
that engender locally tunable exchange fields. Combined with existing readout strategies, our protocol
reveals a path to topological qubit experiments in Kitaev materials at zero applied magnetic field.
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Introduction.—The Kitaev honeycomb model captures
an exactly solvable, gapless spin liquid that serves as a
parent phase for nearby gapped topological orders [1].
Most strikingly, a descendant gapped spin liquid supporting
non-Abelian anyons—the workhorse of intrinsically fault-
tolerant quantum computation [2,3]—emerges upon break-
ing time-reversal symmetry. Prospects for laboratory reali-
zation rose following the ingenious proposal [4] that spin-
orbit-coupled Mott insulators now known as Kitaev mate-
rials [5—11] exhibit dominant spin interactions of the type
present in the Kitaev model. Among such materials,
a-RuCl; has generated particular attention given extensive
evidence for fractional excitations [12-14] and recent
thermal transport measurements that possibly indicate
the onset of a magnetic-field-driven non-Abelian spin
liquid [10,15-18]. While the experimental situation
remains to be fully settled [19-23], these results strongly
motivate pursuing Kitaev materials as a venue for eventual
quantum information applications.

Exploiting Kitaev materials for fault-tolerant quantum
computation requires the development of practical tech-
niques, tailored to an electrically inert platform, for single-
anyon detection as well as controlled generation and
manipulation of anyons. Numerous anyon detection meth-
ods have recently been proposed in this context, relying on
either variations of anyon interferometry [24-30] or local
probes such as scanning tunneling microscopy [31-35].
The prevailing strategy for anyon generation pursued so far
seeks perturbations that locally remove the excitation
energy for anyons. Near the exactly solvable point of the
Kitaev honeycomb model, for instance, atomic-scale
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perturbations (including impurity spins and vacancies)
have been shown to energetically favor the formation of
gauge fluxes that constitute Ising non-Abelian anyons
[36—-40].

We introduce a complementary scheme that generates
Ising anyons as long-lived excitations above the ground
state via a dynamical protocol that relies on universal edge
physics, invokes manipulations on scales much larger than
the lattice spacing, and applies even when gauge fluxes are
not static and the system is far from the exactly solvable
point. Figure 1(a) illustrates the required setup, consisting
of a non-Abelian spin liquid with two holes connected by a
narrow bridge. The holes are always in a topologically
trivial phase (e.g., vacuum or magnetically ordered) and
thus host a chiral Majorana edge mode at their boundary.
With large enough hole perimeter, Ising anyons become the
cheapest edge excitation and can be created by dynamically
modulating the bridge. We specifically assume that the
bridge can be evolved over a timescale 7 from a trivial
phase (yielding additional chiral Majorana edge states
connecting the two holes) to a spin-liquid phase (yielding
disconnected holes). Using analytical arguments and exten-
sive numerical simulations, we show that there exists a
broad window of 7 such that this evolution deposits an Ising
anyon in each hole with O(1) probability—without gen-
erating spurious excitations in the bridge.

After developing our protocol in generality, we propose
an implementation scheme that replaces the applied mag-
netic field traditionally used to form a non-Abelian phase
with locally tunable ferromagnets exchange-coupled to the
Kitaev material [Fig. 1(c)]. Local regions of the Kitaev
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FIG. 1. (a) Dumbbell setup used for anyon generation. A non-

Abelian spin liquid hosts two trivial holes connected by a bridge
(central hatched region). Evolving the bridge interior from a
trivial phase to a spin liquid over a timescale 7 [satisfying Eq. (4)]
deposits Ising anyons (with appreciable probability) into the
adjacent holes, without generating unwanted excitations. Tuning
the outer hatched regions from spin liquid to trivial creates a
constriction that enables interferometric Ising anyon detection.
(b) Sketch of lattice model used to simulate the spin-liquid
protocol. (c) Magnetic tunnel junctions that enable the required
dynamical manipulations.

material could be toggled in and out of the spin liquid by
controlling the relative orientation of the adjacent ferro-
magnetic moments—thereby enabling nanosecond time-
scale manipulation of the bridge and holes. Together with
existing anyon-detection strategies, our anyon-generation
protocol reveals a possible pathway to fusion and braiding
experiments in non-Abelian spin liquids.

Setup and model.—Non-Abelian Kitaev spin liquids host
a gapless chiral Majorana edge mode described by a chiral
Ising conformal field theory (CFT) with central charge ¢ =
1/2 [41]. The bulk supports three types of gapped quasi-
particles: bosons (labeled /), emergent fermions (), and
non-Abelian Ising anyons (o) that carry Majorana zero
modes. Although bulk quasiparticle excitation energies
depend sensitively on microscopic details, their edge
counterparts display universal low-energy properties dic-
tated by the CFT. In particular, an Ising anyon dragged to
the edge changes the boundary conditions for the chiral
Majorana fermions from antiperiodic to periodic, thereby
incurring an energy cost E, = (1/16)(2zv/L) [42-45]
with v the edge velocity and L the edge perimeter (we set
7 = 1 throughout). Edge Majorana fermions in turn carry
energy E, = (2zv/L)p, where p is a half-integer for
antiperiodic boundary conditions and integer for periodic
boundary conditions; in the latter case the p = 0 level is the
Majorana zero mode bound to an Ising anyon. Bosonic
excitations arise from adding an even number of edge
fermions.

Consider now the “dumbbell” geometry of Fig. 1(a)
containing holes of circumference L, connected by a

bridge of length L,. Since the low-energy physics occurs
only on the boundary (if the bridge is sufficiently narrow),
we can model the relevant dynamics via an effective
Hamiltonian,

H="Huy +Hp+Hpa. (1)

for the dumbbell edge modes. Here,

L
Hpn =/ " dx(=ivy,dyr,), n=1,2 (2)
0

captures the kinetic energy for Majorana fermions y; and y,
at the left and right holes, respectively [46]. The term H,,
governs the left- and right-moving Majorana fermions y;
residing across the bridge. Crucially, these modes may be
either gapless or fully gapped depending on whether the
bridge realizes a trivial or spin-liquid phase. Both regimes
are accessible from the interacting bridge Hamiltonian:

L
Hy, = / ' dx[—ivygOyyg + vy 0y
0
— k(yrOxYR) (YL.Ox71L)]- (3)

Field operators must be continuous at the bridge and hole
boundaries, e.g., 71(0) = y.(0), y1(L;,) = yz(0), etc.

In the limit x = 0, H,, simply encodes the kinetic energy
for decoupled right and left movers, as appropriate when the
bridge is trivial. Here, the bridge links the two holes, and the
entire dumbbell can be treated as a single chiral Majorana
mode traversing a loop of length L = 2L, 4+ 2L,. The «
interaction on the second line represents the leading local
process that couples right and left movers near this limit
(single-fermion backscattering processes are forbidden
since only bosons can tunnel across the trivial bridge)
[27,47]. At weak coupling « is irrelevant and yields only
perturbative corrections at low energies.

As the bridge morphs from trivial to spin liquid, x
increases and drives the bridge boundary from a ¢ = 1/2
Ising CFT toac = 7/10 tricritical Ising (TCI) CFT, and then
catalyzes spontaneous mass generation [48-51] that gaps
out the right and left movers. In the gapped phase, the bridge
Hamiltonian admits a simple mean-field decomposition:
Hy— [ (—ivyr0yg+ivy 0.y +imygy, ), with m the spo-
ntaneously generated mass that signals gap formation. Here,
the two holes in the dumbbell decouple at low energies—as
appropriate when the bridge is spin liquid—and to a good
approximation realize independent chiral Majorana modes
each propagating over a length L,,.

The boundary conditions for the decoupled Majorana
modes nevertheless depend on the sign of the spontane-
ously generated mass. To appreciate this point, note first
that the local energy in the bridge region cannot depend on
the sign of m since the mass is generated spontaneously.
Kinks at which the mass changes sign do, however, cost
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energy; such excitations bind Majorana zero modes [52]
and thus correspond to gapped Ising anyons localized in the
bridge. Pulling a kink-antikink pair out of the vacuum and
then dragging them to opposite ends of the bridge thereby
globally changes the sign of the mass and deposits a single
Ising anyon to each hole. Once created, the Ising anyons
can only recombine by tunneling through the intervening
gapped region, with a tunneling rate that is exponentially
small in the hole separation. (Inevitably, present gapless
phonons cannot directly mediate relaxation of Ising anyons
since the latter are topological excitations that can only
annihilate in pairs.)

We label eigenstates of the decoupled holes by a; X a,,
where a; is the anyon charge in hole j. We assume that the
dumbbell has trivial total topological charge, so that the
ground state corresponds to / x [ while the first excited
state corresponds to ¢ X ¢ with excess energy E,,, =
2x(1/16)(2zv/L;,). Further excited states with trivial
topological charge arise from adding an even number of
fermions to the boundary. Importantly, the excitation
energy for the o X o state dwarfs that of the next accessible
excited state by nearly an order of magnitude—facilitating
targeted Ising anyon creation.

Dynamical anyon-generation protocol.—Our protocol
begins with the bridge in a trivial phase and a single chiral
Majorana mode encircling the dumbbell initialized into its
I x I ground state. Next, over a timescale 7 we evolve the
bridge into a spin-liquid phase—thus increasing « in Eq. (3)
until y;  are fully gapped and the holes decouple. If 7 is too
short, then the evolution will generate unwanted excitations
in the bridge region. If 7 is too long, then the system simply
follows adiabatic evolution into the / x I ground state. We
seek intermediate 7 such that the system lands in the local
ground state of the bridge but exhibits a superposition of
I x I and o x o states. Measurement of the anyon charge at
one of the holes then collapses the wave function into a
well-defined anyon sector; the protocol resets and repeats
until measurement returns the desired ¢ x o state.

We can obtain an order-of-magnitude estimation of the
desired window for 7 using Landau-Zener-type reasoning
[53-55]. Since our protocol modifies only the bridge
Hamiltonian, it is useful to temporarily neglect the holes
(e.g., by taking L; = 0). In this case the bridge encounters a
minimal gap of order v/L, en route to attaining its final,
maximal gap (comparable to the bulk gap Ay,y) at time .
The probability for accessing bridge excited states—either
quasiparticles that increase the bridge’s final bulk energy
density, or virtual kink-antikink pairs that mediate formation
of 6 x o—occur predominantly over a “transition time” [56]
7, ~[(v/Ly)/Apu]7 around the minimal gap. The proba-
bility of accessing a level with energy ~@ during this interval
becomes appreciable when wrz, < 1. Final states exhibiting
(unwanted) bridge excitations have w = v/L,; avoiding
such states thus requires 7 > (L, /v)?Apyi. To assess the
probability for the targeted ¢ x o state, we now restore the

holes, whose key role is to modify the ¢ excitation energy
from the bulk value to w ~ v/L,. Correspondingly, we
expect to access o x ¢ with appreciable probability provided
7 < (Ly/v)(Ly/v)Apui- In summary, the timescale = should

satisfy
L,\? L L
<—b> Apk ST <—b> <—h> Apuik (4)
v v v

which always admits a permissible 7 range if L, < L;,. We
will bolster Eq. (4) by numerically simulating the dynamical
evolution in an effective lattice model.

Effective lattice model.—Directly simulating the protocol
dynamics using the interacting continuum model in Eq. (1)
poses a nontrivial technical challenge. While it would be
interesting to develop efficient methods for studying the
dynamics in the full 2D Kitaev honeycomb model—par-
ticularly with perturbations that spoil exact solvability—we
instead study a lattice model that mimics the low-energy
behavior yet is amenable to large-scale numerics. Imagine
vertically flattening the holes in Fig. 1(a) so that the
dumbbell turns into a line hosting nonchiral Majorana
fermions over an effective total length L. = L;,/2 + L,+
L, /2. The same nonchiral degrees of freedom can emerge
from an interacting variant of the Kitaev chain [27] describ-
ing lattice Majorana fermions y; _ ; .; see Fig. 1(b), where
sites indicated by open and solid circles respectively mimic
the holes and bridge.

We specifically consider

H:H0+Him+5H. (5)
The first term,

Leg—1

Hy=1i] Y yi¥js1 (6)
j=1

describes the usual Kitaev chain Hamiltonian tuned to the
transition between the trivial phase and topological phase
hosting boundary Majorana zero modes. The low-energy
degrees of freedom are massless Majorana fermions yg/; ,
obtained by expanding y; ~y; + (=1)/yg, with velocity
v = 4J. Vanishing of the mass is guaranteed by the single-
site Majorana translation symmetry y; — y;;; built into
H, modulo boundary effects. The second term introduces
four-fermion interactions [50] among the central L, sites in
the chain [solid circles in Fig. 1(b)]:

Yip,-2
Hiyy =4 Z Yj-2Yj-1Yj17j+2- (7)
J=4+3
2

Single-site Majorana translation symmetry continues to
preclude explicit mass generation except at the left and
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right endpoints of the interacting L, sites, where strong
translation symmetry breaking generically produces a finite
local mass term. In the bulk of the L, region, H;,, generates
the four-fermion interactions from Eq. (3) with k « 4 in the
low-energy limit [50]. Finally,

oH = _iaj(y%ﬂy%ﬂ + y%hﬂ,,—l}’%ﬂ,,) (8)

acts at the endpoints of the L, region and counteracts the
explicitly generated mass, which is unphysical in the spin-
liquid problem of interest.

At 1 = oJ = 0, the entire chain is gapless and emulates
the trivial-bridge spin-liquid setup. Upon turning on 4, this
gapless phase survives until 4 = Apc; = 0.428 J, at which
the interacting L, sites realize a TCI CFT [50]. For
A > Arcr, the L, region becomes gapped due to sponta-
neous mass generation—emulating the regime where the
bridge is a spin liquid. At A = 0.5 J, the L, sites realize
zero-correlation-length ground states of either the trivial or
topological phase of the noninteracting Kitaev chain [50]—
both of which yield the same local gap Ay =~ 0.55 J [57].
We associate the trivial sector with / x I and the topologi-
cal sector, given its accompanying end Majorana zero
modes, with ¢ x ¢. Since these sectors yield different
boundary conditions for the decoupled “hole” sites on
either end, their overall energies differ. We fix 6/ = a/ in
Eq. (8) with the coefficient @ = 0.284 chosen such that the
0 X ¢ excitation energy scales like 1/L;, at 1 =0.5 J.

Protocol simulation.—To explore the protocol dynamics
in our effective lattice model, we endow 1 with smooth
time dependence, taking A(¢) = f(¢/7)A(r) with f(x) =
({tanh{tan[(2x — 1)z/2]} + 1)/2 and A(z) = 0.5 J; see
inset of Fig. 2(a). We Jordan-Wigner-transform Eq. (5)
into a deformed Ising spin chain (see Supplemental
Material, Appendix A [58]) that we simulate using
ITensor [62]. At t = 0 (trivial-bridge configuration), we
initialize the system into the ground state, obtained by
density-matrix renormalization group (DMRG) [63,64]
calculations (see Supplemental Material, Appendix B
[58]). Then we use time-evolving block decimation [64—
66] to time evolve until + = 7 (spin-liquid-bridge configu-
ration). The lowest two ¢t =7 Hamiltonian eigenstates,
corresponding to I x I and ¢ x o, are also obtained by
DMRG and used to calculate the probabilities P;,; and
P, for those eigenstates to occur in the final time-evolved
wave function.

Figure 2 illustrates the dependence of the probabilities
Py and P, on system size and protocol time 7. In (a) the
data are plotted versus A= (L,/v)*(Apuk/7), taking
Apux = 0.55 J here and below. We observe that P, ; +
P, 1snear unity for A < 1, indicating that the time-evolved
wave function resides almost entirely inthe / X  and 6 X ¢
states, but decays for A = 1 due to leakage of probability
weight into higher excited states. As A increases, P,
initially rises as the protocol escapes the adiabatic regime,
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FIG. 2. Protocol simulation results. (a) The initial decay of
probabilities P;.; + Psy, and P,,, collapses well for all
system sizes shown when plotted versus (L,/v)?Apux/7,
supporting the left side of Eq. (4). Inset: 1 time dependence
used in simulations. (b) The rise in P,,, collapses well for
all system sizes when plotted versus (L,/v)(L,/v)Apu/7,
supporting the right side of Eq. (4). The dashed line fits the
rise to P, = 0.6exp (—=0.3t0>/ Ay LLy). Inset: maximum
of P, for each system size versus L,/L,. The orange
curve [maxP,,, = —0.23(L,/L,)™%* +0.57] fits the large
Lh/Lb data.

but eventually also decays as probability weight shifts
toward higher excited states. The approximate collapse of
both P;.; + P,y and P,,, during the initial descent at
A Z 1—for all system sizes—agrees with the left side of
Eq. (4). During the initial rise in P, by contrast, the curves
in (a) certainly do not collapse, i.e., the escape from the
adiabatic regime is not set by the parameter A. Figure 2(b)
plots P, versus (L,L;/v?)(Apux/7). Excellent data col-
lapse is now observed during the rise—consistent with the
right side of Eq. (4). The maximum of P, for each system
size scales with L,/ L,, as illustrated in the inset of Fig. 2; for
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our protocol the ¢ X & probability asymptotes at large L, /L,
to near 1/2.

Implementation  blueprint.—Non-Abelian spin-liquid
signatures were reported in a-RuCl; over a field interval
beginning at ~7 T; at zero field, by contrast, magnetic
order appears [10,15-18]. Guided by these observations,
we expect that locally changing the Zeeman field from
“large” to “small” can selectively convert different parts of
a Kitaev material between spin-liquid and topologically
trivial phases, as required for our protocol. We propose
implementing such local variations by forming magnetic
tunneling junctions wherein a monolayer Kitaev material is
sandwiched by ferromagnetic metals [Fig. 1(c)]. Each
adjacent ferromagnet induces an exchange field in the
Kitaev material. We assume that in the parallel configura-
tion, the exchange fields from the two layers add to give a
net Zeeman field required to form the spin liquid; in the
antiparallel configuration, cancellation of the exchange
fields instead produces magnetic order in the Kitaev
material. Conversion between parallel and antiparallel
configurations can be generated using spin-transfer torque
[67] with nanosecond switch times [68—72]. This approach
eschews the need for large external magnetic fields and
potentially enables real-time manipulation of holes,
bridges, and edge states at the nanoscale. Aside from
controlling the bridge and holes, this technique also
facilitates detection of Ising anyons. In Fig. I(a), for
instance, a pair of magnetic tunnel junctions in the outer
hatched regions can deform the outer spin-liquid edge
states to create a constriction that enables interferometric
readout of anyons trapped in the holes. For details, see
Supplemental Material, Appendix C [58]). Generalized
setups featuring multiple holes can additionally be used
to create a topological qubit subspace amenable to fault-
tolerant gates.

Let us estimate the rough length, time, and temperature
scales needed for bridge manipulation in our protocol. To
avoid crossing a two-dimensional phase transition on
passing to the trivial phase, the bridge thickness should
not greatly exceed the bulk spin-liquid correlation length
Erulk ~ Vbuik/ Apuiks Where vy is the Dirac velocity for
bulk emergent fermions. For Kitaev couplings K ~ 8 meV
[73-76] and lattice constant a ~ 0.6 nm [77], the velocity is
Vpuk & V3Ka/4 ~3 x 10° m/s [2]; taking Apg ~5 K
[15] then yields &,y ~5 nm. The bridge length L,
however, must exceed &, so that Ising anyons trapped
in the holes decouple in the spin-liquid bridge configura-
tion and thus cannot annihilate. With L, ~40 nm and a
hole perimeter L, ~200 nm, the above criterion holds
while also yielding a = window satisfying Eq. (4). Our
protocol then generates Ising anyons with appreciable
probability for 7~ (L,/v)(L;,/v)Apu ~ 5 ns, where we
assumed v ~ 10° m/s. Finally, since our protocol initializes
the system into the ground state of the trivial-bridge
configuration, one might anticipate that temperature T

must fall below the trivial-bridge excitation energy
~v/(2L;, + 2L;). Ground-state initialization is, however,
unnecessary [78] provided the dumbbell remains in the
trivial total topological charge sector and the bridge does
not trap spurious excitations. Both conditions are expected
to hold for 7 smaller than the minimal local bridge exci-
tation energy ~wv/L;, ~ 0.2 K encountered during the pro-
tocol (a much milder requirement).

It is a pleasure to thank Dave Aasen, Arnab Banerjee,
Gabor Halasz, Erik Henriksen, Kai Klocke, Joel Moore,
and Ady Stern for stimulating conversations. This work
was supported by the U.S. Department of Energy, Office of
Science, National Quantum Information Science Research
Centers, Quantum Science Center; the Office of Naval
Research under Grant No. N0O0014-20-1-2308 (KSB); the
Army Research Office under Grant No. W911NF-17-1-
0323; the Caltech Institute for Quantum Information and
Matter, an NSF Physics Frontiers Center with support of
the Gordon and Betty Moore Foundation through Grant
No. GBMF1250; and the Walter Burke Institute for
Theoretical Physics at Caltech.

[1] A. Kitaev, Ann. Phys. (Amsterdam) 321, 2 (2006), january
Special Issue.

[2] A.Y. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003),

[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[4] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

[5] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502
(2017).

[6] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink,
Y. Singh, P. Gegenwart, and R. Valenti, J. Phys. Condens.
Matter 29, 493002 (2017).

[7] S. Trebst, arXiv:1701.07056.

[8] M. Hermanns, I. Kimchi, and J. Knolle, Annu. Rev.
Condens. Matter Phys. 9, 17 (2018).

[9] L. Janssen and M. Vojta, J. Phys. Condens. Matter 31,
423002 (2019).

[10] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E.
Nagler, Nat. Rev. Phys. 1, 264 (2019).

[11] Y. Motome and J. Nasu, J. Phys. Soc. Jpn. 89, 012002
(2020).

[12] Y. Wang, G. B. Osterhoudt, Y. Tian, P. Lampen-Kelley, A.
Banerjee, T. Goldstein, J. Yan, J. Knolle, H. Ji, R. J. Cava, J.
Nasu, Y. Motome, S.E. Nagler, D. Mandrus, and K.S.
Burch, npj Quantum Mater. §, 14 (2020).

[13] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B. Stone,
M.D. Lumsden, D.G. Mandrus, D.A. Tennant, R.
Moessner, and S. E. Nagler, Science 356, 1055 (2017).

[14] Z. Wang, S. Reschke, D. Huvonen, S.-H. Do, K.-Y. Choi,
M. Gensch, U. Nagel, T. Room, and A. Loidl, Phys. Rev.
Lett. 119, 227202 (2017).

[15] Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa, M.
Yamashita, N. Kurita, H. Tanaka, J. Nasu, Y. Motome,

037201-5



PHYSICAL REVIEW LETTERS 129, 037201 (2022)

T. Shibauchi, and Y. Matsuda, Phys. Rev. Lett. 120, 217205
(2018).

[16] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K.
Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T.
Shibauchi, and Y. Matsuda, Nature (London) 559, 227
(2018).

[17] T. Yokoi, S. Ma, Y. Kasahara, S. Kasahara, T. Shibauchi, N.
Kurita, H. Tanaka, J. Nasu, Y. Motome, C. Hickey, S.
Trebst, and Y. Matsuda, Science 373, 568 (2021).

[18] J. A.N. Bruin, R.R. Claus, Y. Matsumoto, N. Kurita, H.
Tanaka, and H. Takagi, Nat. Phys. 18, 401 (2022).

[19] S. Bachus, D. A. S. Kaib, Y. Tokiwa, A. Jesche, V. Tsurkan,
A. Loidl, S. M. Winter, A. A. Tsirlin, R. Valenti, and P.
Gegenwart, Phys. Rev. Lett. 125, 097203 (2020).

[20] M. Yamashita, J. Gouchi, Y. Uwatoko, N. Kurita, and H.
Tanaka, Phys. Rev. B 102, 220404(R) (2020).

[21] S. Bachus, D. A. S. Kaib, A. Jesche, V. Tsurkan, A. Loidl,
S.M. Winter, A. A. Tsirlin, R. Valenti, and P. Gegenwart,
Phys. Rev. B 103, 054440 (2021).

[22] L. E. Chern, E.Z. Zhang, and Y. B. Kim, Phys. Rev. Lett.
126, 147201 (2021).

[23] P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, A.
Banerjee, J. Yan, D. G. Mandrus, S.E. Nagler, and N.P.
Ong, Nat. Phys. 17, 915 (2021).

[24] S. Das Sarma, M. Freedman, and C. Nayak, Phys. Rev. Lett.
94, 166802 (2005).

[25] A. Stern and B. 1. Halperin, Phys. Rev. Lett. 96, 016802
(2006).

[26] P. Bonderson, A. Kitaev, and K. Shtengel, Phys. Rev. Lett.
96, 016803 (2006).

[27] D. Aasen, R. S. K. Mong, B. M. Hunt, D. Mandrus, and J.
Alicea, Phys. Rev. X 10, 031014 (2020).

[28] K. Klocke, D. Aasen, R. S. K. Mong, E. A. Demler, and J.
Alicea, Phys. Rev. Lett. 126, 177204 (2021).

[29] Z. Wei, V. E. Mitrovi¢, and D. E. Feldman, Phys. Rev. Lett.
127, 167204 (2021).

[30] K. Klocke, J. E. Moore, J. Alicea, and G. B. Haldsz, Phys.
Rev. X 12, 011034 (2022).

[31] J. Feldmeier, W. Natori, M. Knap, and J. Knolle, Phys. Rev.
B 102, 134423 (2020).

[32] R. G. Pereira and R. Egger, Phys. Rev. Lett. 125, 227202
(2020).

[33] E.J. Konig, M. T. Randeria, and B. Jick, Phys. Rev. Lett.
125, 267206 (2020).

[34] M. Udagawa, S. Takayoshi, and T. Oka, Phys. Rev. Lett.
126, 127201 (2021).

[35] G. Kishony and E. Berg, Phys. Rev. B 104, 235118 (2021).

[36] A.J. Willans, J. T. Chalker, and R. Moessner, Phys. Rev.
Lett. 104, 237203 (2010).

[37] A.J. Willans, J. T. Chalker, and R. Moessner, Phys. Rev. B
84, 115146 (2011).

[38] M. Vojta, A. K. Mitchell, and F. Zschocke, Phys. Rev. Lett.
117, 037202 (2016).

[39] W.-H. Kao, J. Knolle, G. B. Halasz, R. Moessner, and N. B.
Perkins, Phys. Rev. X 11, 011034 (2021).

[40] S.-H. Jang, Y. Kato, and Y. Motome, Phys. Rev. B 104,
085142 (2021).

[41] P. Ginsparg, arXiv:hep-th/9108028.

[42] H. W.]. Blote, J.L. Cardy, and M. P. Nightingale, Phys.
Rev. Lett. 56, 742 (1986).

[43] 1. Affleck, Phys. Rev. Lett. 56, 746 (1986).

[44] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A.
Kitaev, Z. Wang, and M. H. Freedman, Phys. Rev. Lett. 98,
160409 (2007).

[45] A. Milsted and G. Vidal, Phys. Rev. B 96, 245105 (2017).

[46] T. Mizoguchi, T. Koma, and Y. Yoshida, Phys. Rev. B 101,
014442 (2020).

[47] T. Lichtman, R. Thorngren, N. H. Lindner, A. Stern, and E.
Berg, Phys. Rev. B 104, 075141 (2021).

[48] A.Rahmani, X. Zhu, M. Franz, and 1. Affleck, Phys. Rev. B
92, 235123 (2015).

[49] A. Rahmani, X. Zhu, M. Franz, and 1. Affleck, Phys. Rev.
Lett. 115, 166401 (2015).

[50] E. O’Brien and P. Fendley, Phys. Rev. Lett. 120, 206403
(2018).

[51] A. Rahmani and M. Franz, Rep. Prog. Phys. 82, 084501
(2019).

[52] J.C.Y. Teo and C.L. Kane, Phys. Rev. B 89, 085101
(2014).

[53] L. D. Landau, Phys. Z. Sowjetunion 1, 88 (1932).

[54] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).

[55] C. Zener, Proc. R. Soc. A 137, 696 (1932).

[56] K. Mullen, E. Ben-Jacob, Y. Gefen, and Z. Schuss, Phys.
Rev. Lett. 62, 2543 (1989).

[57] Apux is extracted from DMRG simulations for a periodic
chain with L;, = 0, and depends only weakly on L, for the
values used in our protocol simulations.

[58] See  Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.037201 for de-
scription of the effective lattice model, which includes
Refs. [36—40,46,59-61], for simulation details and for the
interferometric detection of Ising anyons in the dumbbell
setup, which includes Refs. [29] and [30].

[59] M. Thakurathi, K. Sengupta, and D. Sen, Phys. Rev. B 89,
235434 (2014).

[60] T. Mizoguchi and T. Koma, Phys. Rev. B 99, 184418
(2019).

[61] F. Zschocke and M. Vojta, Phys. Rev. B 92, 014403 (2015).

[62] M. Fishman, S.R. White, and E. M. Stoudenmire, arXiv:
2007.14822.

[63] S.R. White, Phys. Rev. Lett. 69, 2863 (1992).

[64] U. Schollwock, Ann. Phys. (Amsterdam) 326, 96 (2011).

[65] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).

[66] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).

[67] D.C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320,
1190 (2008).

[68] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P.
Crozat, N. Zerounian, J.-V. Kim, C. Chappert, and H. Ohno,
Phys. Rev. Lett. 100, 057206 (2008).

[69] Y.-T. Cui, G. Finocchio, C. Wang, J. A. Katine, R. A.
Buhrman, and D. C. Ralph, Phys. Rev. Lett. 104, 097201
(2010).

[70] T. Devolder, J.-V. Kim, F. Garcia-Sanchez, J. Swerts, W.
Kim, S. Couet, G. Kar, and A. Furnemont, Phys. Rev. B 93,
024420 (2016).

[71] T. Devolder, A. Le Goff, and V. Nikitin, Phys. Rev. B 93,
224432 (2016).

[72] E. Grimaldi, V. Krizakova, G. Sala, F. Yasin, S. Couet, G.
Sankar Kar, K. Garello, and P. Gambardella, Nat.
Nanotechnol. 15, 111 (2020).

037201-6



PHYSICAL REVIEW LETTERS 129, 037201 (2022)

[73] L.J. Sandilands, C. H. Sohn, H.J. Park, S. Y. Kim, K. W. M. Minola, B. V. Lotsch, B. J. Kim, H. Yavas, M. Daghofer,
Kim, J. A. Sears, Y.-J. Kim, and T. W. Noh, Phys. Rev. B 94, J. Chaloupka, G. Khaliullin, H. Gretarsson, and B. Keimer,
195156 (2016). Nat. Commun. 12, 4512 (2021).

[74] S. M. Winter, K. Riedl, P. A. Maksimov, A. L. Chernyshev, [77] R.D. Johnson, S.C. Williams, A.A. Haghighirad, J.
A. Honecker, and R. Valenti, Nat. Commun. 8, 1152 (2017). Singleton, V. Zapf, P. Manuel, I.I. Mazin, Y. Li, H.O.

[75] J. A. Sears, L. E. Chern, S. Kim, P. J. Bereciartua, S. Francoual, Jeschke, R. Valenti, and R. Coldea, Phys. Rev. B 92, 235119
Y. B. Kim, and Y.-J. Kim, Nat. Phys. 16, 837 (2020). (2015).

[76] H. Suzuki, H. Liu, J. Bertinshaw, K. Ueda, H. Kim, S. Laha, [78] A.R. Akhmerov, Phys. Rev. B 82, 020509(R) (2010).
D. Weber, Z. Yang, L. Wang, H. Takahashi, K. Fiirsich,

037201-7



