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Relativistic Mott insulators known as “Kitaev materials” potentially realize spin liquids hosting non-

Abelian anyons. Motivated by fault-tolerant quantum-computing applications in this setting, we introduce a

dynamical anyon-generation protocol that exploits universal edge physics. The setup features holes in the

spin liquid, which define energetically cheap locations for non-Abelian anyons, connected by a narrow

bridge that can be tuned between spin liquid and topologically trivial phases. We show that modulating the

bridge from trivial to spin liquid over intermediate time scales—quantified by analytics and extensive

simulations—deposits non-Abelian anyons into the holes with Oð1Þ probability. The required bridge

manipulations can be implemented by integrating the Kitaev material into magnetic tunnel junction arrays

that engender locally tunable exchange fields. Combined with existing readout strategies, our protocol

reveals a path to topological qubit experiments in Kitaev materials at zero applied magnetic field.

DOI: 10.1103/PhysRevLett.129.037201

Introduction.—The Kitaev honeycomb model captures

an exactly solvable, gapless spin liquid that serves as a

parent phase for nearby gapped topological orders [1].

Most strikingly, a descendant gapped spin liquid supporting

non-Abelian anyons—the workhorse of intrinsically fault-

tolerant quantum computation [2,3]—emerges upon break-

ing time-reversal symmetry. Prospects for laboratory reali-

zation rose following the ingenious proposal [4] that spin-

orbit-coupled Mott insulators now known as Kitaev mate-

rials [5–11] exhibit dominant spin interactions of the type

present in the Kitaev model. Among such materials,

α-RuCl3 has generated particular attention given extensive

evidence for fractional excitations [12–14] and recent

thermal transport measurements that possibly indicate

the onset of a magnetic-field-driven non-Abelian spin

liquid [10,15–18]. While the experimental situation

remains to be fully settled [19–23], these results strongly

motivate pursuing Kitaev materials as a venue for eventual

quantum information applications.

Exploiting Kitaev materials for fault-tolerant quantum

computation requires the development of practical tech-

niques, tailored to an electrically inert platform, for single-

anyon detection as well as controlled generation and

manipulation of anyons. Numerous anyon detection meth-

ods have recently been proposed in this context, relying on

either variations of anyon interferometry [24–30] or local

probes such as scanning tunneling microscopy [31–35].

The prevailing strategy for anyon generation pursued so far

seeks perturbations that locally remove the excitation

energy for anyons. Near the exactly solvable point of the

Kitaev honeycomb model, for instance, atomic-scale

perturbations (including impurity spins and vacancies)

have been shown to energetically favor the formation of

gauge fluxes that constitute Ising non-Abelian anyons

[36–40].

We introduce a complementary scheme that generates

Ising anyons as long-lived excitations above the ground

state via a dynamical protocol that relies on universal edge

physics, invokes manipulations on scales much larger than

the lattice spacing, and applies even when gauge fluxes are

not static and the system is far from the exactly solvable

point. Figure 1(a) illustrates the required setup, consisting

of a non-Abelian spin liquid with two holes connected by a

narrow bridge. The holes are always in a topologically

trivial phase (e.g., vacuum or magnetically ordered) and

thus host a chiral Majorana edge mode at their boundary.

With large enough hole perimeter, Ising anyons become the

cheapest edge excitation and can be created by dynamically

modulating the bridge. We specifically assume that the

bridge can be evolved over a timescale τ from a trivial

phase (yielding additional chiral Majorana edge states

connecting the two holes) to a spin-liquid phase (yielding

disconnected holes). Using analytical arguments and exten-

sive numerical simulations, we show that there exists a

broad window of τ such that this evolution deposits an Ising

anyon in each hole with Oð1Þ probability—without gen-

erating spurious excitations in the bridge.

After developing our protocol in generality, we propose

an implementation scheme that replaces the applied mag-

netic field traditionally used to form a non-Abelian phase

with locally tunable ferromagnets exchange-coupled to the

Kitaev material [Fig. 1(c)]. Local regions of the Kitaev
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material could be toggled in and out of the spin liquid by

controlling the relative orientation of the adjacent ferro-

magnetic moments—thereby enabling nanosecond time-

scale manipulation of the bridge and holes. Together with

existing anyon-detection strategies, our anyon-generation

protocol reveals a possible pathway to fusion and braiding

experiments in non-Abelian spin liquids.

Setup and model.—Non-Abelian Kitaev spin liquids host

a gapless chiral Majorana edge mode described by a chiral

Ising conformal field theory (CFT) with central charge c ¼
1=2 [41]. The bulk supports three types of gapped quasi-

particles: bosons (labeled I), emergent fermions (ψ), and

non-Abelian Ising anyons (σ) that carry Majorana zero

modes. Although bulk quasiparticle excitation energies

depend sensitively on microscopic details, their edge

counterparts display universal low-energy properties dic-

tated by the CFT. In particular, an Ising anyon dragged to

the edge changes the boundary conditions for the chiral

Majorana fermions from antiperiodic to periodic, thereby

incurring an energy cost Eσ ¼ ð1=16Þð2πv=LÞ [42–45]

with v the edge velocity and L the edge perimeter (we set

ℏ ¼ 1 throughout). Edge Majorana fermions in turn carry

energy Eψ ¼ ð2πv=LÞp, where p is a half-integer for

antiperiodic boundary conditions and integer for periodic

boundary conditions; in the latter case the p ¼ 0 level is the

Majorana zero mode bound to an Ising anyon. Bosonic

excitations arise from adding an even number of edge

fermions.

Consider now the “dumbbell” geometry of Fig. 1(a)

containing holes of circumference Lh connected by a

bridge of length Lb. Since the low-energy physics occurs

only on the boundary (if the bridge is sufficiently narrow),

we can model the relevant dynamics via an effective

Hamiltonian,

H ¼ Hh;1 þHb þHh;2; ð1Þ

for the dumbbell edge modes. Here,

Hh;n ¼
Z

Lh

0

dxð−ivγn∂xγnÞ; n ¼ 1; 2 ð2Þ

captures the kinetic energy for Majorana fermions γ1 and γ2
at the left and right holes, respectively [46]. The term Hb

governs the left- and right-moving Majorana fermions γL;R
residing across the bridge. Crucially, these modes may be

either gapless or fully gapped depending on whether the

bridge realizes a trivial or spin-liquid phase. Both regimes

are accessible from the interacting bridge Hamiltonian:

Hb ¼
Z

Lb

0

dx½−ivγR∂xγR þ ivγL∂xγL

− κðγR∂xγRÞðγL∂xγLÞ�: ð3Þ

Field operators must be continuous at the bridge and hole

boundaries, e.g., γ1ð0Þ ¼ γLð0Þ, γ1ðLhÞ ¼ γRð0Þ, etc.
In the limit κ ¼ 0,Hb simply encodes the kinetic energy

for decoupled right and left movers, as appropriate when the

bridge is trivial. Here, the bridge links the two holes, and the

entire dumbbell can be treated as a single chiral Majorana

mode traversing a loop of length L ¼ 2Lh þ 2Lb. The κ

interaction on the second line represents the leading local

process that couples right and left movers near this limit

(single-fermion backscattering processes are forbidden

since only bosons can tunnel across the trivial bridge)

[27,47]. At weak coupling κ is irrelevant and yields only

perturbative corrections at low energies.

As the bridge morphs from trivial to spin liquid, κ

increases and drives the bridge boundary from a c ¼ 1=2
IsingCFT to a c ¼ 7=10 tricritical Ising (TCI) CFT, and then
catalyzes spontaneous mass generation [48–51] that gaps

out the right and left movers. In the gapped phase, the bridge

Hamiltonian admits a simple mean-field decomposition:

Hb→
R

xð−ivγR∂xγRþivγL∂xγLþimγRγLÞ, with m the spo-

ntaneously generatedmass that signals gap formation. Here,

the two holes in the dumbbell decouple at low energies—as

appropriate when the bridge is spin liquid—and to a good

approximation realize independent chiral Majorana modes

each propagating over a length Lh.

The boundary conditions for the decoupled Majorana

modes nevertheless depend on the sign of the spontane-

ously generated mass. To appreciate this point, note first

that the local energy in the bridge region cannot depend on

the sign of m since the mass is generated spontaneously.

Kinks at which the mass changes sign do, however, cost

Trivial Trivial

(a)

(b)

Spin Liquid

FIG. 1. (a) Dumbbell setup used for anyon generation. A non-

Abelian spin liquid hosts two trivial holes connected by a bridge

(central hatched region). Evolving the bridge interior from a

trivial phase to a spin liquid over a timescale τ [satisfying Eq. (4)]

deposits Ising anyons (with appreciable probability) into the

adjacent holes, without generating unwanted excitations. Tuning

the outer hatched regions from spin liquid to trivial creates a

constriction that enables interferometric Ising anyon detection.

(b) Sketch of lattice model used to simulate the spin-liquid

protocol. (c) Magnetic tunnel junctions that enable the required

dynamical manipulations.
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energy; such excitations bind Majorana zero modes [52]

and thus correspond to gapped Ising anyons localized in the

bridge. Pulling a kink-antikink pair out of the vacuum and

then dragging them to opposite ends of the bridge thereby

globally changes the sign of the mass and deposits a single

Ising anyon to each hole. Once created, the Ising anyons

can only recombine by tunneling through the intervening

gapped region, with a tunneling rate that is exponentially

small in the hole separation. (Inevitably, present gapless

phonons cannot directly mediate relaxation of Ising anyons

since the latter are topological excitations that can only

annihilate in pairs.)

We label eigenstates of the decoupled holes by a1 × a2,
where aj is the anyon charge in hole j. We assume that the

dumbbell has trivial total topological charge, so that the

ground state corresponds to I × I while the first excited

state corresponds to σ × σ with excess energy Eσ×σ ¼
2 × ð1=16Þð2πv=LhÞ. Further excited states with trivial

topological charge arise from adding an even number of

fermions to the boundary. Importantly, the excitation

energy for the σ × σ state dwarfs that of the next accessible

excited state by nearly an order of magnitude—facilitating

targeted Ising anyon creation.

Dynamical anyon-generation protocol.—Our protocol

begins with the bridge in a trivial phase and a single chiral

Majorana mode encircling the dumbbell initialized into its

I × I ground state. Next, over a timescale τ we evolve the

bridge into a spin-liquid phase—thus increasing κ in Eq. (3)

until γL;R are fully gapped and the holes decouple. If τ is too

short, then the evolution will generate unwanted excitations

in the bridge region. If τ is too long, then the system simply

follows adiabatic evolution into the I × I ground state. We

seek intermediate τ such that the system lands in the local

ground state of the bridge but exhibits a superposition of

I × I and σ × σ states. Measurement of the anyon charge at

one of the holes then collapses the wave function into a

well-defined anyon sector; the protocol resets and repeats

until measurement returns the desired σ × σ state.

We can obtain an order-of-magnitude estimation of the

desired window for τ using Landau-Zener-type reasoning

[53–55]. Since our protocol modifies only the bridge

Hamiltonian, it is useful to temporarily neglect the holes

(e.g., by taking Lh ¼ 0). In this case the bridge encounters a

minimal gap of order v=Lb en route to attaining its final,

maximal gap (comparable to the bulk gap Δbulk) at time τ.

The probability for accessing bridge excited states—either

quasiparticles that increase the bridge’s final bulk energy

density, or virtual kink-antikink pairs that mediate formation

of σ × σ—occur predominantly over a “transition time” [56]

τ⋆ ∼ ½ðv=LbÞ=Δbulk�τ around the minimal gap. The proba-

bility of accessing a levelwith energy∼ωduring this interval

becomes appreciable when ωτ⋆ ≲ 1. Final states exhibiting

(unwanted) bridge excitations have ω≳ v=Lb; avoiding

such states thus requires τ ≳ ðLb=vÞ2Δbulk. To assess the

probability for the targeted σ × σ state, we now restore the

holes, whose key role is to modify the σ excitation energy

from the bulk value to ω ∼ v=Lh. Correspondingly, we

expect to access σ × σwith appreciable probability provided

τ ≲ ðLb=vÞðLh=vÞΔbulk. In summary, the timescale τ should

satisfy

�

Lb

v

�

2

Δbulk ≲ τ ≲

�

Lb

v

��

Lh

v

�

Δbulk; ð4Þ

which always admits a permissible τ range if Lb ≪ Lh. We

will bolster Eq. (4) by numerically simulating the dynamical

evolution in an effective lattice model.

Effective lattice model.—Directly simulating the protocol

dynamics using the interacting continuum model in Eq. (1)

poses a nontrivial technical challenge. While it would be

interesting to develop efficient methods for studying the

dynamics in the full 2D Kitaev honeycomb model—par-

ticularly with perturbations that spoil exact solvability—we

instead study a lattice model that mimics the low-energy

behavior yet is amenable to large-scale numerics. Imagine

vertically flattening the holes in Fig. 1(a) so that the

dumbbell turns into a line hosting nonchiral Majorana

fermions over an effective total length Leff ¼ Lh=2þ Lbþ
Lh=2. The same nonchiral degrees of freedom can emerge

from an interacting variant of the Kitaev chain [27] describ-

ing lattice Majorana fermions γ1;…;Leff
; see Fig. 1(b), where

sites indicated by open and solid circles respectively mimic

the holes and bridge.

We specifically consider

H ¼ H0 þHint þ δH: ð5Þ

The first term,

H0 ¼ iJ
X

Leff−1

j¼1

γjγjþ1; ð6Þ

describes the usual Kitaev chain Hamiltonian tuned to the

transition between the trivial phase and topological phase

hosting boundary Majorana zero modes. The low-energy

degrees of freedom are massless Majorana fermions γR=L,

obtained by expanding γj ∼ γL þ ð−1ÞjγR, with velocity

v ¼ 4J. Vanishing of the mass is guaranteed by the single-

site Majorana translation symmetry γj → γjþ1 built into

H0, modulo boundary effects. The second term introduces

four-fermion interactions [50] among the central Lb sites in

the chain [solid circles in Fig. 1(b)]:

Hint ¼ λ
X

Lh
2
þLb−2

j¼Lh
2
þ3

γj−2γj−1γjþ1γjþ2: ð7Þ

Single-site Majorana translation symmetry continues to

preclude explicit mass generation except at the left and
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right endpoints of the interacting Lb sites, where strong

translation symmetry breaking generically produces a finite

local mass term. In the bulk of the Lb region,Hint generates

the four-fermion interactions from Eq. (3) with κ ∝ λ in the

low-energy limit [50]. Finally,

δH ¼ −iδJðγLh
2
þ1
γLh

2
þ2

þ γLh
2
þLb−1

γLh
2
þLb

Þ ð8Þ

acts at the endpoints of the Lb region and counteracts the

explicitly generated mass, which is unphysical in the spin-

liquid problem of interest.

At λ ¼ δJ ¼ 0, the entire chain is gapless and emulates

the trivial-bridge spin-liquid setup. Upon turning on λ, this

gapless phase survives until λ ¼ λTCI ≈ 0.428 J, at which
the interacting Lb sites realize a TCI CFT [50]. For

λ > λTCI, the Lb region becomes gapped due to sponta-

neous mass generation—emulating the regime where the

bridge is a spin liquid. At λ ¼ 0.5 J, the Lb sites realize

zero-correlation-length ground states of either the trivial or

topological phase of the noninteracting Kitaev chain [50]—

both of which yield the same local gap Δbulk ≈ 0.55 J [57].

We associate the trivial sector with I × I and the topologi-

cal sector, given its accompanying end Majorana zero

modes, with σ × σ. Since these sectors yield different

boundary conditions for the decoupled “hole” sites on

either end, their overall energies differ. We fix δJ ¼ αλ in

Eq. (8) with the coefficient α ¼ 0.284 chosen such that the

σ × σ excitation energy scales like 1=Lh at λ ¼ 0.5 J.
Protocol simulation.—To explore the protocol dynamics

in our effective lattice model, we endow λ with smooth

time dependence, taking λðtÞ ¼ fðt=τÞλðτÞ with fðxÞ≡
(ftanhftan½ð2x − 1Þπ=2�g þ 1)=2 and λðτÞ ¼ 0.5 J; see

inset of Fig. 2(a). We Jordan-Wigner-transform Eq. (5)

into a deformed Ising spin chain (see Supplemental

Material, Appendix A [58]) that we simulate using

ITensor [62]. At t ¼ 0 (trivial-bridge configuration), we

initialize the system into the ground state, obtained by

density-matrix renormalization group (DMRG) [63,64]

calculations (see Supplemental Material, Appendix B

[58]). Then we use time-evolving block decimation [64–

66] to time evolve until t ¼ τ (spin-liquid-bridge configu-

ration). The lowest two t ¼ τ Hamiltonian eigenstates,

corresponding to I × I and σ × σ, are also obtained by

DMRG and used to calculate the probabilities PI×I and

Pσ×σ for those eigenstates to occur in the final time-evolved

wave function.

Figure 2 illustrates the dependence of the probabilities

PI×I and Pσ×σ on system size and protocol time τ. In (a) the

data are plotted versus A≡ ðLb=vÞ2ðΔbulk=τÞ, taking

Δbulk ¼ 0.55 J here and below. We observe that PI×I þ
Pσ×σ is near unity forA≲ 1, indicating that the time-evolved

wave function resides almost entirely in the I × I and σ × σ

states, but decays for A≳ 1 due to leakage of probability

weight into higher excited states. As A increases, Pσ×σ

initially rises as the protocol escapes the adiabatic regime,

but eventually also decays as probability weight shifts

toward higher excited states. The approximate collapse of

both PI×I þ Pσ×σ and Pσ×σ during the initial descent at

A≳ 1—for all system sizes—agrees with the left side of

Eq. (4). During the initial rise inPσ×σ , by contrast, the curves

in (a) certainly do not collapse, i.e., the escape from the

adiabatic regime is not set by the parameter A. Figure 2(b)

plots Pσ×σ versus ðLbLh=v
2ÞðΔbulk=τÞ. Excellent data col-

lapse is now observed during the rise—consistent with the

right side of Eq. (4). The maximum of Pσ×σ for each system

size scaleswithLh=Lb, as illustrated in the inset of Fig. 2; for
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FIG. 2. Protocol simulation results. (a) The initial decay of

probabilities PI×I þ Pσ×σ and Pσ×σ collapses well for all

system sizes shown when plotted versus ðLb=vÞ2Δbulk=τ,
supporting the left side of Eq. (4). Inset: λ time dependence

used in simulations. (b) The rise in Pσ×σ collapses well for

all system sizes when plotted versus ðLb=vÞðLh=vÞΔbulk=τ,
supporting the right side of Eq. (4). The dashed line fits the

rise to Pσ×σ ¼ 0.6 exp ð−0.3τv2=ΔbulkLbLhÞ. Inset: maximum

of Pσ×σ for each system size versus Lh=Lb. The orange

curve [maxPσ×σ ¼ −0.23ðLh=LbÞ−0.45 þ 0.57] fits the large

Lh=Lb data.
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our protocol the σ × σ probability asymptotes at largeLh=Lb

to near 1=2.
Implementation blueprint.—Non-Abelian spin-liquid

signatures were reported in α-RuCl3 over a field interval

beginning at ∼7 T; at zero field, by contrast, magnetic

order appears [10,15–18]. Guided by these observations,

we expect that locally changing the Zeeman field from

“large” to “small” can selectively convert different parts of

a Kitaev material between spin-liquid and topologically

trivial phases, as required for our protocol. We propose

implementing such local variations by forming magnetic

tunneling junctions wherein a monolayer Kitaev material is

sandwiched by ferromagnetic metals [Fig. 1(c)]. Each

adjacent ferromagnet induces an exchange field in the

Kitaev material. We assume that in the parallel configura-

tion, the exchange fields from the two layers add to give a

net Zeeman field required to form the spin liquid; in the

antiparallel configuration, cancellation of the exchange

fields instead produces magnetic order in the Kitaev

material. Conversion between parallel and antiparallel

configurations can be generated using spin-transfer torque

[67] with nanosecond switch times [68–72]. This approach

eschews the need for large external magnetic fields and

potentially enables real-time manipulation of holes,

bridges, and edge states at the nanoscale. Aside from

controlling the bridge and holes, this technique also

facilitates detection of Ising anyons. In Fig. 1(a), for

instance, a pair of magnetic tunnel junctions in the outer

hatched regions can deform the outer spin-liquid edge

states to create a constriction that enables interferometric

readout of anyons trapped in the holes. For details, see

Supplemental Material, Appendix C [58]). Generalized

setups featuring multiple holes can additionally be used

to create a topological qubit subspace amenable to fault-

tolerant gates.

Let us estimate the rough length, time, and temperature

scales needed for bridge manipulation in our protocol. To

avoid crossing a two-dimensional phase transition on

passing to the trivial phase, the bridge thickness should

not greatly exceed the bulk spin-liquid correlation length

ξbulk ∼ vbulk=Δbulk, where vbulk is the Dirac velocity for

bulk emergent fermions. For Kitaev couplings K ∼ 8 meV

[73–76] and lattice constant a ∼ 0.6 nm [77], the velocity is

vbulk ≈
ffiffiffi

3
p

Ka=4 ∼ 3 × 103 m=s [2]; taking Δbulk ∼ 5 K

[15] then yields ξbulk ∼ 5 nm. The bridge length Lb,

however, must exceed ξbulk so that Ising anyons trapped

in the holes decouple in the spin-liquid bridge configura-

tion and thus cannot annihilate. With Lb ∼ 40 nm and a

hole perimeter Lh ∼ 200 nm, the above criterion holds

while also yielding a τ window satisfying Eq. (4). Our

protocol then generates Ising anyons with appreciable

probability for τ ∼ ðLb=vÞðLh=vÞΔbulk ∼ 5 ns, where we

assumed v ∼ 103 m=s. Finally, since our protocol initializes
the system into the ground state of the trivial-bridge

configuration, one might anticipate that temperature T

must fall below the trivial-bridge excitation energy

∼v=ð2Lh þ 2LbÞ. Ground-state initialization is, however,

unnecessary [78] provided the dumbbell remains in the

trivial total topological charge sector and the bridge does

not trap spurious excitations. Both conditions are expected

to hold for T smaller than the minimal local bridge exci-

tation energy ∼v=Lb ∼ 0.2 K encountered during the pro-

tocol (a much milder requirement).
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