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Abstract

Ultrasonic metal welding (UMW) is a solid-state joining technology with wide-
spread industrial applications. While UMW has numerous important advan-
tages compared to traditional fusion-based welding methods, its performance
can be substantially influenced by process anomalies such as tool degrada-
tion and material surface contamination, which are commonly encountered in
industrial-scale productions. Recently, online monitoring has demonstrated ex-
cellent anomaly detection capabilities. However, the existing monitoring algo-
rithms require a large amount of labeled data and lack the generalizability or
adaptability to new process configurations (i.e., domains). This paper develops
a meta-learning-based explainable few-shot learning (XFSL) framework that
enables highly data-efficient adaptation of online monitoring algorithms to new
process configurations with excellent explainability. We consider two distinct
types of problems including tool condition monitoring and workpiece surface
condition classification with varying UMW configurations. Using experimental
data, we demonstrate that the proposed XFSL method achieves high classifica-
tion performance in previously unseen target domains and significantly outper-

forms baseline methods. Furthermore, XFSL is able to evaluate the importance
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of each feature, thus revealing key features, feature types, and signal frequencies.
It is shown that explainability-based feature selection can effectively eliminate
unimportant information from monitoring signals while maintaining and even
improving prediction performance. The proposed XFSL method is extensible to
other manufacturing applications and holds significant potential for advancing
the generalizability, adaptability, and agility of decision-making algorithms in
modern manufacturing.

Keywords: few-shot learning, meta-learning, domain adaptation, anomaly
detection, ultrasonic metal welding, quality control, explainable machine
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1. Introduction

Ultrasonic metal welding (UMW) is a versatile solid-state welding technol-
ogy that can join multiple sheets, wires, or foils of similar or dissimilar met-
als [1, 2]. UMW has numerous industrial applications, including automotive
body construction [3-5], lithium-ion battery assembly [1, 6, 7], and electronic
packaging [8]. Compared with conventional fusion welding methods, UMW
offers important advantages including environmental friendliness, energy effi-
ciency, and high production rate [1, 9, 10].

One of the critical challenges in the industrial implementation of UMW is
the presence of strong process variability. UMW usually has small operating
windows, especially when the workpieces are thin, dissimilar metals, such as
in battery assembly applications [10, 11]. Moreover, UMW is sensitive to both
internal and external process anomalies including but not limited to tool degra-
dation [12-14] and surface contamination of workpieces [7, 15, 16]. Responsively
detecting process anomalies is important for not only process monitoring but
also real-time control 7, 16]. As such, online monitoring has attracted extensive
attention over the last decade, e.g., [7, 10, 11, 14-19]. For example, online qual-
ity monitoring methods have been developed to classify joint quality [11, 17] or
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predict joint strength [10, 19]. Nazir and Shao [14] developed an online tool con-
dition monitoring (TCM) system based on sensor fusion and machine learning
that achieved near-perfect classification accuracy. For workpiece surface con-
dition monitoring, Lee et al. [15] determined the correlations between online
sensing signals, process conditions, and joint performance. They also demon-
strated the feasibility of detecting surface contamination online. Recently, Lu
et al. [16] created an online cost-effective approach for classifying mixed tool
and material conditions, and investigated the cost factors of online monitoring
including sensors, signal fraction, and sampling rate.

Recent research in UMW process monitoring has shown the effectiveness
of machine learning algorithms in accurate predictions [20]. These machine
learning methods require a large amount of labeled training data collected from
fixed process configurations (i.e., domains). However, modern manufacturing
is featured by rapid reconfiguration and agile adaptation [21, 22] that necessi-
tate varying process configurations. In UMW applications, a process configu-
ration can be defined by materials, welding parameters, surface conditions, etc.
Changing process configurations may lead to very different data distributions.
In such cases, it is necessary to collect labeled data from the new scenarios
and re-train classification algorithms or even build completely different algo-
rithms. Acquiring a significant volume of training data can be time-, labor-,
and resource-intensive, which is highly undesirable in manufacturing. As such,
the ability to effectively transfer knowledge from rich-resource and established
domains to data-scarce domains plays an important role in the smart manufac-
turing paradigm [23-26].

Few-shot learning (FSL) [27], which aims to train models that can perform
well on new tasks with minimal data, is a promising solution to the afore-
mentioned issues. Model-Agnostic Meta-Learning (MAML) is one of the most
popular FSL methods. As a meta-learning approach, MAML is able to train
machine learning models that are conveniently adaptable to new tasks. In ad-
dition, MAML offers a general framework that can be integrated with various

model architectures and problem settings [28]. MAML trains a model on a vari-
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ety of tasks and uses gradient descent to optimize the model’s initial parameters
such that the model can be adapted to a new task with only a few gradient up-
dates. MAML has been shown to achieve strong results in a variety of FSL
tasks, e.g., cross-lingual transfer [29] and semantic feature learning for domain
generalization [30].

Most recently, FSL has started receiving some attention in manufacturing.
For instance, Liu et al. [31] developed an MAML-based meta-invariant feature
space method to estimate the tool wear in cutting processes under various data-
deficient cutting conditions. Wang et al. [32] combined meta-learning with fine
tuning to predict cutting tool wear. Nevertheless, research on FSL in manu-
facturing has been limited to machining processes, but no studies are available
for UMW or other manufacturing processes. TCM for UMW is more chal-
lenging than machining because of the complicated process physics and limited
understanding on the tool wear mechanisms [12, 14]. Moreover, the existence
of other process anomalies such as workpiece surface contamination introduces
additional challenges to online monitoring [7, 16].

One critical limitation of existing FSL methods is the lack of interpretability
or explainability due to their inherent “black-box” nature. Such interpretabil-
ity is of vital importance in manufacturing because it helps reduce the risk of
errors and improve the reliability as well as safety of the manufacturing process.
One potential solution to overcome this limitation of FSL is Explainable Arti-
ficial Intelligence (XAI). In general, XAI methods can be classified into three
types: saliency maps, attention mechanisms, and rationale models [33]. Among
those methods, saliency maps, which visualize the gradient of the model’s out-
put probability of a class with respect to its input, have drawn most attention.
Studies such as Simonyan et al. [34] and Zeiler et al. [35] have shown the utility
of saliency maps in identifying relevant patterns and objects in images, guiding
the optimization of complex models. In manufacturing-related fields, Su et al.
used saliency map to identify the machine area as an input of the downstream
models [36]. Ye and Yu proposed a saliency map based convolutional neural net-

work to detect machine fault [37]. However, two challenges must be addressed
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when applying saliency map to FSL. First, the traditional saliency map meth-
ods cannot be directly integrated with FSL because they are local explanation
methods and confined to visualizing feature importance for individual instance
instead of a task. Moreover, the randomness of model training in FSL could
lead to large variations of feature importance, prohibiting its applications as the
feature ranks are undetermined.

To address the aforementioned research gaps, this paper develops an ex-
plainable few-shot learning (XFSL) framework for online anomaly detection in
UMW with varying configurations. XFSL can effectively transfer the meta-
knowledge learned from data-rich domains to data-scarce domains. Explain-
ability is enabled by using the extracted meta-knowledge to evaluate the feature
importance and extending saliency map approaches. The new explainability ap-
proach can capture the global characteristics of each class and is less sensitive
to the randomness of model training. To evaluate the performance of the pro-
posed framework, a series of case studies are conducted with distinct UMW
process configurations and mixed anomalies. Results show that the proposed
XFSL method achieves high classification accuracy and significantly outper-
forms baseline methods, indicating XFSL can serve as an effective feature se-
lection method. The explainability-based feature selection effectively eliminates
unimportant information from monitoring signals while maintaining and even
improving prediction performance.

The remainder of the paper is organized as follows. Section 2 formulates
the problem and presents the details of the XFSL framework. Section 3 reports
the data acquisition process and case studies. Finally, Section 4 concludes the

paper.

2. UMW Process and Online Monitoring System

2.1. UMW overview

Fig. 1 illustrates a typical UMW process. In a typical UMW cycle, the

workpieces are clamped by welding tools, including the stationary anvil at the
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bottom and the oscillating horn at the top. When the process starts, a pneu-
matic system generates a sufficient clamping pressure to act as the normal force.
Then, the high-frequency vibrations of the horn, which are actuated by a trans-
ducer and a booster, remove surface oxides and initiate bonding between metal
interfaces. Finally, the deformation layer starts growing, and a bond is formed
by the compound effect of mechanic interlocking and atomic diffusion. During
the process, vibration amplitude is maintained constant by a built-in controller,
and instantaneous power consumption is recorded by an internal power meter.
He - e - - L s,

an

Clamping Force

Horn
Workpiece <
(Stationary)

Fig. 1. Illustration of a typical UMW process [16].

The tools of UMW, i.e., horn and anvil, play a critical role in joint strength
and welding quality [14, 38]. Both tools have many pyramid-shaped knurl pat-
terns on the surface, and these patterns are the key elements to effectively
transferring energy from the horn to workpieces for bonding formation. How-
ever, knurl patterns wear down gradually as more welds are produced. Shao
et al. [12, 38] characterized the geometric changes of anvil knurls on anvil
and showed that the tool wear progression in UMW is highly complicated. The

changes in tool surface geometry may influence the vibrational patterns of metal



layers and therefore significantly affect joint quality [14].

2.2. Online monitoring system

130 Experiments in this research were conducted using a Branson Ultraweld L20
UMW machine, which is equipped with a customized online monitoring system,
as depicted in Fig. 2. The data acquisition (DAQ) system has four online sensors,

which are briefly introduced as follows.

Power Sensor

Workpiece

\ ‘:‘
Microphone
Sensor -

LVDT Sensor
(Built-in)

Fig. 2. Photo of the UMW machine with sensors.

1. Acoustic emission (AE): A Physical Acoustic-R15a AE sensor attached
135 to the anvil assembling collects acoustic signal during the welding cycle.

The signal is amplified by a Physical Acoustic 2/4/6 voltage preamplifier.

2. Linear variable differential transformer (LVDT): A built-in LVDT mea-
sures the vertical relative displacement between the horn and stationary

anvil.

140 3. Power meter: A built-in power meter records the instantaneous power

consumption of the welder during the welding cycle.



4. Microphone: A GRAS 40PP microphone mounted close to the welding
area records sound signals during the welding cycle. The signal is amplified

by GRAS 12AL preamplifier.

145 Monitoring of the process anomalies with online signals stands as a criti-
cal yet challenging task [13, 38, 39]. One important prerequisite to the success
of online process monitoring is that the implemented sensors can sufficiently
capture changes in process conditions [13, 39, 40]. In UMW, there are mainly
two process anomalies: tool degradation [12-14] and workpiece surface contam-

50 ination [7, 15, 16]. Some prior research has shown the feasibility of employing
sensing signals for process monitoring and developed monitoring algorithms.
For instance, Nazir and Shao [14] studied the signals collected and concluded
the signals contain rich information about the process which can be used for
tool condition monitoring. It was also shown that online sensing signals were

155 able to reflect workpiece surface conditions [15, 16].
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Fig. 3. Examples of raw online sensing signals.

However, state-of-the-art research typically requires a large amount of la-
beled training data, mainly because of the challenges encountered in processing

signals. First, the collected sensing signals are extremely high-dimensional. To
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sufficiently capture the high-frequency vibrational information, a sampling fre-
quency of 250 kHz was used by the DAQ system in this study. Fig. 3 shows
example raw signals from each sensor. With a 1 s welding time, the signal dimen-
sion is 250,000. Second, it is critical to capture the changes of the signal patterns
over time, because those changes are related to the progressive formation of the
joint and can characterize different stages of the process. Nevertheless, as shown
by Fig. 3, the signal patterns are complicated and do not support a clear path-
way for tracking the process progression. Third, four sensing signals used by the
monitoring system are heterogeneous and their correlations are unclear, making
their processing very challenging. As such, substantial training data is required
for a machine learning model to sufficiently learn the intricate relationships be-
tween sensing signals and process conditions. Moreover, the complexity of the
mapping from the sensing signals to the process physics introduces significant
challenges to the development of monitoring algorithms in data-scarce scenarios.

In this work, the automatic feature extraction procedure developed in [10,
16] is employed to extract time-frequency features from online sensing signals.
Specifically, discrete wavelet transform (DWT) is used to decompose the orig-
inal signals into 13 levels of wavelet coefficients. For each sensor, 12 different
statistical indexes are computed from each level of wavelet coefficients including
entropy, zero crossing rate, mean crossing rate, 5th/25th/75th/95th percentile,
median, mean, standard deviation, variance, and root mean square value. The
complete explanation of each index can be found in [10]. Therefore, a total
of 624 features are generated for each data instance and greatly reduce the

dimensionality of the input feature space.

3. Overview of the Proposed Method

3.1. Problem formulation

In order to present the developed model for FSL in UMW, it is necessary to
formulate the machine learning problem which accurately represents the physical

process. The terminology is defined as follows.
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e Domain: A domain is a joint distribution Pxy on X x Y, where X is
the input feature space and Y is the label space. For example, in a TCM
problem, X is the vector of features extracted from online sensing signals.
Y is the tool condition label. Likewise, Y is the label for workpiece surface

conditions if the goal is to detect surface contamination.

e Task: Each task is an individual learning problem that meta-learning
learns to tackle, where a specific classifier (inner-learner) is trained exclu-

sively for fulfilling the task.

o Support set/query set: In each task, support set Dg,p is used to train
the inner-learner, similar to the concept of training data in conventional
machine learning, whereas query set Dqyery is for evaluating task loss and

updating meta-knowledge, i.e., initializations.

o Meta-train/meta-validate/meta-test: Learn/validate/test meta-knowledge

on a series of tasks.

e Inner loop/outer loop: Inner loop is the phase when inner-learner is trained
in each task. In contrast, outer loop consists of meta-train and meta-

validation.

Suppose the set of source domains Dyoyrce consists of k different domains D!,
D?, ..., DF. Let Dyarger be the target domain. Therefore, domain adaption
can be formulated as a supervised learning problem, where the goal is to learn
a model that can generalize from Dgource t0 Diarger given a limited number of
labeled examples in Diarget. Note that the distributions of domains D', D?,

..y D* and Dyarger may be significantly different. For example, in the TCM
task, the online sensing signals along with corresponding tool condition labels
under the same process configuration constitute a domain. Whereas the signals
generated under different process configurations belong to different domains. It
is expected that the Pxy distribution is different for different domains. There-

fore, the classification models trained for the source domains Dgource are not

directly transferable to the target domains Diarget. On the other hand, despite

10



the differences, because these domains share the common process physics, i.e.,
UMW, they share some similarities, making it feasible to transfer knowledge

between them.

3.2. Querview of XFSL

22

S

Fig. 4 shows a schematic overview of the XFSL framework. The framework
mainly includes two components: the FSL method and the global explanation
approach. FSL extracts and learns the meta-knowledge that is shared across
source domains. The meta-knowledge represents the common patterns and in-

22

o

herent characteristics that are universally applicable across domains. Building
on the meta-knowledge, FSL can effectively generalize the knowledge (models)
to new, unseen scenarios. The global explanation method leverages the meta-
knowledge extracted by FSL to attribute the input features. By utilizing the
learned meta-knowledge on the data distribution of the target domain, the global

20 explanation method estimates the global contribution of each input feature, i.e.,

=)

feature importance. The availability of feature importance scores facilitates the
identification of crucial features, feature types, and signal frequencies as well as
an effective feature selection procedure. The technical details of XFSL will be

presented in Section 4.
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Fig. 4. Schematic overview of the XFSL framework.
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4. XFSL Framework

4.1. MAML-based FSL

To enable FSL in cross-domain problems, MAML is employed in this study,
where the initialization of parameters is deemed as the meta-knowledge repre-
senting the underlying characteristics of the distributions among different tasks.

Let 0 be the parameters for inner-learner fy, then the goal of MAML is to learn:

w* = argminz Lmeta(DéQery; o*(®) (w),w), (1)
st. 0*0)(w) = argmin LtaSk(Déﬁ)p; 0,w), (2)

0

where w is initialization shared by all inner-learners; and Lyeta and Lyiagi refer
to meta and task losses, respectively.

Fig. 5 illustrates the implementation of MAML for XFSL. It shows an ex-
ample scenario where there are three source domains, i.e., Tasks 1-3, and one
target domain Task 4. The extension to more source domains is straightforward.
In meta-training, the supervised learning problem of each domain constitutes an
individual task. The training process starts with initializing the inner-learner
with parameters w. For each task, a support set is sampled from the cor-
responding domain and used to optimize the parameters of the inner-learner.
The inner-learner with updated parameters is then utilized to make predictions
on the query set for the same task. The prediction error on the query set is used
as a loss function to update the meta-knowledge w. By repeating this process
for all tasks, the generalization ability of the meta-knowledge w is reinforced
gradually. The final inner-learner initialized with optimal w can quickly adapt

to any similar task with a small number of training examples.

4.2. Structure of inner learner

The inner-learner in MAML is a task-wise machine learning model that is
trained to fulfill a specific task. It is used to update the model parameters in
a fast and efficient manner, allowing the model to adapt to new tasks quickly.

The choice of the inner-learner in MAML is of vital importance as it affects the

12
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Fig. 5. The MAML procedure for XFSL.

overall performance of the meta-learning algorithm. The inner-learner should

be chosen according to the following considerations:

e Task complexity: The complexity of the tasks in the meta-training phase
265 should match the capacity of the inner-learner. For simple tasks, a simple
model may be sufficient, while more complex tasks may require a more

powerful model.

e Model architecture: The inner-learner should be appropriate for the type

of task and data being used.

13



270 e Training data size: The inner-learner should be able to effectively learn

from the limited training data that is available for each task.

e Computational resources: The inner-learner should be computationally

efficient, as it will be trained many times during the meta-training phase.

According to [16], a multi-layer perceptron (MLP) model is effective in

s achieving high accuracy with the extracted features. Hence, to reduce the com-
puatational cost and avoid overfitting, MLP is adopted as the inner-learner in
this work. The structure of MLP is BN — FC(624,200) — ReLU — BN —
FC(200,50) - ReLU — BN — FC(50,4), where the inner learning rate is 0.01.

Hidden Layers

Input Layer Output Layer

624 200 50 4
Features Nodes Nodes Classes

Fig. 6. Architecture of the MLP model for the inner-learner.

4.8. Optimization of inner-learner

280 There are mainly two loops in XFSL for FSL: inner-loop to train the inner-
learner and the outer-loop to update the meta-knowledge. In the inner-loop,
the inner-learner parameters 6 is updated by gradient descent, minimizing the

task-specific loss function on the task-specific data distribution:

0" =0 — aVy L™ (D) ; 0, w), (3)

sup?

14
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where Ds(fl)p is the support set for task i, Vo L' is the gradient of the loss with
respect to the parameters, and « is the inner-loop learning rate. The task loss
is defined as
L= 3" (y;,95), (4)
(z5,9;)€DL),
where y; is the one-hot vector of the true label, g; is the predicted label dis-
tribution of input «j, and [ is the cross-entropy loss, i.e., for any k-dimensional

probability vector ¢, p:
I(t,p) =— Ztk log pi. (5)
k

One important aspect of MAML is the total number of inner-loop updates.
In general, more inner-loop updates result in better performance, but also re-
quire more computational resources and time. In this study, inner-loop is chosen
to be updated once for efficiency.

The query set, drawn from the same distribution with support set, is then
used to evaluate the performance of the trained inner-learner, providing insights
into the generalization ability of the model. Based on the average performance

across all tasks, the initialization w can be updated by

query”

WY =w — Z vaLmeta(D(i) ) 0*(1) (CU), LU), (6)

where 6*(") is the updated parameters of inner-learner for task i and f is the

meta-learning rate, which is 0.001. The meta loss is defined as

Lt =N Uy, 8). (7)

(®5.,95)ED Rery
4.4. XAI for XFSL

For conventional FSL methods, the mechanism behind how the models work
is difficult to interpret. To tackle this challenge, we develop an XAI method
based on the saliency map method. Traditionally, the saliency map is computed
by:

S,
wy = oI’ (8)

15
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where w§ is the importance value of pixel I to class ¢, and S, is the output
likelihood of belonging class c¢. The saliency map is designed for visualizing the
important pixels of the image, where each pixel shares same scale and distri-
bution. However, in our problems, the input vector is a collection of features
acquired from different wavelet levels. Different features have significant differ-
ent scales and distributions. To address this problem, we compute the saliency
map w.r.t the output of first batchnorm layer. Therefore,
c

98,

* 05 (9>

where w{ is the importance value of input feature z; to class ¢, and S, is the
probability that an instance is assigned to class c.

Conventional saliency maps have been widely recognized as local methods,
offering insights into feature importance at the individual instance level [41].
Therefore, it is difficult to draw general and global conclusions about feature
importance across an entire dataset or model. Moreover, the saliency map
is sensitive to small perturbations or changes in the input data or the model
parameters, leading to potentially inconsistent interpretations.

To alleviate these limitations, we propose using the meta-knowledge learned
from XFSL to establish the saliency map. Suppose €2 is the meta-knowledge,
then the importance of a feature for class ¢ is computed by

wi =Ep,,, e, Bzac DDy aSC(x(g:izsup’ 2 T Dsup,i> (10)
where w{ is the importance value of ith input feature to class ¢, D is the entire
dataset, Zsup is the collection of the 1-shot support set Dgyp, 7 represents the
ith feature of x4, op,,, ; is standard deviation of ith feature in Dgyp.

Unlike the conventional saliency map, this method incorporates the meta-
knowledge about the learning process across multiple tasks, which establishes a
global context that encompasses a diverse range of data instances and variations.
Given meta-knowledge €, the wy is fixed, providing a global explanation of the
class c. As such, this XAI method can effectively leverage the meta-knowledge to

establish a global model explanations, thereby enhancing the ability of saliency

16
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map. Furthermore, we can use this method to design an effective feature reduc-
tion procedure, which will be reported in Section 5.3.

The psedo-code for XFSL is formally presented in Algorithm 1.

5. Results and Discussion

This section examines the effectiveness of the proposed XFSL method using
real-world UMW datasets. Section 5.1 presents the experimental design and
data collection process. Sections 5.2 evaluates the performance of XFSL and
baseline methods with several case studies. The XAI results are reported in

Section 5.3.

5.1. Dataset description

Table 1: Design of experiments and domain group M configuration: combinations of four

materials along with different welding time and four tool conditions.

Domain || Material | Welding Time | Dataset Size Classification Goal
CcC Cu-Cu 09s 200
AC Al-Cu 0.5s 200
TCO | TC1 | TC2 | TC3
CA Cu-Al 0.5s 200
AA Al-Al 09s 200

Domain group M: The top and bottom workpieces are made of 50.8 mm
(length) x 25.4 mm (width) x 0.25 mm (thickness) Cu or Al sheet with dif-
ferent welding time. Welding samples are generated on different materials with
welding time combinations, as shown in Table 1. The sampling frequency for
signal acquisition is 250 kHz. It is worth noting that Cu-Al (CA) and Al-Cu
(AC) are different domains since the vibrational patterns during welding are
different. Each domain consists of 200 samples that are evenly distributed over
four tool conditions: new horn/new anvil (TCO0), new horn/worn anvil (TC1),
worn horn/new anvil (T'C2), and worn horn/worn anvil (TC3). Therefore, 800

samples are collected in total.

17



Algorithm 1 XFSL

Require: Source domains D', D?, ..., D* target domain Dyarget

Require: Learning rate «, 3, number of shot kg, the class of interest ¢ for

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

importance estimation of jth feature

// Step 1: Domain Split

Split the source domain D? into training domain DY, and validation domain
D,

// Step 2: Training Meta-Learning Model

Randomly initialize w

while w has not converged do

for i = 1,2,....k do
Sample kg-shot support set Déﬁ)p and query set D((ﬁfery from D¢,
0 = w // Initialize 6 of inner learner fy with w
// Train the inner-learner with support set. We update 6 once for
efficiency
0*() 0 — aVy L=k (D) 0, w)
end for
// Update the common initialization w
wew—y, ﬁvameta(Déﬁew; 0+, w)
Repeat 6-12 on D to get the validation accuracy
end while
Q is the w with the highest training and validation accuracy

Train an inner-learner with support set on Dyaget and evaluate the perfor-
mance

// Step 3: Obtaining the Global Feature Importance of feature j
for Class c

w§ =0 // Initialize w§

for i =1.2,...,|Zsyp| do

Sample support set Dy, and calculate op

sup,?

18
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Algorithm 1 XFSL (continued)

22: Train and obtain the inner-learner with Q and Dgyp

23: Get the class probability function S, from the inner-learner
24: for Go over all 7 sampled from |D — Dg,;,| do

25: w§ < ws + 785”(’”;@“%9) 0Dy

26: end for

27: end for

Table 2: Design of experiments and domain group S configuration.

Domain || Dataset Size Classification Goal
Clean 90
Polished 90 New | Worn | DMGD
Contam 90

Domain group S: Both the top and bottom workpieces are made of 50.8 mm
(length) x 25.4 mm (width) x 0.20 mm (thickness) Cu sheets. The welding time
is selected as 1.0 s and unlike the Domain group M, the sampling frequency of
Domain Group S is 200 kHz. As shown in Table 2, the surface conditions in
different domains are different, including “clean” surface condition, “polished”
surface condition and “contaminated” surface condition. A “clean” surface con-
dition is cleaned using alcoholic wipes prior to welding. The contact faces of the
workpieces polished with sandpaper before welding is defined as a “polished”
surface condition. A “contaminated” surface condition is obtained by apply-
ing one drop of cutting fluid to the workpiece surface. Each surface condition
consists of 90 samples that are evenly distributed for three tool conditions, re-
sulting in 270 samples in total. The goal of the S domains is to classify three
tool conditions: new horn/new anvil (New), worn horn/worn anvil (Worn) and
damaged horn/damaged anvil (DMGD). It is worth noting that despite that
the tool labeled “New” and “Worn” are also used for domain group M, the
“DMGD?” condition is not used in the M domains.

Domain group T: The data in this domain group are identical to domain
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group S. The difference is that the goal of domain group T is to classify the
s surface conditions: clean, polished and contaminated. Different domains rep-
resent different tool conditions, as shown in Table 3. Those domains mimic a
scenario where predicting the workpiece surface condition is desired while the

welding tools are fixed.

Table 3: Design of experiments and domain group 7" configuration.

Domain || dataset size Classification Goal
DMGD 90

New 90 Clean | Polished | Contaminated
Worn 90
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Fig. 7. Comparison of microphone signals in different M domains.

Fig. 7 compares some typical microphone signals in each M domain. The

a5 data is highly different in terms of patterns and length in different domains.
Fig. 8 shows the comparison of feature entropy of level 0 between Domain Cu-Cu
and Domain Al-Cu. It is seen that even after feature extraction, the distribution

of different tool conditions in the feature space is still significantly different

among domains, which highlights the challenges in effective knowledge transfer.
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Fig. 8. Comparison of distribution of entropy at level 0 (one of the extracted features)

between (a) Domain Cu-Cu and (b) Domain Al-Cu. The distribution is estimated by kernel

density estimation.

5.2. FSL results

The performance of the proposed method is evaluated on three FSL prob-
lems, each of which focuses on one domain group (M, S or T'). A neural network
(NN) with identical structure to the inner-learner of XFSL is built as the base-
line model. All models are run on a desktop with Intel i7-12700H CPU @ 2.30
GHz and Nvidia GeForce RTX 3060 GPU. The training time of XFSL on all
domain group problems is within 5 minutes for one run.

For domain group M, the model performance is evaluated on four domains.
We pick three domains in turn as the source domains and use the remaining
one as the target domain. Each source domain dataset is further divided into
meta-validation set and meta-train set with the ratio of 1:4. Therefore, the

target domain, training source domain and validation source domain are 200,

21



395

400

480, and 120 samples, respectively.

(a) -
e cCc
mm AC
. AA
100 -
S
= 904
3
Y
3 &0+
5]
<
70 4
60 -
1-shot 2-shot 3-shot 4-shot 5-shot
Number of Shots
(b) ey
1001 = NN
=
>
j2)
e
3
Q
Q
<
k<l
£
@
cc AC AA

Test Domains

Fig. 9. The model performance for domain group M. (a) Performance of XFSL with different

numbers of shots. (b) Performance comparison of XFSL and NN.

Fig. 9 displays the model performance for domain group M. As shown in
Fig. 9(a), the XFSL model achieves good performance in all FSL problems.
Specifically, the model in 1-shot problem on target domain AA can reach 90%
accuracy. Even the 1-shot accuracy on target domain CA, which is lowest among
all problems, is over 80%. Moreover, as the number of shots increases, the
accuracy consistently increases and then converges when it reaches 4- or 5-shot.
Meanwhile, the variation in classification accuracy decreases as the number of
shot increases, indicating improvement in robustness. This phenomenon arises
mainly because a small number of shots leads to imprecise parameter estimation

of the batchnorm layer of the inner-learner, especially for 1- and 2-shot cases.
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This problem is greatly alleviated as the number of shots increases, thereby
improving the consistency and robustness of the model.

The comparative results for XFSL and NN are shown in Fig. 9(b). It is seen
that XFSL, with an average accuracy of 82.48% on target domains, has superior
performance over the baseline method NN, especially on {AC, CC, AA—~CA}
with an improvement of 11.58%. Moreover, NN has much larger variations in
classification performance. Therefore, the proposed model outperforms NN in
both accuracy and robustness.

The proposed model performance for domain group S is shown in Fig. 10.
It is seen from Fig. 10(a) that TCM for “Polished” and “Clean” workpiece

surface conditions, XFSL achieves close-to-perfect performance even with 1-
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shot. TCM for the “Contaminated” domain is more challenging. However,
the prediction accuracy of XFSL improves when more data becomes available.
As shown in Fig. 10(b), NN has comparable performance with XFSL and both
models achieved an accuracy of close to 100% for test domains of “Polished” and
“Clean.” The performance of NN on the “Contaminated” domain is much worse
than XFSL. This could be attributed to the fact that the data distributions
of “Clean” and “Polish” domains are more similar with each other, while the
“Contaminated” domain differs from these two domains significantly. XFSL is
able to capture such heterogeneity and achieves higher classification accuracy

than NN.
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Fig. 11. The model performance for domain group 7T'. (a) Performance of XFSL with different

numbers of shots. (b) Performance comparison of XFSL and NN.

Fig. 11 shows the results for domain group 7T'. Different results than domain
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groups M and S are observed. The accuracy for classifying workpiece surface
conditions ranges from 65% to 75%. As shown by Fig. 11(a), XFSL generally
benefits from having access to more labeled data in the target domain. The

)

“Worn” domain has lower accuracy than the “New” and “Damaged” domains,
indicating that classifying workpiece surface conditions with worn tools is more
challenging than other tool conditions. Fig. 11(b) shows that XFSL outperforms
neural networks. It is also seen that the XFSL models can consistently deliver

over 65% accuracy. Comparing domain group T with M and S, we can see that

classifying workpiece conditions is much more challenging than TCM.

5.8. XAI for FSL

So far, our XFSL models have shown to be successful in extracting the
meta-knowledge for different types of process anomaly detection. However, it
remains unclear that which features, frequencies, sensors or feature categories
predominantly contribute to the model’s performance. This ambiguity poses a
substantial challenge to the interpretation of the results and feature reduction
to reduce pre-processing and inference cost. Therefore, this section will demon-
strate the ability of XFSL in identifying important features. As one example,
we focus on Domain Group M and {CA,CC,AC—AA} scenario in this study.

New-New

o o
o @
L L

Importance Score
o
S
.

o
[N}

0.0

0 100 200 300 400 500 600
Ranked Feature Number

Fig. 12. Feature importance scores ranked from highest to lowest for identifying New-New

condition in {CA,CC,AC— AA} task.
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Fig. 12 shows a representative example of feature importance scores. It is
noteworthy that only a very small portion of the features have high impor-
tance scores (exceeding 0.2). This implies that the majority of features can be
deemed as redundant for the classification task, thereby suggesting the possi-
bility of their removal to streamline the model without significantly impacting

its performance.
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Fig. 13. The importance scores of different level of wavelet coefficients, where each level

corresponds to a frequency band. A higher level represents a lower frequency band.

In this study, the original signal is decomposed into different levels of wavelet
coefficients, where each level corresponds to a frequency band. Higher levels
correspond to lower frequencies. Therefore, by aggregating the scores of all
features corresponding to the same level of wavelet and normalizing the results,
the comparison of importance for different frequencies can be obtained, as shown
in Fig. 13. It is revealed that high-frequency bands of LVDT signals are more

useful than low-frequency bands. Conversely, lower frequency bands of sound
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signals play a more important role. This difference may be attributed to the
inherent characteristics of these sensors: LVDT sensors effectively capture high-
frequency information, whereas sound sensors are more attuned to low-frequency
details. Table 4 compares the overall importance of each sensor. It is seen that
AE and LVDT sensors contribute more significantly to the overall prediction,

whereas power and sound sensors play less decisive roles.

Table 4: Sensor importance scores for 1-shot learning in Domain AA.

AE | LVDT | Power | Sound
New-New | 5.13 | 4.69 3.02 3.44
New-Worn | 6.94 | 5.42 5.66 4.03
Worn-New | 5.33 | 4.36 3.51 3.35

Worn-Worn | 6.05 | 6.86 4.57 4.29

Average 5.86 | 5.33 4.19 3.78

Fig. 14 shows the importance scores of different categories of features to-
wards each label. It is revealed that the entropy and the zero-crossing rate,
capturing fundamental characteristics of the signal, emerge as the most crucial
features. In contrast, the median and mean are found to contribute minimally to
the prediction, suggesting they could be excluded from the feature set without
substantially degrading classification performance.

The prior analysis shows that only a small portion of the features exhibit
high importance scores. This finding suggests a good opportunity for feature
selection based on the importance scores. Here, we devise the following feature

selection strategy:

1. Suppose we want to extract r features, and there are n classes in total.

Initialize the feature set S, with the empty set.

2. For the first class, collect the feature (or features of same frequency /category)

with the highest importance score to form set S*.

3. Repeat Step 2 on the remaining classes until all classes are done. Then
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crossing rate; 3: mean crossing rate; 4-7: 5th/25th/75th/95th percentile; 8: median; 9: mean;

10: standard deviation; 11: variance; 12: root mean square value.

update S, with S,.JS'JS?---UUS™.

4. Repeat Steps 2 and 3 with the second highest ones until the size of S,

reaches 7.

We use the strategy to select a quarter (156 features) and a half (312 fea-

tures) of the original features based on their importance scores obtained from

{CA,CC,AC—AA}. Subsequently, we perform an evaluation of the refined fea-

ture set on 1-shot learning tasks.

To ensure the robustness and validity of

the feature selection by XAI for meta-learning, the performance assessment is

conducted across all four tasks, each employing the identically selected feature

set. This multi-task evaluation serves to substantiate the generalizability and

efficacy of our feature selection strategy.

The results are reported in Table 5. It is shown that retaining half or even
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a quarter of input features, the model still sustains high accuracy for 1-shot
problem, which underscores not only the efficacy but also the generalizability of
the XAI method. Interestingly, in some scenarios, such as {AC,AA,CA—CC},
reducing the number of input features can even boost the performance. This
is because for 1-shot learning problems, some redundant features may bring
significant disturbances to the classification model due to extremely small num-
ber of training samples. Removal of the non-informative features can increase
the model performance. Another important finding is that all feature selection
methods can achieve comparable performance with the original one, providing

a flexibility in choosing the methods depending on the needs.

Table 5: Comparison of accuracy after feature reduction. Note that the feature is selected

based on the meta-knowledge learned from {CA,CC,AC—AA}.

Test Domain
Number of Features | Features Selection
CA CccC AC AA
624 None 81.49% | 83.89% | 87.50% | 96.79%
312 By Feature 85.57% | 88.51% | 95.56% | 97.11%
156 By Feature 89.96% | 90.15% | 93.82% | 96.60%
312 By Frequency 82.23% | 90.44% | 89.23% | 98.77%
156 By Frequency 79.06% | 87.89% | 80.80% | 98.38%
312 By Category 87.76% | 76.09% | 80.41% | 93.03%
156 By Category 85.74% | 75.04% | 87.35% | 88.09%

6. Conclusion

This research proposes a novel XFSL framework to efficiently detect process
anomalies online in UMW. The framework is designed to effectively learn and
transfer the meta-knowledge across multiple process configurations (domains),
thereby enhancing the generalization capability of the learning model in data-
scarce situations. A series of case studies that simulate different real-world ap-

plications are conducted to validate the performance of the XFSL framework.
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These case studies span a broad range of TCM scenarios, including various mate-
rial types, surface conditions, and welding settings, mimicking the heterogeneity
and complexity typically encountered in industrial environments. The results
show that XFSL outperforms baseline methods in all case studies, demonstrat-
ing the power of XFSL in data-scarce situations.

By leveraging the learned meta-knowledge, XFSL can further enable the ex-
plainability of the model and evaluation of feature importance. This method
not only enhances the reliability of the saliency map but also expands its in-
terpretability scope from individual instances to the overarching patterns in
the meta-data, thereby bridging the gap between local and global model in-
terpretability. A feature selection strategy is devised on the basis of our XAI
method. Quantitative results on multiple learning tasks show that the models
trained on the reduced feature set consistently perform as well as those trained
on the full feature set, and sometimes achieve better performance. Therefore,
the proposed XAI method enables a robust and comprehensive interpretation
of feature importance across multiple learning tasks.

The results of this work suggest two future research directions. First, the
ability of knowledge transfer across domain groups (M, S, and T') is highly
desirable to further extend the FSL capabilities. Development of this ability
will need to address the heterogeneity in class types and the numbers of classes.
Second, domain generalization [42], which assumes that data is absolutely un-
available in the target domain, will be able to unlock more powerful predictive
capabilities (e.g., before production launch in manufacturing). It will require
a more effective method for extracting fundamental meta-knowledge that is in-

variant across domains.
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