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Abstract

Ultrasonic metal welding (UMW) is a solid-state joining technology with wide-

spread industrial applications. While UMW has numerous important advan-

tages compared to traditional fusion-based welding methods, its performance

can be substantially influenced by process anomalies such as tool degrada-

tion and material surface contamination, which are commonly encountered in

industrial-scale productions. Recently, online monitoring has demonstrated ex-

cellent anomaly detection capabilities. However, the existing monitoring algo-

rithms require a large amount of labeled data and lack the generalizability or

adaptability to new process configurations (i.e., domains). This paper develops

a meta-learning-based explainable few-shot learning (XFSL) framework that

enables highly data-efficient adaptation of online monitoring algorithms to new

process configurations with excellent explainability. We consider two distinct

types of problems including tool condition monitoring and workpiece surface

condition classification with varying UMW configurations. Using experimental

data, we demonstrate that the proposed XFSL method achieves high classifica-

tion performance in previously unseen target domains and significantly outper-

forms baseline methods. Furthermore, XFSL is able to evaluate the importance
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of each feature, thus revealing key features, feature types, and signal frequencies.

It is shown that explainability-based feature selection can effectively eliminate

unimportant information from monitoring signals while maintaining and even

improving prediction performance. The proposed XFSL method is extensible to

other manufacturing applications and holds significant potential for advancing

the generalizability, adaptability, and agility of decision-making algorithms in

modern manufacturing.

Keywords: few-shot learning, meta-learning, domain adaptation, anomaly

detection, ultrasonic metal welding, quality control, explainable machine
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1. Introduction

Ultrasonic metal welding (UMW) is a versatile solid-state welding technol-

ogy that can join multiple sheets, wires, or foils of similar or dissimilar met-

als [1, 2]. UMW has numerous industrial applications, including automotive

body construction [3–5], lithium-ion battery assembly [1, 6, 7], and electronic5

packaging [8]. Compared with conventional fusion welding methods, UMW

offers important advantages including environmental friendliness, energy effi-

ciency, and high production rate [1, 9, 10].

One of the critical challenges in the industrial implementation of UMW is

the presence of strong process variability. UMW usually has small operating10

windows, especially when the workpieces are thin, dissimilar metals, such as

in battery assembly applications [10, 11]. Moreover, UMW is sensitive to both

internal and external process anomalies including but not limited to tool degra-

dation [12–14] and surface contamination of workpieces [7, 15, 16]. Responsively

detecting process anomalies is important for not only process monitoring but15

also real-time control [7, 16]. As such, online monitoring has attracted extensive

attention over the last decade, e.g., [7, 10, 11, 14–19]. For example, online qual-

ity monitoring methods have been developed to classify joint quality [11, 17] or
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predict joint strength [10, 19]. Nazir and Shao [14] developed an online tool con-

dition monitoring (TCM) system based on sensor fusion and machine learning20

that achieved near-perfect classification accuracy. For workpiece surface con-

dition monitoring, Lee et al. [15] determined the correlations between online

sensing signals, process conditions, and joint performance. They also demon-

strated the feasibility of detecting surface contamination online. Recently, Lu

et al. [16] created an online cost-effective approach for classifying mixed tool25

and material conditions, and investigated the cost factors of online monitoring

including sensors, signal fraction, and sampling rate.

Recent research in UMW process monitoring has shown the effectiveness

of machine learning algorithms in accurate predictions [20]. These machine

learning methods require a large amount of labeled training data collected from30

fixed process configurations (i.e., domains). However, modern manufacturing

is featured by rapid reconfiguration and agile adaptation [21, 22] that necessi-

tate varying process configurations. In UMW applications, a process configu-

ration can be defined by materials, welding parameters, surface conditions, etc.

Changing process configurations may lead to very different data distributions.35

In such cases, it is necessary to collect labeled data from the new scenarios

and re-train classification algorithms or even build completely different algo-

rithms. Acquiring a significant volume of training data can be time-, labor-,

and resource-intensive, which is highly undesirable in manufacturing. As such,

the ability to effectively transfer knowledge from rich-resource and established40

domains to data-scarce domains plays an important role in the smart manufac-

turing paradigm [23–26].

Few-shot learning (FSL) [27], which aims to train models that can perform

well on new tasks with minimal data, is a promising solution to the afore-

mentioned issues. Model-Agnostic Meta-Learning (MAML) is one of the most45

popular FSL methods. As a meta-learning approach, MAML is able to train

machine learning models that are conveniently adaptable to new tasks. In ad-

dition, MAML offers a general framework that can be integrated with various

model architectures and problem settings [28]. MAML trains a model on a vari-
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ety of tasks and uses gradient descent to optimize the model’s initial parameters50

such that the model can be adapted to a new task with only a few gradient up-

dates. MAML has been shown to achieve strong results in a variety of FSL

tasks, e.g., cross-lingual transfer [29] and semantic feature learning for domain

generalization [30].

Most recently, FSL has started receiving some attention in manufacturing.55

For instance, Liu et al. [31] developed an MAML-based meta-invariant feature

space method to estimate the tool wear in cutting processes under various data-

deficient cutting conditions. Wang et al. [32] combined meta-learning with fine

tuning to predict cutting tool wear. Nevertheless, research on FSL in manu-

facturing has been limited to machining processes, but no studies are available60

for UMW or other manufacturing processes. TCM for UMW is more chal-

lenging than machining because of the complicated process physics and limited

understanding on the tool wear mechanisms [12, 14]. Moreover, the existence

of other process anomalies such as workpiece surface contamination introduces

additional challenges to online monitoring [7, 16].65

One critical limitation of existing FSL methods is the lack of interpretability

or explainability due to their inherent “black-box” nature. Such interpretabil-

ity is of vital importance in manufacturing because it helps reduce the risk of

errors and improve the reliability as well as safety of the manufacturing process.

One potential solution to overcome this limitation of FSL is Explainable Arti-70

ficial Intelligence (XAI). In general, XAI methods can be classified into three

types: saliency maps, attention mechanisms, and rationale models [33]. Among

those methods, saliency maps, which visualize the gradient of the model’s out-

put probability of a class with respect to its input, have drawn most attention.

Studies such as Simonyan et al. [34] and Zeiler et al. [35] have shown the utility75

of saliency maps in identifying relevant patterns and objects in images, guiding

the optimization of complex models. In manufacturing-related fields, Su et al.

used saliency map to identify the machine area as an input of the downstream

models [36]. Ye and Yu proposed a saliency map based convolutional neural net-

work to detect machine fault [37]. However, two challenges must be addressed80
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when applying saliency map to FSL. First, the traditional saliency map meth-

ods cannot be directly integrated with FSL because they are local explanation

methods and confined to visualizing feature importance for individual instance

instead of a task. Moreover, the randomness of model training in FSL could

lead to large variations of feature importance, prohibiting its applications as the85

feature ranks are undetermined.

To address the aforementioned research gaps, this paper develops an ex-

plainable few-shot learning (XFSL) framework for online anomaly detection in

UMW with varying configurations. XFSL can effectively transfer the meta-

knowledge learned from data-rich domains to data-scarce domains. Explain-90

ability is enabled by using the extracted meta-knowledge to evaluate the feature

importance and extending saliency map approaches. The new explainability ap-

proach can capture the global characteristics of each class and is less sensitive

to the randomness of model training. To evaluate the performance of the pro-

posed framework, a series of case studies are conducted with distinct UMW95

process configurations and mixed anomalies. Results show that the proposed

XFSL method achieves high classification accuracy and significantly outper-

forms baseline methods, indicating XFSL can serve as an effective feature se-

lection method. The explainability-based feature selection effectively eliminates

unimportant information from monitoring signals while maintaining and even100

improving prediction performance.

The remainder of the paper is organized as follows. Section 2 formulates

the problem and presents the details of the XFSL framework. Section 3 reports

the data acquisition process and case studies. Finally, Section 4 concludes the

paper.105

2. UMW Process and Online Monitoring System

2.1. UMW overview

Fig. 1 illustrates a typical UMW process. In a typical UMW cycle, the

workpieces are clamped by welding tools, including the stationary anvil at the
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bottom and the oscillating horn at the top. When the process starts, a pneu-110

matic system generates a sufficient clamping pressure to act as the normal force.

Then, the high-frequency vibrations of the horn, which are actuated by a trans-

ducer and a booster, remove surface oxides and initiate bonding between metal

interfaces. Finally, the deformation layer starts growing, and a bond is formed

by the compound effect of mechanic interlocking and atomic diffusion. During115

the process, vibration amplitude is maintained constant by a built-in controller,

and instantaneous power consumption is recorded by an internal power meter.

However, the complex interplay between process configurations, tool conditions,

and workpiece properties is not fully understood [12, 14, 15].

Clamping Force

Workpiece

Horn

Anvil
(Stationary)

1 2 3 4

Fig. 1. Illustration of a typical UMW process [16].

The tools of UMW, i.e., horn and anvil, play a critical role in joint strength120

and welding quality [14, 38]. Both tools have many pyramid-shaped knurl pat-

terns on the surface, and these patterns are the key elements to effectively

transferring energy from the horn to workpieces for bonding formation. How-

ever, knurl patterns wear down gradually as more welds are produced. Shao

et al. [12, 38] characterized the geometric changes of anvil knurls on anvil125

and showed that the tool wear progression in UMW is highly complicated. The

changes in tool surface geometry may influence the vibrational patterns of metal
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layers and therefore significantly affect joint quality [14].

2.2. Online monitoring system

Experiments in this research were conducted using a Branson Ultraweld L20130

UMW machine, which is equipped with a customized online monitoring system,

as depicted in Fig. 2. The data acquisition (DAQ) system has four online sensors,

which are briefly introduced as follows.

Fig. 2. Photo of the UMW machine with sensors.

1. Acoustic emission (AE): A Physical Acoustic-R15α AE sensor attached

to the anvil assembling collects acoustic signal during the welding cycle.135

The signal is amplified by a Physical Acoustic 2/4/6 voltage preamplifier.

2. Linear variable differential transformer (LVDT): A built-in LVDT mea-

sures the vertical relative displacement between the horn and stationary

anvil.

3. Power meter: A built-in power meter records the instantaneous power140

consumption of the welder during the welding cycle.
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4. Microphone: A GRAS 40PP microphone mounted close to the welding

area records sound signals during the welding cycle. The signal is amplified

by GRAS 12AL preamplifier.

Monitoring of the process anomalies with online signals stands as a criti-145

cal yet challenging task [13, 38, 39]. One important prerequisite to the success

of online process monitoring is that the implemented sensors can sufficiently

capture changes in process conditions [13, 39, 40]. In UMW, there are mainly

two process anomalies: tool degradation [12–14] and workpiece surface contam-

ination [7, 15, 16]. Some prior research has shown the feasibility of employing150

sensing signals for process monitoring and developed monitoring algorithms.

For instance, Nazir and Shao [14] studied the signals collected and concluded

the signals contain rich information about the process which can be used for

tool condition monitoring. It was also shown that online sensing signals were

able to reflect workpiece surface conditions [15, 16].155

Fig. 3. Examples of raw online sensing signals.

However, state-of-the-art research typically requires a large amount of la-

beled training data, mainly because of the challenges encountered in processing

signals. First, the collected sensing signals are extremely high-dimensional. To
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sufficiently capture the high-frequency vibrational information, a sampling fre-

quency of 250 kHz was used by the DAQ system in this study. Fig. 3 shows160

example raw signals from each sensor. With a 1 s welding time, the signal dimen-

sion is 250,000. Second, it is critical to capture the changes of the signal patterns

over time, because those changes are related to the progressive formation of the

joint and can characterize different stages of the process. Nevertheless, as shown

by Fig. 3, the signal patterns are complicated and do not support a clear path-165

way for tracking the process progression. Third, four sensing signals used by the

monitoring system are heterogeneous and their correlations are unclear, making

their processing very challenging. As such, substantial training data is required

for a machine learning model to sufficiently learn the intricate relationships be-

tween sensing signals and process conditions. Moreover, the complexity of the170

mapping from the sensing signals to the process physics introduces significant

challenges to the development of monitoring algorithms in data-scarce scenarios.

In this work, the automatic feature extraction procedure developed in [10,

16] is employed to extract time-frequency features from online sensing signals.

Specifically, discrete wavelet transform (DWT) is used to decompose the orig-175

inal signals into 13 levels of wavelet coefficients. For each sensor, 12 different

statistical indexes are computed from each level of wavelet coefficients including

entropy, zero crossing rate, mean crossing rate, 5th/25th/75th/95th percentile,

median, mean, standard deviation, variance, and root mean square value. The

complete explanation of each index can be found in [10]. Therefore, a total180

of 624 features are generated for each data instance and greatly reduce the

dimensionality of the input feature space.

3. Overview of the Proposed Method

3.1. Problem formulation

In order to present the developed model for FSL in UMW, it is necessary to185

formulate the machine learning problem which accurately represents the physical

process. The terminology is defined as follows.
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• Domain: A domain is a joint distribution PXY on X × Y , where X is

the input feature space and Y is the label space. For example, in a TCM

problem, X is the vector of features extracted from online sensing signals.190

Y is the tool condition label. Likewise, Y is the label for workpiece surface

conditions if the goal is to detect surface contamination.

• Task : Each task is an individual learning problem that meta-learning

learns to tackle, where a specific classifier (inner-learner) is trained exclu-

sively for fulfilling the task.195

• Support set/query set : In each task, support set Dsup is used to train

the inner-learner, similar to the concept of training data in conventional

machine learning, whereas query set Dquery is for evaluating task loss and

updating meta-knowledge, i.e., initializations.

• Meta-train/meta-validate/meta-test : Learn/validate/test meta-knowledge200

on a series of tasks.

• Inner loop/outer loop: Inner loop is the phase when inner-learner is trained

in each task. In contrast, outer loop consists of meta-train and meta-

validation.

Suppose the set of source domains Dsource consists of k different domains D1,205

D2, . . . , Dk. Let Dtarget be the target domain. Therefore, domain adaption

can be formulated as a supervised learning problem, where the goal is to learn

a model that can generalize from Dsource to Dtarget given a limited number of

labeled examples in Dtarget. Note that the distributions of domains D1, D2,

. . . , Dk and Dtarget may be significantly different. For example, in the TCM210

task, the online sensing signals along with corresponding tool condition labels

under the same process configuration constitute a domain. Whereas the signals

generated under different process configurations belong to different domains. It

is expected that the PXY distribution is different for different domains. There-

fore, the classification models trained for the source domains Dsource are not215

directly transferable to the target domains Dtarget. On the other hand, despite
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the differences, because these domains share the common process physics, i.e.,

UMW, they share some similarities, making it feasible to transfer knowledge

between them.

3.2. Overview of XFSL220

Fig. 4 shows a schematic overview of the XFSL framework. The framework

mainly includes two components: the FSL method and the global explanation

approach. FSL extracts and learns the meta-knowledge that is shared across

source domains. The meta-knowledge represents the common patterns and in-

herent characteristics that are universally applicable across domains. Building225

on the meta-knowledge, FSL can effectively generalize the knowledge (models)

to new, unseen scenarios. The global explanation method leverages the meta-

knowledge extracted by FSL to attribute the input features. By utilizing the

learned meta-knowledge on the data distribution of the target domain, the global

explanation method estimates the global contribution of each input feature, i.e.,230

feature importance. The availability of feature importance scores facilitates the

identification of crucial features, feature types, and signal frequencies as well as

an effective feature selection procedure. The technical details of XFSL will be

presented in Section 4.

Fig. 4. Schematic overview of the XFSL framework.
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4. XFSL Framework235

4.1. MAML-based FSL

To enable FSL in cross-domain problems, MAML is employed in this study,

where the initialization of parameters is deemed as the meta-knowledge repre-

senting the underlying characteristics of the distributions among different tasks.

Let θ be the parameters for inner-learner fθ, then the goal of MAML is to learn:240

ω∗ = argmin
ω

∑
i

Lmeta(D(i)
query; θ

∗(i)(ω), ω), (1)

s.t. θ∗(i)(ω) = argmin
θ

Ltask(D(i)
sup; θ, ω), (2)

where ω is initialization shared by all inner-learners; and Lmeta and Ltask refer

to meta and task losses, respectively.

Fig. 5 illustrates the implementation of MAML for XFSL. It shows an ex-

ample scenario where there are three source domains, i.e., Tasks 1–3, and one245

target domain Task 4. The extension to more source domains is straightforward.

In meta-training, the supervised learning problem of each domain constitutes an

individual task. The training process starts with initializing the inner-learner

with parameters ω. For each task, a support set is sampled from the cor-

responding domain and used to optimize the parameters of the inner-learner.250

The inner-learner with updated parameters is then utilized to make predictions

on the query set for the same task. The prediction error on the query set is used

as a loss function to update the meta-knowledge ω. By repeating this process

for all tasks, the generalization ability of the meta-knowledge ω is reinforced

gradually. The final inner-learner initialized with optimal ω can quickly adapt255

to any similar task with a small number of training examples.

4.2. Structure of inner learner

The inner-learner in MAML is a task-wise machine learning model that is

trained to fulfill a specific task. It is used to update the model parameters in

a fast and efficient manner, allowing the model to adapt to new tasks quickly.260

The choice of the inner-learner in MAML is of vital importance as it affects the
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Fig. 5. The MAML procedure for XFSL.

overall performance of the meta-learning algorithm. The inner-learner should

be chosen according to the following considerations:

• Task complexity: The complexity of the tasks in the meta-training phase

should match the capacity of the inner-learner. For simple tasks, a simple265

model may be sufficient, while more complex tasks may require a more

powerful model.

• Model architecture: The inner-learner should be appropriate for the type

of task and data being used.
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• Training data size: The inner-learner should be able to effectively learn270

from the limited training data that is available for each task.

• Computational resources: The inner-learner should be computationally

efficient, as it will be trained many times during the meta-training phase.

According to [16], a multi-layer perceptron (MLP) model is effective in

achieving high accuracy with the extracted features. Hence, to reduce the com-275

puatational cost and avoid overfitting, MLP is adopted as the inner-learner in

this work. The structure of MLP is BN → FC(624,200) → ReLU → BN →

FC(200,50) → ReLU → BN → FC(50,4), where the inner learning rate is 0.01.

Input Layer

Hidden Layers

Output Layer

624 
Features

200 
Nodes

X

50 
Nodes

4 
Classes

Fig. 6. Architecture of the MLP model for the inner-learner.

4.3. Optimization of inner-learner

There are mainly two loops in XFSL for FSL: inner-loop to train the inner-280

learner and the outer-loop to update the meta-knowledge. In the inner-loop,

the inner-learner parameters θ is updated by gradient descent, minimizing the

task-specific loss function on the task-specific data distribution:

θnew = θ − α∇θL
task(D(i)

sup; θ, ω), (3)
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where D
(i)
sup is the support set for task i, ∇θL

task is the gradient of the loss with

respect to the parameters, and α is the inner-loop learning rate. The task loss285

is defined as

Ltask =
∑

(xj ,yj)∈D
(i)
sup

l(yj , ŷj), (4)

where yj is the one-hot vector of the true label, ŷj is the predicted label dis-

tribution of input xj , and l is the cross-entropy loss, i.e., for any k-dimensional

probability vector t, p:

l(t,p) = −
∑
k

tk log pk. (5)

One important aspect of MAML is the total number of inner-loop updates.290

In general, more inner-loop updates result in better performance, but also re-

quire more computational resources and time. In this study, inner-loop is chosen

to be updated once for efficiency.

The query set, drawn from the same distribution with support set, is then

used to evaluate the performance of the trained inner-learner, providing insights295

into the generalization ability of the model. Based on the average performance

across all tasks, the initialization ω can be updated by

ωnew = ω −
∑
i

β∇ωL
meta(D(i)

query; θ
∗(i)(ω), ω), (6)

where θ∗(i) is the updated parameters of inner-learner for task i and β is the

meta-learning rate, which is 0.001. The meta loss is defined as

Lmeta =
∑

(xj ,yj)∈D
(i)
query

l(yj , ŷj). (7)

4.4. XAI for XFSL300

For conventional FSL methods, the mechanism behind how the models work

is difficult to interpret. To tackle this challenge, we develop an XAI method

based on the saliency map method. Traditionally, the saliency map is computed

by:

wc
I =

∂Sc

∂I
, (8)
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where wc
I is the importance value of pixel I to class c, and Sc is the output305

likelihood of belonging class c. The saliency map is designed for visualizing the

important pixels of the image, where each pixel shares same scale and distri-

bution. However, in our problems, the input vector is a collection of features

acquired from different wavelet levels. Different features have significant differ-

ent scales and distributions. To address this problem, we compute the saliency310

map w.r.t the output of first batchnorm layer. Therefore,

wc
i =

∂Sc

∂xi
· σxi

, (9)

where wc
i is the importance value of input feature xi to class c, and Sc is the

probability that an instance is assigned to class c.

Conventional saliency maps have been widely recognized as local methods,

offering insights into feature importance at the individual instance level [41].315

Therefore, it is difficult to draw general and global conclusions about feature

importance across an entire dataset or model. Moreover, the saliency map

is sensitive to small perturbations or changes in the input data or the model

parameters, leading to potentially inconsistent interpretations.

To alleviate these limitations, we propose using the meta-knowledge learned320

from XFSL to establish the saliency map. Suppose Ω is the meta-knowledge,

then the importance of a feature for class c is computed by

wc
i = EDsup∈Dsup

Exq∈D−Dsup

∂Sc(x
q;Dsup,Ω)

∂xq
i

· σDsup,i, (10)

where wc
i is the importance value of ith input feature to class c, D is the entire

dataset, Dsup is the collection of the 1-shot support set Dsup, x
q
i represents the

ith feature of xq, σDsup,i is standard deviation of ith feature in Dsup.325

Unlike the conventional saliency map, this method incorporates the meta-

knowledge about the learning process across multiple tasks, which establishes a

global context that encompasses a diverse range of data instances and variations.

Given meta-knowledge Ω, the wc
i is fixed, providing a global explanation of the

class c. As such, this XAI method can effectively leverage the meta-knowledge to330

establish a global model explanations, thereby enhancing the ability of saliency
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map. Furthermore, we can use this method to design an effective feature reduc-

tion procedure, which will be reported in Section 5.3.

The psedo-code for XFSL is formally presented in Algorithm 1.

5. Results and Discussion335

This section examines the effectiveness of the proposed XFSL method using

real-world UMW datasets. Section 5.1 presents the experimental design and

data collection process. Sections 5.2 evaluates the performance of XFSL and

baseline methods with several case studies. The XAI results are reported in

Section 5.3.340

5.1. Dataset description

Table 1: Design of experiments and domain group M configuration: combinations of four

materials along with different welding time and four tool conditions.

Domain Material Welding Time Dataset Size Classification Goal

CC Cu-Cu 0.9 s 200

TC0 TC1 TC2 TC3
AC Al-Cu 0.5 s 200

CA Cu-Al 0.5 s 200

AA Al-Al 0.9 s 200

Domain group M : The top and bottom workpieces are made of 50.8 mm

(length) × 25.4 mm (width) × 0.25 mm (thickness) Cu or Al sheet with dif-

ferent welding time. Welding samples are generated on different materials with

welding time combinations, as shown in Table 1. The sampling frequency for345

signal acquisition is 250 kHz. It is worth noting that Cu-Al (CA) and Al-Cu

(AC) are different domains since the vibrational patterns during welding are

different. Each domain consists of 200 samples that are evenly distributed over

four tool conditions: new horn/new anvil (TC0), new horn/worn anvil (TC1),

worn horn/new anvil (TC2), and worn horn/worn anvil (TC3). Therefore, 800350

samples are collected in total.
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Algorithm 1 XFSL

Require: Source domains D1, D2, . . . , Dk, target domain Dtarget

Require: Learning rate α, β, number of shot ks, the class of interest c for

importance estimation of jth feature

1: // Step 1: Domain Split

2: Split the source domain Di into training domain Di
tr and validation domain

Di
va

3: // Step 2: Training Meta-Learning Model

4: Randomly initialize ω

5: while ω has not converged do

6: for i = 1,2,...,k do

7: Sample ks-shot support set D
(i)
sup and query set D

(i)
query from Di

tr

8: θ = ω // Initialize θ of inner learner fθ with ω

9: // Train the inner-learner with support set. We update θ once for

efficiency

10: θ∗(i) ← θ − α∇θL
task(D

(i)
sup; θ, ω)

11: end for

12: // Update the common initialization ω

13: ω ← ω −
∑

i β∇ωL
meta(D

(i)
query; θ∗(i), ω)

14: Repeat 6-12 on Di
va to get the validation accuracy

15: end while

16: Ω is the ω with the highest training and validation accuracy

17: Train an inner-learner with support set on Dtarget and evaluate the perfor-

mance

18: // Step 3: Obtaining the Global Feature Importance of feature j

for Class c

19: wc
j = 0 // Initialize wc

j

20: for i = 1,2,...,|Dsup| do

21: Sample support set Dsup and calculate σDsup,i

18



Algorithm 1 XFSL (continued)

22: Train and obtain the inner-learner with Ω and Dsup

23: Get the class probability function Sc from the inner-learner

24: for Go over all xq sampled from |D −Dsup| do

25: wc
j ← wc

j +
∂Sc(x

q ;Dsup,Ω)
∂xq

j
· σDsup,j

26: end for

27: end for

Table 2: Design of experiments and domain group S configuration.

Domain Dataset Size Classification Goal

Clean 90

New Worn DMGDPolished 90

Contam 90

Domain group S: Both the top and bottom workpieces are made of 50.8 mm

(length) × 25.4 mm (width) × 0.20 mm (thickness) Cu sheets. The welding time

is selected as 1.0 s and unlike the Domain group M , the sampling frequency of

Domain Group S is 200 kHz. As shown in Table 2, the surface conditions in355

different domains are different, including “clean” surface condition, “polished”

surface condition and “contaminated” surface condition. A “clean” surface con-

dition is cleaned using alcoholic wipes prior to welding. The contact faces of the

workpieces polished with sandpaper before welding is defined as a “polished”

surface condition. A “contaminated” surface condition is obtained by apply-360

ing one drop of cutting fluid to the workpiece surface. Each surface condition

consists of 90 samples that are evenly distributed for three tool conditions, re-

sulting in 270 samples in total. The goal of the S domains is to classify three

tool conditions: new horn/new anvil (New), worn horn/worn anvil (Worn) and

damaged horn/damaged anvil (DMGD). It is worth noting that despite that365

the tool labeled “New” and “Worn” are also used for domain group M , the

“DMGD” condition is not used in the M domains.

Domain group T : The data in this domain group are identical to domain
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group S. The difference is that the goal of domain group T is to classify the

surface conditions: clean, polished and contaminated. Different domains rep-370

resent different tool conditions, as shown in Table 3. Those domains mimic a

scenario where predicting the workpiece surface condition is desired while the

welding tools are fixed.

Table 3: Design of experiments and domain group T configuration.

Domain dataset size Classification Goal

DMGD 90

Clean Polished ContaminatedNew 90

Worn 90

Fig. 7. Comparison of microphone signals in different M domains.

Fig. 7 compares some typical microphone signals in each M domain. The

data is highly different in terms of patterns and length in different domains.375

Fig. 8 shows the comparison of feature entropy of level 0 between Domain Cu-Cu

and Domain Al-Cu. It is seen that even after feature extraction, the distribution

of different tool conditions in the feature space is still significantly different

among domains, which highlights the challenges in effective knowledge transfer.
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Fig. 8. Comparison of distribution of entropy at level 0 (one of the extracted features)

between (a) Domain Cu-Cu and (b) Domain Al-Cu. The distribution is estimated by kernel

density estimation.

5.2. FSL results380

The performance of the proposed method is evaluated on three FSL prob-

lems, each of which focuses on one domain group (M , S or T ). A neural network

(NN) with identical structure to the inner-learner of XFSL is built as the base-

line model. All models are run on a desktop with Intel i7-12700H CPU @ 2.30

GHz and Nvidia GeForce RTX 3060 GPU. The training time of XFSL on all385

domain group problems is within 5 minutes for one run.

For domain group M , the model performance is evaluated on four domains.

We pick three domains in turn as the source domains and use the remaining

one as the target domain. Each source domain dataset is further divided into

meta-validation set and meta-train set with the ratio of 1:4. Therefore, the390

target domain, training source domain and validation source domain are 200,
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480, and 120 samples, respectively.

Fig. 9. The model performance for domain group M . (a) Performance of XFSL with different

numbers of shots. (b) Performance comparison of XFSL and NN.

Fig. 9 displays the model performance for domain group M . As shown in

Fig. 9(a), the XFSL model achieves good performance in all FSL problems.

Specifically, the model in 1-shot problem on target domain AA can reach 90%395

accuracy. Even the 1-shot accuracy on target domain CA, which is lowest among

all problems, is over 80%. Moreover, as the number of shots increases, the

accuracy consistently increases and then converges when it reaches 4- or 5-shot.

Meanwhile, the variation in classification accuracy decreases as the number of

shot increases, indicating improvement in robustness. This phenomenon arises400

mainly because a small number of shots leads to imprecise parameter estimation

of the batchnorm layer of the inner-learner, especially for 1- and 2-shot cases.
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Fig. 10. The model performance for domain group S. (a) Performance of XFSL with different

numbers of shots. (b) Performance comparison of XFSL and NN.

This problem is greatly alleviated as the number of shots increases, thereby

improving the consistency and robustness of the model.

The comparative results for XFSL and NN are shown in Fig. 9(b). It is seen405

that XFSL, with an average accuracy of 82.48% on target domains, has superior

performance over the baseline method NN, especially on {AC, CC, AA→CA}

with an improvement of 11.58%. Moreover, NN has much larger variations in

classification performance. Therefore, the proposed model outperforms NN in

both accuracy and robustness.410

The proposed model performance for domain group S is shown in Fig. 10.

It is seen from Fig. 10(a) that TCM for “Polished” and “Clean” workpiece

surface conditions, XFSL achieves close-to-perfect performance even with 1-
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shot. TCM for the “Contaminated” domain is more challenging. However,

the prediction accuracy of XFSL improves when more data becomes available.415

As shown in Fig. 10(b), NN has comparable performance with XFSL and both

models achieved an accuracy of close to 100% for test domains of “Polished” and

“Clean.” The performance of NN on the “Contaminated” domain is much worse

than XFSL. This could be attributed to the fact that the data distributions

of “Clean” and “Polish” domains are more similar with each other, while the420

“Contaminated” domain differs from these two domains significantly. XFSL is

able to capture such heterogeneity and achieves higher classification accuracy

than NN.

Fig. 11. The model performance for domain group T . (a) Performance of XFSL with different

numbers of shots. (b) Performance comparison of XFSL and NN.

Fig. 11 shows the results for domain group T . Different results than domain
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groups M and S are observed. The accuracy for classifying workpiece surface425

conditions ranges from 65% to 75%. As shown by Fig. 11(a), XFSL generally

benefits from having access to more labeled data in the target domain. The

“Worn” domain has lower accuracy than the “New” and “Damaged” domains,

indicating that classifying workpiece surface conditions with worn tools is more

challenging than other tool conditions. Fig. 11(b) shows that XFSL outperforms430

neural networks. It is also seen that the XFSL models can consistently deliver

over 65% accuracy. Comparing domain group T with M and S, we can see that

classifying workpiece conditions is much more challenging than TCM.

5.3. XAI for FSL

So far, our XFSL models have shown to be successful in extracting the435

meta-knowledge for different types of process anomaly detection. However, it

remains unclear that which features, frequencies, sensors or feature categories

predominantly contribute to the model’s performance. This ambiguity poses a

substantial challenge to the interpretation of the results and feature reduction

to reduce pre-processing and inference cost. Therefore, this section will demon-440

strate the ability of XFSL in identifying important features. As one example,

we focus on Domain Group M and {CA,CC,AC→AA} scenario in this study.

Fig. 12. Feature importance scores ranked from highest to lowest for identifying New-New

condition in {CA,CC,AC→ AA} task.
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Fig. 12 shows a representative example of feature importance scores. It is

noteworthy that only a very small portion of the features have high impor-

tance scores (exceeding 0.2). This implies that the majority of features can be445

deemed as redundant for the classification task, thereby suggesting the possi-

bility of their removal to streamline the model without significantly impacting

its performance.

Fig. 13. The importance scores of different level of wavelet coefficients, where each level

corresponds to a frequency band. A higher level represents a lower frequency band.

In this study, the original signal is decomposed into different levels of wavelet

coefficients, where each level corresponds to a frequency band. Higher levels450

correspond to lower frequencies. Therefore, by aggregating the scores of all

features corresponding to the same level of wavelet and normalizing the results,

the comparison of importance for different frequencies can be obtained, as shown

in Fig. 13. It is revealed that high-frequency bands of LVDT signals are more

useful than low-frequency bands. Conversely, lower frequency bands of sound455
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signals play a more important role. This difference may be attributed to the

inherent characteristics of these sensors: LVDT sensors effectively capture high-

frequency information, whereas sound sensors are more attuned to low-frequency

details. Table 4 compares the overall importance of each sensor. It is seen that

AE and LVDT sensors contribute more significantly to the overall prediction,460

whereas power and sound sensors play less decisive roles.

Table 4: Sensor importance scores for 1-shot learning in Domain AA.

AE LVDT Power Sound

New-New 5.13 4.69 3.02 3.44

New-Worn 6.94 5.42 5.66 4.03

Worn-New 5.33 4.36 3.51 3.35

Worn-Worn 6.05 6.86 4.57 4.29

Average 5.86 5.33 4.19 3.78

Fig. 14 shows the importance scores of different categories of features to-

wards each label. It is revealed that the entropy and the zero-crossing rate,

capturing fundamental characteristics of the signal, emerge as the most crucial

features. In contrast, the median and mean are found to contribute minimally to465

the prediction, suggesting they could be excluded from the feature set without

substantially degrading classification performance.

The prior analysis shows that only a small portion of the features exhibit

high importance scores. This finding suggests a good opportunity for feature

selection based on the importance scores. Here, we devise the following feature470

selection strategy:

1. Suppose we want to extract r features, and there are n classes in total.

Initialize the feature set Sr with the empty set.

2. For the first class, collect the feature (or features of same frequency/category)

with the highest importance score to form set S1.475

3. Repeat Step 2 on the remaining classes until all classes are done. Then
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Fig. 14. The importance scores of different feature categories, where 1: entropy; 2: zero

crossing rate; 3: mean crossing rate; 4-7: 5th/25th/75th/95th percentile; 8: median; 9: mean;

10: standard deviation; 11: variance; 12: root mean square value.

update Sr with Sr

⋃
S1

⋃
S2 · · ·

⋃
Sn.

4. Repeat Steps 2 and 3 with the second highest ones until the size of Sr

reaches r.

We use the strategy to select a quarter (156 features) and a half (312 fea-480

tures) of the original features based on their importance scores obtained from

{CA,CC,AC→AA}. Subsequently, we perform an evaluation of the refined fea-

ture set on 1-shot learning tasks. To ensure the robustness and validity of

the feature selection by XAI for meta-learning, the performance assessment is

conducted across all four tasks, each employing the identically selected feature485

set. This multi-task evaluation serves to substantiate the generalizability and

efficacy of our feature selection strategy.

The results are reported in Table 5. It is shown that retaining half or even
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a quarter of input features, the model still sustains high accuracy for 1-shot

problem, which underscores not only the efficacy but also the generalizability of490

the XAI method. Interestingly, in some scenarios, such as {AC,AA,CA→CC},

reducing the number of input features can even boost the performance. This

is because for 1-shot learning problems, some redundant features may bring

significant disturbances to the classification model due to extremely small num-

ber of training samples. Removal of the non-informative features can increase495

the model performance. Another important finding is that all feature selection

methods can achieve comparable performance with the original one, providing

a flexibility in choosing the methods depending on the needs.

Table 5: Comparison of accuracy after feature reduction. Note that the feature is selected

based on the meta-knowledge learned from {CA,CC,AC→AA}.

Number of Features Features Selection
Test Domain

CA CC AC AA

624 None 81.49% 83.89% 87.50% 96.79%

312 By Feature 85.57% 88.51% 95.56% 97.11%

156 By Feature 89.96% 90.15% 93.82% 96.60%

312 By Frequency 82.23% 90.44% 89.23% 98.77%

156 By Frequency 79.06% 87.89% 80.80% 98.38%

312 By Category 87.76% 76.09% 80.41% 93.03%

156 By Category 85.74% 75.04% 87.35% 88.09%

6. Conclusion

This research proposes a novel XFSL framework to efficiently detect process500

anomalies online in UMW. The framework is designed to effectively learn and

transfer the meta-knowledge across multiple process configurations (domains),

thereby enhancing the generalization capability of the learning model in data-

scarce situations. A series of case studies that simulate different real-world ap-

plications are conducted to validate the performance of the XFSL framework.505
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These case studies span a broad range of TCM scenarios, including various mate-

rial types, surface conditions, and welding settings, mimicking the heterogeneity

and complexity typically encountered in industrial environments. The results

show that XFSL outperforms baseline methods in all case studies, demonstrat-

ing the power of XFSL in data-scarce situations.510

By leveraging the learned meta-knowledge, XFSL can further enable the ex-

plainability of the model and evaluation of feature importance. This method

not only enhances the reliability of the saliency map but also expands its in-

terpretability scope from individual instances to the overarching patterns in

the meta-data, thereby bridging the gap between local and global model in-515

terpretability. A feature selection strategy is devised on the basis of our XAI

method. Quantitative results on multiple learning tasks show that the models

trained on the reduced feature set consistently perform as well as those trained

on the full feature set, and sometimes achieve better performance. Therefore,

the proposed XAI method enables a robust and comprehensive interpretation520

of feature importance across multiple learning tasks.

The results of this work suggest two future research directions. First, the

ability of knowledge transfer across domain groups (M , S, and T ) is highly

desirable to further extend the FSL capabilities. Development of this ability

will need to address the heterogeneity in class types and the numbers of classes.525

Second, domain generalization [42], which assumes that data is absolutely un-

available in the target domain, will be able to unlock more powerful predictive

capabilities (e.g., before production launch in manufacturing). It will require

a more effective method for extracting fundamental meta-knowledge that is in-

variant across domains.530
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