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ABSTRACT

In industrial-scale applications of ultrasonic metal welding
(UMW), tool condition monitoring (TCM) is one of the most im-
portant maintenance tasks because tool health degrades quickly,
and tool condition impacts the process physics and joint quality
significantly. Moreover, tool replacement constitutes a notable
portion of maintenance costs. In UMW, tool health degradation
occurs mainly in the form of changes in tool surface geometry.
Online TCM, which uses in-situ sensing data to indirectly clas-
sify tool conditions, has demonstrated to be effective; however,
such indirect methods cannot provide a detailed characterization
of tool surface profiles. On the other hand, direct measure-
ments of tool surfaces require expensive and time-consuming
high-resolution 3D metrology, which substantially increases the
cost of quality and delays maintenance decision-making. To
overcome these challenges, this paper develops a fast and cost-
effective imaging system for fine-scale TCM in UMW. The imaging
system mainly consists of a macro lens and a Raspberry Pi (RPI)
high quality camera mounted over a linear rail driven by a step-
per motor, and the full system is controlled through RPI GPIO
(general-purpose input/output). The imaging system is used in
conjunction with coaxial illumination, which enhances tool sur-
face features, to capture a photo of a cast reproducing tool surface
geometry. Then, image processing techniques are developed to
characterize tool surface profiles and features. We demonstrate
the effectiveness of the proposed TCM strategy using tools in three
distinct conditions. Results show that the TCM imaging system
can effectively reconstruct critical fine-scale geometric features of
tools, thus enabling more responsive, interpretable, and reliable
TCM for UMW.
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1. INTRODUCTION

Ultrasonic metal welding (UMW) is an advantageous solid-
state joining technique for thin metal materials, and has wide
industrial utility [1, 2], such as lithium-ion battery assembly [3–
6], automotive body construction [7–9], and electronic packaging
[10, 11]. UMW uses ultrasonic vibration to generate oscillating
shears between metal layers clamped under pressure [12–14].
Fig. 1 illustrates a typical UMW system. In an UMW process,
workpieces are placed between and clamped by the two tool
components, i.e., horn and anvil. The anvil stays stationary while
the horn vibrates at a frequency of around 20 kHz. The surfaces
of horn and anvil consist of repetitive pyramid-shaped knurls as
shown in Fig. 2. In production, the knurl patterns change quickly
because of the strong friction and relative movements [14, 15]
that exist at interfaces between welding tools and workpieces.

Since UMW tool conditions significantly impact the process
physics and further the joint quality, tools must be replaced in time
before they wear out to guarantee satisfactory product quality [15,
17]. Moreover, tool replacement leads to significant production
costs including machine down time and expenses for fabricating,
reworking, or refurbishing the replaced tools, which is reported to
constitute a notable part of maintenance costs [15, 17]. Without
the ability to accurately monitor the tool wear, a conservative
tool replacement strategy is generally adopted in industry. For
example, the tools are replaced once a certain number of welds
has been produced. This empirical strategy is straightforward
to implement, but it does not account for machine-to-machine
or tool-to-tool variability. Thus, it may waste useful tool lives
and cannot detect abnormally fast tool wear, e.g., due to tool
installation faults. As a result, a tool condition monitoring (TCM)
system is critically needed to reduce tool replacement costs while
ensuring joint quality.

TCM has been an important topic in manufacturing and
tremendous research has been conducted. While the majority
of the TCM literature has concentrated on machining processes
[18–21], limited studies have been conducted for UMW. It is more
challenging to monitor tools for UMW than other manufacturing
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FIGURE 1: CONFIGURATION OF A TYPICAL UMW SYSTEM [16].

(a) A new anvil surface.

(b) A half-worn anvil surface.

(c) A completely worn anvil surface.

FIGURE 2: ANVIL SURFACES OF DIFFERENT WEAR STAGES. IN EACH ROW: (LEFT) OPTICAL PHOTO, (MIDDLE) HIGH-RESOLUTION 3D
MEASUREMENT, AND (RIGHT) A ZOOM-IN VIEW OF 3D MEASUREMENT.
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processes, mainly because: (1) the geometry of UMW tools is
much more complicated [17, 22, 23], and (2) the UMW process
runs at a high oscillation frequency (typically about 20 kHz) with
short welding cycles (often below 1 s), and its mechanism has not
been thoroughly understood [15, 17].

In general, TCM strategies can be categorized into direct
and indirect methods, depending on whether the tool geometry
is directly examined. Indirect TCM methods, e.g., [15, 24–28],
use online sensing data to infer on and classify tool conditions.
Shao et al. [15] adopted the dominant frequency of the sound
signal from microphone as the major feature, and correlated it
with the weld count that serves as a tool wear indicator. Shi et
al. [26] proposed a method to monitor the anvil tool installa-
tion condition using acceleration signals. A sensor fusion-based
online TCM system was established in [25] using features gen-
erated from power, displacement, sound, and acoustic emission
signals. The feature generation procedure and classifiers were
further improved in [27] with close-to-perfect classification ac-
curacy achieved.

While indirect methods are capable of online monitoring
and demonstrated to be effective in classification, they have some
limitations. Indirect methods require in-situ sensors and a data
acquisition system as prerequisites, which pose substantial costs.
Moreover, indirect methods cannot provide a detailed characteri-
zation of tool surface profiles. In UMW, tool health degradation
occurs mainly in the form of changes in tool surface geometry,
which progresses continuously and can display various, compli-
cated patterns [15, 17]. Thus, it is not sufficient to simply classify
a tool into good or worn conditions. In addition, because no ex-
isting models can effectively correlate peripheral sensor signals
with the UMW tool surface profiles, and the process variation is
usually significant, the interpretability of indirect methods can be
insufficient for high-precision TCM and other advanced decision-
making tasks including predictive maintenance and process con-
trol.

By measuring the tool surface profiles, direct TCM strategies
overcome the limitations of indirect methods. For UMW, such
TCM methods are reported in [15, 17, 29]. The UMW tool wear
progression was first characterized in [15], which categorized
tool wear into four different stages and described their surface
geometry with 3D measurements. To avoid tedious disassembly
and reassembly of tools, an impression method was proposed in
[17] to produce a metal weld coupon that reproduces the tool sur-
face shape for inspection, and features were then generated using
cross-sectional surface profiles for TCM. A high-order decompo-
sition method was presented in [29] to further improve the feature
extraction and monitoring procedure. However, all of these di-
rect methods depend on high-resolution 3D measurements of tool
surfaces or their surrogates. The expensive and time-consuming
measurement procedure substantially increases the cost of quality
and delays maintenance decision-making [30].

Recently, some studies developed interpolation methods
based on spatial modeling [22] and multi-task learning [23] to
improve the measurement efficiency. While these methods can
reduce the requirement on high-resolution metrology, they still
require disassembly and reassembly of tools. Moreover, a rela-
tively dense measurement of the tool surfaces is required to ensure

satisfactory interpolation accuracy.
Compared with 3D measurements, 2D photos of high-

resolution can be obtained in a much faster and cheaper fashion
using cameras. There have been numerous studies about TCM
with images for machining processes (e.g., [20, 21, 31–34]). Yet,
none of the existing TCM methods for UMW, except human vi-
sual inspection, adopt 2D images. Since evident tool wear can
be easily identified by human eyes through a magnifier, in prin-
ciple, monitoring of UMW tools is also possible using machine
vision, despite the loss of 3D information. Thus, in this paper,
we develop an imaging system and image processing techniques
to enable fast, cost-effective, and fine-scale TCM in UMW. The
imaging system is used in conjunction with coaxial illumination,
which enhances tool surface features, to capture a photo of a
thermoplastic resin cast reproducing tool surface geometry.

The rest of this paper is organized as follows. Section 2
proposes and describes the worn area size as an essential in-
dex of UMW tool degradation. Section 3 presents an improved
impression method for tool geometry measurement and demon-
strate the benefit of coaxial illumination. Section 4 introduces a
cost-effective implementation of an imaging system for TCM in
UMW. Image processing techniques are developed in Section 5
to characterize worn area and extract features for tool condition
classification. Finally, Section 6 concludes the paper and suggests
future research directions.

2. WORN AREA SIZE AS A TOOL WEAR INDEX
This section first demonstrates that the degree of tool wear

can be adequately characterized by the worn area, i.e., where ma-
terial removal takes place. Then, a heuristic description for worn
area is provided, which is readily translatable into corresponding
features in 2D images.

Optical photos and high-resolution 3D measurements (all
captured with a Keyence VK-X1000 confocal laser scanning mi-
croscope) of three sample surfaces are shown in Fig. 2, which
correspond to anvils that are empirically categorized as brand-
new, half-worn, and completely worn. We refer to these anvils as
surface 1, 2, and 3, respectively. Knurls are small-scale. In a new
condition, the knurl pyramid is 0.44 mm in height and 1.44 mm
in diagonal. Fig. 3 shows several cross-sectional profiles from
knurl tops in different conditions. According to measurements,
the three knurls undergo different levels of material removal. The
typical progression mode was reported and characterized in [15].

The 3D measurements reveal an obvious overall trend: knurl
height decreases and the top becomes flat as tool wear progresses.
In addition, the area where material removal occurs can be clearly
recognized from both 3D measurements and photos in Fig. 2, and
worn areas expand monotonically as more material is abraded
from the surface. The latter observation suggests the use of worn
area size, which can be identified from optical images without
3D information, as an informative index of tool wear.

Worn area size has several additional advantages over other
characterizations:
(1) It is a well-defined physical quantity depending only on the

tool surface. Unlike the crude classification of tools into
discrete stages, it does not depend on human judgment. Nor
does it rely on machine operation conditions, like the weld
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FIGURE 3: TYPICAL CROSS-SECTIONAL PROFILES OF ANVIL
KNURL TOPS IN DIFFERENT CONDITIONS.

counts.
(2) It can be defined for individual knurls to describe the spatial

distribution of surface degradation, enabling more detailed
characterization of tool wear patterns.

(3) Compared with features extracted from 1D cross-sectional
profiles in [17], computing the size of a two-dimensional
area involves more measurement points, which indicates a
better utilization of data and improved robustness to mea-
surement noise.
While the worn area is physically well-defined and recogniz-

able to human, it remains challenging to automatically identify
worn area with an algorithm. We may use the following heuristic
characterizations: worn area can be approximately described as
areas (1) around knurl centers, (2) with a notable portion of which
being flat on average at a larger scale (∼0.5 mm), and (3) whose
surface is rough with notable variation at a smaller scale (∼50
µm), as shown by the 3D measurements in Fig. 2 and sectional
profiles in Fig. 3. Note that, the latter two conditions intuitively
result in an interesting property: local minima and maxima are
densely distributed in worn areas. At the same time, extrema are
expected to be sparser on the four faces of knurls, whose slope
outweighs variation at smaller scales. Consequently, worn area
can be distinguished from unworn region surrounded according to
extrema density, which will be converted into discernible features
in images with the help of illumination (Section 3.2).

3. ACQUISITION OF TOOL SURFACE PROFILES AND
FEATURES

Surface geometry of UMW tools provides essential tool con-
dition information. It is necessary to avoid tool disassembly for
both measurement efficiency and production cost reduction. Sec-
tion 3.1 describes an impression method for surface measurement,
improving the existing work [17]. Then, Section 3.2 illustrates
how the worn area can be enhanced in images via coaxial illumi-
nation for easier identification.

3.1 Impression Method
Previously, an impression method was proposed in [17] to

reduce the production down-time. Rather than measuring the tool
directly, it makes an impression on a metal weld coupon. Fig. 4
shows an example. Then, the tool surface height corresponds to

FIGURE 4: A METAL COUPON PRODUCED BY THE IMPRESSION
METHOD IN [17].

FIGURE 5: CAST PRODUCTION PROCEDURE.

the inverse of coupon deformation depth, which is measured as a
surrogate of the tool surface using a 3D measurement system.

Although a good agreement was demonstrated between the
tool surface and its weld coupon, there are still some issues with
the existing impression method. First, the metal coupon may
not fully reproduce the tool geometry. In a typical aluminum
coupon shown in Fig. 4, only the central area of the tool is well
represented by the impression. Second, material and parameter
combinations have to be tested for good indentation, and the
optimal parameters vary with time as the tool gradually wears out.
Third, it generally requires a high welding energy, often beyond
the range of normal operation, to make a deep and full impression,
which is neither energy efficient nor convenient. Further, in such
cases, materials like aluminum may adhere to the tool and stain
the surface. Once it happens, the tool has to be disassembled
and cleaned in strong bases, causing extra machine down-time.
Welding with excessively high energy also increases the risk of
tool damage.

Noticing that these issues arise essentially due to insufficient
plasticity of the metal coupon, we propose to make casts with
more plastic materials, e.g., resins. Fig. 5 illustrates the proce-
dure for producing casts. We use hot melt glue, which is a cheap
and easily accessible type of thermoplastic resin, as the casting
material in this research. To produce the cast, we first fill hot melt
glue into a mold (Fig. 5a), which is a piece of aluminum with
a shallow groove on the top that matches the contour of the tool
(UMW anvil in this case). Then, the mold is aligned with the
tool and then pressed to let the knurls dent into the molten glue
(Fig. 5b). The mold can be removed from the tool after the glue
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FIGURE 6: COMPARISON OF ANVIL 2 AND ITS CAST. (A) 3D MEA-
SUREMENT OF THE ORIGINAL SURFACE. (B) 3D MEASUREMENT
OF THE CAST. (C) A CROSS-SECTIONAL PROFILE IN THE VERTI-
CAL DIRECTION INDICATED BY THE SOLID RED LINE IN (A) AND
(B). (D) A CROSS-SECTIONAL PROFILE IN THE HORIZONTAL DI-
RECTION INDICATED BY THE DASHED RED LINE IN (A) AND (B).

has cooled down, and a cast shown in Fig. 5c is produced.
To validate this method, casts of anvil surfaces 1, 2, and

3 are created and measured for comparison. Good agreement
is achieved between the original tools and inverse casts. For
example, Fig. 6a and 6b display 3D measurements of anvil 2 and
its cast, and two typical cross-sectional profiles marked with red
lines are compared in Fig. 6c and 6d. It is worth noting that small-
scale geometric patterns, e.g., on the top of knurls, are captured
well, suggesting a good potential for fine-scale characterization
and monitoring.

3.2 Feature Enhancement via Coaxial Illumination
Since the cast is expected to faithfully reproduce the tool

surface, the heuristic properties of worn area proposed in Section
2 should remain valid for corresponding regions over the cast
surface. Thus, we may distinguish the worn area in the image
by enhancing locations of extrema, where the surface has nor-
mal direction perpendicular to the horizontal plane. When the
camera views from the top, such points can be highlighted over
specular surfaces with coaxial lighting that is roughly collimated,
as depicted in Fig. 7.

Coaxial illumination refers to the case where front light hits
the object surface perpendicular to the object plane, as illustrated

FIGURE 7: LOCAL EXTREMA ARE HIGHLIGHTED AND SLOPED
SURFACES ARE DIMINISHED GIVEN COLLIMATED COAXIAL
LIGHTING.

(a) Laser intensity image (b) Our alternative.

FIGURE 8: IMAGES OF A CAST FOR SURFACE 3 UNDER (A)
COMMERCIAL COLLIMATED COAXIAL LASER AND (B) APPROX-
IMATELY COAXIAL ILLUMINATION.

by Fig. 9. Approximate collimation requires rays to be parallel to
the optical axis within a certain degree. Over a specular surface,
points with roughly perpendicular normal will be highlighted in
images under such light according to the law of reflection, while
slopes will be darker. Consequently, the worn area is bright in im-
ages, filled with shiny spots corresponding to extrema locations
and darker transition pixels in between; and intact regions will
appear mostly dark. The contrast can be further enhanced with
image derivatives in later processing. Fig. 8 compares the im-
ages of a cast for surface 3 obtained using a Keyence VK-X1000
confocal laser scanning microscope and our own system. Fig. 8a
can be regarded as a photo taken with precisely collimated coax-
ial illumination. The image presents highlights and shadows as
expected. A photo captured with our own system (Fig. 8b) shows
comparable patterns compared with Fig. 8a, demonstrating the
effectiveness of the system.

The choice of the casting material can be further explained
from an imaging perspective. Hot melt glue has fine and uniform
texture that makes cast surfaces specular. Furthermore, the glue is
chosen to be black, in order to suppress unhelpful body reflection.

4. IMPLEMENTATION OF A COST-EFFECTIVE IMAGING
SYSTEM

A cost-effective imaging system is developed to implement
the proposed TCM strategy. The design and implementation
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FIGURE 9: A SCHEMATIC DIAGRAM OF THE IMAGING SYSTEM.

avoid using expensive industrial-grade components by adopting
economic consumer-grade alternatives, in order to make it more
accessible to manufacturers. A schematic of the system is shown
in Fig. 9.

The imaging system mainly consists of a macro lens and a
Raspberry Pi (RPI) high quality camera mounted over a linear
rail driven by a stepper motor, and the full system is controlled
through RPI GPIO (general-purpose input/output). Instead of
purchasing a professional coaxial light, we use a pinspot light as
a roughly collimated light source together with a teleprompter
glass to achieve coaxial illumination. Major components of the
system are listed in Table 1, which cost less than $500 in total.
Components are assembled on a frame of aluminum extrusions
with screws and some 3D printed connectors. A photo for an
assembled system is shown in Fig. 10.

FIGURE 10: PHOTO OF THE ASSEMBLED IMAGING SYSTEM.

5. FEATURE EXTRACTION FROM IMAGES AND TOOL
CONDITION CLASSIFICATION

In Section 5.1, we sketch the procedure for processing the
images and explain how it is developed. Then, the size of identi-
fied area is used together with image brightness for effective and
interpretable classification in Section 5.2. Fig. 11 summarizes
the complete TCM procedure with cast images.

TABLE 1: LIST OF COMPONENTS IN THE IMAGING SYSTEM.

Component Model
Image sensor RPI HQ camera
Lens Unbranded, from a microscope for

electronics repair
Coaxial illumination A pinspot light

A teleprompter glass
Motorized focus con-
trol

An inexpensive linear rail driven by a
stepper motor
RPI 4B
Stepper motor driver
DC power supply for stepper motor

FIGURE 11: A FLOWCHART FOR TCM OF UMW WITH CAST IM-
AGES.

5.1 Worn Area Identification from Cast Images
With the imaging system, we are able to obtain photos of

the casts, e.g., Fig. 8b for surface 3 or Fig. 12d for surface 2.
Because our low-cost system does not provide ideally even and
collimated illumination, it does not work very well to threshold
directly on the photo. Instead, we enhance the contrast between
worn area by computing the image derivative. Compared with the
raw image (e.g., Fig. 12d), thresholding on the image Laplacian
(Fig. 12e) can yield a better segmentation result.

The entire processing procedure is developed to complement
the thresholding operation on the image derivative. To make
comparison between different photos sensible, the impression
area has to be correctly separated from the background. Also,
thresholding highlights the gridlines, which are valleys between
knurls. Such interference has to be masked before counting pixels
for worn area size estimation. Morphological reconstruction is
applied to remove the gridlines once their locations are identified.
Prior knowledge about the tool dimensions can be incorporated
to make the process more robust. The complete procedure for
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processing a cast image is summarized as follows:
(1) Measure dimensions and gridline locations (Fig. 12c) of the

same tool that produces the cast. Such information can be
obtained from an image of the tool, which can be captured
before tool installation in practice.

(a) Raw cast image (b) Enhanced cast gridlines

(c) Tool gridline locations (d) Aligned and cropped cast
image

(e) Image Laplacian (f) After filtering and thresh-
olding

FIGURE 12: IMAGE PROCESSING PROCEDURE FOR WORN AREA
IDENTIFICATION WITH CAST IMAGES. CAST 1 OF SURFACE 2 IS
USED FOR ILLUSTRATION.

(2) Identify the impression area and gridlines (Fig. 12b) roughly
on the raw cast image (Fig. 12a), which are then matched
with the corresponding tool information to accurately align
and crop the image, leaving only the impressed area un-
masked (Fig. 12d).

(3) Compute image Laplacian (Fig. 12e), smooth and apply
an adaptive thresholding (Fig. 12f), such that worn areas
together with gridlines are marked bright. With the tool
information (Fig. 12c) from (1), mask out the gridlines.

(4) Connect the identified worn area and remove scattered mis-
detections with an order-statistic filter, and then refine the
result with a close and an open morphological operation, in
order to connect identified fragments and trim small marks

that are possibly misdetected. The final result is marked in
Fig. 13c.
Fig. 13 displays the segmentation results of cast images of

surfaces 1, 2, and 3. The worn area identified is consistent with
visual inspection, and increases as tool wear progresses.

(a) Cast 1 of surface 1 (b) Cast 2 of surface 1

(c) Cast 1 of surface 2 (d) Cast 2 of surface 2

(e) Cast 1 of surface 3 (f) Cast 2 of surface 3

FIGURE 13: IDENTIFIED WORN AREA FOR IMAGES OF DIFFERENT
CASTS.

5.2 Tool Condition Classification
After worn areas are identified in cast images, the number of

marked pixels can be used to estimate the area size. There are
always errors in the segmentation result following the previous
procedure. Some worn locations are not correctly marked, while
many intact spots are mistakenly labeled because of cast imper-
fection or uneven illumination, etc. Besides, variations exist in
segmentation results of cast photos for the same tool surface,
because of different casts and camera/sample settings.

Despite these variations, significant difference is still ob-
served between the identified area sizes of different tool condi-
tions, comparing different rows of Fig. 13. In this research, three
casts are produced and imaged for each surface. Some of the casts
(three for surface 2 and one for surfaces 1 and 3 each) are imaged

7 Copyright © 2023 by ASME



FIGURE 15: NUMBER OF LABELED PIXELS VERSUS IMAGE
STATISTICS, (A) EXPOSURE TIME AND (B) IMAGE BRIGHTNESS.

at two different mounting locations. For the third cast of surface
2, the light is adjusted to hit the sample in three slightly different
angles. Every time the cast and light are fixed, nine photos are
taken for all combinations of 3/6/9 ms exposure time and three
slightly different objective distances in focus.

FIGURE 14: HISTOGRAMS FOR LABELED PIXEL COUNT IN CAST
IMAGES OF THREE TOOL SURFACES.

The segmentation procedure in Section 5.1 is carried out
for each photo, and the pixel counts for different surfaces are
summarized in Fig. 14. Although it shows good separability,
there are still some overlaps for half-worn and completely worn

FIGURE 16: HISTOGRAMS FOR THE FEATURE s OF CAST IMAGES.

tools. However, perfect separability can be achieved, once we
fix the exposure time (Fig. 15a) or take the photo brightness
into consideration (Fig. 15b). Consequently, the worn pixel
count estimated following the described segmentation procedure
from cast images should serve well as an indicator of tool wear
once corrected with statistics characterizing photo brightness.
Note that images are not adjusted for uniform brightness before
segmentation using conventional grayscale transforms such as
histogram equalization, because such operation may impede the
thresholding procedure.

The classification task is straightforward due to the clear
separability. To demonstrate the effectiveness, we use the pixel
count in millions (𝑠2) and image brightness (𝑠1) as the features,
and identify an optimal direction of separation with multiclass
linear discrimination analysis (LDA) [35, 36]. As an example,
the first cast of the three surfaces are used to generate features for
the training set, and the remaining casts for the test set. Then,
for best separability the LDA procedure suggests using 𝑠 = 𝑠2 −
0.21𝑠1, which has a clear physical explanation as an estimated
worn area size after adjustment according to exposure conditions.
The histogram using the feature 𝑠 is plotted in Fig. 16. It is
obvious that naive thresholding (e.g., with 𝑠 = 0.02 and 𝑠 = 0.14)
would already be sufficient for 100% accuracy. The classification
robustness can be further improved by constructing separation
hyperplanes pairwisely without requiring them to be parallel.

6. CONCLUSION AND FUTURE WORK
Tool wear identification and monitoring for UMW using im-

ages are investigated in this paper. By comparing 3D measure-
ments and optical images of tool surfaces in different conditions,
worn area and its size are demonstrated to be critical fine-scale
geometric features for tool wear characterization and monitoring.
In addition, the worn area can be identified from 2D images of
either the tool surface or its cast, especially when produced with
black thermoplastic resin and illuminated using coaxial light.
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The cast reproduces the tool surface geometry accurately, and is
measured as a substitution to minimize production interruption.
A cost-effective imaging system is designed and implemented to
capture cast photos. We develop an image processing procedure
to identify worn area from cast photos. It is shown that the worn
area size can be adequately estimated for a tool surface from
its cast photos. Tool condition classification with the proposed
features becomes more straightforward and interpretable.

The developed imaging system eliminates the need of slow
and expensive high-resolution 3D measurement system and en-
ables images from conventional cameras to identify fine-scale
wear areas on UMW tool surfaces, allowing faster data acqui-
sition at lower cost for more responsive and accessible TCM.
Performance of the current monitoring system could be further
improved with more accurate image segmentation algorithm. Be-
sides, correlation between images and 3D measurements is worth
exploring for further utilization of image information. Finally,
tool wear can be characterized at knurl level. The spatial pat-
tern of knurl degradation may be useful for various advanced
monitoring and diagnosis tasks in UMW.

Additionally, the proposed framework for TCM may be gen-
eralized to other surface abrasion monitoring tasks, when the
degradation can be well-characterized by the expansion of the
worn area, which has discernible features compared with in-
tact area in optical photos. In such applications, the following
guidelines may be considered to adapt the procedure. First, the
impression method is helpful when it is inconvenient to image the
surface itself. Apart from this, uniformity of the casting mate-
rial improves the consistency of imaging quality, especially when
the color information is complicated, irrelevant or ambiguous.
Second, coaxial and collimated illumination highlights extrema
over specular surfaces, while the imaging and illumination con-
figuration should be re-designed when the worn area cannot be
distinguished by extrema-related features. After obtaining infor-
mative photos, application-specific procedures can be established
for segmentation and other high-level tasks. Third, irrelevant in-
formation or interference can be masked out by incorporating
process knowledge (such as tool gridline locations in this work),
or computing the difference between images after alignment and
adjustments.
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