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ABSTRACT

Ultrasonic metal welding (UMW) is widely used in indus-
trial applications such as electric vehicle battery manufacturing
and automotive body assembly. The joint quality of UMW is
sensitive to a variety of undesired yet inevitable process distur-
bances such as tool condition and material surface condition.
Online monitoring and control capabilities are critically needed
to quickly detect process anomalies and adaptively adjust process
parameters, thus ensuring satisfactory joint quality and reducing
process variability. While existing research has developed on-
line quality monitoring methods for UMW, the cost-effectiveness
of hardware (sensors, data acquisition equipment, and edge-
computing devices) and software (computational efficiency) in a
monitoring system has not been investigated systematically. The
cost-effectiveness of monitoring also decides the window during
which control actions can be executed, thus ultimately influencing
the joint quality. This paper presents a systematic study on three
factors related to cost-effectiveness: (1) sensor selection, (2) sam-
pling rate of data acquisition, and (3) signal fraction. A method
based on discrete wavelet transformation (DWT) is used for au-
tomatic feature extraction due to its effectiveness in extracting
both time-domain and frequency-domain information with vary-
ing signal lengths. We develop a multi-layer perceptron (MLP)
classifier to process DWT-generated features and recognize two
types of welding disturbances including tool condition and mate-
rial surface condition. Case studies demonstrate that combining
a suitable signal fraction with a subset of sensors leads to compa-
rable performance to using all sensors at full length. Moreover,
the interaction between the sampling rate and the signal fraction
is investigated. Results confirm the feasibility of building an ac-
curate monitoring system with limited sampling rate and signal
fraction, which increases the window for real-time control.

Keywords: Ultrasonic metal welding, online monitoring,
real-time control, cost-effectiveness, mixed condition clas-
sification, quality control
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FIGURE 1: ILLUSTRATION OF AN UMW CYCLE

1. INTRODUCTION
Ultrasonic metal welding (UMW) is a solid-state welding

process that is capable of joining multiple metal sheets of similar
or dissimilar materials. This technique has numerous industrial
applications such as automotive body construction [1, 2], lithium-
ion battery manufacturing [3–5], and electronic packaging [6, 7].
A typical welding process is illustrated in Fig. 1. At the beginning
of welding cycles, the clamping force generated by the pneumatic
system is applied to the workpieces. Then, the horn starts vibrat-
ing at 20 kHz to remove surface oxides, expose the fresh metal,
and initiate a bond. At last, the deformation layer starts growing,
and the joint is formed eventually. UMW has various advan-
tages compared to conventional fusion welding methods such as
environmental friendliness, low energy consumption, and short
process cycle [8–10].

One critical challenge in industrial applications of UMW lies
in monitoring and controlling process variations [10–13]. UMW
is sensitive to uncontrollable factors including but not limited to
tool conditions [5, 14–16] and surface conditions of workpieces
[17, 18]. Tool condition monitoring (TCM) for UMW is a long-
standing challenge in the industry [15]. The main tools of UMW,
i.e., horn and anvil, have many pyramid-shaped knurling patterns
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on the surface [14, 19]. The geometrically sophisticated knurls
make TCM extremely difficult since it requires a high-resolution,
high-precision surface measurement system. Shao et al. [15]
characterized tool wear progression and then developed an algo-
rithm using features that are extracted from space and frequency
domains of cross-sectional profiles on tool surfaces to monitor the
tool condition. Zerehsaz et al. [19] proposed a high-order decom-
position method to extract a low dimensional set of features from
the high dimensional tool profile measurement data for detecting
tool wear at an early stage. Yang et al. [20] developed a hierarchi-
cal measurement strategy to balance the interpolation precision
and the measurement cost in acquiring high-resolution spatiotem-
poral measurements of UMW tools. To improve data efficiency
and reduce measurement costs, Chen et al. [21] devised a multi-
task learning approach for spatiotemporal modeling of UMW
tool surface progression. Although substantial progress has been
achieved in TCM, existing methods require a large amount of
surface measurement data that is expensive and time-consuming
to collect.

Surface condition is another common source of external dis-
turbances in UMW. Balz et al. [22] reported the effect of the
rolling direction of raw materials by using high-speed imaging to
observe the relative motion between tools and samples. Nunes et
al. [23] investigated the effect of surface preparation for welding
copper sheets in UMW. Workpiece surface contamination is one
of the most common issues on the factory floor since it reduces the
friction between multiple workpieces and between workpieces
and horn/anvil, which leads to unacceptable joint strength and
inconsistent welding quality. Lee et al. [17] investigated the
effect of surface contamination on joint strength and micro-scale
weld attributes. The physical insights were then used to devise a
guideline for feature selection and monitoring. Nong et al. [18]
proposed a parameter adjustment method to compensate for the
effect of contamination and substantially improved the robustness
of UMW.

Online monitoring emerges as a promising solution to de-
tecting variations in both tool conditions and material surface
conditions. In general, online monitoring uses in-situ sensing
signals and machine learning to detect process anomalies and to
predict joint quality non-destructively. One stream of research in
online monitoring of UMW focuses on classifying or predicting
joint quality, e.g., [11, 12, 24–28]. Recently, online monitoring
has been explored for detecting uncontrollable factors [29]. Nazir
and Shao [16] utilized sensor fusion and machine learning to build
an online TCM system for UMW. Ma et al. [30] monitored the
displacement of sonotrode by a high-frequency displacement sen-
sor and established the relationship between displacement, plastic
deformation, and welding quality for multilayer UMW. Existing
research on online monitoring of UMW exclusively focuses on
detecting one type of conditions. The presence of mixed condi-
tions, e.g., tool degradation and workpiece surface contamination,
is more realistic yet more challenging. It is imperative to capture
the interactions between different types of disturbances in such
cases. Mixed condition classification remains a research gap.

The cost-effectiveness of online monitoring systems is an im-
portant factor but has not been systematically studied. The cost
of a monitoring system can be categorized into hardware and

time. Hardware cost is mainly induced by sensors, data acquisi-
tion devices, and computing equipment. Intuitively, using more
sensors of high capability in alliance with a high sampling rate
provides more data, which may potentially improve monitoring
performance. However, a large data set requires more comput-
ing resources for processing/analysis and increases the time cost
of monitoring. Furthermore, the time cost of monitoring also
decides the control window in which the real-time controller
can execute a suitable strategy to overcome process disturbances.
Unfortunately, additional data does not always guarantee better
monitoring performance since some data sources provide only
limited insights into the physical welding process or even include
misleading, irrelevant information. As such, it is imperative to
develop a cost-effective monitoring system that can minimize the
data, cost, and time needed to achieve high monitoring accuracy,
while ensuring a sufficient control window to adjust the process
online.

This paper systematically investigates the cost-effectiveness
of online monitoring mixed tool and material conditions. We
consider three important cost factors: (1) sensor selection, (2)
sampling rate, and (3) signal fraction (i.e., the portion of a sig-
nal used for monitoring). We develop a monitoring method that
consists of discrete wavelet transform (DWT)-based feature gen-
eration and multi-layer perceptron (MLP) classifier to recognize
the mixed conditions of tool and surface. Then we vary the levels
of data availability determined by three abovementioned factors
and compare the classification accuracy. It is demonstrated that
the performance of using the suitable subset of sensors at a lim-
ited signal fraction is comparable with the performance of using
all sensors at full length. Moreover, the interaction between the
sampling rate and the signal fraction is investigated. The out-
come confirms the feasibility of building an accurate monitoring
system with a limited sampling rate and signal fraction, which re-
duces the monitoring cost and increases the window for real-time
control.

The remainder of this paper is organized as follows. Section
2 presents the online monitoring method. Section 3 presents
three case studies to scrutinize the effect of factors related to
cost-effectiveness. Finally, Section 4 summarizes the conclusion
and suggests future research directions.

2. METHODOLOGY
2.1 Data Acquisition System

The data acquisition (DAQ) system collects sensor signals
during the welding cycle. Figure 2 shows the architecture and
components of the DAQ system. A National Instrument USB-
6361 multi-functional DAQ device acts as a bridge between the
welding machine and the computer. The computer running MAT-
LAB script collects four signals, which are briefly introduced as
follows:

1. Power signal (internal signal): Instantaneous power con-
sumption of welder during the welding cycle.

2. Vertical displacement signal (internal signal): The verti-
cal displacement of the horn is measured by built-in linear
variable differential transformer (LVDT).

3. Acoustic emission (AE) (external signal): A Physical
Acoustic - R15𝛼 AE sensor attached on the anvil assembling
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FIGURE 2: DAQ SYSTEM ARCHITECTURE

collect acoustic signal during the welding cycle. The signal
is amplified by Physical Acoustic 2/4/6 voltage preamplifier.

4. Microphone (external signal): A GRAS 40PP microphone
placed near the machine records sound signal during the
welding cycle. The signal is amplified by GRAS 12AL
preamplifier.

2.2 Monitoring Software
The monitoring software uses collected in-situ sensing sig-

nals to recognize mixed tool conditions and surface conditions.
The software includes two major steps: feature generation and
classification.

DWT is selected for feature generation because of its effec-
tiveness in extracting both time-domain and frequency-domain
information with varying signal lengths. Since UMW is a join-
ing process based on high-frequency vibration, time-frequency
information is important when monitoring the quality and pre-
dicting process conditions [31]. The effectiveness of DWT was
first verified in a previous work [27]. As shown in Fig. 3, DWT
decomposes a raw signal into detail coefficients (DCs) from high
frequency and approximation coefficients (ACs) from low fre-
quency. Then, the approximation coefficients can be decomposed
again, and this process can repeat to level 𝑀𝑑 , leading to 𝑀𝑑 + 1
levels for each signal. In the case studies, we use 𝑀𝑑 = 12. Then,
features including statistical information, entropy, and crossings
are extracted using the coefficients. The definitions of all features
are summarized in Table 1. At last, all four signals go through
the feature generation process and 624 (12 features × 13 levels ×
4 signals) features are extracted.

An MLP classifier is built to predict the mixed condition.
Since both tool conditions and surface conditions influence the
welding process at the same time, it is important to capture their
interactions for better accuracy. It is worth noting that the ex-
isting research is exclusively focused on single-condition predic-
tion, and mixed condition prediction is a more challenging prob-

FIGURE 3: ILLUSTRATION OF USING DWT TO DECOMPOSE MI-
CROPHONE SIGNAL FOR FEATURE EXTRACTION [27]

lem. Our preliminary study found that the proposed one-classifier
method had the same or even better performance than using two
separate classifiers. Nine mixed conditions from the combination
of three tool conditions (new, damaged, worn) and three surface
conditions (clean, polished, contaminated) are predicted by the
MLP classifier. The MLP shown in Fig. 4 has three hidden layers
with the rectified linear unit (ReLU) as the activation function and
the adaptive moment estimation (Adam) as a solver for weight op-
timization. The architecture of the MLP model is selected based
on our prior work [27]. It was demonstrated that the MLP model
was able to achieve near-perfect performance for TCM. As such,
in this research, we use the same architecture and train the model
parameters using the newly collected dataset.

The average testing accuracy of 5-fold cross-validation,
which is illustrated by Fig. 5, is set as the performance crite-
rion. In each iteration of the 5-fold cross-validation procedure, a
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TABLE 1: FEATURE AND DESCRIPTION

Feature Description

Entropy Entropy of the sub-band
Mean Mean of the sub-band
Median Median of the sub-band
5th percentile 5th percentile of the sub-band
25th percentile 25th percentile of the sub-band
75th percentile 75th percentile of the sub-band
95th percentile 95th percentile of the sub-band
RMS Root-mean-square of the sub-band
Variance Variance of the sub-band
STD Standard deviation of the sub-band
Zero crossing rate Rate of the sub-band crosses zero
Mean crossing rate Rate of the sub-band crosses mean

1

2

9

3

3 hidden layers

150 nodes 100 nodes 50 nodes 9 classes624 features

… … … …

FIGURE 4: ARCHITECTURE OF THE MLP CLASSIFIER USED FOR
MIXED CONDITION CLASSIFICATION

new model is trained with the corresponding training set. There
is no information exchange between iterations, which means that
all models are trained independently without the worry of data
leakage. By letting all samples occur once in the testing set, we
eliminate the selection bias that may result from doing a single
train-test split, thus improving the robustness of our results.

2.3 Experimental Setup
In industrial applications of UMW, tool conditions are typ-

ically evaluated by disassembling the tools from the welder and
measuring the surface using high-resolution metrology [15, 19].
It is also necessary to re-assemble the tools to resume production.
This practice disrupts the production and leads to substantial pro-
duction downtime and significant delay in maintenance decision-
making. Therefore, online TCM is preferred to achieve respon-
sive and cost-effective decision-making. Surface conditions are
an uncontrollable factor since contamination like cutting fluid is
hard to remove completely, especially on the factory floor. As a
result, tool and surface conditions are not known in advance, and
it is important to detect and classify these disturbances for the

TABLE 2: TOOL AND SURFACE CONDITIONS

Label Tool Condition Surface Condition

1 New Clean
2 New Contaminated
3 New Polished
4 Damaged Clean
5 Damaged Contaminated
6 Damaged Polished
7 Worn Clean
8 Worn Contaminated
9 Worn Polished

Iteration 1

Training Testing
𝑎𝑎1

(Testing accuracy)
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𝑎𝑎2
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FIGURE 5: PROCESS OF 5-FOLD CROSS VALIDATION

purposes of monitoring and control.
UMW experiments were conducted under the combination

of three surface conditions and three tool conditions as shown
in Table 2. A “new” tool refers to a set of a horn and an anvil
with fresh knurl patterns. After thousands of welding cycle, the
tool wears out in the forms of knurl pattern changes [14, 15]. A
“damaged” tool is a result of an undesired collision between the
horn and anvil, which cause abnormal wear to the knurl pattern.
For the surface condition, the workpiece cleaned with alcoholic
wipes is defined as a “clean” surface. A “polished” surface
means that the contact faces of the workpiece are polished with
sandpaper before welding. At last, a “contaminated” condition is
created by applying one drop of cutting fluid to the welding area.

With nine mixed conditions and 30 replicates for each con-
dition combination, 270 samples are collected. The workpiece
specification and welding parameters shown in Table 3 are fixed
during the welding. The raw signals of four sensors (power,
LVDT, AE, and microphone) is collected at 200 kHz. Figure 6
shows an example of collected raw signals and the definition of
the signal fraction. The signal fraction is defined as the ratio of
the signal segment used for monitoring to the full-length signal.
Given the physical constraints of the integrated monitoring and
control system, the signal segment has to be continuously counted
from the beginning of a welding cycle and all four signals should
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TABLE 3: PROCESS PARAMETERS AND WORKPIECE DIMENSION

Parameter Setting

Vibration amplitude 40 μm
Clamping pressure 50 psi
Welding time 1 second
Sample size 50.8 mm x 25.4 mm
Sample material 0.2 mm thick copper
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FIGURE 6: EXAMPLE OF RAW SIGNAL, SIGNAL FRACTION, AND
CONTROL WINDOW

use the same signal fraction. A smaller signal fraction implies
that we identify the mixed condition earlier and reserve more time
for the control window. For example, a signal fraction of 40%
means that the first continuous 40% of all four signals are used
for monitoring and the control algorithm is given 60% of the total
welding time for process adjustment.

3. CASE STUDY
Three systematic case studies are designed to investigate:

(1) sensor selection (2) sampling rate of data acquisition, and (3)
signal fraction. The purpose of the first case study is to select
the appropriate sensors for the monitoring system. Superior data
efficiency translates into using fewer sensors while achieving high
classification accuracy. Then, the second case study scrutinizes
the effect of signal fraction, and classification errors are studied
in detail discussion. At last, the interaction between the sampling
rate and the signal fraction is investigated in the third case study.

3.1 Sensor Selection
The performance of using all four sensors is set as a bench-

mark, and the performance of using only selected sensors is com-
pared to the benchmark. First, the performance of using only one
sensor is evaluated at various signal fractions. As we can see in
Fig. 7, the power signal has the best performance while the AE
signal comes in the second place. When the signal fraction is
less than 50%, the benchmark does outperform the power signal.
However, the power signal can achieve 90% accuracy when using
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FIGURE 7: SINGLE SENSOR SELECTION
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FIGURE 8: SENSOR FUSION PAIRS SELECTION

only 40% of the signal length. Moreover, the power signal has
better performance than the benchmark when the signal fraction
is larger than 50%, which indicates that an internal sensor is suf-
ficient and the cost of using external sensors can be avoided. This
phenomenon is strong evidence that choosing a sensor wisely can
lead to higher data efficiency while using more sensors might
provide misleading information for the classifier.

Then, we are interested in the performance of sensor fusion.
Sensor signals are tested pair by pair, and the result is compared
to the benchmark as well. Figure 8 shows that two pairs of
sensors, namely, power+LVDT and power+acoustic, have better
performance than the benchmark. These two pairs of sensors have
great performance even when the signal fraction is extremely low,
and they reach 90% accuracy when using only a signal fraction
of 30%. The result from sensor fusion matches the result from
using a single sensor. The power signal is the best when using
one sensor and is the common signal in two pairs of sensor fusion.
Table 4 compares the average testing accuracy and the standard
deviation between power+LVDT and the benchmark. We can
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TABLE 4: 5-FOLD CROSS-VALIDATION ACCURACY FOR VARIED
SIGNAL FRACTIONS WHEN POWER AND LVDT SIGNALS ARE
USED

Signal fraction power + LVDT Benchmark

0.2 0.90 ± 0.025 0.87 ± 0.075
0.4 0.93 ± 0.0 0.92 ± 0.038
0.6 0.93 ± 0.014 0.91 ± 0.018
0.8 0.93 ± 0.017 0.92 ± 0.045
1 0.94 ± 0.038 0.96 ± 0.025

see that the average testing accuracy of power+LVDT pair is
higher when using limited data. Moreover, the smaller standard
deviation indicates that the performance of power+LVDT is more
consistent between validation folds.

From this case study, we have two important findings. First,
selecting suitable sensors can identify the accurate mixed con-
dition with only limited data. This means that cost-effective
early event detection is feasible, and the small signal fraction
ensures the control window is wide enough to adjust the param-
eter accordingly. The second interesting finding is the fact that
the power+LVDT pair, both internal signals, can outperform the
benchmark and other pairs of signals including an external sensor.
This suggests that using built-in sensors for monitoring is suffi-
cient thus the cost of extra sensors can be reduced significantly.

3.2 Effect of Signal Fraction
This case study focuses on analyzing the classification error

under different signal fractions. The raw signal of four sensors is
used for classification. In Fig. 5, the final confusion matrix is a
simple superposition of 5 matrices from 5 iterations in the cross-
validation. Three confusion matrices from select signal fractions
are shown in Fig. 9.

In Fig. 9a, we can see that using a full-length signal can
achieve 96% accuracy. Three sub-matrices present the classifica-
tion results of three tool conditions. It is shown that the classifier
can identify the tool condition perfectly while most of the errors
come from the confusion between different surface conditions.
Besides, there is a trend showing that the confusion between sur-
face conditions is most obvious when using a worn tool. This
phenomenon may be attributed to the fact that a worn tool leads
to an abnormal process and makes the joint quality more incon-
sistent. It is worth noting that these patterns are consistent with
the case where a lower signal fraction is used. Fig. 9b shows
that the overall accuracy is 92% when the signal fraction is 40%,
suggesting that excellent classification accuracy can be achieved
with limited data. Fig. 9c shows that when using only 10% of
the data the classification accuracy is reduced compared to larger
signal fractions. However, even in this case, the classifier still
correctly identifies most tool conditions.

Figure 10 presents the changes in computation time for DWT
feature extraction and testing accuracy when signal fraction is var-
ied. A roughly linear trend is observed for computation time. The
computation time for DWT feature extraction when using 40%
of the signal and the full signal is 54 ms and 85 ms, respectively.
Using 40% of the signal saves 36.5% of the computing time.
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FIGURE 9: CONFUSION MATRIX OF 5-FOLD CROSS VALIDATION
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FIGURE 10: COMPUTATION TIME FOR DWT FEATURE GENERA-
TION AND TESTING ACCURACY WITH VARIED SIGNAL FRACTION

When the signal fraction increases, the testing accuracy first im-
proves quickly, then stabilizes, and finally increases again when
the full signal length is used. This indicates that one can achieve
a trade-off between computation time, which is inversely related
to the control window, and monitoring accuracy. In the case of
Fig. 10, a 40% signal fraction is a good choice.

3.3 Sampling Rate and Signal Fraction
The last case study investigates the interaction between sig-

nal fraction and sampling rate. The raw signal is sampled at
200 kHz and we down-sample it by several levels and test the
down-sampled signal under various signal fractions. Within each
combination of down sampling rate and signal fraction, DWT
decomposes the signal at the maximum possible level to extract
all detailed information.

Figure 11 displays the average testing accuracy with different
combinations of signal fraction and sampling rate. As we can see,
there is a global trend in the diagonal direction from bottom-left
to top-right. When using an extremely low signal fraction at a
low sampling rate, the classifier has trouble identifying the mixed
condition. If we increase the signal fraction or sampling rate,
which feeds more information into the classifier, the performance
starts improving. The pattern demonstrates the necessity of more
data if better performance is desired, which implies higher hard-
ware and time cost. However, the performance does not increase
proportionally to the data availability. If we choose the suitable
combination of signal fraction and sampling rate, we can have
equal or even better performance than the benchmark (200 kHz
raw signal with 100% signal fraction). Moreover, the signal frac-
tion and sampling rate can supplement each other. For example,
if the signal fraction is limited to enable wider control window, a
higher sampling rate can be used to achieve a high classification
accuracy.

In the real-world scenario, we can achieve cost-effective
monitoring and in-process control by utilizing the data wisely.
In the first step, we select a range of sampling rates for reasonable
hardware cost and a range of signal fractions for a feasible con-
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FIGURE 11: AVERAGE TESTING ACCURACY WITH VARYING SAM-
PLING RATES AND SIGNAL FRACTIONS

trol window. Then, we can optimize the combination of signal
fraction and sampling rate for classifying the mixed condition
accurately. Finally, the real-time controller can adaptively adjust
the parameter to compensate for the disturbance caused by tool
conditions and surface conditions.

4. CONCLUSION AND FUTURE WORK
This paper investigates the cost-effectiveness of the online

UMW monitoring system with a focus on classifying mixed tool
and material surface conditions. The developed MLP classifier
is shown to be effective in classifying nine mixed conditions with
high accuracy, thus offering a new capability for detecting process
disturbances in complicated production scenarios. The presented
case studies show that only using internal signals including power
and LVDT signals is sufficient to predict the mixed conditions of
tools and surfaces even when data is limited. Therefore, the cost
associated with hardware can be greatly reduced while maintain-
ing good monitoring performance. The fact that the classifier
can achieve high classification accuracy with low signal fraction
demonstrates the feasibility of reserving a wider control window
for real-time control. Furthermore, choosing a suitable combina-
tion of sampling rate and signal fraction can increase the moni-
toring cost-effectiveness. The capability of MLP classifier with
DWT-generated features is proven and it can serve as an essential
element for in-process monitoring and early event detection.

In the future, the developed cost-efficient monitoring method
can be used to facilitate an effective integration of online monitor-
ing and real-time control. We will apply the developed method to
the online monitoring system for early, cost-effective recognition
of the mixed conditions. Then, a control strategy will be devised
to generate the control input (e.g., change in clamping pressure)
accordingly. Finally, the real-time controller will adaptively ad-

7 Copyright © 2023 by ASME



just the pneumatic system to compensate for the disturbances,
thus promoting joint quality.
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