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AbstractÐOptimum power allocation is a key enabler for
maximizing data rate in wireless networks. Recently, various
deep neural network models have been introduced for predicting
power allocation in device-to-device (D2D) networks. However,
they require large training samples (i.e., network layouts). On
the contrary in this paper, we aim to develop a learning model
for power allocation with fewer training samples, which is vital
in dynamic networks (e.g., vehicular networks) with the need for
fast learning of power allocation. The proposed model transforms
Euclidean-based network layouts and power allocation problems
into Riemannian (i.e., non-Euclidean) manifolds, which is shown
to require fewer learning parameters and hence shorter learning
time. Such transformation is possible thanks to the symmetric
positive definite (SPD) property of spectral representation (i.e.,
Laplacian matrix) of network layouts. In particular, we propose
a graph convolutional regression network (GCRN) for predicting
power allocation over Riemannian manifolds in an unsupervised
manner. Simulation results demonstrate that the proposed GCRN
model approaches the maximum network rate in large-scale
networks, with only 300 training samples as opposed to 10, 000
in Euclidean-based learning models.

Index TermsÐDevice-to-device networks, graph convolutional
networks, power allocation, Riemannian geometry, symmetric
positive definite matrices.

I. INTRODUCTION

Power allocation in device-to-device (D2D) networks is one

of the fundamental challenges in wireless communications,

as it requires a judicious distribution of transmission powers

to alleviate possible excessive interference among D2D pairs.

With the goal of maximizing total network rate, the wireless

power allocation problem can be defined as a non-convex

optimization problem [1], [2]. Various solutions for the power

allocation problem are based on optimization (e.g., [3]±[7]).

Besides, modern machine learning (ML) based approaches,

such as deep neural network (DNN) in [8], [9], or convolu-

tional neural networks (CNN) in [10], have been considered

for learning power allocation.

Graph neural networks (GNN) is of special importance

for learning power allocation as it matches the natural graph
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structure of wireless connectivity patterns [11]±[14]. For ex-

ample in [15], a GNN architecture was introduced for learning

power allocation in large-scale wireless networks. While such

GNN-based learning model approaches the total network rate,

it requires 10, 000 training samples (i.e, network layouts).

Dynamic networks (e.g., vehicular ones) change its topology

and size (i.e., number of vehicles) frequently. Maximizing the

total network rate with such dynamic variations requires fast

learning of any new network topology with fewer training

samples, and this is the motivation of this paper.

Euclidean-based wireless network layouts and power al-

location problem can be transformed into Riemannian (i.e.,

non-Euclidean) manifolds, which is shown to require fewer

learning parameters and hence shorter learning time. Structural

properties (i.e., connectivity patterns between network nodes)

of wireless networks can be effectively represented through

regularized weighted Laplacian matrices [16], [18], [19]. The

regularized weighted Laplacian matrices are Symmetric pos-

itive definite (SPD) one which can be represented as points

over Riemannian manifolds [20], [21]. To this end, we propose

to apply graph convolutional regression networks (GCRN)

toward learning topological representations over Riemannian

manifolds, and such learning model is used to predict power

allocation in an unsupervised manner.

Riemannian geometry has recently been used to address

challenges in wireless communication systems, such as the link

scheduling to maximize sum rate performance in [16]±[18],

the deployment of relays in [19] or the design of beamforming

codebooks in [22], [23]. Nonetheless, no prior research work

has considered the Riemannian geometry to reduce the number

of training samples for power allocation problems.

In this paper, we first model local topology around each

communication pair over the Riemannian manifold through

regularized weighted Laplacian matrices, with weights that are

proportional to its channel state information (CSI). Then we

use a GCRN model that learns the local topological modeling

over Riemannian manifolds in an unsupervised manner for

predicting power allocation, with differentiable exponential

and logarithmic maps, and this is the novel contribution of

this paper. The proposed GCRN model enjoys two unique

advantages for solving power allocation problems. First, it is

stable to imperfect CSI. Second, it can be generalized to large-

scale wireless networks. The proposed GCRN model can also

be trained in a supervised learning manner using weighted

minimum mean square error (WMMSE) [3] as the ground truth

which is often considered as performance upper bound [15].
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To provide a theoretical guarantee, we show that the proposed

GCRN satisfies permutation equivariance property in wireless

network graphs and thus makes it amenable to train and test

in different network topologies independent of its shape and

size. Finally, we show that the proposed method is competitive

with the state-of-the-arts by using only 300 training samples.

In brief, the main contributions of this paper are as follows:

• We model the local topology around each communication

pair through the regularized weighted graph Laplacian

matrices and use the modelings in the proposed GCRN

method to learn wireless power allocation over Rieman-

nian manifolds in an unsupervised manner. The proposed

GCRN model can also be trained in a supervised learning

manner using WMMSE [3] as the ground truth.

• We show that the proposed GCRN satisfies the permu-

tation equivariance property which allows to train and

execute it across different network topologies.

• We verify our proposed method with numerical exper-

iments in simulated D2D wireless networks scenarios.

Simulated results demonstrate that the proposed method

approaches the sum rate maximization performance as the

state-of-the-arts with only 300 training samples.

The remainder of this paper is organized as follows. We

present the system model and problem formulation in Sec-

tion II. In Section III, we provide the details of the proposed

GCRN architecture and analyze its permutation equivariance

property. In Section IV, we present our simulation results. We

draw the conclusion in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first briefly describe the relevant back-

ground for the proposed method. We then present a system

model of the D2D wireless networks on the Riemannian

manifold and formulate the wireless power allocation problem.

A. Preliminaries

A differentiable manifold M is a topological space [24]

where each point p has a neighborhood that is topologically

equivalent to a Euclidean space. A manifold locally similar

to Euclidean space refers to tangent space and its properties

as vector space. In particular, the tangent space TpM of a

differential manifold M, at any point p, is a vector space

of all possible vectors v that are tangent to manifold M at

point p. A Riemannian manifold (M, g) is a smooth and

real manifold M equipped with a positive definite inner

product gp at each point p on the tangent space TpM and

is studied by Riemannian geometry [24]±[26]. This implies

that we have a notion of distance that satisfies the metric

properties within a locally Euclidean-like, although it is not

exactly Euclidean space. The n × n SPD matrices Sym++
n =

{S ∈ R
n,n|S = ST, all eigen values of S are positive} forms

a cone-like manifold which is special class of Riemannian

manifold [25], [27]. The geodesic that connects two SPD

points Si,Sj ∈ Sym++
n can be represented by Riemanninan

metric such as log-Euclidead metric (LEM) [28] and is given

by

d(Si,Sj) = ∥ log(Si)− log(Sj)∥
2
F (1)

where, i ̸= j, and ∥.∥F denotes the Frobenius matrix norm.

Two important operations that connect the manifold M and

the tangent space TpM at a point p ∈ M are exponential

and logarithmic maps for which SPD manifold is endowed

analytical formula. The exponential map expp : TpM → M
defines a unique geodesic distance (shortest curve) from a

point p in the direction of a vector v in M which results

in a point in M and is given by [29]

expp(v) = p1/2Exp(p−1/2vp−1/2)p1/2. (2)

The logarithm map logp : M→TpM at point p is the inverse

of the exponential map which corresponds to a point y ∈M
when sent back via exponential map and is given by [29]

logp(y) = p1/2Log(p−1/2yp−1/2)p1/2. (3)
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Fig. 1: An illustration of basic operations of a Riemannian graph
convolutional layer. In each layer, node representations are computed
by aggregating messages from their neighbor nodes.

Riemannian graph convolutional networks [30] generalizes

the notion of graph convolutional networks of the form in

[31] such that the network operates on Riemannian manifolds

with differentiable exponential and logarithmic maps. To per-

form graph convolution, node representations are computed

by aggregating messages from their neighbor nodes. As the

tangent space of a point on Riemannian manifolds is always

Euclidean, functions with trainable parameters are executed

over Euclidean space. Let, I(u) be the set of neighbors

of u and σ be the pointwise non-linear function. Then the

propagation rule for each node u∈V is calculated as

X(k+1)
u = σ

(

expp(
∑

v∈I(u)

ÃvuΘ
(k) logp(X

k
v))

)

, (4)

where σ is the non-linear activation function, Θ(k) is the

learnable parameters, and Ã = D−1/2(A + I)D−1/2 is

normalized adjacency matrix which captures the graph con-

nectivity where D∈R
n,n denotes the diagonal degree matrix
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Fig. 2: A sample L-user interference channel and its corresponding graph.

with Duu=
∑

v(Avu+Ivu) and Duv =0 if u ̸= v. At layer

k, the propagature rule in (4) maps each node representation

Xk
v ∈M, where v ∈ I(u) is a neighbor of u, to the tangent

space of a chosen point p∈M using the logarithmic map logp.

Then an exponential map expp is applied to map the linearly

transformed tangent vector back to the Riemannian manifold.

The basic operations of the Riemannian graph convolutional

layer are illustrated in Fig. 1.

Standard regression method, on the other hand, can be

operated on Riemannian manifolds [30] by extending the

underlying idea of radial basis function [32], [33] to Rie-

mannian manifolds. More specifically, a list of centroids C=
[c1, c2, . . . , c|C|], are first jointly learned with the Riemannian

graph convolutional network using backpropagation, where

each cm∈M. Then the pairwise distance between ci and XK
j

(i.e., geodesic distance) is calculated as: ψij = d(ci,X
K
j ).

Then all distances (ψ1j , ψ2j , . . . , ψ|C|j ∈ R
|C| are concate-

nated to summarize the position of XK
j with respect to the

centroids. The node level regression can be defined as

ŷ = ΘT
0 (ψ1j , ψ2j , . . . , ψ|C|j), (5)

where Θ0∈R
|C| and T denotes matrix transposition.

B. Local topology modeling over Riemannian Manifolds

Fig. 2 illustrates an L-user interference channel, the un-

derlying wireless networks model of L communication pairs.

Each communication pair Dq , where q = 1, 2, . . . , L, has a

transmitter and a receiver represented in black square and

blue circle, respectively. We represent the communication links

between any transmitter-receiver pair with solid green lines.

Whereas the interference links to and from neighbor commu-

nication pairs are represented with red dashed lines. With full

frequency reuse, when each transmitter communicates with its

paired receiver, it causes interference to its neighbor receivers.

The wireless networks of L communication pairs in Fig. 2

includes n = 2L nodes, which are L transmitters and

L receivers. From this model, local topology around each

communication pair Dq can be modeled as a weighted and

undirected graph GDq
(V,EDq

), as shown in Fig. 3, where

V = {v1, v2, ...., vn} is the set of all n nodes and EDq
is

the set of all mq edges (i.e., links) that are connecting the

transmitter of Dq pair to its intended receiver along with the

interference links to and from its neighbor communication

pairs. The weight of edges is set to the instantaneous CSI hi,j
between its communication pair. We employ ϵ-neighborhoods

model [34], in which interference links between any transmit-

ter vi and receiver vj of its neighbor communication pairs are

considered if the distance ||vi − vj ||
2
< ϵ, where i ̸= j, and

i, j ∈ L. The ϵ-neighborhoods-based local topology modeling

is reasonable as the interference caused by any transmitter to

its neighbor receiver is negligible if the transmitter is placed

far from its neighbor receiver.
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Fig. 3: Example of local topology modeling of: a) communication
pair Dq=1, and b) communication pair Dq=L.

For an edge t, 1 ≤ t ≤mq , connecting transmitter vi and

receiver vj , where {vi, vj} ∈ V , we define an edge vector,

where the i-th and j-th elements are given by ati = 1, atj = 1
and rest of the entries are zero. The incidence matrix ADq

∈
R

n×mq of graph GDq
is the matrix with t-th column given

by edge vector at. The weight matrix WDq
∈ R

mq×mq is

defined as a diagonal matrix, whose diagonal entry (i.e., (t, t)-
th element) is equal to the weight of the t-th edge. Finally, the

graph Laplacian matrix L ∈ R
n×n can be computed as [16],

[18]

LDq
= ADq

WDq
ADq

T , (6)
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Fig. 4: Overall proposed GCRN model as applied to power allocation problem with two Riemannian GCN layers and a centroid based
regression layer.

where q = 1, 2, . . . , L, and T denotes matrix transposition.

The graph Laplacian matrices are positive semi-definite ones.

With a simple regularization step by adding a scaled identity

matrix to the LDq
, we can produce a regularized graph

Laplacian matrix [35] such as

SDq
= ADq

WDq
ADq

T + γIn, (7)

where γ > 0 is a regularization parameter which is an

arbitrarily small scalar and In ∈R
n,n is the identity matrix.

The regularized graph Laplacian matrices SDq
are SPD one

[20], [21], which are special class of Riemannian manifolds

[25]. To perform graph convolution for power allocations, we

consider each communication pair as a node in a graph. Hence,

the node feature of each communication pair is given by the

local topological modeling in (7).

C. Problem Formulation

We define the power allocation problem in the L-user

interference channel, previously shown in Fig. 2, as the sum

rate maximization problem of L communication pairs. Denote

p = [p1, p2, . . . , pL] as the power allocation vector. With full

frequency reuse over bandwidth B, our goal is to find the

optimal combinations of power allocation vector to maximize

the summation of instantaneous information-theoretic rates

and the problem is formulated as

max
p

L
∑

q=1

B log2

(

1+
pq|hqq|

2
ρ−α
qq

∑

i ̸=q pi|hiq|
2
ρ−α
iq + σ2

q

)

, (8)

s.t. 0 ≤ pq ≤ Pmax, ∀q = 1, 2, . . . , L,

where pq , hiq , ρiq are the transmission power, fast-fading

channel gain and Euclidean distance, respectively, between the

q-th transmitter and i-th receiver. Moreover, α is the path loss

exponent and σ2
q denotes the noise variance.

III. RIEMANNIAN GCN MODEL FOR POWER ALLOCATION

In this section, we describe the proposed wireless power

allocation scheme for D2D wireless networks. We start by

explaining the proposed GRCN method and then provide its

key property.

A. Proposed GCRN method

To perform graph convolution over the Riemannian mani-

fold for power allocation, we considered each communication

pair as a node in the graph. For each communication pair, the

node feature is extracted through local topological modeling

over Riemannian manifold which is described in Section II.

For instance, we first model the local topology around each

communication pair from the L-user interference channel

(Fig. 2) as a weighted and undirected graph (Fig. 3) which

captures the amount of interference a communication pair

imposes and receives to and from its neighbor communication

pairs. Then with a simple regularization step, we transformed

the model into Riemannian manifolds as a single point through

regularized graph Laplacian matrix which is SPD one. Then

we used these SPD points as the input to the Riemannian GCN

for power allocation.

We use two Riemannian graph convolutional layers and a

centroid based regression layer (as described in Section II) in

our proposed GCRN architecture for predicting the power al-

location as shown in Fig. 4. To perform graph convolution, we

view the q-th communication pair as the q-th node in a graph.

Since distant communication pairs cause little interference, we

only consider an edge from v to q if the distance between

transmitter v and receiver q is below a certain threshold ϵ.
The node feature is given by the local topological modeling

SDq
, and the graph connectivity is captured by the normalized

adjacency matrix Ã=D−1/2(A+ I)D−1/2 [30], [31].

Let, X
(k)
Dq

denotes the representation of q-th node at the k-th

graph convolutional layer, where k=0, 1, 2. As initialization,

the representation of q-th node is set by its local topological

modeling X
(0)
Dq

= SDq
∈ Sym++

n . By doing so, we represent

each node on Riemannian manifolds. We then obtain a new

node representation of q at the next step by aggregating all

messages (i.e., SPDs) from its neighbor nodes before applying

the non-linear activation function σ. Let I(q) be the set of

neighbors of q-th node. Then the propagation rule for each

node q∈L is calculated as [30]

X
(k+1)
Dq

= σ

(

expp(
∑

v∈I(q)

ÃvqΘ
(k) logp(X

k
Dv

))

)

, (9)
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where Θ(k) ∈ R
d,d is the learnable weight matrix in k-th

layer. Here, at layer k, the representation Xk
Dv

that lies in

Riemannian manifolds, where v is a neighbor of q, is mapped

to the tangent space of a chosen point p ∈ M using the

logarithmic map logp as in (3). We do this mapping because

the tangent space of a point on Riemannian manifolds is

Euclidean, so functions with trainable parameters are executed

there. Then an exponential map expp is applied to map the

linearly transformed tangent vector back to the Riemannian

manifold as in (2). Furthermore, when applying the non-

linear activation function directly on Riemannian manifold

M, we ensure that its application is manifold preserving, i.e.,

σ : M → M. In particular, we use ReLU as the non-linear

activation function since the output of ReLU is still an SPD

matrix [36], [37].

The output of the Riemannian graph convolutional networks

consists of a set of SPDs corresponding to L communication

pairs {X
(3)
D1
,X

(3)
D2
, . . . ,X

(3)
DL

}. We apply the centroid based

regression method [30] over Riemannian menifold to predict

the power allocation from these SPDs. More specifically,

a list of centroids C = [c1, c2, . . . , c|C|], are first jointly

learned with the Riemannian graph convolutional network

using backpropagation, where each cm ∈ Sym++
n . Then the

pairwise distance between ci and X(3)
q (i.e., geodesic distance)

is calculated using LEM [28]

ψij = ∥ log(ci)− log(X(3)
q )∥2F , (10)

where, ∥.∥F denotes the Frobenius matrix norm. Then all

distances (ψ1q, ψ2q, . . . , ψ|C|q) ∈ R
|C| are concatenated to

summarize the position of X(3)
q with respect to the centroids.

Using this, the node level regression is applied to produce a

continuous scalar output and is given by

pq(Θ) =
(

Θ(3)
)T

(ψ1q, ψ2q, . . . , ψ|C|q), (11)

where Θ(3) ∈ R
|C|. The purpose of this regression layer is

to embed the resulting node representation X
(3)
Dq

containing

the node features that live on Riemannian manifolds into a

scalar value presenting the predicted transmission power of

the corresponding communication pair.

Finally, noting that maximizing the sum rate in (8) be the

ultimate goal of the power allocation problem, we apply the

following loss function at the last layer of the GCRN to train

the model as in [9], [10], [15],

l(Θ) = −Eh

{

L
∑

q=1

log2

(

1+
|hqq|

2
pq(Θ)

∑

i ̸=q |hiq|
2
pi(Θ) + σ2

q

)

}

,

(12)

where pq(Θ) is the transmission power generated by the

proposed model. Note that no labels are needed to train the

model by adopting this loss function. Thus, the model is

trained in an unsupervised manner.

The power allocation method by the proposed GCRN is

summarized in Algorithm 1. As shown in the Algorithm, if

variable phase is set to ªtrainº, then the algorithm calculates

the loss and updates the learnable weights Θ to minimize the

loss. Otherwise, the algorithm considers it the ºtestº phase; no

loss function is applied. Hence, no weights are updated.

Algorithm 1 Pseudo-Code of Power Allocation by GCRN

1: Inputs: Data point {Sy

Dq
∈ Sym++

n , q ∈ L, y = 1, . . . , Y },
2: and phase;
3: Outputs: Predicted transmission power of L D2D pairs;
4: Process:
5: for y = 1, . . . , Y do
6: for q = 1, . . . , L do

7: X
(0)
Dq
←SDq ∈Sym++

n ; ▷ Initialization

8: X
(2)
Dq
←σ

(

expp(
∑

v∈I(q)

ÃqvΘ
(1) logp(X

(1)
Dv

))

)

; ▷ GCN

9: X
(3)
Dq
←σ

(

expp(
∑

v∈I(q)

ÃqvΘ
(2) logp(X

(2)
Dv

))

)

; ▷ GCN

10: pq(Θ)←
(

Θ
(3)

)T
(ψ1j , ψ2j , . . . , ψ|C|j); ▷ Regression

11: end for
12: if phase=ºtrainº then
13: Calculate loss l(Θ) in (12) and update weights Θ;
14: end if
15: end for
16: Return:

{

pyq (Θ)
}L

q=1
, y = 1, . . . , Y.

As mentioned earlier, the GCRN can also be trained in a

supervised learning manner. Explicitly, we use WMMSE [3]

as the ground truth which is often considered as performance

upper bound [15]. Then we apply mean squared error (MSE)

loss function (i.e., L2 norm) as the loss function, and is given

by

l
(

pWMMSE, pq(Θ)
)

=

∑L
q=1

(

pWMMSE − pq(Θ)
)2

L
, (13)

where pWMMSE is the transmit power of WMMSE scheme.

However, such approach is suitable when the labeled training

is available, which is computationally challenging especially

when the number of nodes is large [9].

B. Permutation Equivariance Property of Proposed GCRN

Model

The proposed GCRN has permutation equivariance prop-

erty, with respect to the underlying graph structure of L-user

interference channel. To conveniently describe these proper-

ties, we can rewrite the input-output relation of GCNs in (9)

in a more compact form X = Φ
(

L(A),Ψ,X
)

, where L(A)
is the normalized graph Laplacian matrix which captures the

graph connectivity, Ψ is a tensor gathering the learnable

weights Θ(i), i = 1, 2 at all two graph convolutional layers,

and X is the tensor gathering the of nodes features (i.e.,

SPDs) in which component Xq is associated with node q
and are supported on graph through graph connectivity. In

graph theory, functions that are equivariant to permutations

imply permuting the input graph consistently permutes the

output. Putting it from a wireless communication perspective,

the optimal power allocation scheme requires to entail per-

mutation invariant power allocation policy [14], [15] so that

the allocated power is not affected by the indexing of the

communication nodes. This is a key feature since the node

indexing is arbitrary for different wireless network layouts. So,

permutation equivariance is important for the proposed GCRN

model as it makes training model not depending on indexing
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of the nodes. This property is hard-coded in the structure of

the proposed GCRN, as shown by the following proposition:

Proposition 1. (Permutation Equivariance in proposed

GCRN:) Consider regularized graph Laplacians L(A) and

L̂(Â) along with tensors of node features X and X̂ for which

there exists a permutation matrix Π∈Qn, where Qn is the

set of all permutation matrices, such that Â=Π.A=ΠTAΠ
and X̂ = Π.X = ΠTXΠ, where ”Π.” denotes permuted

matrices over nodes, then we have

Φ̂
(

L̂(Â),Ψ, X̂
)

= Π.Φ
(

L(A),Ψ,X
)

. (14)

Proof. The proof is immediate, by observing that

L(Π.A) = Π.L(A) [38], thus Φ̂
(

L̂(Â),Ψ, X̂
)

=
Φ
(

Π.L(A),Ψ,Π.X
)

=Π.Φ
(

L(A),Ψ,X
)

, and permutation

commute with the pointwise non-linear activation function

(i.e., ReLU) and regression layer.

The permutation equivariance property allows to train and

execute the proposed scheme across different network topolo-

gies independent of its shape and size. Simulation results in

Section IV.B show its effectiveness to generalize to large-scale

networks.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results of our proposed

power allocation scheme for sum rate maximization in L-user

interference channel. We provide simulation results for dif-

ferent topological scenarios and compare these results against

state-of-the-arts.

A. Simulation Setup

We consider L-communication pairs within a square sized

wireless network area. In particular, we randomly deploy

L transmitters on the A × A area, while the receivers are

uniformly distributed around its corresponding transmitters

within the range between dmin to dmax. In the simulation, we

consider a distance-based path-loss according to ITU-1411

outdoor model. Then we add the shadowing and Rayleigh

fast fading into the channel model. We consider the WMMSE

[3] as the performance upper bound (i.e., benchmark) where

perfect CSI is assumed to be available to WMMSE. We

randomly generate 100 wireless network layouts for testing,

and all results presented in this section are averaged over 100

test wireless network layouts and normalized by the average

sum rate of WMMSE [3]. The simulation parameters are

summarized in Table I.

TABLE I: NETWORK SIMULATION PARAMETERS

Parameter Value

Bandwidth, B 5MHz

Carrier Frequency 2.4 GHz

Transmitter and Receiver Antenna height 1.5m

Transmitter and Receiver Antenna Antenna gain 2.5 dB

Noise spectral density -169 dBm/Hz

To train the proposed GCRN model, we use Adam optimizer

[39] for 20 iterations where the initial learning rate is set to

0.001 and the weight decay rate is set to 0.0005 based on the

experiments. Moreover, the dropout rate after the first GCRN

layer is set to 0.1 for regularization. The training parameters

of the proposed GCRN model are summarized in Table II.

B. Simulation Results

We first experiment with the impact of the number of

training samples on the sum rate performance of the proposed

method for 50 communication pairs. From Table III, the sum

rate performance for 300 training samples is enough, provided

that no significant performance gain is achieved by using more

than 300 training samples.
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TABLE II: REGRESSION GRAPH CONVOLUTIONAL NETWORKS

PARAMETERS

Parameter Value

Input Matrix size
Defined by the dimension

of input SPDs

Number of iterations 20

Learning rate 0.001

Weight decay 0.0005

Dropout rate 0.1

TABLE III: IMPACT OF THE NUMBER OF TRAINING SAMPLES AS

PERCENTAGE OF WMMSE [3]

Number of

Training

Network

Layouts

160 250 300 500 700 1000

Average

Sum Rate (%)
86.25 91.84 93.82 93.12 92.56 91.64

To show that the proposed method is capable of learning the

state-of-the-art optimization strategy, we randomly generate

a wireless network layout for L = 50 communication pairs

in 1000m × 1000m wireless network area as illustrated in

Fig. 5 and compare the power allocation between our proposed

method and benchmark WMMSE [3] algorithm. As shown

in the figure, the proposed GCRN method produces a power

allocation pattern close to the WMMSE output. This indicates

that our proposed scheme can learn the WMMSE optimization

strategy.

In Table IV, we summarize the sum rate performances and

approaches of various power allocation schemes for large-scale

networks, including GCN and deep neural network (DNN)

based solutions for L = 50 communication pairs at the area

of 1000m × 1000m wireless network layout. From Table IV,

the proposed GCRN can achieve 93.82% of average sum rate

generated by WMMSE [3] by only using 300 training samples.

It can outperform the DNN based PCNet [9], which requires

100, 000, 000 training samples, and All Active1 algorithm by

a large margin. Compared with the WCGCN [15] which

requires 10, 000 training samples to achieve 97.50% of the

average sum rate generated by WMMSE [3], we use far fewer

training samples but with only 3.68% of performance loss of

sum rate. Moreover, it can be seen from the table that the

proposed GCRN takes the least number of learning parameters

(e.g., 946) as opposed to 1792 in WCGCN [15] to achieve

comparable performance against the state-of-the-arts.

1) Stability to Imperfect CSI: To experiment the stability of

proposed GCRN to imperfect CSI, we model the environmen-

tal noise by adding additive white Gaussian noise (AWGN)

AG∼(0, σ2) to the perfect CSI (i.e., instantaneous estimated

CSI). We also experiment with the partial CSI (i.e., slowly

varying large-scale channel parameters) where we only add the

shadowing effect to ITU-1411 path-loss channel model and no

small-scale fast-fading is considered. We measure the stability

of the proposed method by four realizations for different values

of AWGN standard deviation σ and partial CSI. We still

consider 50 commnucation pairs in a 1000m× 1000m region

for each scenario and the results are summarized in Table V.

1The All Active algorithm is a simple baseline algorithm which activates
all communication links with Pmax power without any knowledge about CSI.

TABLE IV: POWER ALLOCATION SCHEMES WITH AVERAGE SUM

RATES FOR 50 COMMUNICATION PAIRS

Method
CSI
Used

Average
Sum rate

Number
of

samples

Number
of

parameters
Approach

WMMSE [3] Yes 100% / /
Iterative,

Optimization

Proposed
GCRN
(Unsupervised)

Yes 93.82% 300 946
Graph

Modeling,
& GCNs

WCGCN [15]
(Unsupervised)

Yes 97.50% 10,000 1792
Graph

Modeling,
& GCRN

PCNet [9]
(Unupervised)

Yes 79.70% 100,000,000 /
Multilayer
perceptron

All Active No 73.65% / /

All active
links

with Pmax

power

We can observe from the table that the sum rate performance

slightly but gradually decreases with the increase of standard

deviation values but still achieves good performances. The

performance is also satisfactory for partial CSI.

TABLE V: AVERAGE SUM RATE PERFORMANCE WITH IMPERFECT CSI

FOR 50 COMMUNICATION PAIRS

AWGN
Standard
Deviation

Perfect
CSI

σ = 0.5 σ = 1 σ = 1.5 σ = 2 Partial
CSI

Average
Sum Rate %

93.82% 92.42% 90.23% 89.16% 88.86% 87.76%

2) Scalability to Different Number of Pairs and Pairwise

Distances: In this section, we experiment with the scalability

of our proposed method to two important topological scenes:

1) how it performs when the number of communication

pairs increases and 2) its performance when pairwise distance

changes.

We first test the scalability of GCRN to topologies with

different numbers of communication pairs in the network area

of 1000m × 1000m. In this scalability testing, we keep the

number of pairs the same in both testing and training datasets.

As shown in Table VI, PCNet [9] achieves near-optimal sum

rate performance when the network is small. As the network

becomes large, the performance of PCNet [9] approaches to

Strongest2 which is a simple baseline algorithm. This shows

that the PCNet method can hardly learn any critical interfer-

ence information that exists in the networks. On the other

hand, the performance of the proposed GCRN is stable as the

network size increases. The proposed method even achieves

higher performance than both PCNet [9] and Strongest with

imperfect CSI for L = 30 and 50 communication pairs. Hence,

GCRN is more favorable than simple baseline and MLP based

methods for power allocation problems in medium or large-

scale networks. The performance is also comparable to GNN

based WCGCN [3] method, but it requires far fewer training

samples than WCGCN.

Next, we test the sum rate performance of GCRN with

different value of dmin and dmax for L = 50 communication

pairs in the area of 1000m×1000m, as shown in Table VII and

Fig. 6. We can observe that GCRN achieves good performance

compared to WCGCN [15] while using much fewer training

2The Strongest algorithm is another simple baseline algorithm which
allocates Pmax power to pairs with largest channel gains, while 0 power is set
for the rest of the pairs without any knowledge about interfering links.
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TABLE VI: AVERAGE SUM RATE PERFORMANCE WITH DIFFERENT

NUMBER OF COMMUNICATION PAIRS

Number of
Comm. pairs

Proposed GCRN
WCGCN [15]
(Perfect CSI)

PCNet [9]
(Perfect CSI)

Strongest

Perfect
CSI

σ = 2 Partial
CSI

10 95.57% 90.57% 89.46% 100% 98.90% 87.10%

30 94.34% 89.63% 88.12% 97.90% 87.40% 82.80%

50 93.82% 88.86% 87.76% 97.50% 79.70% 80.60%

samples and significantly higher performance than the All

Active algorithm. It also outperforms the All Active for all the

cases presented in the Table VII with imperfect CSI. Fig. 6

compares the scalability performance of the proposed method

under different channel conditions such as the perfect CSI,

imperfect CSI and partial CSI. Although a slight performance

degradation is observed for imperfect CSI, the performance is

still satisfactory for different pairwise distances.

TABLE VII: AVERAGE SUM RATE PERFORMANCE WITH DIFFERENT

VALUES OF dmin and dmax

Pairwise Distance
dmin ∼ dmax(m)

Proposed GCRN
WCGCN [15]
(Perfect CSI)

All Active

Perfect
CSI

σ = 2 Partial
CSI

2m ∼ 65m 94.46% 90.17% 88.38% 97.80% 73.65%

10m ∼ 50m 93.82% 88.86% 87.76% 97.50% 78.78%

30m ∼ 70m 92.15% 88.29% 86.11% 96.50% 60.05%

all 30m 92.57% 88.55% 87.09% 96.80% 69.47%

3) Generalizability to Larger Scales and Higher Densities:

We test the generalizability of the proposed method for wire-

less networks with larger scales and higher densities. General-

izability testing is different from scalability testing. Different

from the scalability testing, where the training is performed

every time for each testing scenario, we train our proposed

model with tens of communication pairs and test it with

unknown network scenes with hundreds of communication

pairs, as discussed next.

We first test the generalizability to large-scale networks but

with the same user density. We train the GCRN with L = 50
communication pairs in 1000m×1000m wireless network area

with (10m ∼ 50m) pairwise distance. Then we increase the

number of pairs in testing while keeping the user densities

fixed (i.e., A2/L). The results are summarized in Table VIII.

The table shows that the performance is promising compared

to the WCGCN [15] and outperforms the All Active by a

large margin. It can also be observed that the performance is

stable as the number of communication pairs increases. The

results suggest that the proposed GCRN can generalize to

larger problem scales, which is consistent with our permu-

tation equivariance analysis in Proposition 1. Furthermore, the

performance is also satisfactory for imperfect CSI and partial

CSI, as illustrated in Fig. 7.

Next, we perform the same test but with different user

densities. For instance, we first train the proposed model with

L = 50 communication pairs in 1000m × 1000m network

Fig. 6: Scalability of the proposed method under different channel
conditions.

TABLE VIII: AVERAGE SUM RATE PERFORMANCE TO LARGER

NETWORKS WITH THE SAME USER DENSITY

Number
of pairs

Area (m2)

Proposed GCRN
WCGCN [15]
(Perfect CSI)

All Active

Perfect
CSI

σ = 2 Partial
CSI

200 2000× 2000 93.54% 89.76% 87.35% 98.30% 45.92%

400 2828× 2828 93.67% 89.82% 88.05% 98.90% 38.47%

600 3464× 3464 92.52% 89.64% 87.58% 98.80% 29.62%

800 4000× 4000 92.18% 88.26% 86.23% 98.90% 19.53%

area. Then we increase the number of communication pairs

in the test dataset while keeping the network area size fixed.

The results are summarized in Table IX. As can be seen,

the performance is stable till a two-fold increase in the

user density, while a good performance is still achieved as

compared with WCGCN [15] even when there is a ten-fold

increase in the user density with both perfect and imperfect

CSI.

Fig. 7: Generalizability of the proposed method under different
channel conditions.
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TABLE IX: AVERAGE SUM RATE PERFORMANCE TO LARGER

NETWORKS, BUT WITH DIFFERENT USER DENSITY

Number
of pairs

Area (m2)

Proposed GCRN
WCGCN [15]
(Perfect CSI)

All Active

Perfect
CSI

σ = 2 Partial
CSI

100

1000× 1000

93.90% 88.91% 87.25% 97.60% 58.38%

200 92.54% 88.21% 87.54% 97.00% 45.43%

400 92.37% 87.62% 86.78% 95.6% 38.25%

500 91.44% 87.06% 86.23% 95.30% 32.46%

C. Unsupervised vs. Supervised Training

As mentioned earlier in Section III, the proposed GCRN

model can be trained in a supervised manner using the power

allocation of WMMSE [3] scheme as the ground truth. Table

X compares the two learning manners (i.e., supervise and

unsupervised) on the network area of 1000m × 1000m with

L = 50 communication pairs for different pairwise distances.

As can be seen, supervised learning achieves slightly higher

sum rate performance than unsupervised learning for all the

cases presented in Table X. However, such an approach

is suitable when the labeled training is available, which is

computationally challenging especially when the number of

nodes is large [9]. In summary, both learning manners have

their own pros and cons. Thus, we need to carefully select an

appropriate learning approach in practice.

TABLE X: AVERAGE SUM RATE PERFORMANCE FOR UNSUPERVISED

AND SUPERVISED LEARNING

Pairwise Distance
dmin ∼ dmax(m)

2m∼ 65m 10m ∼ 50m 30m ∼ 70m all 30m

Unsupervised 94.46% 93.82% 92.15% 92.57%

Supervised 95.32% 94.95% 93.56% 93.89%

D. Computational Complexity Analysis

In this subsection, we inspect the computational complexity

for the proposed GCRN based method and make a compar-

ison with different ML based state-of-the-arts in the L-user

interference channel in Table XI.

The proposed method is implemented in the following

sequence: 1) representing the local topology around each com-

munication pair on Riemannian manifolds, and 2) predicting

the transmission power by using GCRN. The computational

complexity for the communication pair local topology model-

ing is O(L2). On the other hand, for GCRN, we make use of

GPU-based implementation of (9) using sparse-dense matrix

multiplication [31] and the regression layer is applied row-

wise. Then, with a fixed number of iterations, the computa-

tional complexity for GCRN based power allocation can be

computed as follows:

O
(

L(|ξ|Ld1d2 + |C|)
)

≈ O(L2), (15)

where ξ is the number of edges, d1 and d2 are the number of

feature maps of the two graph convolutional layers and |C| is

the total number of trainable parameters of the regression layer.

Thus, the total computational complexity of the proposed

GCRN is O(L2).
As can be seen in Table XI, the proposed GCRN method has

similar computational complexity with MLP [8], DPC [10],

and PCNet [9] but the sum rate performance does not

deteriorate much for larger networks as observed in these

methods. On the other hand, the complexity is higher than

WCGCN [15] method, but it requires significantly less training

samples than WCGCN to approach the sum rate performance

of the benchmark (i.e., WMMSE [3]).

V. CONCLUSION

In this paper, we have introduced a power allocation scheme

in large-scale device-to-device (D2D) wireless networks. We

aim to reduce the number of training samples required for

faster response in dynamic D2D networks. To this aim, we first

effectively model the local topology around each communica-

tion pair over Riemannian manifolds. Then we have proposed

the GCRN method to learn these local topological modelings

for predicting wireless power allocation. The proposed method

is able to produce stable output with imperfect CSI. It also

satisfies the permutation equivalence property, making it pos-

sible to generalize to large-scale problems. We have shown that

the proposed GCRN based power allocation scheme achieves

competitive sum rate performances with only 300 samples as

opposed to the need for thousands of training samples by the

state-of-the-arts.
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