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Abstract—Optimum power allocation is a key enabler for
maximizing data rate in wireless networks. Recently, various
deep neural network models have been introduced for predicting
power allocation in device-to-device (D2D) networks. However,
they require large training samples (i.e., network layouts). On
the contrary in this paper, we aim to develop a learning model
for power allocation with fewer training samples, which is vital
in dynamic networks (e.g., vehicular networks) with the need for
fast learning of power allocation. The proposed model transforms
Euclidean-based network layouts and power allocation problems
into Riemannian (i.e., non-Euclidean) manifolds, which is shown
to require fewer learning parameters and hence shorter learning
time. Such transformation is possible thanks to the symmetric
positive definite (SPD) property of spectral representation (i.e.,
Laplacian matrix) of network layouts. In particular, we propose
a graph convolutional regression network (GCRN) for predicting
power allocation over Riemannian manifolds in an unsupervised
manner. Simulation results demonstrate that the proposed GCRN
model approaches the maximum network rate in large-scale
networks, with only 300 training samples as opposed to 10,000
in Euclidean-based learning models.

Index Terms—Device-to-device networks, graph convolutional
networks, power allocation, Riemannian geometry, symmetric
positive definite matrices.

I. INTRODUCTION

Power allocation in device-to-device (D2D) networks is one
of the fundamental challenges in wireless communications,
as it requires a judicious distribution of transmission powers
to alleviate possible excessive interference among D2D pairs.
With the goal of maximizing total network rate, the wireless
power allocation problem can be defined as a non-convex
optimization problem [1], [2]. Various solutions for the power
allocation problem are based on optimization (e.g., [3]-[7]).
Besides, modern machine learning (ML) based approaches,
such as deep neural network (DNN) in [8], [9], or convolu-
tional neural networks (CNN) in [10], have been considered
for learning power allocation.

Graph neural networks (GNN) is of special importance
for learning power allocation as it matches the natural graph
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structure of wireless connectivity patterns [11]-[14]. For ex-
ample in [15], a GNN architecture was introduced for learning
power allocation in large-scale wireless networks. While such
GNN-based learning model approaches the total network rate,
it requires 10,000 training samples (i.e, network layouts).
Dynamic networks (e.g., vehicular ones) change its topology
and size (i.e., number of vehicles) frequently. Maximizing the
total network rate with such dynamic variations requires fast
learning of any new network topology with fewer training
samples, and this is the motivation of this paper.

Euclidean-based wireless network layouts and power al-
location problem can be transformed into Riemannian (i.e.,
non-Euclidean) manifolds, which is shown to require fewer
learning parameters and hence shorter learning time. Structural
properties (i.e., connectivity patterns between network nodes)
of wireless networks can be effectively represented through
regularized weighted Laplacian matrices [16], [18], [19]. The
regularized weighted Laplacian matrices are Symmetric pos-
itive definite (SPD) one which can be represented as points
over Riemannian manifolds [20], [21]. To this end, we propose
to apply graph convolutional regression networks (GCRN)
toward learning topological representations over Riemannian
manifolds, and such learning model is used to predict power
allocation in an unsupervised manner.

Riemannian geometry has recently been used to address
challenges in wireless communication systems, such as the link
scheduling to maximize sum rate performance in [16]-[18],
the deployment of relays in [19] or the design of beamforming
codebooks in [22], [23]. Nonetheless, no prior research work
has considered the Riemannian geometry to reduce the number
of training samples for power allocation problems.

In this paper, we first model local topology around each
communication pair over the Riemannian manifold through
regularized weighted Laplacian matrices, with weights that are
proportional to its channel state information (CSI). Then we
use a GCRN model that learns the local topological modeling
over Riemannian manifolds in an unsupervised manner for
predicting power allocation, with differentiable exponential
and logarithmic maps, and this is the novel contribution of
this paper. The proposed GCRN model enjoys two unique
advantages for solving power allocation problems. First, it is
stable to imperfect CSI. Second, it can be generalized to large-
scale wireless networks. The proposed GCRN model can also
be trained in a supervised learning manner using weighted
minimum mean square error (WMMSE) [3] as the ground truth
which is often considered as performance upper bound [15].



To provide a theoretical guarantee, we show that the proposed
GCRN satisfies permutation equivariance property in wireless
network graphs and thus makes it amenable to train and test
in different network topologies independent of its shape and
size. Finally, we show that the proposed method is competitive
with the state-of-the-arts by using only 300 training samples.

In brief, the main contributions of this paper are as follows:

« We model the local topology around each communication
pair through the regularized weighted graph Laplacian
matrices and use the modelings in the proposed GCRN
method to learn wireless power allocation over Rieman-
nian manifolds in an unsupervised manner. The proposed
GCRN model can also be trained in a supervised learning
manner using WMMSE [3] as the ground truth.

o We show that the proposed GCRN satisfies the permu-
tation equivariance property which allows to train and
execute it across different network topologies.

e We verify our proposed method with numerical exper-
iments in simulated D2D wireless networks scenarios.
Simulated results demonstrate that the proposed method
approaches the sum rate maximization performance as the
state-of-the-arts with only 300 training samples.

The remainder of this paper is organized as follows. We
present the system model and problem formulation in Sec-
tion II. In Section III, we provide the details of the proposed
GCRN architecture and analyze its permutation equivariance
property. In Section IV, we present our simulation results. We
draw the conclusion in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first briefly describe the relevant back-
ground for the proposed method. We then present a system
model of the D2D wireless networks on the Riemannian
manifold and formulate the wireless power allocation problem.

A. Preliminaries

A differentiable manifold M is a topological space [24]
where each point p has a neighborhood that is topologically
equivalent to a Euclidean space. A manifold locally similar
to Euclidean space refers to tangent space and its properties
as vector space. In particular, the tangent space 1, M of a
differential manifold M, at any point p, is a vector space
of all possible vectors v that are tangent to manifold M at
point p. A Riemannian manifold (M, g) is a smooth and
real manifold M equipped with a positive definite inner
product g, at each point p on the tangent space 7, M and
is studied by Riemannian geometry [24]-[26]. This implies
that we have a notion of distance that satisfies the metric
properties within a locally Euclidean-like, although it is not
exactly Euclidean space. The n x n SPD matrices Sym,|t =
{8 e R™"|8 = 87 all eigen values of S are positive} forms
a cone-like manifold which is special class of Riemannian
manifold [25], [27]. The geodesic that connects two SPD
points S;,S; € Sym; " can be represented by Riemanninan
metric such as log-Euclidead metric (LEM) [28] and is given
by

d(S:,5;) = || log(S:) — log(S,)I3 (1)

where, i # j, and ||.||F denotes the Frobenius matrix norm.

Two important operations that connect the manifold M and
the tangent space 7,M at a point p € M are exponential
and logarithmic maps for which SPD manifold is endowed
analytical formula. The exponential map exp, : T, M — M
defines a unique geodesic distance (shortest curve) from a
point p in the direction of a vector v in M which results
in a point in M and is given by [29]

exp, (v) = p"/*Exp(p~"/2up~'/?)p'/2. )

The logarithm map log,, : M — T}, M at point p is the inverse
of the exponential map which corresponds to a point y € M
when sent back via exponential map and is given by [29]

log,,(y) = p'/*Log(p~"/2yp~1/2)p'/2. 3)
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Fig. 1: An illustration of basic operations of a Riemannian graph
convolutional layer. In each layer, node representations are computed
by aggregating messages from their neighbor nodes.

Riemannian graph convolutional networks [30] generalizes
the notion of graph convolutional networks of the form in
[31] such that the network operates on Riemannian manifolds
with differentiable exponential and logarithmic maps. To per-
form graph convolution, node representations are computed
by aggregating messages from their neighbor nodes. As the
tangent space of a point on Riemannian manifolds is always
Euclidean, functions with trainable parameters are executed
over Euclidean space. Let, Z(u) be the set of neighbors
of u and o be the pointwise non-linear function. Then the
propagation rule for each node uw €V is calculated as

Xq(Jk-‘rl):a(expp( > Avu(a(’“)logp(xjj))), (4)

vEL(u)

where o is the non-linear activation function, 0" is the
learnable parameters, and A = D~Y2(A + I)D™/? is
normalized adjacency matrix which captures the graph con-
nectivity where D € R™" denotes the diagonal degree matrix



Pair 3

Q e

U

0

~
S

0

0“a

Pair L

Pair 4

0

O Transmitter

O Receiver Interference Link

------- >3

0

—————> Communication Link

~
'
N
<

Fig. 2: A sample L-user interference channel and its corresponding graph.

with Dy, =" (Ayu+1Iy,) and D, =0 if u # v. At layer
k, the propagature rule in (4) maps each node representation
X" e M, where v e Z(u) is a neighbor of w, to the tangent
space of a chosen point p € M using the logarithmic map log,.
Then an exponential map exp,, is applied to map the linearly
transformed tangent vector back to the Riemannian manifold.
The basic operations of the Riemannian graph convolutional
layer are illustrated in Fig. 1.

Standard regression method, on the other hand, can be
operated on Riemannian manifolds [30] by extending the
underlying idea of radial basis function [32], [33] to Rie-
mannian manifolds. More specifically, a list of centroids C =
[c1, €2, .., ¢cy], are first jointly learned with the Riemannian
graph convolutional network using backpropagation, where
each ¢,;, € M. Then the pairwise distance between ¢; and X K
(i.e., geodesic distance) is calculated as: 1;; = d(ci,Xf]).
Then all distances (¥1,%2;,.-.,%c); € RIC are concate-
nated to summarize the position of X ]K with respect to the
centroids. The node level regression can be defined as

§ =08 (V1,125 o),

where ©®( € RIl and T denotes matrix transposition.

®)

B. Local topology modeling over Riemannian Manifolds

Fig. 2 illustrates an L-user interference channel, the un-
derlying wireless networks model of L. communication pairs.
Each communication pair %,, where ¢ = 1,2,...,L, has a
transmitter and a receiver represented in black square and
blue circle, respectively. We represent the communication links
between any transmitter-receiver pair with solid green lines.
Whereas the interference links to and from neighbor commu-
nication pairs are represented with red dashed lines. With full
frequency reuse, when each transmitter communicates with its
paired receiver, it causes interference to its neighbor receivers.

The wireless networks of L communication pairs in Fig. 2
includes n 2L nodes, which are L transmitters and
L receivers. From this model, local topology around each
communication pair &, can be modeled as a weighted and
undirected graph G g, (V,Eg,), as shown in Fig. 3, where

V' = {v1,v2,....,0,} is the set of all n nodes and Eg, is
the set of all m, edges (i.e., links) that are connecting the
transmitter of &, pair to its intended receiver along with the
interference links to and from its neighbor communication
pairs. The weight of edges is set to the instantaneous CSI h; ;
between its communication pair. We employ e-neighborhoods
model [34], in which interference links between any transmit-
ter v; and receiver v; of its neighbor communication pairs are
considered if the distance ||v; — v;||> < €, where i # j, and
1,7 € L. The e-neighborhoods-based local topology modeling
is reasonable as the interference caused by any transmitter to
its neighbor receiver is negligible if the transmitter is placed
far from its neighbor receiver.
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Fig. 3: Example of local topology modeling of: a) communication
pair Z4—1, and b) communication pair Zy—r..

For an edge ¢, 1 <t < mg, connecting transmitter v; and
receiver v;, where {vi,vj} € V, we define an edge vector,
where the ¢-th and j-th elements are given by a;;, = 1, a;, = 1
and rest of the entries are zero. The incidence matrix Ay, €
R™*™Ma of graph G, is the matrix with ¢-th column given
by edge vector a;. The weight matrix Wy, € R™a*™a is
defined as a diagonal matrix, whose diagonal entry (i.e., (¢, t)-
th element) is equal to the weight of the ¢-th edge. Finally, the
graph Laplacian matrix L € R™*"™ can be computed as [16],
(18]

Ly, =Ag,WqAq,", (6)
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Fig. 4: Overall proposed GCRN model as applied to power allocation problem with two Riemannian GCN layers and a centroid based

regression layer.

where ¢ = 1,2,...,L, and T denotes matrix transposition.
The graph Laplacian matrices are positive semi-definite ones.
With a simple regularization step by adding a scaled identity
matrix to the Ly , we can produce a regularized graph
Laplacian matrix [35] such as

Sg,=Ag,Waq,Ag," + I, @)

where v > 0 is a regularization parameter which is an
arbitrarily small scalar and I,, € R™" is the identity matrix.
The regularized graph Laplacian matrices S¢, are SPD one
[20], [21], which are special class of Riemannian manifolds
[25]. To perform graph convolution for power allocations, we
consider each communication pair as a node in a graph. Hence,
the node feature of each communication pair is given by the
local topological modeling in (7).

C. Problem Formulation

We define the power allocation problem in the L-user
interference channel, previously shown in Fig. 2, as the sum
rate maximization problem of L communication pairs. Denote
p = [p1,pe,-..,pr] as the power allocation vector. With full
frequency reuse over bandwidth B, our goal is to find the
optimal combinations of power allocation vector to maximize
the summation of instantaneous information-theoretic rates
and the problem is formulated as

>, ®)

where pg, hig, pig are the transmission power, fast-fading
channel gain and Euclidean distance, respectively, between the
g-th transmitter and ¢-th receiver. Moreover, « is the path loss
exponent and 03 denotes the noise variance.

4 Palhaql’ Pz’
maXZBlog2(1+ S 5 (fza 5
P q=1 Zi;éqpilhiq| piq +Oq

st. 0<pg < Pra, Vg =1,2,..., L,

III. RIEMANNIAN GCN MODEL FOR POWER ALLOCATION

In this section, we describe the proposed wireless power
allocation scheme for D2D wireless networks. We start by
explaining the proposed GRCN method and then provide its
key property.

A. Proposed GCRN method

To perform graph convolution over the Riemannian mani-
fold for power allocation, we considered each communication
pair as a node in the graph. For each communication pair, the
node feature is extracted through local topological modeling
over Riemannian manifold which is described in Section II.
For instance, we first model the local topology around each
communication pair from the L-user interference channel
(Fig. 2) as a weighted and undirected graph (Fig. 3) which
captures the amount of interference a communication pair
imposes and receives to and from its neighbor communication
pairs. Then with a simple regularization step, we transformed
the model into Riemannian manifolds as a single point through
regularized graph Laplacian matrix which is SPD one. Then
we used these SPD points as the input to the Riemannian GCN
for power allocation.

We use two Riemannian graph convolutional layers and a
centroid based regression layer (as described in Section II) in
our proposed GCRN architecture for predicting the power al-
location as shown in Fig. 4. To perform graph convolution, we
view the g-th communication pair as the g-th node in a graph.
Since distant communication pairs cause little interference, we
only consider an edge from v to ¢ if the distance between
transmitter v and receiver ¢ is below a certain threshold e.
The node feature is given by the local topological modeling
S ,, and the graph connectivity is captured by the normalized
adjacency matrix A:Dfl/z(A + I)Dil/2 [30], [31].

Let, X (92) denotes the representation of g-th node at the k-th
graph convolutional layer, where k=0, 1,2. As initialization,
the representation of ¢-th node is set by its local topological
modeling X (9?3 =S8g, € Sym}*. By doing so, we represent
each node on Riemannian manifolds. We then obtain a new
node representation of ¢ at the next step by aggregating all
messages (i.e., SPDs) from its neighbor nodes before applying
the non-linear activation function o. Let Z(q) be the set of
neighbors of ¢-th node. Then the propagation rule for each
node g€ L is calculated as [30]

X(gkq—H) - J(expp( Z Avq@(k) logp(Xl_v@ﬂ))>v (9)
veZ(q)



where @%) € R%? is the learnable weight matrix in k-th
layer. Here, at layer k, the representation X @ that lies in
Riemannian manifolds, where v is a neighbor of ¢, is mapped
to the tangent space of a chosen point p € M using the
logarithmic map log,, as in (3). We do this mapping because
the tangent space of a point on Riemannian manifolds is
Euclidean, so functions with trainable parameters are executed
there. Then an exponential map exp,, is applied to map the
linearly transformed tangent vector back to the Riemannian
manifold as in (2). Furthermore, when applying the non-
linear activation function directly on Riemannian manifold
M, we ensure that its application is manifold preserving, i.e.,
o : M — M. In particular, we use ReLU as the non-linear
activation function since the output of ReLU is still an SPD
matrix [36], [37].

The output of the Riemannian graph convolutional networks
consists of a set of SPDs corresponding to L communication
pairs {X 5 Xy (3) X (0;’2} We apply the centroid based
regression method [30] over Riemannian menifold to predict
the power allocation from these SPDs. More specifically,
a list of centroids C = [c1,¢a,...,¢|c(], are first jointly
learned with the Riemannian graph convolutional network
using backpropagation, where each ¢, € Sym,;’". Then the
pairwise distance between ¢; and X 513) (i.e., geodesic distance)
is calculated using LEM [28]

ij = || log(e;) — log(X(M)][3, (10)

where,
distances (14, V2q; - -->Y|clq) € RICl are concatenated to
summarize the position of X ,(13) with respect to the centroids.
Using this, the node level regression is applied to produce a
continuous scalar output and is given by

pq(e) = (6(3))T(wlq7z/)2qa"'aw|C\q)7 (11)

where ©) € RICI. The purpose of this regression layer is
to embed the resulting node representation X Sj containing
the node features that live on Riemannian manifolds into a
scalar value presenting the predicted transmission power of
the corresponding communication pair.

Finally, noting that maximizing the sum rate in (8) be the
ultimate goal of the power allocation problem, we apply the
following loss function at the last layer of the GCRN to train
the model as in [9], [10], [15],

L 2
‘hqq‘ p,,(@)
(®)=-E { log (H- ,
" ; ? Z#qlhiq\Zpi(@) + o2
(12)

where p,(@®) is the transmission power generated by the
proposed model. Note that no labels are needed to train the
model by adopting this loss function. Thus, the model is
trained in an unsupervised manner.

The power allocation method by the proposed GCRN is
summarized in Algorithm 1. As shown in the Algorithm, if
variable phase is set to “train”, then the algorithm calculates
the loss and updates the learnable weights ® to minimize the
loss. Otherwise, the algorithm considers it the “test” phase; no
loss function is applied. Hence, no weights are updated.

Algorithm 1 Pseudo-Code of Power Allocation by GCRN
t.qeLy=1,...,Y},

1: Inputs: Data point {S?,
2: and phase;

3: Outputs: Predicted transmission power of L D2D pairs;
4: Process:

IS Sym;

5: fory=1,...,Y do

6: forg=1,...,L do

7 X(Q?r); +Sg,€Symtt; > Initialization

8: Xg()l <—U(expp( Z A,0W Ing(X;i))); > GCN
v€EZ(q)

9: Xg()l ol exp,( Z A,00 logp(Xgi))); > GCN
vGI(q)

10: pe(©) (O <3)) (Y15,%25,...,¥jc);); > Regression

11: end for
12: if phase="train” then
13: Calculate loss [(©
14: end if

15: end for

16: Return: {p}(©)}

) in (12) and update weights ©;

L
qzl,y:L...,Y.

As mentioned earlier, the GCRN can also be trained in a
supervised learning manner. Explicitly, we use WMMSE [3]
as the ground truth which is often considered as performance
upper bound [15]. Then we apply mean squared error (MSE)
loss function (i.e., L2 norm) as the loss function, and is given
by

L WMMSE — Dq(© 2
l(pWMMSE7pq(®)) = Zq:l (p z P ( )) )

where pwyvmse 1S the transmit power of WMMSE scheme.
However, such approach is suitable when the labeled training
is available, which is computationally challenging especially
when the number of nodes is large [9].

13)

B. Permutation Equivariance Property of Proposed GCRN
Model

The proposed GCRN has permutation equivariance prop-
erty, with respect to the underlying graph structure of L-user
interference channel. To conveniently describe these proper-
ties, we can rewrite the input-output relation of GCNs in (9)
in a more compact form X = ®(L(A), ¥, X), where L(A)
is the normalized graph Laplacian matrix which captures the
graph connect1v1ty, ¥ is a tensor gathering the learnable
weights e ,4 = 1,2 at all two graph convolutional layers,
and X is the tensor gathering the of nodes features (i.e.,
SPDs) in which component X, is associated with node ¢
and are supported on graph through graph connectivity. In
graph theory, functions that are equivariant to permutations
imply permuting the input graph consistently permutes the
output. Putting it from a wireless communication perspective,
the optimal power allocation scheme requires to entail per-
mutation invariant power allocation policy [14], [15] so that
the allocated power is not affected by the indexing of the
communication nodes. This is a key feature since the node
indexing is arbitrary for different wireless network layouts. So,
permutation equivariance is important for the proposed GCRN
model as it makes training model not depending on indexing
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Fig. 5: Example of power allocation by proposed GCRN methods and WMMSE [3] for L = 50 pairs.

of the nodes. This property is hard-coded in the structure of
the proposed GCRN, as shown by the following proposition:

Proposition 1. (Permutation Equivariance in proposed
GCRN:) Consider regularized graph Laplacians L(A) and
I:(A) along with tensors of node features X and X for which
there exists a permutation matrix I1 € Q,,, where Q,, is the
set of all permutation matrices, such that A=11.A=T1T Al
and X = TI.X = HTXH, where "I1.” denotes permuted
matrices over nodes, then we have

A ~

$(L(A), ¥, X)=11.8(L(A), ¥, X). (14)
Proof. The proof is immediate, by observing that
L(IT.A) = II.L(A) [38], thus @(L(A),lII,X) =

®(II.L(A), ¥, I1.X)=I1.&(L(A), ¥, X ), and permutation
commute with the pointwise non-linear activation function
(i.e., ReLU) and regression layer. O

The permutation equivariance property allows to train and
execute the proposed scheme across different network topolo-
gies independent of its shape and size. Simulation results in
Section IV.B show its effectiveness to generalize to large-scale
networks.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results of our proposed
power allocation scheme for sum rate maximization in L-user
interference channel. We provide simulation results for dif-
ferent topological scenarios and compare these results against
state-of-the-arts.

A. Simulation Setup

We consider L-communication pairs within a square sized
wireless network area. In particular, we randomly deploy

L transmitters on the A x A area, while the receivers are
uniformly distributed around its corresponding transmitters
within the range between dpip t0 dpyax. In the simulation, we
consider a distance-based path-loss according to ITU-1411
outdoor model. Then we add the shadowing and Rayleigh
fast fading into the channel model. We consider the WMMSE
[3] as the performance upper bound (i.e., benchmark) where
perfect CSI is assumed to be available to WMMSE. We
randomly generate 100 wireless network layouts for testing,
and all results presented in this section are averaged over 100
test wireless network layouts and normalized by the average
sum rate of WMMSE [3]. The simulation parameters are
summarized in Table I.

TABLE I: NETWORK SIMULATION PARAMETERS

Parameter Value
Bandwidth, B SMHz
Carrier Frequency 2.4 GHz
Transmitter and Receiver Antenna height 1.5m
Transmitter and Receiver Antenna Antenna gain 2.5 dB
Noise spectral density -169 dBm/Hz

To train the proposed GCRN model, we use Adam optimizer
[39] for 20 iterations where the initial learning rate is set to
0.001 and the weight decay rate is set to 0.0005 based on the
experiments. Moreover, the dropout rate after the first GCRN
layer is set to 0.1 for regularization. The training parameters
of the proposed GCRN model are summarized in Table II.

B. Simulation Results

We first experiment with the impact of the number of
training samples on the sum rate performance of the proposed
method for 50 communication pairs. From Table III, the sum
rate performance for 300 training samples is enough, provided
that no significant performance gain is achieved by using more
than 300 training samples.



TABLE II: REGRESSION GRAPH CONVOLUTIONAL NETWORKS
PARAMETERS

Value
Defined by the dimension
of input SPDs
Number of iterations 20

Parameter

Input Matrix size

Learning rate 0.001
Weight decay 0.0005
Dropout rate 0.1

TABLE III: IMPACT OF THE NUMBER OF TRAINING SAMPLES AS
PERCENTAGE OF WMMSE [3]

Number of
Training
Network
Layouts

160 250 300 500 700 1000

Average

Sum Rate (%) 8625

91.84 | 93.82 | 93.12 | 92.56 | 91.64

To show that the proposed method is capable of learning the
state-of-the-art optimization strategy, we randomly generate
a wireless network layout for L = 50 communication pairs
in 1000m x 1000m wireless network area as illustrated in
Fig. 5 and compare the power allocation between our proposed
method and benchmark WMMSE [3] algorithm. As shown
in the figure, the proposed GCRN method produces a power
allocation pattern close to the WMMSE output. This indicates
that our proposed scheme can learn the WMMSE optimization
strategy.

In Table IV, we summarize the sum rate performances and
approaches of various power allocation schemes for large-scale
networks, including GCN and deep neural network (DNN)
based solutions for L = 50 communication pairs at the area
of 1000m x 1000m wireless network layout. From Table IV,
the proposed GCRN can achieve 93.82% of average sum rate
generated by WMMSE [3] by only using 300 training samples.
It can outperform the DNN based PCNet [9], which requires
100,000, 000 training samples, and All Active! algorithm by
a large margin. Compared with the WCGCN [15] which
requires 10,000 training samples to achieve 97.50% of the
average sum rate generated by WMMSE [3], we use far fewer
training samples but with only 3.68% of performance loss of
sum rate. Moreover, it can be seen from the table that the
proposed GCRN takes the least number of learning parameters
(e.g., 946) as opposed to 1792 in WCGCN [15] to achieve
comparable performance against the state-of-the-arts.

1) Stability to Imperfect CSI: To experiment the stability of
proposed GCRN to imperfect CSI, we model the environmen-
tal noise by adding additive white Gaussian noise (AWGN)
Ac ~(0,0?) to the perfect CSI (i.e., instantaneous estimated
CSI). We also experiment with the partial CSI (i.e., slowly
varying large-scale channel parameters) where we only add the
shadowing effect to ITU-1411 path-loss channel model and no
small-scale fast-fading is considered. We measure the stability
of the proposed method by four realizations for different values
of AWGN standard deviation o and partial CSI. We still
consider 50 commnucation pairs in a 1000m x 1000m region
for each scenario and the results are summarized in Table V.

IThe All Active algorithm is a simple baseline algorithm which activates
all communication links with Ppax power without any knowledge about CSI.

TABLE IV: POWER ALLOCATION SCHEMES WITH AVERAGE SUM
RATES FOR 50 COMMUNICATION PAIRS

osI A Number Number
Method Used S Verag:: of of Approach
S¢f um rate )| parameters
WMMSE [3] Yes 100% / / o lterative,
ptimization

Proposed Graph
GCRN Yes 93.82% 300 946 Modeling,
(Unsupervised) & GCNs

Graph
(VIVJS:Gucgvling(I]) Yes 97.50% 10,000 1792 Modeling,
Supervis & GCRN
PCNet [9] Yes | 79.70% | 100.000.000 / Multilayer
(Unupervised) perceptron
All active

. links
All Active No 73.65% / / With Py

power

We can observe from the table that the sum rate performance
slightly but gradually decreases with the increase of standard
deviation values but still achieves good performances. The
performance is also satisfactory for partial CSI.

TABLE V: AVERAGE SUM RATE PERFORMANCE WITH IMPERFECT CSI
FOR 50 COMMUNICATION PAIRS

AWGN i :

Standard Perfect =05 c=1 c=15 =2 Partial
-~ CsI CsI

Deviation

Average 93.82% | 92.42% | 90.23% | 89.16% | 88.86% | 87.76%

Sum Rate %

2) Scalability to Different Number of Pairs and Pairwise
Distances: In this section, we experiment with the scalability
of our proposed method to two important topological scenes:
1) how it performs when the number of communication
pairs increases and 2) its performance when pairwise distance
changes.

We first test the scalability of GCRN to topologies with
different numbers of communication pairs in the network area
of 1000m x 1000m. In this scalability testing, we keep the
number of pairs the same in both testing and training datasets.
As shown in Table VI, PCNet [9] achieves near-optimal sum
rate performance when the network is small. As the network
becomes large, the performance of PCNet [9] approaches to
Strongest> which is a simple baseline algorithm. This shows
that the PCNet method can hardly learn any critical interfer-
ence information that exists in the networks. On the other
hand, the performance of the proposed GCRN is stable as the
network size increases. The proposed method even achieves
higher performance than both PCNet [9] and Strongest with
imperfect CSI for L = 30 and 50 communication pairs. Hence,
GCRN is more favorable than simple baseline and MLP based
methods for power allocation problems in medium or large-
scale networks. The performance is also comparable to GNN
based WCGCN [3] method, but it requires far fewer training
samples than WCGCN.

Next, we test the sum rate performance of GCRN with
different value of d, and dy.x for L = 50 communication
pairs in the area of 1000m x 1000m, as shown in Table VII and
Fig. 6. We can observe that GCRN achieves good performance
compared to WCGCN [15] while using much fewer training

>The Strongest algorithm is another simple baseline algorithm which
allocates Pmax power to pairs with largest channel gains, while 0 power is set
for the rest of the pairs without any knowledge about interfering links.



TABLE VI: AVERAGE SUM RATE PERFORMANCE WITH DIFFERENT
NUMBER OF COMMUNICATION PAIRS

Number of Proposed GCRN WCGCN [I5] | PCNet [9] | 0 o
Comm. pairs . (Perfect CSI) (Perfect CSI) &
Perfect =29 Partial
CSI CSI
10 95.57% | 90.57% | 89.46% 100% 98.90% 87.10%
30 94.34% | 89.63% | 88.12% 97.90% 87.40% 82.80%
50 93.82% | 88.86% | 87.76% 97.50% 79.70% 80.60%

samples and significantly higher performance than the All
Active algorithm. It also outperforms the All Active for all the
cases presented in the Table VII with imperfect CSI. Fig. 6
compares the scalability performance of the proposed method
under different channel conditions such as the perfect CSI,
imperfect CSI and partial CSI. Although a slight performance
degradation is observed for imperfect CSI, the performance is
still satisfactory for different pairwise distances.

TABLE VII: AVERAGE SUM RATE PERFORMANCE WITH DIFFERENT
VALUES OF dpyin and diax

Pairwise Distance Proposed GCRN WCGCN [15] .

dumin ~ dimax(m) (Perfect csTy | All Active
Perfect =2 Partial
CSI csl

2m ~ 65m 94.46% | 90.17% | 88.38% 97.80% 73.65%

10m ~ 50m | 93.82% | 88.86% | 87.76% 97.50% 78.78%

30m~70m | 92.15% | 88.29% | 86.11% 96.50% 60.05%

all 30m 92.57% | 88.55% | 87.09% 96.80% 69.47%

3) Generalizability to Larger Scales and Higher Densities:
We test the generalizability of the proposed method for wire-
less networks with larger scales and higher densities. General-
izability testing is different from scalability testing. Different
from the scalability testing, where the training is performed
every time for each testing scenario, we train our proposed
model with tens of communication pairs and test it with
unknown network scenes with hundreds of communication
pairs, as discussed next.

We first test the generalizability to large-scale networks but
with the same user density. We train the GCRN with L = 50
communication pairs in 1000m x 1000m wireless network area
with (10m ~ 50m) pairwise distance. Then we increase the
number of pairs in testing while keeping the user densities
fixed (i.e., A> /L). The results are summarized in Table VIII.
The table shows that the performance is promising compared
to the WCGCN [15] and outperforms the All Active by a
large margin. It can also be observed that the performance is
stable as the number of communication pairs increases. The
results suggest that the proposed GCRN can generalize to
larger problem scales, which is consistent with our permu-
tation equivariance analysis in Proposition 1. Furthermore, the
performance is also satisfactory for imperfect CSI and partial
CSI, as illustrated in Fig. 7.

Next, we perform the same test but with different user
densities. For instance, we first train the proposed model with
L = 50 communication pairs in 1000m x 1000m network
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Fig. 6: Scalability of the proposed method under different channel
conditions.

TABLE VIII: AVERAGE SUM RATE PERFORMANCE TO LARGER
NETWORKS WITH THE SAME USER DENSITY

Proposed GCRN
Number 2 WCGCN [15] .
of pairs Area (m~) - (Perfect CSI) All Active
Perfect =9 Partial
CSI CSI
200 2000 x 2000 | 93.54% | 89.76% | 87.35% 98.30% 45.92%
400 2828 x 2828 | 93.67% | 89.82% | 88.05% 98.90% 38.47%
600 3464 x 3464 | 92.52% | 89.64% | 87.58% 98.80% 29.62%
800 4000 x 4000 | 92.18% | 88.26% | 86.23% 98.90% 19.53%

area. Then we increase the number of communication pairs
in the test dataset while keeping the network area size fixed.
The results are summarized in Table IX. As can be seen,
the performance is stable till a two-fold increase in the
user density, while a good performance is still achieved as
compared with WCGCN [15] even when there is a ten-fold
increase in the user density with both perfect and imperfect
CSIL
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Fig. 7: Generalizability of the proposed method under different
channel conditions.



TABLE IX: AVERAGE SUM RATE PERFORMANCE TO LARGER
NETWORKS, BUT WITH DIFFERENT USER DENSITY

Proposed GCRN
I:f“"ff: Area (m2) gecfeg\lc[slls)] All Active
pairs Petfect | _ o Partial
CSI CSI
100 93.90% | 88.91% | 87.25% 97.60% 58.38%
200 92.54% | 88.21% | 87.54% 97.00% 45.43%
1000 x 1000
400 92.37% | 87.62% | 86.78% 95.6% 38.25%
500 91.44% | 87.06% | 86.23% 95.30% 32.46%

C. Unsupervised vs. Supervised Training

As mentioned earlier in Section III, the proposed GCRN
model can be trained in a supervised manner using the power
allocation of WMMSE [3] scheme as the ground truth. Table
X compares the two learning manners (i.e., supervise and
unsupervised) on the network area of 1000m x 1000m with
L = 50 communication pairs for different pairwise distances.
As can be seen, supervised learning achieves slightly higher
sum rate performance than unsupervised learning for all the
cases presented in Table X. However, such an approach
is suitable when the labeled training is available, which is
computationally challenging especially when the number of
nodes is large [9]. In summary, both learning manners have
their own pros and cons. Thus, we need to carefully select an
appropriate learning approach in practice.

TABLE X: AVERAGE SUM RATE PERFORMANCE FOR UNSUPERVISED
AND SUPERVISED LEARNING

Pairwise Distance | ) 65 | 10m ~ 50m | 30m ~ 70m | all 30m
dmin ~ dmax ('fn)

Unsupervised 94.46% 93.82% 92.15% 92.57%

Supervised 95.32% 94.95% 93.56% 93.89%

D. Computational Complexity Analysis

In this subsection, we inspect the computational complexity
for the proposed GCRN based method and make a compar-
ison with different ML based state-of-the-arts in the L-user
interference channel in Table XI.

The proposed method is implemented in the following
sequence: 1) representing the local topology around each com-
munication pair on Riemannian manifolds, and 2) predicting
the transmission power by using GCRN. The computational
complexity for the communication pair local topology model-
ing is O(L?). On the other hand, for GCRN, we make use of
GPU-based implementation of (9) using sparse-dense matrix
multiplication [31] and the regression layer is applied row-
wise. Then, with a fixed number of iterations, the computa-
tional complexity for GCRN based power allocation can be
computed as follows:

O(L(|¢|Ld1ds + |C)) = O(L?), (15)

where £ is the number of edges, d; and ds are the number of
feature maps of the two graph convolutional layers and |C] is
the total number of trainable parameters of the regression layer.

Thus, the total computational complexity of the proposed
GCRN is O(L?).

As can be seen in Table XI, the proposed GCRN method has
similar computational complexity with MLP [8], DPC [10],
and PCNet [9] but the sum rate performance does not
deteriorate much for larger networks as observed in these
methods. On the other hand, the complexity is higher than
WCGCN [15] method, but it requires significantly less training
samples than WCGCN to approach the sum rate performance
of the benchmark (i.e., WMMSE [3]).

V. CONCLUSION

In this paper, we have introduced a power allocation scheme
in large-scale device-to-device (D2D) wireless networks. We
aim to reduce the number of training samples required for
faster response in dynamic D2D networks. To this aim, we first
effectively model the local topology around each communica-
tion pair over Riemannian manifolds. Then we have proposed
the GCRN method to learn these local topological modelings
for predicting wireless power allocation. The proposed method
is able to produce stable output with imperfect CSI. It also
satisfies the permutation equivalence property, making it pos-
sible to generalize to large-scale problems. We have shown that
the proposed GCRN based power allocation scheme achieves
competitive sum rate performances with only 300 samples as
opposed to the need for thousands of training samples by the
state-of-the-arts.
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