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Abstract

Adaptive computing systems automatically monitor their
behavior and dynamically adjust their own configuration
parameters—or knobs—to ensure that user goals are met de-
spite unpredictable external disturbances to the system. A
major limitation of prior adaptation frameworks is that their
internal adaptation logic is implemented for a specific, nar-
row set of goals and knobs, which impedes the development
of complex adaptive systems that must meet different goals
using different sets of knobs for different deployments, or
even change goals during one deployment.

To overcome this limitation we propose GOAL, an adapta-
tion framework distinguished by its virtualized adaptation
logic implemented independently of any specific goals or
knobs. GOAL supports this logic with a programming inter-
face allowing users to define and manipulate a wide range of
goals and knobs within a running program. We demonstrate
GOAL’s benefits by using it re-implement seven different
adaptive systems from the literature, each of which has a
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different set of goals and knobs. We show GOAL’s general
approach meets goals as well as prior approaches designed
for specific goals and knobs. In dynamic scenarios where the
goals and knobs are modified at runtime, GOAL achieves
93.7% of optimal (oracle) performance while providing a
1.69% performance advantage over existing frameworks that
cannot perform such dynamic modification.
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properties.
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1 Introduction

Many software systems face the critical challenge of meeting
quality-of-service goals, expressed as constraints and objec-
tives on metrics; e.g., request latency, energy consumption,
and result accuracy. As a further complication, these goals
must be met despite unpredictable—yet inevitable—runtime
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variations in workload and operating environment. To pro-
vide predictable behavior in unpredictable deployments, it
is crucial to build computer systems that adapt by adjusting
their configurable components, or knobs, as they execute
[55, 58].

Implementing adaptive systems requires an adaptation
logic (AdaptLog) that can efficiently—at runtime—convert
observed metrics into knob settings that meet the goals [37,
60, 80, 83, 93]. However, implementing a reliable and robust
AdaptLog is difficult. For example, when the hardware for the
Samsung Galaxy S9 was upgraded for the S9+, the achieved
performance and energy efficiency was worse despite the
better hardware [31]. The problem was tracked down to mis-
configurations in the AdaptLog of the HMP scheduler [30].
In short, a heuristic-based AdaptLog that was appropriate
for one hardware architecture, was inefficient on a closely
related, but different architecture.

To ease development of adaptive computing systems, re-
searchers have proposed several adaptation frameworks in
the form of libraries or language runtimes [10, 15, 20, 21, 25,
33, 49, 51, 54, 56, 74, 96]. Using the framework’s interface,
developers provide an adaptation specification (AdaptSpec):
a declaration of the system’s goals and the knobs that can be
configured to achieve it. The framework’s internal AdaptLog
then tunes the knobs in response to any runtime changes.

Although helpful, all existing frameworks focus on a nar-
row, predefined set of possible AdaptSpecs (i.e., one or two
metrics and a small collection of knobs). For example, Eon [79]
only supports accuracy and energy metrics using alterna-
tive method implementations as knobs. Similarly, Power-
Dial [44] only supports accuracy and throughput tradeoffs
using application-level parameters as knobs.

This lack of generality arises because prior adaptation
frameworks develop their AdaptLog using specialized mod-
els that relate specific metrics to specific knobs. Whether
the AdaptLog is based on machine learning, control theory,
or heuristics, the model is essential to predict how metrics
will change with changes in knobs, which then guides the
AdaptLog to set the knobs to ensure the goals are met. How-
ever, because the model relates specific knobs to specific
metrics, the relevant knobs and metrics need to be enumer-
ated before the model is constructed and that model must be
reconstructed for use with a different knobs and/or metrics.
This reliance on a narrowly defined model makes it difficult
to implement a general adaptive system that can deploy with
different goals in different environments.

The use of fixed models also prevents a system from dy-
namically changing AdaptSpecs during execution. We define
the runtime alteration of an AdaptSpec as meta-adaptation.
For many applications it is not enough to just adjust knob
configurations; meta-adaptation is necessary as the goals
themselves must be changed in response to external con-
ditions [35, 71]. For example, consider a CCTV camera in-
stalled with a backup battery [76]. It must always meet a
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target frame rate to prevent data loss, but its other goals
vary depending on power source. On line power the system
must maximize quality, however, during a power outage, it
must minimize energy to prolong battery life [1]. Running
this system in either AdaptSpec for its entire execution is
suboptimal, either wasting energy on battery or lowering
quality on line power.

To support more general and dynamic adaptation, in-
cluding meta-adaptation, this paper presents GOAL: Goal-
Oriented Adaptation Language. GOAL provides novel adap-
tation framework implemented in Swift [5]. Its key compo-
nents are its (1) runtime AdaptLog and (2) its interface for
writing AdaptSpecs.

Central to GOAL'’s design is its AdaptLog, which takes the
form of a virtualized, time-variant, adaptive control system.
Unlike prior approaches, GOAL’s virtual control system is
independent of any specific model relating metrics to knobs;
instead, it is parameterized by a model which is passed in at
runtime. Furthermore, GOAL'’s controller continually adjusts
itself at runtime while also carefully exploiting structure
of optimization problems so that it can control non-linear
systems with a series of linear approximations.

GOAL’s AdaptSpecs are written using a novel domain spe-
cific language (DSL), which is compiled just-in-time (JIT),
separating the AdaptSpec declaration from system imple-
mentation. This separation allows different AdaptSpecs to
be used with the same binary for deployments with different
requirements or even for changing the requirements while
the system is running. GOAL also provides a Library API so
users can declare knobs and metrics and alter these values
during execution. These features support complex adaptive
behavior that would have been difficult and inefficient to
implement with existing frameworks.

To demonstrate GOAL, we re-implement seven adaptive
applications from the literature. Collectively, these case stud-
ies cover a wide range of metrics (throughput, latency, ac-
curacy, powetr, cost, reliability and efficiency) and knobs (at
both the application and system level, including two dif-
ferent hardware systems with distinct knobs). Our results
show that GOAL’s generalized approach meets goals just
as well as prior work that synthesizes AdaptLogs specifi-
cally for each application’s narrow goals and knobs [26].
To highlight GOAL’s benefits, we then modify each appli-
cation to perform meta-adaptation. We observe that due to
GOAL'’s ability to support a wide range of AdaptSpecs and
meta-adaptation, GOAL-based applications exhibit a 1.69%
average improvement in corresponding metrics after meta-
adaptation is performed, compared to prior approaches that
cannot support meta-adaptation. Furthermore, we show that
GOAL incurs negligible overhead and is robust to errors in
profiling, changing workloads and operating conditions.

This paper makes the following contributions:

e Motivates the benefits of support general purpose
adaptation and meta-adaptation.
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e Proposes a general adaptation logic and runtime that
supports a wide range of knobs, metrics and goals.

e Proposes a programming framework and DSL for writ-
ing adaptation specifications.

o Implements GOAL and releases it as open source.

2 Related Work and Motivation

Adaptation is a key mechanism for building robust software
systems that operate effectively despite unpredictable dy-
namic changes to inputs or operating environment [55, 58].
This section discusses prior approaches to building adaptive
software systems, and discusses how limitations of prior
works motivate the need for adaptation as a first class pro-
gramming construct.

2.1 Complexity Requires Adaptation

Computer systems have numerous configuration parameters
and settings that impact their ability to meet their quantifi-
able behavioral goals [55]. Improper configuration is a notori-
ous source of performance issues and bugs [47, 69, 90]. Select-
ing a good configuration is difficult because optimal config-
urations depend upon dynamically varying external factors
such as workload and operating conditions [36, 59, 87]. Adap-
tive systems address this problem by automatically and dy-
namically adjusting configuration parameters to ensure goals
are met. Thus, there is a need for principled approaches to
building adaptive computing systems recognized by both in-
dustry [11, 32, 39, 45, 55, 58, 67] and academia [24, 29, 46, 68].

Two design patterns—Observe-Orient-Decide-Act (OODA)
[12,13,73] and Monitor-Analyse-Plan-Execute (MAPE) [55]—
have been proposed for creating adaptive software. Both
establish a control loop as the basic structure for adaptation.
During a loop iteration the software first observes/monitors
its environment and its own quantifiable behavior. It then
orients/analyzes itself with respect to these metrics to decide/-
plan what should be done next. The subsequent iteration
then acts/executes these decisions by changing the values of
configuration parameters. Because it results in more robust
and flexible software, many approaches implement adaptive
loops in the OODA/MAPE pattern.

2.2 Existing Support for Adaptation

As mentioned earlier, prior work models the OODA/MAPE
design pattern as a control loop and several researchers have
proposed that general scheme as a basis for system [42], soft-
ware [8], and language [72] design. Many existing works
suggest control theory [7, 27, 28, 40, 62, 75, 77, 81, 88, 94, 95],
machine learning [9, 22, 38, 50, 91], and combinations of
the two [41, 43, 57, 65, 85] as the basis for building princi-
pled AdaptLogs that perform the orientation/analysis and

1GOAL source code available at: https://github.com/GOAL-Adaptation.
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decision/planning phase of the OODA/MAPE loop to dynam-
ically adjust configuration knobs in a running computer sys-
tem. Such approaches provide formal, mathematical guaran-
tees about the precise assumptions and operating conditions
under which the goals will be met. However, a challenge is
that specialized knowledge in control, learning, or both is
required to successfully deploy such approaches.

To make principled adaptation easy to implement, recent
work proposes adaptation frameworks that package a control-
or learning-based AdaptLog into a programming language [4,
6, 10, 15, 16, 54, 56, 74, 79, 96] or a library [19, 21, 29, 33, 51,
65, 70, 78, 84, 90, 95] runtime. Developers do not need to
possess specialized knowledge in learning or control to use
these frameworks. Instead, they instantiate it with an initial
AdaptSpec, after which the AdaptLog monitors the metrics
and independently tunes the knobs to meet the goal.

While the OODA/MAPE design patterns themselves pro-
vide a general strategy, their implementations in existing
approaches have significant limitations. These limitations
arise because each framework is designed to support specific
metrics and knobs and their AdaptLogs do not generalize
to the metrics and knobs in other works. In other words,
the OODA/MAPE concepts are generalizable, but specific
instantiations of these concepts are problem-specific. Table 1
illustrates this idea, showing that while there is wide sup-
port for different goals and knobs across frameworks, the
support provided by any one is specific and thus limited. For
example, Green uses a heuristic AdaptLog based on a specific
model of how alternative function implementations affect
an application’s power and accuracy tradeoffs [6]. Similarly,
Aeneas’s reinforcement learning model uses a reward sig-
nal based on energy measurements, and introducing new
metrics requires a new reward function and learning model.
To the best of our knowledge, there is no single framework
that generalizes across a wide range of goals and knobs. This
limitation also means that existing frameworks cannot be
used for meta-adaptation because they do not support any
alternative AdaptSpecs.

Overcoming these limitations requires users to extend the
framework’s internal AdaptLog for additional AdaptSpecs.
This entails reconstructing the model and reimplementing
the AdaptLog and its interface to support other knobs, met-
rics, goals and meta-adaptation. However, doing so defeats
the purpose of using an adaptation framework because it re-
quires users to have specialized knowledge of the AdaptLog.

While prior work has also explored making adaptation
components configurable [3], we believe that performing
meta-adaptation using such works is difficult because such
works encapsulate the application itself rather than making
the adaptation framework a natural component of the appli-
cation which would allow it to exert fine grained control on
all aspects of adaptation.
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Table 1. Comparison of Selected Adaptation Frameworks

Framework Constraint :/;2 I;fi(:rt‘[edocl;);'):i:ive Function Supported Knobs Runtime Modifications
Aeneas [4] App. level constraint Energy App. parameters N/A
SiblingRivalry [4] Throughput Power Alternate func. implementations Constraint target value
Green [6] App. level constraint | Power or Accuracy Code approximation N/A
Eon [79] Power Accuracy Alternate func. implementations N/A
JouleGuard [41] Energy Accuracy App. and Sys. parameters N/A
Truffle [25] App. Level constraint Energy Code approximation N/A
Odyssey [29] Accuracy Energy App. alternatives and Sys. parameters N/A
GOAL (this paper) Any Any Any first-class object | Goals, Metrics, and Knobs

Thus, we argue that the aforementioned limitations would
be best addressed through a generalized adaptation frame-
work that allows applications to interact with all aspects of
adaptation dynamically. However, developing such a frame-
work is not trivial because it requires a uniform interface and
an AdaptLog whose underlying model allows the declara-
tion and use of AdaptSpecs that work with any user-defined
measures, knobs and goals. Furthermore, to enable meta-
adaptation, the framework must coordinate the interface
with the runtime to ensure that goals are met even when the
AdaptSpec changes. This paper introduces such a framework,
GOAL.

3 Implementing Adaptation with GOAL

We provide a high-level overview of GOAL, later sections
detail its AdaptLog (§ 4) and interface (§ 5). We implement a
meta-adaptive video encoder for a CCTV camera that meets
a target frame rate, while maximizing quality on line power
and minimizing energy on battery. Figure 1 shows this ex-
ample: the original Swift code without adaptation (a), the
GOAL version (b), and an example GOAL AdaptSpec (c).

3.1 Original (Non-adaptive) Code

As shown in Figure 1a, the developer initializes the encoder
and defines parameters: gp and me (quantization parame-
ter and motion estimation algorithm, respectively), which
govern tradeoffs between the video quality and frame rate.
Subsequently, the system enters a while loop where it calls
the encodeNextFrame method with qp and me as input. The
record function logs per-frame encoding quality.

The code in Figure 1a neither meets a target frame rate,
nor reacts to changes in power source. Carefully selecting
static values for gp and me could ensure the frame rate; how-
ever, without adapting to frame-to-frame differences, quality
will be sacrificed (e.g., set the parameters for the worst case
and live with lower quality for other cases). In fact, video
encoding is a challenge problem for adaptive computing
because it is difficult to tune encoding parameters [63].

3.2 Adding Adaptation with GOAL

GOAL provides constructs that allow developers to imple-
ment all parts of the OODA/MAPE control loop with minor
modifications to existing software. Concretely, the developer
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needs to: (1) identify and declare configurable components
as Knobs, (2) specify the code segment in which to perform
adaptation, and (3) report application-level metrics to the
GOAL runtime using measure.

Figure 1b illustrates the CCTV system implemented with
GOAL. gp and me are declared as Knobs, using a stringified
name and a default value for initializing the knob. The rele-
vant metrics to be monitored are identified using measure.
For example the encoding quality is reported for the CCTV.
The while loop is replaced with GOAL’s optimize loop
(§ 5.1) whose inputs are the list of Knobs to tune, and the loop
body. This syntax tells the GOAL runtime to iteratively exe-
cute the loop body (as in the original program) while tuning
the knobs after each iteration, according to the AdaptSpec.
Hence, with such minor modifications we have converted
the non-adaptive application to an adaptive application that
implements a complete OODA/MAPE control loop.

3.3 Writing Adaptation Specifications

The next step is writing an AdaptSpec. Figure 1c shows
an example, defining the knobs, allowed values for each,
the measures to monitor, and the goal that formally speci-
fies the constraints and objective. This example is how the
CCTV should behave on line power: maximize quality, with
a throughput of 30 iterations per second (which translates
to 30 frames/s). The application-level metrics (e.g., quality)
and knobs (e.g. gp and me) in the AdaptSpec must match
the string arguments in calls to Knob and measure. GOAL’s
runtime automatically declares metrics such as throughput,
energy, etc. and hardware specific knobs such as core count
(numCores) and DVFS frequency (coreFreq), allowing them
to be used without explicit declaration.

This AdaptSpec tells the runtime to measure quality, en-
ergy, and throughput, while tuning gp, me, numCores and
coreFreq. Additionally, the AdaptSpec states that the run-
time must choose configurations that meet a further con-
straint on the knobs: the product of numCores and coreFreq
should be greater than 2400. See § 5.3 for a full description
of the DSL’s grammar and capabilities.

GOAL AdaptSpecs are compiled just-in-time (§ 4.2) and
can be written in text files independent of the application
code. This allows developer’s to produce a single binary that



GOAL: Supporting General and Dynamic Adaptation in Computing Systems

import GOAL

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

goal encoder

let encoder = initEncoder () let encoder = initEncoder () max (quality)
var qp = 30 var gqp = Knob("qgp", 30) such that throughput == 30.0
var me = 1 var me = Knob("me", 1) measures

quality: Double
while(true) optimize("encoder", [qgp, mel) energy: Double
{ { throughput: Double

knobs
encoder.encodeNextFrame (qp, encoder.encodeNextFrame (gp.get(), gp = [10, 30 reference]

me) me.get())

record(encoder.getQual())

encoder.getQual())

(a) Original Code

measure ("quality"

’

(b) GOAL Code

me = [1 reference, 5]
coreFreq = [600, 1200 referencel
numCores = [2, 4 reference]

such that

numCores * corefFreq > 2400

(c) Adaptation Specifications

Figure 1. The encoder application.

Report Metrics
using measure

GOAL Adaptation Framewark
AdaptLog

Relevant Metrics Enowledge (Model)
Analyzes
and Plans | Required Behavior
e Execute -
Set app. knobs | I Knob Config, adaptspec

'and execute loap

Application

¢ Set system knobs

Hardware |

Figure 2. The GOAL Adaptation Framework.

can be deployed to meet different goals by writing differ-
ent AdaptSpecs. Such flexibility distinguishes GOAL from
existing adaptation frameworks.

Given the GOAL system and an AdaptSpec, the last step
before deployment is to use GOAL’s model builder (§ 4.3),
which runs the application on test inputs to learn a function
the knob configurations’ impact on the specified metrics.
Figure 2 presents a high-level overview of the OODA/MAPE
loop implemented using GOAL. During execution, GOAL
monitors the metrics identified by measure, analyzes and
plans which values to use for each of the Knobs to meet the
goal specified in AdaptSpec, then sets the Knobs to those
values and executes the loop body.

Finally, the system can dynamically change any aspect of
the AdaptSpec during execution, telling GOALSs runtime to
meet new goals, use new knobs, or both.

3.4 Adding Meta-Adaptation

The CCTV requires meta-adaptation to change goals based
on power supply. GOAL’s intend method uniquely supports
this by dynamically changing the AdaptSpec in a running
system. The intend function takes a string representation of
the goal and replaces the active goal with this argument. To
illustrate this, we augment the optimize loop in Figure 1b
with the following code (not shown in the figure):

.DirectPower {
objective: "quality",
"throughput",

if getPowerSupply ()
intend(to:
suchThat:

.maximize,
[(measure:
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Figure 3. GOAL meets all CCTV requirements robustly.

goal: 30.0)1)
} else if getPowerSupply() == .Battery {
intend(to: .minimize, objective: "energy",
suchThat: [(measure: "throughput",
goal: 30.0)1)

}

The code in red specifies the parameters of intend and the
code in blue represents the arguments specific to the require-
ments of the CCTV system.

With this handful of changes, the encoder will now meet
the throughput constraint while optimizing either quality
or energy based on the power source. This large increase
in adaptive capability for small code changes highlight how
GOAL’s general adaptation framework supports complex
adaptive behavior and seamless meta-adaptation.

3.5 Quantitative Benefits of Using GOAL

Figure 3 compares the execution of our GOAL CCTV with
a version that uses prior work to synthesize a customized,
Application-specific AdaptLog [26]. However, using prior
work, the CCTV can only meet one goal; we begin with
the goal corresponding to line power: maximize quality and
meet a throughput constraint.

Both versions execute identically until a power outage
(at frame 650), where the GOAL version performs meta-
adaptation to start reducing energy. In contrast, the Appli-
cation specific version cannot change the goal, continues
using high energy, and risks depleting the battery, rendering
the camera inoperable. After frame 650, GOAL consumes
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Figure 4. The GOAL Runtime.

32% less energy than the Application-specific approach. An
additional AdaptLog could have been synthesized to run the
CCTV with minimal energy. However, such a version would
needlessly sacrifice quality while operating on line power,
and switching between independent AdaptLogs at runtime
is quite costly—in both execution time § 7.3 and engineering
effort § 7.4. This example shows the importance of providing
support for general adaptation and meta-adaptation and also
the ease with which this can be achieved using GOAL.

4 The GOAL Runtime

Figure 4 illustrates GOAL’s runtime, which consists of three
key pieces: (1) the virtualized AdaptLog, (2) the AdaptSpec
Compiler, and (3) the Model Builder. The Glue code coordi-
nates these three components with the rest of the software
and hardware. Furthermore, some application and system
level metrics such as throughput and power consumption
are measured by the Glue code [48]. The AdaptLog (§ 4.1)
is implemented independently of any specific AdaptSpec; it
receives the goals, the model, and current metrics and pro-
duces a schedule of configurations. The compiler (§ 4.2) takes
an AdaptSpec and produces four outputs: (1) the space of
allowable knob configurations, (2) metrics to monitor, (3) any
constraints on knobs and (4) the goal to meet. The goal is de-
fined as a constrained optimization problem (COP) in GOAL’s
DSL (§ 5.3). Before deployment, the model builder (§ 4.3)
samples configurations from the compiled AdaptSpec and
executes the system in those configurations while observing
the metrics listed in the AdaptSpec. From these observations
the model builder learns a model that estimates changes
in metrics as a function of knob configuration. During de-
ployment, the AdaptLog schedules knob configurations to
optimally meet the goal according to the model’s estimates.

4.1 A Virtualized Adaptation Logic

GOAL virtualizes a control theoretic adaptation logic using
two key principles: relativity and translation. While typi-
cal control systems find absolute values for the knobs they
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configure, GOAL controls virtual values that represent the
necessary change in behavior—relative to the default knob
configuration—that must be achieved to meet the goals. This
virtual value by itself is not useful; it must be translated into
a schedule of specific knob configurations. Critically, this
translation can be done online once the metrics and knobs
are known and the Model Builder (§ 4.3) has produced the
function that estimates metrics given knob configurations.

4.1.1 A Traditional Control Example. Filieri et al. pro-
pose a framework for automatically synthesizing controllers
for software systems [26]. We use this approach to illustrate
a typical way that AdaptLogs are created, specifically build-
ing a controller for the gp knob from the CCTV example (§3).
We begin assuming the original goal: meeting a frame rate
constraint with maximum quality. Following [26], we first
learn a simple linear model, relating frame rate to qp:

FPS(¢) = 0.354 - qp(¢ — 1) 1)

The constant 0.354 is specific to gp. To meet a target per-
formance, the controller monitors the current performance
FPS(t) at time ¢ and computes the error with the desired per-
formance FPS,q: €(t) = FPSy0q; — FPS(t). With this error
and the model from Equation 1, we set gp at time ¢ as:
e(t—-1)

0.354

qp(2) =qp(r - 1) - @

Equation 2 is a simple and efficient AdaptLog, suitable
for gp. However, this AdaptLog is not general; it is entirely
specific to (1) the constraint metric (frames per second in
this example) and (2) the available knobs (gp).

While this example uses a control approach, similar prob-
lems occur with other techniques. For example, reinforce-
ment learning (RL) is a popular basis for AdaptLogs [16, 64,
66, 86, 89]. However, RL requires a reward function and a
set of possible actions; in existing frameworks, the reward
is tied to specific metrics, while the actions are tied to sets
of specific knobs (e.g., application alternatives for Aeneas
[16]). We are not aware of a way to virtualize the actions in
RL based AdaptLogs that is both useful for optimization and
general with respect to user-defined knobs.

4.1.2 GOAL'’s Virtualized Control Logic. We now show
how subtle changes in the above formulation implement
a virtual control signal. The key here is to model relative
behavior rather than absolute metrics as in typical control
approaches. We then translate that relative behavior into
specific knob settings. This formulation provides a layer of
indirection. The controller (which only understands relative
values) can be implemented independently of any specific
knobs or metrics. The additional logic for translating a rela-
tive value into specific knobs settings is parameterized by
the learned model that enables the translation (§ 4.1.4).

We begin by noting that a simple equation relates the
behavior in any metric m at time ¢ to a scalar multiple xup (-
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1) of some baseline behavior mpgg,:
(3)
Given this relationship, to control metric m, we first compute

the error between the target behavior (m;4rge:s, the constraint
from the AdaptSpec) and the measured behavior (m(t)):

m(t) = mpgse - xup(t — 1)

em(t) = Miarget — m(t) (4)
We can then control the behavior by tuning the xup(t):

em(t-1)

Mpase

xup(t) = xup(t—1) — (5)

Equation 5 looks similar to Equation 2, but instead of a
constant appropriate for one knob, Equation 5 is parameter-
ized by the base behavior for this metric; i.e., the metric’s
expected value in the default knob configuration.

While independent of any specific knobs, this approach is
clearly dependent on the base behavior my,;, for the appli-
cation in metric m; i.e., the expected metric value when the
application’s knobs are all set to their default values. This
value will obviously vary from application to application
and even as the application runs.

4.1.3 Adapting to Workloads. To adapt the controller to
the current behavior in metric m at runtime, GOAL’s Adapt-
Log continually estimates mp,;, using a Kalman Filter [92],
an approach used in prior work [52, 53]. Thus, if the behavior
varies during execution, this estimation compensates and
ensures that the constrained metrics can still be controlled.
This process is analogous to approximating a nonlinear func-
tion (in this case the application’s behavior with respect to
execution time) with a series of tangent lines, where mp,
is the tangent’s slope. More formally, GOAL’s Kalman filter
estimates the base behavior at time t as mpqq.(t) and uses
this estimate in place of mp,s in Equation 5. GOAL uses a
standard Kalman filter formulation:

ml;ase(t) = mbase(lL - 1)
e, (1) = ep(t — 1) +qp(1)
e, (1) - xup(t)

() = (e (D

(6)
_ 1 _
Mpase (1) = My, (1) + kb(t)(m = 5(1) - My, (1))
ep(t) = [1 - kp(t) - xup(t — 1)]e, (1)

In this formulation, kj(¢) is the Kalman gain for the con-
strained metric, m, being controlled. The m(t) denotes mea-
sured behavior of the constrained metric during the last
window. The m,_ (t) and mps.(t) are the next to last and
last estimates of mpgse. Similarly, e, (¢) and ej,(¢) are the next
to last and last estimates of the error variance.

The Kalman Filter is useful because it provides optimal
estimates of the application workload and is exponentially
convergent [17]; i.e, the estimate will converge in a number
of iterations proportional to the logarithm of its error. Fur-
thermore, the user or the developer does not need to provide
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any additional data, these guarantees are provided using data
that is available to GOAL during execution.

4.1.4 Scheduling Knob Configurations. Even after ac-
counting for workload changes, the virtual xup from Equa-
tion 5 is not useful by itself; it must be translated into actual
knob configurations. A set of values for knobs can be repre-
sented as a vector k, and a knob configuration is an assign-
ment of a value to each knob component in the vector. For
example, our video encoder from Figure 1 has a knob vector
with four components (one each for gp, me, numCores and
coreFreq), and the default configuration is (30, 1, 1200, 4).
Each knob configuration has an expected effect on each met-
ric, as estimated by GOAL’s model builder. In our example
those metrics are throughput (frame rate), quality, and en-
ergy. In addition, the xup signals are continuous while the
available knob settings are discrete.

We translate xup from Equation 5 to discrete knob con-
figurations by scheduling over time; i.e., spending different
amounts of time in knob configurations such that the aver-
age over the time period is the desired continuous value. This
scheduling problem is formulated as a constrained optimiza-
tion problem (COP, which is extracted from the AdaptSpec
by GOAL’s compiler) where the xup value is the constraint
to be met and the decision variables are the time to spend in
the knob configuration vectors:

optimize Z F(k) - Ty (7)
T
1 .
st xup(t) = T qupk - Tx (8)
k
T = Z Tk )
k
T > 0Vk (10)

Here T is the time window (defaults to 40 but can be
set using an environment variable) over which to schedule,
Ti is the time to spend in the kth knob configuration, and
xupy, is the expected xup for k (from GOAL’s model builder
§4.3). F(k) is an objective function over knobs defined in the
AdaptSpec and extracted by the compiler. For example, in
the CCTV application (§ 3), the objective on line power is
to maximize quality. Equation 8 requires that the average
of all configurations’ predicted xup, values come out to the
desired xup(t) value, while Equation 9 requires that the sum
of times spent in each configuration is equal to the total
time over which we are scheduling. Equation 10 ensures that
there are no negative time values. The controller sets the
virtual xup(t) to ensure the AdaptSpec’s constraint is met,
and this optimization problem ensures that virtual signal is
translated into specific knob settings to deliver the desired
xup.

4.1.5 Handling Non-Linear Behavior. GOAL’s Adapt-
Log uses a linear control model (Equation 5) and solves a
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linear optimization problem (Equations 7-10). Of course,
most computer systems will exhibit non-linear behavior, es-
pecially when combining knobs. Thus, we discuss why this
formulation suffices to handle non-linearities. Note the adap-
tive control (§ 4.1.3) approximates non-linear shifts in appli-
cation behavior over time. We therefore focus on non-linear
interactions in knob behavior. For example, the performance
of aknob configuration is likely a non-linear function of each
component knob in the configuration. The key intuition is
that Equations 7-10 transform a non-linear optimization
over the space of all knobs into a linear problem over an
exponential search space. Fortunately, however, the problem
structure makes it practical to solve.

GOAL’s model builder estimates the xiip, values for each
knob configuration. Given that k here is a vector of knob
configurations, the total size of the configurations space is
the cross product of all allowable knob settings. So, while
the optimization problem in the previous section is linear,
there is a nonlinear number of decision variables (the times
to spend in each configuration).

However, there are only two non-trivial constraints (Equa-
tions 8 and 9). By the duality of optimization problems there
is an optimal solution where exactly two of the configura-
tions are allocated non-zero time [14]. Furthermore, those
two configurations correspond to two configurations on the
convex hull of the tradeoff space represented by the values of
F and xup. For example, if the goal is to meet a performance
constraint (xup) and optimize accuracy (F), then the opti-
mal solution will involve two configurations on the optimal
frontier of performance and accuracy; specifically, the two
configurations whose estimated xup;. values are just below
and just above the target xup(t) [14]. Those two configura-
tions can easily be found from a lookup table, so GOAL’s Glue
takes the model from the model builder and the AdaptSpec
from the compiler and forms a lookup table that considers
only the Pareto-optimal tradeoffs in the objective and con-
straint metrics. Sorting into the Pareto-optimal points can
still be expensive (O(|k| log(|k|)), but is only done when a
new AdaptSpec is made available. We evaluate the practical
overhead in § 7.3 and § 7.8.

4.1.6 Control Theoretic Formal Properties. The most
important guarantee is that the system converges to the con-
straint. Unlike AdaptLogs based on learning methods such
as RL or Bayesian Optimization which do not provide guar-
antees of convergence to constraint, GOAL’s AdaptLog uses
adaptive control. It thus inherits the formal control theoretic
guarantees of a typical control system [40]. GOAL’s Adapt-
Log will converge provided that the estimated base behavior
Mpgse (t) and the predicted speedups xup, are within a factor
of 2 of their true values. This analysis is based on straightfor-
ward application of control theory [26]. Furthermore, even
if the base behavior estimation is incorrect momentarily, the
Kalman filter is exponentially convergent in error, meaning
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that estimate will be corrected in a logarithmic number of
iterations. We evaluate GOAL’s empirical error tolerance
(§ 7.6) and find that GOAL’s practical behavior matches the
theoretical analysis: GOAL tolerates extremely large over-
estimations of xup and tolerates under-estimations up to a
factor of 0.55; e.g., predicting 16.5 frames per second when
the true behavior is 30. This robustness is yet another reason
we favor a control theoretic formulation for GOAL’s Adapt-
Log and it is consistent with prior work that shows adaptive
control techniques do a better job of meeting operating con-
straints than learning-based techniques [61].

4.1.7 Connecting with the Rest of GOAL. GOAL'’s vir-
tualized adaptation logic requires the following parameters
to be supplied by the rest of the GOAL runtime:

e Target behavior m;44.;: Users specify this value as
a constraint in their AdaptSpec and it is extracted by
the JIT compiler (§ 4.2).

e Objective function F: This too is provided by the
user in the AdaptSpec, extracted by the compiler.

¢ Expected behavior for target metrics (xup, ): These
values are stored in lookup tables, dynamically con-
structed by the runtime using the model learned using
the model builder (§ 4.3).

e Schedule window (T): This value is the window pa-
rameter to GOAL’s optimize method. T is provided
to the AdaptLog at initialization.

e Measured Behavior (m(t)): These measurements are
provided by the runtime.

This parameterized AdaptLog is general and dynamic. It
is general because it works with any knobs and measures
that can be specified using GOAL. It is dynamic because the
runtime can rapidly change the AdaptLog by simply passing
in new parameters.

4.2 Adaptation Specification Compiler

The GOAL compiler extracts the following from the Adapt-
Spec: (1) a list of metrics, (2) a list of all knob configura-
tions, (3) knob constraints and (4) the goal, which includes m,
Miarger and F (§ 4.1.7). All values except for F are used to ini-
tialize the GOAL runtime and interpret the model learned by
the model builder. However, F needs to be evaluated repeat-
edly when computing schedules as it is the objective function
to optimize. F cannot be precomputed because it might be
an arithmetic expression over several metrics. Therefore, we
adopt a two-step evaluation approach.

In the first step, all aforementioned objects from the Adapt-
Spec’s abstract syntax tree are translated to Swift objects
using the technique proposed by Carrette et al [18]. All con-
figurations from the extracted list are converted into knob
configurations objects. A knob configuration is an object with
an apply method, that sets the application and system level
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knobs to their corresponding values. These objects corre-
spond to the k from Equations 7-10. The m and knob con-
straints are used to make a lookup table containing the xiip,,
and a configuration object for configurations, k, that meet
all knob constraints. F is translated into a Swift closure so
that it can be executed by the AdaptLog with low overhead
while computing schedules. In the second step, the AdaptLog
continually executes the aforementioned closure—once the
observed values for each measure are available—to evalu-
ate F as it produces the knob schedule. During execution, a
GOAL application can modify the AdaptSpec which triggers
recompilation (starting over from the first step).

4.3 Model Builder

GOAL’s model builder operates in two modes. In the first—
pre-deployment—it runs user-specified test workloads and
measures how changes in knobs cause changes in metrics.
Specifically, it executes a sampled subset of all knob config-
urations and estimates the metrics for all allowable knob
configurations. The model builder then learns the model us-
ing this collected data by using linear regression to compute
a piecewise linear model representing the expected behav-
ior for a metric given a knob configuration. In the second
mode—during deployment—the model builder interprets and
uses the learned model to predict the impact of particular
knob configurations on all metrics. Prior work could be used
to replace our learner with more accurate or efficient learn-
ers [20, 21, 23]. However, our empirical evaluation shows
that GOAL’s control system is robust to substantial errors in
profiling (§ 7.6), so we use piecewise linear models as a proof
of concept and leave the investigation of more advanced
learning methods to future work.

4.4 Limitations

While GOAL provides significant advantages over prior work,
there are several aspects that deserve further discussion.

Foremost, GOAL can only manage goals that can be ex-
pressed in terms of quantifiable measures that can be used
by the adaptation logic to make adaptation decisions.

GOAL’s AdaptLog handles non-linear, non-convex op-
timization problems by exploiting problem structure and
Pareto-optimality to schedule combinations of knob config-
urations (§ 4.1.5). This approach works because there are a
small number of possible constraints. Essentially, we have
transformed a problem that would be exponential in the
space of possible knob configurations into a problem that is
exponential in the number of constrained metrics. In prac-
tice, we believe this is a reasonable tradeoff because there
are typically many knobs that affect one constraint and there
is usually only a small number of metrics for which there
is required behavior. Thus, the number of constraints will
be much, much smaller than the number of possible knob
configurations.
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GOAL actuates hardware-specific knobs on the system’s
behalf. While it is easy to manipulate some hardware plat-
form specific knobs (e.g., the core usage), others (e.g., DVFS
frequency) require special permissions. Hence, GOAL sys-
tems may require elevated privileges to manipulate certain
knobs. § 7.5 shows that system and application knobs can
be split into multiple modules, however.

As a proof of concept, GOAL’s semantics currently only
support discrete knobs. Interesting future work would be
assessing the benefits of continuous knobs.

5 The GOAL Programming Interface

We implement GOAL as an extension to Apple’s Swift [5].
GOAL consists of ~9.5K lines of code written in a combina-
tion of Swift and C, not including third party libraries.

5.1 The GOAL Library API

Atahigh-level, The GOAL library provides a type (Knob), and
two functions (measure and optimize) to create an adap-
tive application. GOAL provides three additional functions:
restrict, control and intend to facilitate meta-adaptation.
Together these functions permit dynamic modification of
the entire AdaptSpec. The semantics of Knob, optimize and
intend are described in the example (§ 3.2).

To facilitate meta-adaptation, intend can be used to mod-
ify goals, as shown in the CCTV example. Other scenar-
ios might require manipulating knobs and knob ranges, so
GOAL’s Knob type also provides restrict and control
methods. restrict explicitly defines a range of values for
a particular Knob. The runtime uses this range to constrain
the configuration space available for adaptation. Calling the
method without any arguments fixes the Knob to the value
it had at the time of the method call. The control method
removes any limits from previous calls to restrict.

Table 2 provides a more detailed description of the GOAL
library APL

5.2 Supporting Multi-Module Adaptation

In large computing systems, multiple developers might want
to independently develop adaptive modules and GOAL sup-
ports this by allowing multiple optimize calls. However, the
sets of knobs used by different optimize calls have to be dis-
joint and the GOAL runtime will throw an error if this is not
the case. After initialization, the runtime manages execution
and actuates knobs of each optimize independently.
During execution, one module might modify a knob that
affects a metric monitored by another module. For example,
a module might meet a power goal by lowering clock fre-
quency and thus reduce throughput in a different module.
The base speed of the latter module will thus be underes-
timated. However, GOAL’s adaptive control (§ 4.1.3) will
observe and account for this change. In this example, the
runtime’s base speed estimation will update to account for
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Function/Method Prototype Description

Knob(name: String, initValue: Double)

Constructor for a knob object that will be actuated during execution to meet specified goal.

Knob: :get()

Method to retrieve the current value of the knob.

Knob: :restrict(values: [Double]? = nil)

method was called.

Method to tell the runtime to only use values from the provided values argument to meet
the goal. If no values is provided, then the knob is fixed to value from when the

Knob: :control ()

Method to remove all value restrictions for the knob imposed using Knob: : restrict.

measure(name: String, value: Double)

Function to report the observed value of a metric to the runtime. The stringified name is
required to identify metric for which the value is being reported.

optimize(name: String, knobs: [Knobl,
loopBody: Fn())

Function to initialize and repeatedly run code given in loopBody while actuating given
knobs to meet the goal. In case of multiple optimize blocks, each is given a unique name.

intend(to: Enum[.minimize |
objective: String,
suchThat: [(measure: String
goal: Double)])

.maximize],

Function to modify the active goal. Using the function we tell the runtime to maximize or
minimize the objective while meeting the constraint provided using the suchThat argument.

Table 2. GOAL Library API Overview

goal LoopName

OptimizationType (Objective) such that
Constraint == Target

measures
MetriclList

knobs
KnobList

such that
KnobExpression < | <= | == |

>= | > Expression

Figure 5. GOAL Adaptation Specification Language
Semantics
the lowered frequency. GOAL will meet goals of all mod-
ules if they are noncompeting (i.e., GOAL cannot constrain
system power in one module and minimize it in another).
Supporting competing goals is an open research problem in
adaptive computing. Having language support could make
this problem easier and we leave that to future work.

5.3 Adaptation Specification Language

Figure 5 shows the general template and syntax of GOAL’s
adaptation specification language. Concretely, An AdaptSpec
consists of a constrained optimization problem (COP), the
metrics to monitor and the knobs along with their valid
values that can be used to meet the COP. Finally, it may
also contain an optional section that defines additional con-
straints on the knob values.

Goal This section encodes a COP, expressing required ap-
plication behavior in terms of its metrics. The goal has five
parts:
e The OptimizationType, can be either min or max.
e The Objective, an expression on measures.
e The Constraint, a metric (latency in our example)
that is associated with constraints.
e The Target, the constraint value (30.0 seconds per
iteration in our example).
Measures This section declares quantifiable metrics like
latency, bitrate, etc., that should be observed by the runtime.
The metrics are declared as a MetricList which is a new-
line separated list of the form ‘metric name: datatype’.
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Currently, metrics datatype may only have the Double type,
but any totally ordered type that supports the operations
used in the objective function could work.

Knobs This section defines the available configuration space
as KnobList which is a newline separated list of the form
‘knob name = [ values 1. Each entry is a knob definition
which consists of a name, a range expression that evalu-
ates to a list of constants, and a reference value. The name
associates the knob definition with a Knob instance in the
application. The list of Knobs in the AdaptSpec can be a sub-
set of the Knobs from the code. The runtime will only use
the Knobs defined in the AdaptSpec during execution. For
all the Knobs not defined in the AdaptSpec, the runtime will
only use the reference value in the code. Reference values in
the AdaptSpec override those passed to the knob constructor.
Finally, developers can optionally define a knob constraint:
an arbitrary Boolean expression over the knobs. GOAL’s
runtime then filters out any configurations that violate these
knob constraints before passing the model to the AdaptLog.

6 Evaluation Methodology

We evaluate the following:

e Generality: Can GOAL support a wide range of met-
rics and knobs while meeting goals as well as prior
approaches designed for specific goals and knobs?

e Dynamism: When meta-adaptation is performed, does
GOAL converge to the new AdaptSpec while providing
near-optimal behavior for the objective function?

¢ Robustness: Does GOAL reliably meet goals even
in the face of multi-module adaptation, errors in the
learned model, and time varying workloads?

This section details the applications, platforms, points of
comparison, and metrics used to evaluate these properties.

6.1 Applications and Platforms Evaluated

We implement 7 adaptive applications from prior work and
then augment them to perform meta-adaptation. We start
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Table 3. Properties of applications used to evaluate GOAL.

# App. | #Sys. Initial Initial Change after

Name Platform Knobs | Knobs Objective Constraint Meta-adaptation

CCTV Camera [41] Embedded 3 2 max(quality) thruput == 30 min(power)

Video Object Detector [63] Embedded 4 2 min(power) thruput == 20 Restrict QP

Service Oriented Architecture (SOA) [27] Server 3 N/A max(reliability) | latency ==0.5 min(cost), rel == 0.6

Synthetic Aperture Radar (SAR) [82] Embedded 4 2 max(quality) thruput == 80 max(thruput), quality == 0.7

AES Encryption [34] Embedded 1 2 max(thruput) power == 1.5 | max(thruput/power),blksize == 256

Search Engine [6, 44] Server 1 2 min(power) thruput == 18.0 Restrict searched doc.

Optical Character Recognition (OCR) [2] Server 1 2 min(power) thruput == 8.0 max(quality), thruput == 8.0.
each with an AdaptSpec equivalent to one used in existing lit- 259 | Linzar Controller mmApplication-specific AdaptLogs GOAL
erature. At runtime, however, we change the goals or knobs. Zggj' — 1
Table 3 shows the details, including the number of applica- g g?? I I I
tion and system knobs, the initial objective and constraint, 0

cCcTV Object Service  Synthetic AES Search Optical ~ Geometric

and the required meta-adaptation. The applications cover a
wide range of system and application knobs, metrics, and
goals; and they exhibit nonlinear knob interactions.

To further demonstrate generality, we use two system plat-
forms with distinct knobs. Four applications target an embed-
ded system: an ARMv7 based ODROID-XU3 (Exynos5422)
with 2GB of RAM, running Ubuntu 16.04 (GNU/ Linux 3.10).
Three target a server: an x86 (Intel i7-6700) with 8GB of
RAM, running Ubuntu 18.04 (GNU/Linux 5.30). All use multi-
threading equal to the core count.

6.2 Adaptation Approaches Compared

We compare GOAL to prior approaches including:

e Linear Control: This approach uses a single linear
control model for all applications [40].

o Application-specific AdaptLogs: Using prior work,
we synthesize a specialized AdaptLog for each appli-
cation’s specific AdaptSpec [26]. This approach can
meet each application’s initial AdaptSpec, but not the
new one created through meta-adaptation.

e Multiple Application-specific AdaptLogs: We syn-
thesize a specialized AdaptLog for each application’s
AdaptSpecs both before and after meta-adaptation.
At runtime, we perform meta-adaptation by shutting
down the first AdaptLog and initializing the second.
This approach is clearly impractical as users must
know the new goals and knobs ahead of time.

e Oracle: We exhaustively search the configuration space
to find the best knob configuration for all AdaptSpecs.

6.3 Evaluation Metrics

We quantify the approaches using the following metrics:

e Mean Absolute Percentage Error (MAPE): Each ap-
plication’s AdaptSpec has a constraint for a particular
metric. To calculate MAPE, at each call to optimize()
we measure the absolute error between the constraint
and the achieved metric, then take the mean over all
iterations. Lower is better.
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Figure 6. GOAL reliably meets the constraint of adaptation.

e Normalized Performance: The AdaptSpecs also spec-
ify an objective, or a metric to be optimized. To mea-
sure how well GOAL optimizes the objectives we nor-
malize to the Oracle’s performance. Higher is better as
the oracle will achieve an optimum performance of 1.
Iterations until Convergence: We measure the it-
erations required to converge to the goal after meta-
adaptation. This metric will be used to compare GOAL
to the approach that pre-synthesizes multiple, applica-
tion specific AdaptLogs. Lower is better as it represents
faster convergence after meta-adaptation.

7 Evaluation And Observations

This section evaluates key aspects of GOAL, specifically:
1. Does GOAL meet user-defined constraints across a

range of knobs and metrics?

. Does GOAL achieve near-optimal objectives when per-
forming meta-adaptation?

. Does GOAL converge quickly after meta-adaptation?

. How much user effort does GOAL require?

. Does GOAL support multi-module adaptation?

. Is GOAL robust to errors in modeling?

. Is GOAL robust to large changes in workload?

. How much overhead does GOAL incur?

0 N NG W

7.1 Does GOAL meet user constraints?

For each, we measure the MAPE for the application-specified
constraints (as listed in Table 3). Figure 6 shows the results
with MAPE on the vertical axis, applications on the horizon-
tal axis, and a bar for each AdaptLog. Due to the complicated
and varied application behavior, the Linear Controller fails to
reliably meet the constraint exhibiting a mean MAPE of ~29%.
However, both GOAL and Application-specific AdaptLogs
meet the goal reliably, exhibiting less that 4% MAPE. We note
that the results for the Application-specific AdaptLogs and
Multiple Application-specific AdaptLogs are the same for
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B App-specific AdaptLogs B Multiple App-specific AdaptLogs GOAL B Oracle

Normalized
Performance
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Figure 7. GOAL is optimal when meta-adaptation is needed.
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Figure 8. GOAL’s runtime allows rapid convergence after
meta-adaptation.

this experiment, so we omit the latter for clarity. In summary,
GOAL provides a single AdaptLog implementation that gen-
eralizes across a range of metrics and knobs while achieving
errors comparable to approaches that do not generalize.

7.2

We now consider the normalized performance when each
application performs meta-adaptation, changing its Adapt-
Specs as listed in Table 3. We report results for application-
specific AdaptLogs, Multiple application-specific AdaptLogs,
GOAL, and the Oracle. We omit the Linear Controller re-
sults because it fails to meet the constraints (as shown in the
previous section), so its performance is not meaningful.

Figure 7 shows the results. The single Application-specific
AdaptLog has poor performance because it must use the ini-
tial AdaptSpec throughout execution. However, the versions
using Multiple application-specific AdaptLogs and GOAL im-
prove on relevant metrics by 1.69x over application specific
AdaptLogs, while achieving ~93.7% of the Oracle’s perfor-
mance.

These results show that when an application’s require-
ments change, the application performs suboptimally with
prior work that does not support meta-adaptation. GOAL,
however, performs as well as an approach that knows how
the requirements will change ahead of time and synthesizes
multiple application-specific AdaptLogs for both require-
ments. This demonstrates GOAL’s support for dynamic changes
in adaptation specifications, as it performs near optimally when
applications trigger meta-adaptation.

Does GOAL optimize objectives?

7.3 How quickly does GOAL converge?

The previous section shows that GOAL'’s average perfor-
mance is equivalent to an approach that is custom built for
a specific AdaptSpec. We now show that GOAL provides
an additional benefit by measuring how quickly each ap-
proach (Multiple Application-specific AdaptLogs and GOAL)
reconverges to the new constraint after meta-adaptation.
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Figure 9. GOAL requires minimal development effort for
adding adaptation and meta-adaptation.
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Figure 10. GOAL reliably meets goals of multiple modules.

Figure 8 shows the results with iterations required for
convergence on the vertical axis. GOAL converges ~2.14x
faster than using multiple application-specific AdaptLogs.
The application-specific approach takes longer due to the
expense of destroying the old AdaptLog and initializing the
new one. This process incurs two sources of overhead: (1) the
time required to perform these costly operations and (2) a
loss of accumulated history of observed metric values, which
must be collected by the new AdaptLog from scratch. Such
history is crucial for any control or learning based AdaptLog
and without it, convergence is delayed. This ability to retain
history across multiple metrics and knobs is an advantage
to a single, general adaptation framework like GOAL. GOAL
converges quicker to the new goals because the runtime
tracks all relevant metrics at all times, ensuring that no data is
lost when performing meta-adaptation. These results support
the claim of dynamism by showing that GOAL converges much
quicker than combining existing AdaptLogs without explicit
support for meta-adaptation.

7.4 How much effort does GOAL require?

We count the lines of code that need to be added/modified
to the original non-adaptive versions of the applications. We
do not count lines of code to implement the AdaptLog. Here
we only compare GOAL and Multiple Application-specific
AdaptLogs because these are the only two approaches which
can implement meta-adaptation.

Figure 9 shows the number of lines added/modified on the
vertical axis. Multiple-application specific AdaptLogs require
around 1.92x more changes than GOAL. These results show
that GOAL’s interface facilitates adding adaptation in a wide
range of applications without significant development effort,
and much less than trying to dynamically switch between prior
approaches. Finally, note that GOAL can support any type of
meta-adaptation, while prior work takes more effort and yet
only supports the AdaptSpecs specific to each application.
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Figure 11. GOAL is robust to substantial error in profiling.

7.5 Does GOAL support multiple modules?

Results so far have used a single optimize () call per applica-
tion. However, in many scenarios, multiple developers may
each want to contribute a module with its own optimize()
method (as described in § 5.2). Here, we evaluate how well
GOAL performs in such multi-module adaptation scenarios.

Specifically, for each application, we implement two mod-
ules: one for the application knobs and one for system knobs.
The application modules meet the constraints from Table 3.
The system modules meet a power constraint while deliver-
ing maximum performance. The challenge here is that both
modules affect performance, meaning that even though the
knobs are independent they still affect each other.

We then measure the MAPE for both the application and
system modules. Figure 10 shows the results. Both the appli-
cation and system modules meet their constraints reliably,
exhibiting a low mean error of ~4%. These results show that
GOAL effectively deals with complex, multi-module adaptation,
a capability that other approaches do not support.

7.6 Is GOAL robust to errors in modeling?

As mentioned in § 4.3, GOAL development includes model-
ing the application. We now evaluate how sensitive GOAL
is to possible errors in the model learning step. For each
application, we introduce errors by scaling all the model’s
estimates (i.e., the xup, values used in Equations 8-10) by
an error factor and perform the same experiments as above.

Figure 11 shows two charts with MAPE (vertical axis) for
each application given a model that is scaled by the value on
the horizontal axis; the left chart shows under-estimates, the
right chart shows over-estimates. For underestimated mod-
els, GOAL performs reliably in the presence of large errors,
producing a MAPE that stays relatively low at a value that
is roughly equivalent to results from above (Figure 6) until
scaled down to 0.55. Thus, the model has to be significantly
underestimated before GOAL fails to meet its constraints. In
contrast, MAPE is not impacted by overestimated models.
This suggests that GOAL can support a wide range of learn-
ers for model building, but they should be biased slightly
towards overestimates. Overall, these results illustrate that
GOAL is robust to substantial errors in modeling.

7.7 Is GOAL robust to changes in workload?

Adaptive systems, in general, should meet goals despite
unpredictable, external disturbances. We now demonstrate
that GOAL provides this capability by adapting to different
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Figure 12. GOAL is robust to shifts in workload.

scenes for a video encoder. The first is a high-motion soccer
game and the second is a low-motion news cast. Without
adaptation—i.e., with a constant knob configuration—the
scene change causes significant changes in throughput be-
cause different levels of motion require significantly different
amounts of work to encode.

Figure 12 shows the power and throughput for three differ-
ent video encoder implementations: (1) Non-Adaptive, using
the fixed, default knob configuration; (2) Linear Controller,
similar to the one above, but now we carefully calibrate the
control to meet the goal for the initial scene, and (3) GOAL.
The different colored regions show two different input scenes.
The impact of scene changes can be seen in the execution
of Non-adaptive whose throughput and power change from
scene to scene. Linear Controller and GOAL both have a
throughput constraint of 30.0 frames/s. The changing work-
load negatively impacts Linear Controller, which, is stable
only for the first scene, but then starts to oscillate after the
scene change and overall has a high MAPE of 22.5%. How-
ever, GOAL copes with these changes and meets the goal
reliably during all scenes, exhibiting a much lower MAPE
of 2.8%. The Linear Controller fails because the difference
in the base throughput (myp,se from Equation 5) is over a
factor of 2x different from scene to scene. GOAL can han-
dle this change, however, because it continually estimates
the time-varying base behavior to account for these types
of changes. These results further demonstrate the value of
GOAL’s adaptive control approach that adjusts the control to
handle non-linearities in application workload.(§ 4.1.2).

7.8 How much overhead does GOAL incur?

We evaluate the overhead of performing adaptation and meta-
adaptation in terms of the geometric mean of times required
to perform essential operations using GOAL.

Adaptation only requires computing schedules using the
AdaptLog (Equations 4-10). The time to compute a single
schedule in the embedded applications is ~0.68ms, while for
server applications it is ~0.045ms. Obviously, these numbers
are highly influenced by the underlying hardware. Schedules
are only computed once per window (§ 4.1.7). Hence, the
total overhead per iteration becomes negligible.

Meta-adaptation requires calls to intend, restrict and
control. The time required for intend in the embedded
applications is ~5.14ms, while in the server applications it
is ~1.07ms. The times for calls to restrict and control in
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the embedded applications is ~11.79ms and ~8.31ms, respec-
tively. These times in the server applications are ~0.68ms
and ~0.55ms, respectively. This overhead includes the time to
recompile the AdaptSpec and compute the new lookup table
(§ 4.1.7). GOAL adjusts the goal for the window immediately
after meta-adaptation is performed. For all subsequent win-
dows, the goal is set to the value in the AdaptSpecs. This
means that, GOAL accounts for its own effect on metrics and
ensures constraints are met despite GOAL’s own overhead.
It should be noted that applications are expected to perform
meta-adaptation far less frequently than they compute sched-
ules. These results show that GOAL incurs low overhead for
both adaptation and meta-adaptation.

8 Conclusion

This work motivates the benefits of supporting general pur-
pose adaptation and meta-adaptation. We implement this
idea as GOAL, a first-of-its-kind adaptation framework which,
unlike prior work, is not restricted to a particular set of knobs
and goals. Instead GOAL uses a virtualized AdaptLog that is
parameterized by a model after the developers have declared
application knobs and metrics. This allows GOAL applica-
tions to define the AdaptSpecs, using wide range of knobs
and metrics, and seamlessly modify them during execution.
The AdaptLog is, itself, adaptive and therefore robust to
adapt to nonlinear behavior and changing workloads and op-
erating conditions. We show that GOAL’s general approach
handles a diverse range of goals and knobs, while performing
just as well as problem specific AdaptLogs. However, when
the application requires meta-adaptation, GOAL performs
significantly better than prior work. Furthermore, GOAL pro-
vides an easy-to-use interface that requires minimal effort to
add adaptation and meta-adaptation to applications and even
supports applications with multiple, independent adaptive
modules. We believe that GOAL’s generality, dynamism and
robustness goes a long way to fulfilling the requirements of
complex emerging systems.
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