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Processes

William Bekermana and Joseph Guinnessb

aDepartment of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA; bDepartment of Statistics and Data
Science, Cornell University, Ithaca, New York, USA

ABSTRACT
Wind is a critical component of the Earth system and has unmistakable impacts on everyday life.
The CYGNSS satellite mission improves observational coverage of ocean winds via a fleet of eight
micro-satellites that use reflected GNSS signals to infer surface wind speed. We present analyses
characterizing variability in wind speed measurements among the eight CYGNSS satellites and
between antennas, using a Gaussian process model that leverages comparisons between CYGNSS
and Jason-3 during a one-year period from September 2019 to September 2020. The CYGNSS sen-
sors exhibit a range of biases, mostly between �1.0m/s and þ0.2m/s with respect to Jason-3,
indicating that some CYGNSS sensors are biased with respect to one another and with respect to
Jason-3. The biases between the starboard and port antennas within a CYGNSS satellite are
smaller. Our results are consistent with, yet sharper than, a more traditional paired comparison
analysis. We also explore the possibility that the bias depends on wind speed, finding some evi-
dence that CYGNSS satellites have positive biases with respect to Jason-3 at low wind speeds.
However, we argue that there are subtle issues associated with estimating wind speed-dependent
biases, so additional careful statistical modeling and analysis is warranted.
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1. Introduction

Wind is a crucial component of the atmosphere and climate,
having significant implications in numerous areas of daily
life, from safety and transportation to industry and science.
Recording accurate wind measurements provides critical
information for precisely defining weather hazards Adelekan
(2000), building skyscrapers, and landing aircraft Smith and
Chow (1998). Reliable wind speed observations are also con-
sequential in allowing us to efficiently conduct crop spraying
Endalew et al. (2010), monitor the global climate
Eichelberger et al. (2008), and avoid the obstruction of
essential global shipping routes Rusu et al. (2018).

Scientists and engineers have developed a diverse suite of
tools for measuring wind speeds. Weather stations and
buoys are often equipped with anemometers to measure
wind speed directly. Many earth-observing satellites carry
sensors capable of inferring wind speeds. A thorough review
of satellite-based methods for measuring wind speeds is pro-
vided in Young et al. (2017), which includes radiometers,
scatterometers, and altimeters, which are usually attached to
low-earth-orbiting satellites. In addition, geostationary satel-
lites are capable of inferring upper-air wind speeds by
detecting movements in clouds via derived motion winds
algorithms Daniels et al. (2019).

The Cyclone Global Navigation Satellite System
(CYGNSS) is a fleet of eight micro-satellites that use the
scattered signals from existing GNSS satellites to infer wind
speeds at the ocean surface (Ruf et al. 2012, 2013). CYGNSS
is a relatively new and low-cost system that, due to its ability
to distribute its sensing effort over eight satellites, has the
advantage of greater spatial-temporal coverage of the oceans
relative to a single-satellite system, an important feature for
its mission of monitoring tropical cyclones.

Our primary goal is to study the internal variability in
wind speed measurements among the eight CYGNSS satel-
lites and across each satellite’s starboard and port antennas.
As noted in Asharaf et al. (2021), this variability is still
under study, and further calibrations are a possibility: “it is
more likely the differences in bias, both between antennas
and between spacecraft, are caused by residual errors in the
engineering calibration, which is performed individually for
each spacecraft and antenna. This is an ongoing area of
investigation by the CYGNSS project team …” Our second-
ary goal is to study differences between CYGNSS and Jason-
3 wind speed measurements. Jason-3 is a separate satellite
that uses reflected signals from its radar altimeter to infer
wind speed and other ocean surface parameters.

Several recent articles study statistical properties of
CYGNSS wind speed measurements. CYGNSS was
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compared with weather model forecast winds and found to
be positively biased at low wind speeds and negatively
biased at high wind speeds, but no comparisons were made
among individual CYGNSS satellites Pascual et al. (2021). In
the tropics, a similar pattern of positive bias for low wind
speeds and negative bias for high wind speeds, relative to
hourly-averaged buoy data, was detected Asharaf et al.
(2021). CYGNSS biases with respect to modeled and sensed
wind speeds were assessed in the context of building a com-
plex bias correction algorithm Saïd et al. (2022).

The spatial-temporal patterns of low-earth-orbiting satel-
lite observations, coupled with the inherent spatial-temporal
variability in wind speeds, present a data-analytic challenge
for conducting the desired comparisons in our study. By
design, the eight CYGNSS satellites do not measure winds
concurrently at the same locations, so it is difficult to draw
direct comparisons between observations from most pairs of
these satellites. Thus, we rely on repeated approximate cross-
ings between CYGNSS and Jason-3 for indirect comparisons.
We believe that Jason-3 is a suitable comparison because,
like CYGNSS, it retrieves a snapshot of surface wind speed,
as opposed to an hourly average or a model forecast, both
of which can be overly smooth. To maximize statistical
power, it is important to make judicious use of the observa-
tions arising from the limited number of nearby CYGNSS-
Jason-3 passes, while avoiding a subjective determination of
which passes constitute a close-enough match.

To address these issues, we analyze the data using
Gaussian process models. The models contain parameters
for capturing biases among the satellites, and they have
terms for modeling winds that vary continuously over space
and time. Gaussian process models have become an indis-
pensable tool for analyzing and interpolating scattered
remote sensing data. Recent examples include the analysis of
Argo float data Kuusela and Stein (2018), Orbiting Carbon
Observatory-2 data Susiluoto et al. (2020); Katzfuss et al.
(2020), surface temperatures Rayner et al. (2020), Microwave
Atmospheric Satellite data Ruan et al. (2017), and Jason-3
wind speeds Guinness (2018).

Our models for CYGNSS and Jason-3 wind speeds con-
tain bias and variance parameters that are directly related to
our study goals. In particular, each model has parameters
that are interpreted as the expected difference between
CYGNSS starboard and port measurements and Jason-3
measurements if they had measured wind speed at the exact
same location and time. These parameters are estimated via
maximum likelihood and generalized least squares, which
uses a variance-minimizing linear combination of observa-
tions to make efficient use of the available data.
Computational challenges often associated with Gaussian
process models are overcome by downsampling across time
and using a state-of-the-art Gaussian process approximation
implemented in the publicly available GpGp R package
Guinness and Katzfuss (2018). The Gaussian process model
and associated computational techniques are the main meth-
odological novelties of this work.

We find that there are significant and persistent differen-
ces among some pairs of the CYGNSS sensors of a

magnitude up to 1.11m/s. There are smaller differences
between the starboard and port sensors from the same satel-
lite. Five of the eight CYGNSS satellites have a negative bias
with respect to Jason-3 measurements. No substantial differ-
ences in variances among the eight satellites were detected.
These results are successfully validated against a traditional
empirical analysis, which shows similar trends but higher
uncertainty. In addition, we investigate the possibility that
bias depends on wind speed, finding some evidence that
CYGNSS measurements are larger than Jason-3 at low wind
speeds, though we argue that more careful analysis is
needed. We conclude the paper with a discussion of the
results and suggestions for how to modify the models to
study variation in the biases. All of the code necessary for
reproducing our results is available in a GitHub repository
at https://github.com/WillBekerman/satellite-wind-speeds.

2. Datasets and Data Processing

We compile one year of measurements recorded by
CYGNSS and Jason-3 between September 28, 2019 and
September 25, 2020, specifically, CYGNSS Level 2 Science
Data Record Version 3.0 and Jason-3 Level-2 X-GDR Data.
CYGNSS data is obtained from the OPeNDAP 4 Data
Server, also known as Hyrax, at https://podaac-opendap.jpl.
nasa.gov/opendap/allData/cygnss/L2/v3.0/. Each CYGNSS
satellite is capable of recording 240 wind measurements per
minute and takes observations between roughly 38 degrees
north and south latitude using its starboard and port anten-
nas. CYGNSS wind speeds are the average surface wind
speed of the 25� 25 kilometer cell centered on the recorded
latitude and longitude. Jason-3 data is obtained from the
National Centers for Environmental Information at https://
www.ncei.noaa.gov/data/oceans/jason3/gdr/gdr_ssha/. The
Jason-3 dataset has about 40 observations per minute and
records wind speeds between roughly 66 degrees north and
south latitude. Due to several days of missing records in the
Jason-3 data during the weeks of February 1, 2020 to
February 14, 2020 and June 13, 2020 to June 19, 2020, we
omit these weeks from our data collection, yielding 49 total
weeks of satellite measurements for our analysis.

After acquiring the data in NetCDF format, we process
the data in R, retaining information about spatial location,
time of measurement, wind speed, CYGNSS satellite num-
ber, and CYGNSS sensor (port vs. starboard). We omit any
observations with missing data and standardize the times to
seconds since 2020-01-01 00:00 UTC. Since CYGNSS
records wind speed measurements only over oceans, we
keep only those Jason-3 observations with surface type
“open oceans or semi-enclosed seas.” The data are saved in
standard R Data format.

In Figure 1, we compare the wind speed measurements
taken over the same latitudes by CYGNSS 1, CYGNSS 4,
and Jason-3 during the week of November 30–December 6,
2019. The value in each pixel is the average of all measure-
ments taken within the pixel over the week. While the spa-
tial patterns of wind speeds are similar among the three
satellites, there are subtle differences. CYGNSS 4 appears to
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record larger wind speeds than CYGNSS 1, and Jason-3
tends to have less-smooth wind fields with more of the larg-
est values.

The pixel-wise comparisons in Figure 1 can be misleading
because even though the satellites have complete coverage in
a one-week period, the timing of the measurements will dif-
fer among satellites, so differences could be attributable to
the interaction between locally changing wind conditions
and the observational times, rather than bias. In seeking to
quantify these differences between satellite measurements,
the simplest approach is to directly compare measurements
recorded by CYGNSS and Jason-3 taken within small space-
time windows. To explore the feasibility of the space-time
matching analysis, we plot the time-varying distances
between the eight CYGNSS satellites and Jason-3 over the
course of one full day in Figure 2. All of the CYGNSS satel-
lites come reasonably close to Jason-3 at one or more points

during the day, with some variability in the number and
proximity of such occurrences. By contrast, while some pairs
of CYGNSS satellites nearly always measure winds at nearby
locations, some pairs never do, like CYGNSS 1 and
CYGNSS 4. In the next section, we propose a model
designed to address the challenge of making efficient use of
the CYGNSS and Jason-3 comparisons.

3. Analysis

3.1. Model Description

We first describe the statistical model used in our analysis
in mathematical notation, and then provide interpretations
for the model and its statistical parameters. Our analysis
strategy is to fit separate models to datasets consisting of
Jason-3 data and one CYGNSS satellite, and repeat the
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Figure 1. Wind speed (m/s) measurements recorded by CYGNSS 1, CYGNSS 4, and Jason-3 between �38 and 38 degrees longitude between November 30, 2019
and December 6, 2019. The value in each pixel is the sample average of all measurements falling within the pixel during the week. Pixel resolution is 4 degrees lati-
tude and longitude. During this week, CYGNSS 1 has 819,298 observations; CYGNSS 4 has 811,677; and Jason-3 has 380,488, with 202,892 between �38 and 38
degrees latitude.
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analysis for each week and each CYGNSS satellite, which
means we will have many separate fits of the same general
model formulation. This allows us to study whether biases
are consistent over time. In the interest of keeping the num-
ber of symbols manageable, we do not provide notation for
each individual model fit; the notation below is a model for
an arbitrary CYGNSS satellite in an arbitrary week. Our
results will contain a re-estimation of the parameters for
each dataset.

We label the n combined observations from CYGNSS
and Jason-3 with i ¼ 1, :::, n: We use Yi for the wind speed
associated with observation i, recorded at spatial location
(longitude and latitude) xi and time ti, and model it as fol-
lows:

Yi ¼ li þ akðiÞ þ Zðxi, tiÞ þ ei (1)

li ¼ b0 þ b1ti þ b2ðlatÞi þ b3ðlatÞ2i þ b4ðlatÞ3i (2)

Z � GPð0,KÞ (3)

e1, :::, en�indNð0,r2Þ: (4)

The term li is intended to capture broad-scale variation
in wind speed over time ti and latitude, independent of sat-
ellite. The mapping k(i) indicates which sensor produced
observation i, with k¼ 1 indicating Jason-3, k¼ 2 indicating
the CYGNSS starboard sensor, and k¼ 3 indicating the
CYGNSS port sensor. Therefore, a1, a2, and a3 are the
parameters of interest for determining biases among the sen-
sors. We model space-time variation in wind speeds with
the Gaussian process (GP) Z, with inputs spatial location xi
and time ti.

Gaussian process models impose a normal assumption on
all random terms, similar to normal random effects models.
They are flexible in that they allow the random effects to be
correlated; in this case Z is assumed to be correlated over
space and time. Specifically, we assume it has mean zero
and space-time Mat�ern covariances CovðZðxi, tiÞ,Zðxj, tjÞÞ ¼
Kððxi, tiÞ, ðxj, tjÞÞ, where

Kððxi, tiÞ, ðxj, tjÞÞ ¼ h1
2h2�1Cðh2Þ

ðdijÞh2Kh2ðdijÞ, (5)

dij ¼
jjxi � xjjj2

h23
þ ðti � tjÞ2

h24

 !1=2

, (6)

where h1 controls the variance of Z, h2 is the Mat�ern
smoothness parameter, h3 controls the spatial-decay of the
covariances, and h4 the temporal decay. In the formula for
the Mat�ern function, Kh2 is the modified Bessel function of
the second kind of order h2.

Since Z is a mean-zero process that depends only on
space-time location, and not the satellite or random inde-
pendent error, we interpret it as a wind speed anomaly, with
the caveat that the anomaly is relative to a specific linear-in-
time, cubic-in-latitude mean field. The mean field contains
an intercept b0, which means that a1, a2, and a3 are not sep-
arately identifiable, but differences such as a2 � a1 and a3 �
a1 are. As a consequence, without additional outside infor-
mation, our analysis is not able to determine whether
CYGNSS or Jason-3 is biased with respect to the true wind
field, but it is capable of assessing whether CYGNSS and
Jason-3 are biased with respect to one another via estima-
tion of differences such as a2 � a1:

In terms of the model, we are principally interested in
how CYGNSS starboard, CYGNSS port, and Jason-3 meas-
urements would differ if they had measured wind speed at
the same location at the same time. To see how this quantity
relates to our model parameters, suppose that measurement
i was taken by CYGNSS starboard and measurement j was
from Jason-3, and those two measurements were recorded at
the same time and location. Then

Yi � Yj ¼ a2 � a1 þ ei � ej � Nða2 � a1, 2r
2Þ, (7)

meaning that a2 � a1 is the bias and 2r2 is the variance of
the difference. These are the parameters of interest in our
study. By comparing the estimates of a2 � a1 and a3 � a1
across CYGNSS satellites, we can achieve our primary
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goal of understanding variability among the CYGNSS
measurements.

3.2. Model Estimation

All of the parameters in the model in Section 3.1 must be
estimated for each of the 49weeks and each of the 8
CYGNSS satellites, requiring a total of 392 model fits. Since
the Gaussian process model relies on multivariate normal
distributions, which are computationally difficult to handle,
we take steps to reduce the computational burden.
Specifically, we use a computationally efficient approxima-
tion, fit separate models for each CYGNSS satellite for each
week, and subset the data to allow us to fit the 392 models
within a reasonable amount of time. A typical week has
roughly 600, 000 to 1 million observations per CYGNSS sat-
ellite and 400, 000 Jason-3 observations. We subset the data
to 20, 000 randomly selected observations from CYGNSS
and 20, 000 from Jason-3 for each model fit. Retaining
20, 000 observations per week leaves an average of about
30 s between observations and about 180 observations per
orbit, which is dense relative to the spatial and temporal
scales on which wind speeds vary. We employ a popular
computationally efficient Gaussian process approximation
proposed by Vecchia (1988), implemented in the R package
GpGp Guinness and Katzfuss (2018). This particular
approximation relies on an ordering the observations and
the conditional distributions of each observation given near-
est neighbors from earlier in the ordering. We use the
max-min ordering described in Guinness (2018) and 30
neighbors per observation. Each model fit delivers estimates
of the model parameters via maximization of the approxi-
mate likelihood function, as well as standard errors for the
mean parameters.

Gaussian process likelihood functions are typically not
convex in their parameters, making optimization difficult.
GpGp uses a Fisher scoring algorithm to maximize the like-
lihood function. See Guinness (2021) for details.

3.3. Model-Based Results

In Figure 3, for each week and each CYGNSS satellite, we
plot the CYGNSS vs. Jason-3 bias estimates a2 � a1 (star-
board) and a3 � a1 (port). Estimates for starboard and port
from the same week and CYGNSS satellite are connected by
a black line. The bias estimates vary by week, satellite, and
antenna. Five of the eight CYGNSS satellites (1, 2, 3, 5, and
6) produce negative biases with respect to Jason-3 for every
week and for both antennas. The three other satellites (4, 7,
and 8) have a mix of negative and positive biases across
weeks. CYGNSS 1 has the largest negative biases, on average
approximately -0.83m/s for starboard and -0.94m/s for the
port antenna. Nearly all of the CYGNSS 1 biases are more
negative than the most negative CYGNSS 4 bias, suggesting
that CYGNSS 1 and CYGNSS 4 were persistently biased
with respect to one another during our study period. Within
each satellite and antenna, the bias estimates vary by roughly
0.5 to 1.0m/s from week to week. The differences across
weeks in the biases could be due to uncertainty in the par-
ameter estimates, rather than a bias that truly varies over
time.

By inspecting the black lines in Figure 3, we observe dif-
ferences between the estimates of the starboard and port
biases from the same satellite within the same week. Figure
4 explores these differences in more detail by directly plot-
ting estimates of a3 � a2, which measure the bias between
the starboard and port antennas. Most of the starboard vs.
port bias estimates are smaller than the CYGNSS vs. Jason-3
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Figure 3. Model-based estimates of CYGNSS starboard (S) vs Jason-3 bias (a2 � a1) and CYGNSS port (P) vs Jason-3 bias (a3 � a1) for each CYGNSS satellite and
each of the 49weeks in our study. Starboard and port biases from the same week are connected with a black line. Discussed in more detail in Section 3.3.
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biases, with most magnitudes less than 0.25m/s, and show a
mix of both negative and positive biases, though there are
notably more negative than positive biases. CYGNSS 5 is the
most lopsided with 46 of the 49 biases being negative.

Figure 4 displays estimates of
ffiffiffi
2

p
r, which we recall from

Equation (7) is the model’s standard deviation of the differ-
ence between two observations taken by different sensors at
the same location and time. The estimates generally fall
between 0.6 and 0.9m/s, meaning that the size of the noise is
roughly equal to the largest CYGNSS vs. Jason-3 biases. There
is some variation of the estimates of

ffiffiffi
2

p
r across weeks but no

substantial differences among the eight CYGNSS satellites.

3.4. Empirical Explorations

To validate our model-based results, we conduct additional
analyses based on simple averages of differences between

CYGNSS and Jason-3 wind speeds that fall within small
space-time windows, defined as follows. For each of the
eight CYGNSS satellites, each antenna, and each week
between September 28, 2019 and September 25, 2020, we
divide the week into 2-h windows and find the pair of
CYGNSS and Jason-3 observations that are closest in dis-
tance within the 2-h window, ignoring any windows that do
not have a pair that fall within 25 km. We then take the
average of the differences between the selected pairs of
CYGNSS and Jason-3 wind speeds. We refer to the averages
of these differences as our empirical bias estimates.

Analogously to Figure 3, we plot in Figure 5 the empir-
ical bias estimates over all CYGNSS satellites, antennas, and
weeks. The general patterns of the empirical and model-
based bias estimates are quite similar. The same five
CYGNSS satellites have largely negative biases with respect
to Jason-3, while the other three have a mix of negative and
positive biases. The average size of the biases are similar as
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well, ranging roughly from �1.0 to 0.05m/s. As in the
model-based analysis, the port biases in CYGNSS 5 are, on
average, more negative than the starboard biases. The
empirical biases differ in that the variation across weeks is
larger than in the model-based biases, which produces more
overlap among the eight CYGNSS satellites and two anten-
nas. For instance, whereas there was essentially no overlap
between the CYGNSS 1 and CYGNSS 4 model-based biases,
the empirical biases show more substantial overlap. In add-
ition, the difference between the CYGNSS 5 starboard and
port model-based biases is more clear than the difference
between the empirical biases.

To further compare the model-based and empirical bias
estimates, we average the estimates over the 49weeks and
plot them in Figure 6. The estimates generally follow the 45
degree line, with the model-based estimates being slightly
more positive than the empirical estimates. The points tend
to cluster by satellite, suggesting that the difference between
starboard and port within a CYGNSS satellite is generally
smaller than the differences among the eight CYGNSS satel-
lites. Interestingly, every starboard point is northeast of its
corresponding port point, indicating that the average empir-
ical and model-based starboard biases are more positive
than the corresponding port biases for every CYGNSS
satellite.

Previous studies have explored whether bias depends on
the magnitude of the wind speed. These analyses are compli-
cated by the fact that we never have access to the “true”
wind speed. One could take the more accurate measurement
as the “true” wind speed and estimate bias as a function of
the more accurate measurement. This approach is not with-
out its drawbacks; when one measurement is high, the other
is likely to be lower, due to standard regression-to-the-

mean. To partially circumvent this issue, we plot in Figure 7
the difference between CYGNSS and Jason-3 (CYGNSS
minus Jason-3) against their average. As before, we break
the year into 2-h intervals and within each interval, we
extract the closest pair of observations, provided that the
closest distance is less than 25 km. We see that among the
port antennas, CYGNSS measurements are usually larger
than Jason-3 for small average wind speed, but for larger
average wind speeds, Jason-3 records tend to be larger. The
pattern is similar for all satellites. The overall negative bias
for satellites 1, 2, 3, 5, and 6 is also evident from the plots.
The patterns for the starboard antennas are similar (not
shown).

4. Conclusions

Our main finding is that during our study period of
September 2019 to September 2020, persistent biases existed
among the wind speed measurements recorded by the eight
CYGNSS satellites and between some CYGNSS satellites and
Jason-3. Considering the averages of the model-based par-
ameter estimates over the study period, the largest bias
between pairs of CYGNSS sensors was 1.11m/s (CYGNSS 4
starboard minus CYGNSS 1 port), and the largest CYGNSS
vs. Jason-3 bias was �0.94m/s (CYGNSS 1 port minus
Jason-3). We discovered smaller biases between the star-
board and port antennas within a satellite, with the largest
average bias being 0.25m/s (CYGNSS 5 starboard –
CYGNSS 5 port).

It is not surprising to us that the two sensors on the
same CYGNSS satellite would be reasonably well-calibrated
with respect to one another. Since they tend to measure
wind speeds at fairly close locations, direct comparison
across antennas is easier. However, direct comparisons
between CYGNSS satellites are more difficult due to the fact
that some pairs nearly always measure wind speeds at dis-
parate locations. Similar to other studies that make indirect
comparisons with forecast winds or buoy data, we use
Jason-3 as an intermediary to achieve indirect comparisons
among every pair of CYGNSS satellites. We believe that
Jason-3 data is appropriate because both CYGNSS and
Jason-3 attempt to measure snapshots of wind speed within
small space-time windows, and they pass each other some-
what regularly.

These findings were facilitated by the use of a Gaussian
process model that contained parameters directly related to
the expected difference between measurements from differ-
ent instruments taken at the same time and location. In
addition to the bias parameters, the models contained a par-
ameter related to the variance of the difference between two
observations taken by different sensors at the same time and
location. We did not find substantial differences in the esti-
mates of noise parameters among the models for the eight
CYGNSS satellites. The size of the noise averaged about
0.75m/s, meaning that the noise was of roughly equal mag-
nitude to the largest biases, implying that about half of the
mean square errors between measurements from different
sensors was due to bias, half due to noise. In other words,
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Figure 6. Average CYGNSS satellite bias estimates from our model-based
approach and our empirical strategy.
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eliminating the bias could potentially reduce the mean
squared errors by a factor of two.

We validated the model-based findings with a more trad-
itional empirical analysis that searched for matching pairs of
observations from different sensors within small space-time
windows. The general pattern of the estimates in the empir-
ical analysis was similar to that in the model-based analysis.
The analyses differed in that the week-to-week variation in
the empirical estimates of the bias was larger. This is
expected because the model-based estimates use generalized
least squares, which provides variance-minimizing parameter
estimates under the assumed model.

Some studies have suggested that the size and direction
of the bias may depend on the magnitude of the true wind
speed. We caution against over-interpreting these results
because we do not have access to the true wind speed. If a
particular sensor is chosen as the reference, we expect to see
positive bias at low wind speeds and negative bias at high
wind speeds due to regression-to-the-mean effects, even if
the bias does not vary with wind speed. We attempted to
mitigate this effect by comparing paired differences against
paired averages, finding that generally the Jason-3 wind
speeds increase relative to CYGNSS as the average of their
two measurements increases. This aspect is certainly worthy
of more exploration, with consideration of the aforemen-
tioned statistical issues. Due to the differing accuracies of
CYGNSS and Jason-3, the average may not be the best esti-
mate of the wind speed. We could also seek out a third
wind speed measurement to serve as the baseline. One could
also pursue model-based estimates of biases that depend on
true wind speed. To this end, consider the following

extension of our model:

Yi ¼ li þ akðiÞ þ bkðiÞZðxi, tiÞ þ ei, (8)

which contains a sensor-dependent slope multiplying the
wind speed anomaly Zðxi, tiÞ: Inferences about biases that
depend on wind speed could be obtained via estimation of
akðiÞ and bkðiÞ: This is still a Gaussian process model, so we
could use the same methodology to fit the model, though
one would have to be careful about non-identifiability of
parameters; for example, the variance of Zðxi, tiÞ is not iden-
tifiable separately from the bkðiÞ parameters.

One could imagine that the bias depends on various
other factors, such as latitude, time, or GNSS satellite. This
sort of variation could be handled within our model frame-
work by adding interactions between the bias and the
desired factor. To capture biases that vary in space, we could
extend our model as

Yi ¼ li þ akðiÞ þ Zðxi, tiÞ þWkðiÞðxiÞ þ ei, (9)

where W1, W2, and W3 are independent spatial Gaussian
processes. Then we can interpret a2 � a1 þW2ðxiÞ �W1ðxiÞ
to be the spatially-varying starboard bias, and a3 � a1 þ
W3ðxiÞ �W1ðxiÞ as the spatially-varying port bias. We sus-
pect that we would need to use more than one week of data
at a time to accurately estimate a spatially-varying bias.

5. Supplementary Materials

We run our analysis using R 4.0.5 R Core Team (2013) on
platform x86_64-w64-mingw32/x64 running under Windows
8 x64. We make frequent usage of R packages” fields”
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Figure 7. CYGNSS Port minus Jason-3 vs. the average of CYGNSS Port and Jason-3 for pairs of observations. Each pair represents the two closest observations from
each 2 h window over the entire year, provided that the distance is less than 25 km.
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Douglas Nychka et al. (2017),” maps” Becker et al. (2018),
and” ggplot2” Wickham (2016) for creating visualizations,
and” GpGp” Guinness and Katzfuss (2018) for modelling.

We maintain a Github repository at https://github.com/
WillBekerman/satellite-wind-speeds which contains all data,
as well as R scripts to replicate our analysis.
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