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Lightning is a destructive and highly visible product of severe storms, yet
there is still much to be learned about the conditions under which lightning is
most likely to occur. The GOES-16 and GOES-17 satellites, launched in 2016
and 2018 by NOAA and NASA, collect a wealth of data regarding individual
lightning strike occurrence and potentially related atmospheric variables. The
acute nature and inherent spatial correlation in lightning data renders standard
regression analyses inappropriate. Further, computational considerations are
foregrounded by the desire to analyze the immense and rapidly increasing
volume of lightning data. We present a new computationally feasible method
that combines spectral and Laplace approximations in an EM algorithm, de-
noted SLEM, to fit the widely popular log-Gaussian Cox process model to
large spatial point pattern datasets. In simulations we find SLEM is compet-
itive with contemporary techniques in terms of speed and accuracy. When
applied to two lightning datasets, SLEM provides better out-of-sample pre-
diction scores and quicker runtimes, suggesting its particular usefulness for
analyzing lightning data which tend to have sparse signals.

1. Introduction. Lightning has great destructive capabilities, and there is growing con-
cern surrounding the relationship between climate change and lightning activity (Clark, Ward
and Mahowald (2017), Finney et al. (2018)). In 2016, lightning was added to the Global Cli-
mate Observing System’s (GCOS) list of Essential Climate Variables, indicators of particu-
lar focus for scientists looking to understand and mitigate climate impacts (System (2016)).
In October 2017, scientists associated with GCOS and several other meteorological organi-
zations assembled a task force to spearhead a new wave of lightning research (Aich et al.
(2018)). Satellite data was identified as a crucial source of information for future lightning
study (Aich et al. (2018)). Modern satellite technology is capable of monitoring lightning
activity over large, for example, 1000 × 1000 km, spatial grids. This spatial scale allows
researchers to conduct novel studies of macrolevel lightning dynamics but poses a challenge
to computational feasibility. Another difficulty lies in the sparsity of lightning count data. At
most locations at any given time, there is no lightning which means that the vast majority
of recorded counts are zero. These problems motivate our study of computationally feasible
statistical methods for satellite lightning data, with the end goal of facilitating novel studies
of lightning dynamics that can make use of modern satellite data.

We concentrate on data collected by instruments on the GOES-16 satellite, launched in
2016 by the National Oceanic and Atmospheric Administration (NOAA) and the National
Aeronautics and Space Administration (NASA). The first instrument of interest to our study
is the Advanced Baseline Imager (ABI), which records images in 16 different spectral bands,
corresponding to environmental factors such as water-based cloud coverage and dust, haze,
and smoke presence. We focus on the ABI’s mesoscale mode of operation, which collects
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FIG. 1. Lightning strike locations (×) overlaid on proxy data for cloud-top height.

information over approximately a 1000 × 1000 km field-of-view, often targeted at areas of
intense storm activity in North America. This field-of-view can change hourly as the pat-
tern of storms changes. Data is recorded on a minute-by-minute basis, at either two km,
one km, or 0.5 km resolution, depending on the spectral band (DOC NOAA and NASA
(2017)). The second instrument is the Geostationary Lightning Mapper (GLM), which con-
tinuously measures all types of lightning activity at an eight km resolution over the Amer-
icas and adjacent oceanic regions. Flashes are detected by their radiance signature—optical
pulses which exceed the background instrument threshold (Goodman et al. (2013)). For
ease of comparison, we analyze both the ABI and GLM data at an eight km spatial reso-
lution. Figure 1 shows environmental proxies derived from ABI data overlaid with GLM
strike data. Construction of these environmental proxies is later described in detail in Sec-
tion 4.1.

Log-Gaussian Cox process (LGCP) models are commonly used to model spatial point pat-
tern data (Møller, Syversveen and Waagepetersen (1998)). As such, they are natural tools for
studying lightning dynamics using strike and environmental proxy data. To define the LGCP
model, consider a point pattern whose locations U = {U1, . . . ,Uℓ} fall within the domain
S ⊂R

2. As is common when analyzing point patterns, we use a discretization approximation
and partition the domain S into an n1 ×n2 grid with n pixels {B1, . . . ,Bn} and pixel centroids
{s1, . . . , sn}. We transform the observed locations into counts per pixel via Yi =

∑ℓ
j=1 1Uj∈Bi

,

for i = 1, . . . , n. We also consider X(si) = (1,X1(si), . . . ,Xp(si))
T , a 1× (p+1) row vector

of an intercept and covariates considered constant within the ith pixel. An LGCP model for
U implies the following model for Y1, . . . , Yn:

Yi |λ
indep
∼ Poisson

(∫

Bi

λ(s) ds

)
= Poisson

{
�iλ(si)

}
,(1)

λ(si) = exp
{
X(si)β + Z(si)

}
,(2)

Z(s) ∼ GP
{
0,K(η)

}
,(3)

where λ is an intensity function that is constant within each pixel, �i is the area of pixel Bi ,
β is a (p + 1) × 1 vector of coefficients, and K(η) is a covariance function parameterized
by η. Letting Z = (Z(s1), . . . ,Z(sn)) denote points from the Gaussian field, this is equivalent
to assuming that Z ∼ N(0,�η), where �η is the covariance matrix formed by applying K(η)

to locations s1, . . . , sn. Even with the discretezation approximation, evaluating the likelihood
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remains challenging due to integration over the random effects Z,

L(θ;Y) = p(Y|θ) =

∫

Rn
p(Y,Z|θ) dZ =

∫

Rn
p(Y|Z, θ)p(Z|θ) dZ,(4)

where Y = (Y1, . . . , Yn) and θ = (β,η).
Markov chain Monte Carlo (MCMC) methods are popular for fitting Bayesian LGCP mod-

els, providing exact inference given infinitely many samples from the posterior. Brix and
Diggle (2001) and Diggle, Rowlingson and Su (2005) implement the Metropolis-adjusted
Langevin kernel discussed in Møller, Syversveen and Waagepetersen (1998) in an MCMC
routine for LGCPs, making use of circulant embedding (Wood and Chan (1994)), which
leverages fast Fourier transforms to speed up matrix computations. This method is imple-
mented in the R package lgcp (Taylor et al. (2013, 2015)). While the “exactness” of this
method is appealing, it is also known to have slow runtime, can mix poorly, and requires spec-
ification of user-defined tuning parameters (Taylor and Diggle (2014), Shirota and Gelfand
(2016)). To address these issues, Guan and Haran (2018) introduce an approximate method
which projects the random effects onto a lower-dimensional subspace. This reduces the di-
mension of the random effects and alleviates spatial confounding. Likewise, sampling the ran-
dom effects involves manipulation of a lower dimensional matrix with better mixing proper-
ties. Gonçalves and Gamerman (2018) provide an exact MCMC method for spatial-temporal
data in the sense that the method has no spatial discretization error.

Maximum likelihood schemes are also popular, but approximations are used due to
the intractability of evaluating the likelihood. Guan and Haran (2020) use an expectation-
maximization (EM) algorithm in which the E-step is approximated via sampling or Laplace
approximation. Park and Haran (2021) use a Monte Carlo likelihood approximation instead,
introducing a method for finding a good importance function iteratively. Both Guan and Ha-
ran (2020) and Park and Haran (2021) also use similar projection-based approximations to
Guan and Haran (2018) to reduce computational burden and address spatial confounding.

An especially well-known approximation method is the integrated nested Laplace approxi-
mation (INLA). As the name suggests, the key feature of INLA is its nested approximation of
the marginal posterior distribution of the model’s hyperparameters, such as η, via the Laplace
approximation (Rue, Martino and Chopin (2009), Illian, Sørbye and Rue (2012)). INLA as-
sumes that the Gaussian process driving the spatial point process is a Gaussian Markov ran-
dom field and thus has sparse precision matrices (Lindgren, Rue and Lindström (2011)),
facilitating faster matrix operations.

In a related alternative, Zilber and Katzfuss (2021) combine the Laplace approximation
with a computationally efficient Vecchia approximation to the latent Gaussian process, im-
plemented in the R package GPvecchia (Katzfuss et al. (2021)). Guan and Haran (2020) also
propose a variant to their method which leverages the Laplace approximation in the E-step,
instead of using Monte Carlo averages. However, scalability to datasets measured on large
spatial grids, on the order of tens of thousands as opposed to hundreds of locations, still re-
mains in question, even with the general computational time advantages of these methods
compared to MCMC based approches (Taylor and Diggle (2014), Guan and Haran (2020)).

Despite recent advances computational considerations remain critical due to the ever-
increasing sizes of modern datasets such as the GOES-16 satellite data. In this work: (i) we in-
troduce an EM algorithm which leverages both the Laplace approximation and fast and scal-
able FFT algorithms to facilitate matrix computations. While spectral methods are powerful,
they do not solve all of the computational challenges within the EM algorithm. (ii) To address
these remaining challenges, we also use the Hutchinson trace approximation (Hutchinson
(1989)). (iii) Additionally, we craft a local covariance matrix approximation that can be com-
bined with the Laplace approximation to approximate the conditional mean of the Gaussian
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field, given the data, after η and β have been estimated. Combined, these techniques form
the proposed Spectral-Laplace-Expectation-Maximization (SLEM) method for efficient esti-
mation of LGCP models from large spatial point pattern data. In simulations SLEM yields
sizeable computatational advantages with faster runtimes than the Vecchia-Laplace method.
These runtime gains are accompanied by competitive estimation of β and slightly less accu-
rate estimation of the latent field. On the lightning datasets we consider, which are sparser
than the simulation data, SLEM is both faster and more accurate on an out-of-sample log
score prediction metric. Importantly, the speed and accuracy of SLEM on the lightning
datasets allows us to draw insights into lightning dynamics from the GOES-16 satellite data
that are consistent with the existing literature.

1.1. Expository analysis of lightning data. To illustrate the difficulty of estimating
LGCPs on GOES lightning data, which have both large spatial scale (125 × 125 pixel grid)
and sparse signals (few pixels with nonzero strikes), we present results from two contem-
porary techniques—the Vecchia–Laplace (VL) algorithm, as implemented in the R package
GPvecchia (Katzfuss et al. (2021)), and INLA, as implemented in the INLA and inlabru
R packages (Martins et al. (2013), Bachl et al. (2019)).

We apply both methods to GLM lightning data collected over the upper Midwest region of
the United States between 01:00–01:59 GMT on 2018-07-01. We convert the strikes to counts
per pixel on an evenly spaced 125 × 125 grid (n = 15,625) in order to model the lightning
and covariate data on the same spatial scale. We include an intercept and several covariates in
the model. The covariates include proxies for cloud growth and cloud-top height which are
described in Section 4.1. We also use elevation as a covariate in our model. These covariates
are currently believed to be associated with lightning occurrence, making them natural pre-
dictors to include in the model (Henderson, Otkin and Mecikalski (2021), Lee, Kummerow
and Zupanski (2021), Kilinc and Beringer (2007), Kotroni and Lagouvardos (2008)). All co-
variates are centered and scaled before including them in the model. Their inclusion means
that we interpret the Gaussian field as the effect of environmental factors on lightning inten-
sity after controlling for cloud growth, cloud-top height, and elevation information. Figure 2
provides visuals of the lightning strikes and several covariates.

Figure 3 shows the estimated intensity per one km2/hour returned by INLA, VL, and
SLEM. INLA appears to estimate a finer scale of lightning activity than is actually present
in the observed counts. The spurious locations of activity are especially troubling, as they
seem associated with relatively large intensity values, as evidenced by the white spaces in
Figure 3B which indicate values exceeding the plotting range. Not only does INLA estimate
activity where it is not present, it estimates a large amount of activity there. The VL algo-
rithm returns possibly overly smooth estimates of the intensity, washing out isolated areas of
activity, and grouping more closely occurring ones together. The proposed SLEM approach
provides a middle-ground between INLA and VL. SLEM’s estimated intensity captures fine-
scale lightning patterns like INLA but without introducing the same spurious activity. SLEM
also provides recognition of larger areas of activity like VL but does so with less smoothing.
In the sections that follow, we define the SLEM method and describe each of its components
in detail. We then perform in-depth studies of SLEM and VL applied to simulated and light-
ning datasets, focusing on VL as the most competitive method based on preliminary results.

2. Methodology.

2.1. EM applied to LGCP. Throughout our analysis and to improve convergence of our
algorithm below, we perform a change of variables

W(s) = X(s)β + Z(s)(5)
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FIG. 2. A. Individual lightning strikes recorded from 01:00–01:59 GMT on 2018-07-01 in designated area of

North America. B. Lightning strikes from A. converted to counts per pixel on 125 × 125 grid, colors on square-root

scale. C, D. Cloud growth and cloud-top height proxy data, respectively, averaged over same time frame as A and

grid as B. Covariates are centered and scaled.

FIG. 3. Counts and intensity per one km2/hour estimates returned by INLA (153 min. CPU time), VL (523 min.),
and SLEM (549 min.) for lightning dataset 1 shown in Figure 2. We employ a square-root transformation for better

image definition. White spaces in B and C reflect estimates exceeding indicated range.
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which results in the likelihood function

L(θ;Y) = p(Y|θ) =

∫
p(Y,W|θ) dW =

∫
p(Y|W, θ)p(W|θ) dW.

We obtain a value θ that approximately maximizes the likelihood function iteratively using
an approximate EM algorithm. Let θ (t) refer to the value of the parameters at iteration t .
At iteration t + 1, the EM algorithm finds a new value θ (t+1) by increasing the objective
function,

Q
(
θ |θ (t)) = E

W|Y,θ (t)

[
log

{
p(Y|W, θ)

}]
+ E

W|Y,θ (t)

[
log

{
p(W|θ)

}]

= E
W|Y,θ (t)

[
n∑

j=1

Yj

[
log(�j ) + Wj

]
− �j exp(Wj ) − log(Yj !)

]

+ E
W|Y,θ (t)

[
−

1

2

[
log

(
|�η|

)
+ (W − Xβ)T �−1

η (W − Xβ) + n log(2π)
]]

.

In our alternative parameterization, EW|Y,θ (t)(Wj ) and E
W|Y,θ (t)(exp(Wj )) depend on θ (t)

but not θ , so the objective function simplifies to

Q
(
θ |θ (t)) = −

1

2

[
log

(
|�η|

)
+

(
E

W|Y,θ (t)[W] − Xβ
)T

�−1
η

(
E

W|Y,θ (t)[W] − Xβ
)

+ tr
(
�−1

η EW|Y,θ (t)

[(
W − EW|Y,θ (t)[W]

)(
W − EW|Y,θ (t)[W]

)T ])]
+ c,

where c contains terms that do not depend on θ . Evaluating the objective function is compu-
tationally challenging and requires a novel approach. The next several subsections detail how
we perform computations and approximate this objective function in SLEM.

2.2. Circulant covariance assumption. The model includes random effects Z with spatial
covariance matrix �η, whose entries are determined by covariance function K(η). We assume
that K(η) is the circulant version of the quasi-Matérn covariance function with variance and
range parameters σ and α, as presented in Guinness and Fuentes (2017). Letting ω refer to
the Fourier frequencies associated with the spatial grid, the quasi-Matérn covariance function
is defined as

Cov
(
Z(s),Z(s + h)

)
=

1

n

∑

ω

(
σ 2

(
1 + α2 sin2

(
ω1

2

)
+ α2 sin2

(
ω2

2

))−2)
eiω·h dω.

Given this spectral representation, η = (σ 2, α), and �η is block circulant. The circulant as-
sumption on �η simplifies evaluation of log(|�η|), as the log determinant of a circulant ma-
trix is equal to the sum of the log-spectral density, evaluated at the Fourier frequencies, which
can be computed with O(n) memory and in O(n) time for n spatial grid points. The circulant
assumption also allows for fast matrix-vector multiplications �−1

η v which are leveraged for
evaluating other terms in the objective function. These can be computed with O(n) memory
and O(n logn) time via fast Fourier transform algorithms.

2.3. Laplace approximation. As described in Section 1, it is common to approximate the
distribution p(W|Y, θ) with a Gaussian distribution. The Laplace approximation is obtained
by performing a second-order Taylor series expansion about the mode of log{p(W|Y, θ)}, re-
sulting in a Gaussian approximation with mean equal to the mode and precision matrix equal
to the Hessian at the mode. The Supplementary Material (Gelsinger et al. (2023)) provides
more details on Laplace approximations.
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We obtain a Laplace approximation of the form,

W|Y, θ (t) ∼ N
(
W(t),

(
�−1

η(t) + CW(t)

)−1)
,

where W(t) is the mode of p(W|Y, θ (t)), CW(t) is a diagonal matrix with diagonal entries �◦

exp(W(t)), � represents the n × 1 vector of pixel areas, and ◦ is elementwise multiplication.

To obtain W(t), we select a starting value W
(t)
0 = W(t−1) and then iterate as

W
(t)
ℓ+1 = W

(t)
ℓ +

(
�−1

η(t) + C
W

(t)
ℓ

)−1(
Y − � ◦ exp

(
W

(t)
ℓ

)
− �−1

η(t)

(
W

(t)
ℓ − Xβ(t)))(6)

which corresponds to performing Newton–Raphson updates. Convergence is determined by

n−1/2‖W
(t)
ℓ+1 − W

(t)
ℓ ‖ < ǫ, where we use ǫ = 1 × 10−3. We set W(t) equal to the converged

value.
We use preconditioned conjugate gradient (PCG) to solve the system of equations re-

quired to evaluate (6) (Hestenes, Stiefel et al. (1952)). PCG is a standard algorithm for
solving positive definite systems. In this case PCG relies on successive matrix-vector mul-
tiplication involving �−1

η(t) + C
W

(t)
ℓ

and a preconditioning matrix. This is computationally

efficient because �−1
η(t) is block circulant, so the multiplication can be done with FFTs,

and C
W

(t)
ℓ

and our preconditioning matrix are diagonal. The PCG algorithm is included

in Algorithm 1 of the Supplementary Material. Having obtained the Laplace approxima-
tion, we approximate the posterior mean E

W|Y,θ (t)[W] with W(t) and the posterior variance

EW|Y,θ (t)[(W − EW|Y,θ (t)[W])(W − EW|Y,θ (t)[W])T ] with (�−1
η(t) + CW(t))−1.

2.4. Hutchinson trace approximation. The Laplace approximation allows us to re-
place E

W|Y,θ (t)[(W − E
W|Y,θ (t)[W])(W − E

W|Y,θ (t)[W])T ] with (�−1
η(t) + C(t))−1. Because

tr(�−1
η (�−1

η(t) + C(t))−1) remains challenging to evaluate, we use the Hutchinson trace ap-

proximation (HTA) (Hutchinson (1989)). HTA is a technique for calculating the trace when
a matrix A is too hard to compute, but performing matrix-vector multiplication, vT Av, is
feasible. In this context, A = �−1

η (�−1
η(t) +C(t))−1. Feasibility of evaluating vT Av is a conse-

quence of the assumed circulant structure of �−1
η and the relationship between evaluation of

(�−1
η(t) + C(t))−1v and evaluation of the Newton–Raphson updates used to compute W(t). For

M ≥ 1 random vectors vi with independent, identically distributed Rademacher distributed
elements, HTA approximates tr(�−1

η (�−1
η(t) + C(t))−1) with

1

M

M∑

i=1

vT
i

(
�−1

η

(
�−1

η(t) + C(t))−1)
vi .

For each vi we use the PCG algorithm described in Section 2.3 to quickly solve (�−1
η(t) +

C(t))ri = vi . We then leverage FFTs to efficiently evaluate 1
M

∑M
i=1 vT

i �−1
η ri . The choice of

M controls the tradeoff between speed and accuracy.

2.5. Defining and increasing the approximate objective function. We define an approxi-
mate objective function Q̃(θ |θ (t);M), via combining the Laplace and Hutchinson trace ap-
proximations,

Q̃
(
θ |θ (t);M

)
= −

1

2

[
log

(
|�η|

)
+

(
W(t) − Xβ

)T
�−1

η

(
W(t) − Xβ

)

+
1

M

M∑

i=1

vT
i

(
�−1

η

(
�−1

η(t) + C(t))−1)
vi

]
.

(7)
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We consider the problem of finding a new value θ (t+1) that satisfies Q̃(θ (t+1)|θ (t);M) >

Q̃(θ (t)|θ (t);M). First, we set

β(t+1) = argmax
β

(
W(t) − Xβ

)T
�−1

η(t)

(
W(t) − Xβ

)
.

This is equivalent to computing the regression coefficients for a regression of the mode W(t)

on the predictors with error covariance �η(t) .
Next, we set

η(t+1) = argmax
η

−
1

2

[
log

(
|�η|

)
+

(
W(t) − Xβ(t+1))T �−1

η

(
W(t) − Xβ(t+1))

+
1

M

M∑

i=1

vT
i

(
�−1

η

(
�−1

η(t) + C(t))−1)
vi

]
.

This yields a new value θ (t+1) = (β(t+1),η(t+1)) that satisfies Q̃(θ (t+1)|θ (t);M) ≥ Q̃(θ (t)|

θ (t);M).

2.6. Practical implementation details. We iterate between the E- and M-steps until we
reach convergence. Our convergence criterion is

√√√√√ 1

p + 3

p+3∑

i=1

(
θ

(t+1)
i − θ

(t)
i

)2
< ǫ,

where p + 3 corresponds to the length of θ and ǫ = 10−5. We measure convergence in terms
of absolute changes in θ ; if one were interested in relative changes, θ i could be replaced
with log θ i in the convergence criterion. Given the approximations throughout this method,
convergence is not guaranteed. However, our studies suggest that iterating through about 100
EM steps provides reasonable results; aside from one of the fits to the lightning data—which
converged in 109 iterations—all of the simulation and lightning fits converged in fewer than
100 iterations.

Implementation of this EM algorithm requires specification of starting values θ (0) =

(β(0),η(0)). We recommend setting β(0) = 0 and η(0) = η̃∗, where η̃∗ refers to the EM es-
timate of variance parameters based on assuming an LGCP model with no predictors for the
same data. For EM estimation of the variance parameters under an LGCP model with no

predictors, we recommend the initial value θ̃
(0)

= (̃η(0)) = (Ȳ , n1/4).
We refer to the implementation scheme described above as the “joint” implementa-

tion because we update both β and η during each M-step. We also consider the alterna-
tive method of fixing β at the generalized least squares estimate and updating only η at
each M-step. We will refer to our implementation of this alternative scheme as the “fixed”
case.

All computations are done in R on a machine with eight cores (Intel Xeon W-2145 CPU
@ 3.70 GHz) and 16 GB RAM.

2.7. Recovery of the residual latent field. Having obtained an optimal value of the param-
eters θ∗ = (β∗,η∗), we can recover Z∗, the posterior mode of the latent field Z, as defined
in the original stochastic representation of the LGCP model, from W∗, the posterior mode of
W at θ∗, by setting Z∗ = W∗ − Xβ∗. A detailed derivation is provided in the Supplementary
Material.

In practice, it can also be of interest to approximate the posterior mean of the latent field
on the intensity scale, E[exp(Z)|Y, θ∗], as opposed to the log scale. Again, we use a Laplace
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approximation to the posterior distribution to approximate this expectation. The Laplace ap-
proximation to the posterior distribution of Z, given Y and θ∗, is

Z|Y, θ∗ ∼ N
(
Z∗,�−1)

,

where � = �−1
η∗ + diag(� ◦ exp(Xβ∗ + Z∗)). Given the Laplace approximation for Z|Y, θ∗,

it follows that exp(Z)|Y, θ∗ has a multivariate log-normal distribution with

E
[
exp(Zj )|Y, θ∗

]
≈ exp

(
Z∗

j +
1

2
�−1

jj

)
.

It is too computationally expensive to invert the dense n×n matrix � and extract the diagonal
elements. Instead, we propose a local approximation. For each j we extract the entries of
� corresponding to the k × k square neighborhood of pixels surrounding pixel j . We then
invert the submatrix containing these entries and extract the diagonal entry of the inverse
corresponding to pixel j as our approximation to �−1

jj . Note that the circulant covariance
structure has an implied assumption that Z is dependent across opposite boundaries of the
domain. Likewise, constructing neighborhood submatrices for pixels along one edge of the
spatial domain involves incorporating pixels from the other edge of the spatial domain. Like
the value of M used to construct the HTA, smaller values of k yield faster but less accurate,
approximations to E[exp(Z)|Y, θ∗].

3. Simulation study. Because our initial exploration of the data in Section 1.1 sug-
gested that VL is the most competitive alternative method, we focus on SLEM and VL
in simulations. For each method we implement both the fixed and joint implementations
suggested in Section 2.6. For SLEM we vary M , the number of vectors in the HTA.
We compare average runtime, estimates of β , and average root-mean-square-error of the
log-intensity log(λ) across 100 simulation replicates of Y, corresponding to a 70 × 70
grid.

Each simulation replicate uses the same Z and thus the same intensity. We simulate Z

from a multivariate normal distribution with zero mean and Matérn covariance with variance
σ 2 = 2, range α = 18, and smoothness ν = 1. We define X(si) to include an intercept and
several covariates and consider two different settings for covariate construction. The first co-
variate setting produces a noisy true intensity using three covariates, where two covariates are
simulated from a standard normal distribution and another is constructed from raw Channel
5 ABI data. The second covariate setting produces a smooth true intensity using two covari-
ates, where the two covariates are constructed from raw Channel 5 and Channel 8 ABI data,
respectively. We refer to the first noisy true intensity setting as “Setting 1” and the second
smooth true intensity setting as “Setting 2.”

The results for Setting 1 are summarized in Table 1 and Figure 4. In SLEM we see that
increasing M affects runtime but not estimation of β or the log-intensity. In general, the joint
settings are slower but more accurate in terms of RMSE than their fixed counterparts. SLEM-
joint is more accurate than VL-joint for estimating β0, but VL-joint is more accurate than
SLEM-joint for estimating β3 and the log-intensity. However, VL-joint takes three times as
long as SLEM-joint with M = 1 to run. For SLEM fixed, all fits converged in roughly 40
iterations. All SLEM joint fits converged in about 60 iterations. A more detailed description
of the number of iterations needed for convergence in simulations is provided in the Supple-
mentary Material. An additional single simulation for a larger 200 × 200 grid, described in
the Supplementary Material, suggests that the speed advantage of SLEM over VL persists for
larger grids.

Figure 4 shows that all of the methods produce visually similar intensity estimates. SLEM-
joint sacrifices some accuracy along the boundary of the domain which is not surprising since
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TABLE 1
Results of applying SLEM and VL to Setting 1. True β = 1,0.85,0.6,0.95. Parameter estimates reported as

Mean (RMSE), where RMSE stands for “root-mean-square-error” throughout. Runtime and iterations to

convergence presented as average over 100 trials. RMSE(logλ) reported as “full grid|interior points,” where the

interior point calculation is restricted to to pixels 3 : (n1 − 2) × 3 : (n1 − 2), that is, two pixels in from the edge

of the spatial domain

Method Update M Time (min.) Iter β0 β1 β2 β3 RMSE(log(λ))

SLEM fixed 1 3.71 39 1.98 (0.98) 0.8 (0.05) 0.6 (<0.01) 0.68 (0.27) 0.279|0.19
SLEM fixed 10 21.24 40 1.98 (0.98) 0.8 (0.05) 0.6 (<0.01) 0.68 (0.27) 0.279|0.19
SLEM joint 1 14.21 59 1.05 (0.05) 0.85 (<0.01) 0.6 (<0.01) 0.88 (0.07) 0.269|0.171
SLEM joint 10 71.43 59 1.05 (0.05) 0.85 (<0.01) 0.6 (<0.01) 0.88 (0.07) 0.269|0.171
VL fixed – 5.26 – 1.98 (0.98) 0.8 (0.05) 0.6 (<0.01) 0.68 (0.27) 0.178|0.178
VL joint – 49.46 – 1.13 (0.15) 0.85 (0.01) 0.6 (<0.01) 0.94 (0.01) 0.137|0.136

circulant covariance methods are known to suffer from edge effects. This is also reflected in

Table 1 which includes RMSE for the log-intensity restricted to interior points. The accuracy

advantage of VL for estimating the log-intensity shrinks when only interior points are con-

sidered, although the VL-joint estimates remain superior. The same conclusions are echoed

in the analysis of Setting 2 which has a smoother intensity field. Full details are described

in the Supplementary Material. The SLEM fits took more iterations to converge in Setting

2, between 80 and 90 iterations for each fit. A more detailed description of the number of

iterations needed for convergence in simulations is provided in the Supplementary Material.

The same conclusions are echoed once more in an additional set of simulations, allowing for

heavier-than-normal tailed Z, which are summarized in the Supplementary Material.

FIG. 4. Examples of intensities resulting from applying SLEM with M = 1 and VL to Setting 1.
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4. Lightning data.

4.1. Covariate construction and selection. For the lightning data, we define X(si) to in-
clude an intercept, two covariates derived from ABI data, and a third covariate measuring
elevation. All covariates are centered and scaled to facilitate comparison of parameter es-
timates. The first two covariates (X1 and X2) are constructed from brightness temperature
from ABI Channel 13 which serves as a proxy for cloud-top temperature (Henderson, Otkin
and Mecikalski (2021)). Channel 13 measures light at an infrared wavelength (10.3 μm)
which ensures continual measures throughout day and night. Meteorologists use cloud-top
temperature, which is inversely related with cloud-top height, to monitor updrafts in severe
convective storms (Mecikalski and Bedka (2006)). Some care must be taken to construct co-
variates capable of connecting the minute-by-minute ABI data to lightning counts, which
we have aggregated over one-hour periods. Simple averaging of the Channel 13 data over
one hour may not capture the dynamic and transitory nature of clouds in severe storms. Lee,
Kummerow and Zupanski (2021) suggested constructing variables based on 10-minute inter-
vals of data. Moreover, both the absolute cloud heights and sharp changes in cloud heights
are important factors impacting the severity of storms.

For these reasons we construct X1 and X2 as follows. For pixel i and minute t , let Ai,t be
the Channel 13 brightness temperature. Letting k = 1, . . . ,6, we define six 10-minute proxies
for differenced and absolute cloud top temperatures for one hour of data as follows:

X1,k = Ai,10k − Ai,10k−9 (10-minute differences),

X2,k =
1

10

10∑

j=1

Ai,10k+j (10-minute averages).

The differences are designed to capture changes in cloud top height, whereas the averages
measure absolute cloud top height. We next consider several functions of these six values:
the average, minimum, maximum, and range. For both differences and averages, the best
function of the six values is determined by selecting the function which produces the highest
log-likelihood of a simple Poisson regression with a single covariate. Through this process we
select the average of the 10-minute differences and the minimum of the 10-minute averages
as our covariates,

X1 =
1

6

6∑

k=1

X1,k,

X2 = min{X2,1, . . . ,X2,6}.

Note that the inverse relationship between cloud-top temperature and cloud-top height allows
us to interpret the minimum of Channel 13 brightness temperatures (X2) as a proxy for the
maximum cloud-top height. We interpret the average of Channel 13 brightness temperature
differences (X1) as a proxy for cloud growth (Henderson, Otkin and Mecikalski (2021)).

We also include elevation (X3) as an environmental factor in our model, because a connec-
tion between lightning and elevation has been hypothesized in other parts of the world (Kilinc
and Beringer (2007), Kotroni and Lagouvardos (2008)). Elevation data is available from the
ETOPO5 data repository which contains land and sea-floor elevation at an approximate eight
km resolution over the United States (NOAA). We assemble the 125 × 125 grid of elevation
data in each hour by matching each pixel in the 125 × 125 grid used for the lightning and
ABI data to the locations in the ETOPO5 dataset.
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TABLE 2
Results for Lightning Dataset 1

Method Update Time (min.) Iter Log Score β0 β1 (avg diff) β2 (min avg) β3 (elev)

SLEM fixed 225 109 −1852 −7.72 −0.29 −3.39 0.10
SLEM joint 549 71 −1853 −10.06 −0.12 −1.13 0.40
VL fixed 154 – −2456 −7.72 −0.29 −3.39 0.10
VL joint 523 – −3305 −6.59 −0.10 −0.92 0.00

4.2. Analysis. We now analyze the two lightning datasets shown in Figure 1 that moti-
vated this work. Both datasets are from July 2018, but they differ in several ways. The first is
an early-evening storm over the upper midwest U.S. (01:00 GMT is 17:00 CST). The second
is an early afternoon storm over the southwest U.S. (20:00 GMT is 12:00 PST). The mid-
west clouds are larger and have lightning strikes that are more clustered, whereas the strike
activity in the southwest is more scattered. The terrain of these regions also differs in that
the southwest is generally drier and more mountainous. For these reasons we fit separate
LGCP models to the two datasets, since we expect the lightning dynamics to differ with re-
spect to both the random term and with respect to the covariates. We fit both the fixed and
joint implementations. For VL we used a Matérn covariance with smoothness ν = 1, which
outperformed ν = 1/2 and ν = 3/2, as shown in the Supplementary Material.

To facilitate out-of-sample comparisons, we fit each model to a random subset of 90%
of the strikes and test the resultant model on the remaining 10% of the strikes. Note that we
subsample the strikes, not the pixels, so we always work on a full grid with no missing values.
We record the log-score or log-likelihood value associated with the testing data, given a 10/90
scaling of the fitted intensity. This corresponds to evaluating

log-score =

n∑

i=1

Yi ∗
(
log�i + logλi + log(1/9)

)
−

(
(1/9) ∗ �i ∗ λi

)
− logYi !

on the testing data values Yi and estimated intensities λi from the training data. We also offer
visuals of the estimated intensity functions for qualitative comparisons.

As seen in Tables 2 and 3, SLEM has larger out-of-sample log-scores on test data, indi-
cating a superior model fit. VL’s lower log-scores are likely a result of the overly smooth
estimates of the intensities, as seen in Figures 5 and 6, which fail to accurately reflect the
isolated regions of lightning activity present in the data. In contrast, SLEM appears, both
quantitatively and qualitatively, to capture both the isolated regions of lightning activity and
those larger areas with sufficient detail, especially along the interior points which are not af-
fected by edge effects. On Dataset 1, SLEM and VL take roughly the same amount of time;
however, the SLEM fit is far superior in terms of log score. On Dataset 2, SLEM joint runs
about four times faster than VL fixed and about 10 times faster than VL joint, in addition to

TABLE 3
Results for Lightning Dataset 2

Method Update Time (min.) Iter Log Score β0 β1 (avg diff) β2 (min avg) β3 (elev)

SLEM fixed 111 84 −1993 −5.58 −0.15 −1.01 0.29
SLEM joint 35 53 −2004 −8.46 0.10 −0.75 0.55
VL fixed 155 – −2682 −5.58 −0.15 −1.01 0.29
VL joint 372 – −2844 −5.21 0.08 −0.41 0.36
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FIG. 5. Estimated intensities per one km2 per hour resulting from the SLEM and VL algorithms applied to

lightning Dataset 1.

having a superior log score. We also see that SLEM converges in 71 iterations for Dataset
1 and 53 iterations for Dataset 2. Though not definitive proof, these results, in combination
with those from the simulation study, suggest that stronger spatial correlations, represented
by more strongly clustered lightning strikes, leads to slower convergence.

Turning our attention to the estimated regression coefficients, we see that the minimum
of the 10-minute averages of brightness temperatures has the strongest effect (recall that the
covariates are normalized). The estimates are similar for SLEM and VL joint and are negative
for both datasets, which is expected, since the minimum of the average brightness tempera-
tures is negatively associated with the maximum of the average cloud-top heights, and high
cloud tops indicate severe weather (Mecikalski and Bedka (2006)). Elevation has a smaller
but positive effect that is consistent with the relevant literature (Kilinc and Beringer (2007),
Kotroni and Lagouvardos (2008)). The weakest effect is the average of the 10-minute dif-
ferences, which mostly have small negative effects. Negative effects are also expected, since
negative differences correspond to cloud growth (Mecikalski and Bedka (2006)). Plots of es-

FIG. 6. Estimated intensities per km2 per hour resulting from the SLEM and VL algorithms applied to lightning

Dataset 2.
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timated fixed effects Xβ for Lightning Datasets 1 and 2 are provided in the Supplementary
Material.

Lastly and importantly, we highlight the impact of jointly estimating the random effects
and the regression coefficients simultaneously. In the “fixed” implementation, the regression
coefficient estimates are equivalent to those from a generalized linear model with indepen-
dent responses. In the “joint” implementation, we consider the spatially varying random effect
when estimating the regression coefficients. In both datasets this has the impact of lessening
the effect of the minimum average brightness temperature. This is perhaps not surprising
because the joint implementation accounts for spatially continuous effects that are not at-
tributable to the covariates, whereas the fixed implementation attributes as much variation as
possible to the observed covariates. We give more credence to the “joint” estimates which
attempt to account for unobserved effects and are more conservative.

5. Discussion. In this paper we introduced SLEM, a new approximate method for fitting
LGCP models to large spatial point pattern datasets. This method leveraged spectral, Laplace,
and Hutchinson trace approximations to make computational gains without sacrificing much
accuracy. We verified this in a simulation study where SLEM ran much faster than VL and
competitively estimated β . Via simulations, we also showed SLEM is robust to the choice
of M , the number of vectors in the HTA. When applied to the lightning data, SLEM was
superior to its chief competitor, running as fast or faster and with more accuracy in both
examples. Our analysis of the lightning data produces findings that are consistent with the
meteorology literature. Specifically, we found that high and rapidly increasing cloud tops
over high elevation regions are associated with more lightning strikes.

Although we developed SLEM in the context of the lightning data described in this paper
and focus on lightning data throughout, SLEM could be applied more generally to large spa-
tial point pattern datasets which are ubiquitous in a variety of fields including epidemiology
and finance. SLEM acts as a new tool not only for researchers seeking to understand light-
ning dynamics but also for those looking to model and investigate large spatial point pattern
datasets, in general.

We conclude by describing several potential extensions to our work. First, SLEM’s compu-
tational advantages could be especially valuable for spatiotemporal data due to the typically
large sizes of these datasets and complex relationships between space, time, and the covari-
ates. Second, existing methods for reducing edge effects could be incorporated into SLEM.
In particular, methods that embed the circulant covariance on a larger spatial domain could
be adapted for use with SLEM in order to gain an edge-effect-free approximation of those
covariances within the spatial domain of interest (Guinness and Fuentes (2017)). Addition-
ally, existing methods for accelerating EM algorithms, for example, Varadhan and Roland
(2008), Zhou, Alexander and Lange (2011), or Henderson and Varadhan (2019), could be
incorporated into SLEM to improve computational efficiency. Furthermore, extensions of the
LGCP model may provide better fits to GOES lightning data. We used separate models for
the midwest and southwest datasets, but one might consider extending SLEM to fit a spatially
varying coefficient (SVC) model which generalizes the LGCP model and allows all regres-
sion coefficients to vary within a dataset (Gelfand et al. (2003), Banerjee, Carlin and Gelfand
(2014)). Letting γ (si) = (γ1(si), . . . , γp+1(si)) refer to a (p + 1)× 1 vector of spatially vary-
ing regression coefficients, the SVC model assumes

Yi |λ
indep
∼ Poisson

(∫

Bi

λ(s) ds

)
= Poisson

{
�iλ(si)

}
,

λ(si) = exp
{
X(si)β + X(si)γ (si)

}
,

γj (s) ∼ GP
{
0,K(ηj )

}
for j = 1, . . . , p + 1.
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The LGCP model is obtained by defining Z(si) = γ1(si) and γj (si) = 0 for j = 2, . . . , p + 1.
In this paper we focused on the LGCP model because of the already large computational
challenges associated with fitting the simpler LGCP model.

Lastly, another natural extension would relax the assumption that intensities in the LGCP
model follow a log-Gaussian distribution. The log transformation could be replaced with a
different suitable transformation to allow for intensities with different distributions. Some
modifications would have to be made to SLEM, for example the form of Q in the EM algo-
rithm, and the entries of CW.
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SUPPLEMENTARY MATERIAL

Supplementary details, tables, and figures (DOI: 10.1214/22-AOAS1708SUPP; .pdf).
Additional computational details, results of additional simulation studies, further information
about fitted models to lightning data.
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