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ABSTRACT

We introduce computational methods that allow for effective estimation of a flexible nonstationary spatial
model when the field size is too large to compute the multivariate normal likelihood directly. In this method,
the field is defined as a weighted spatially varying linear combination of a globally stationary process and
locally stationary processes. Often in such a model, the difficulty in its practical use is in the definition of the
boundaries for the local processes, and therefore, we describe one such selection procedure that generally
captures complex nonstationary relationships. We generalize the use of a stochastic approximation to
the score equations in this nonstationary case and provide tools for evaluating the approximate score in
O(nlog n) operations and O(n) storage for data on a subset of a grid. We perform various simulations to
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explore the effectiveness and speed of the proposed methods and conclude by predicting average daily
temperature. Supplementary materials for this article are available online.

1. Introduction

Gaussian process models are commonly used to account for
correlation in data collected over space, time, or in computer
experiments. Addressing modern problems in environmental
science often requires data collected on large domains, such as
over the United States or across the world. Therefore, second
order nonstationary models are often needed to capture the
complexity of the spatial relationships of environmental vari-
ables, as these large spatial domains often have varied underly-
ing climate conditions, spatially varying topography, and other
environmental or anthropogenic factors. However, when the
number of observations (n) in these environmental datasets is
large (n > 10,000), formation of the covariance matrix is often
prohibited due to memory or computing time limits. Therefore,
defining nonstationary covariance functions and developing
corresponding computational methods are an integral part of
environmental research and must be done in a matrix-free
way.

Our approach for modeling nonstationary processes is sim-
ilar to that in Fuentes (2001, 2002), but our new estimation
method allows for more flexible applications. Let {s,s2,. .., sy}
be the spatial locations where data are observed. Fuentes models
the univariate nonstationary process Y (s1) at spatial location s;
as a weighted sum of stationary processes:

q
Y(s1) = Y on(s1)Zn(s1), (1)

h=0

where Z;, ~ GP(up, Cy) are assumed independent over h =
0,1,2,...,q, and Cy are stationary covariance functions with

parameter vectors 6. The wj are assumed to be nonran-
dom, unknown, and nonnegative spatially varying weights. The
covariance of observations Y(s;) and Y(s;) at spatial locations
s; and s; is

1
Ky(s1,52) = Y wn(s1)n () Ci(s1,52)- 2)
h=0

This is a valid positive definite covariance since it is the linear
combination of covariances Cj,.

As in Fuentes (2001), throughout most of our article, we
assume that wy, . . ., wgq are indicator functions, defined as

wp(s1) = I{s1 € Dy}, (3)

where D = {Dy,...,Dy,} is a partition of the spatial domain.
However, we provide computational methods that allow us to
extend the Fuentes (2001) approach in several ways. First, we set
wo(s;) = 1foralli=1,2,...,n, which introduces dependence
across blocks of the partition (Fuentes, Chaudhuri, and Holland
2007). Further, this extends the nonstationary model to include
a stationary process as a special case; namely, when the variances
of Z1,...,Z4 are zero. Second, whereas Fuentes (2001) used
rectangular blocks Dy, to facilitate taking local discrete Fourier
transforms within each block, we allow the blocks to take on
more arbitrary shapes.

Spatial partitions are a popular mechanism for specifying
nonstationary models. For example, Risser et al. (2016) use a
partition model with blocks defined via covariate information.
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Park and Apley (2018) partition the domain with a method
based on the principal components directions, using equally
sized blocks. Heaton, Christensen, and Terres (2017) use the
dissimilarity of finite differencing to define partition blocks. In
Gramacy and Lee (2008) and Konomi, Sang, and Mallick (2014)
a treed partitioning structure is used. All of these methods
assume either that the process is independent across blocks
or use local likelihoods to estimate parameters within each
block. This requires the number of points within each block
to be small enough to allow for formation of the within-block
covariance matrices or the shape of the blocks is restricted
so that further approximations can be applied. Our methods
allow for dependence across blocks, irregularly shaped blocks,
and more diverse block sizes. This increased flexibility is made
possible through a generalization of Stein, Chen, and Anitescu
(2013) stochastic score approximation to nonstationary models.
The methods make use of fast Fourier transforms (FFTs) and
circulant embedding, and thus, are technically applicable only
to gridded data, though we do allow for missing values and
irregularly shaped domains. The temperature data we analyze
do not fall on a regular grid, but we demonstrate that they can
be analyzed using our methods after mapping the data to a high
resolution grid.

There are numerous alternative nonstationary models, and
no model will perform uniformly better than others for all appli-
cations. In kernel convolution (Higdon 1998), spatially-varying
kernel functions are convolved with a stationary, often white
noise, process. Fixed Rank Kriging (Cressie and Johannesson
2008) is a similar approach that defines a process in terms of
a small number of basis functions to limit computational cost.
Lattice Kriging (Nychka et al. 2015) is also a basis function
approach but differs in that a large number of basis functions
are used. It employs compactly supported basis functions and
a Markov random field assumption on the basis coefficients
in order to reduce computational cost. Deformation models
require the formation of full covariance matrices and are there-
fore, computationally inefficient for large datasets (Sampson
and Guttorp 1992). Moving window models (Haas 1995; Datta
et al. 2016) are efficient because their computation is entirely
parallelizable, but there is no guarantee that the resulting global
model covariance is positive definite. Prediction using some of
these models as well as many other computationally efficient
stationary and nonstationary methods are compared in Heaton
et al. (2018).

pi

The main contributions of our article are the following. We
introduce a method for estimating the partition of a nonstation-
ary model by generating an ensemble of candidate partitions and
choosing one from the ensemble via an information criterion
(Section 2). We adapt the stochastic score method (Stein, Chen,
and Anitescu 2013) to our nonstationary case, which allows
us to handle large datasets and arbitrary partitions (Section 3).
Computational details for prediction are discussed in Section 4.
Simulation results are presented in Section 5. In our analysis of
daily temperature data in Section 6, we consider an additional
extension to the model, relaxing the indicator weight assump-
tion to allow for smoother transitions across blocks.

2. Partition Estimation Method

The first step in our estimation procedure is to use the data to
estimate a partition of the domain D = {Dy, Dy, ..., D4} defin-
ing spatially contiguous subregions of local stationarity. Since
enumerating all possible partitions is intractable, our strategy is
to first generate a diverse ensemble of candidate partitions and
use an information criterion to choose the best partition from
the ensemble. In Fuentes (2001) the partition is chosen via AIC
or BIC from an ensemble of candidates of only equally sized
blocks. Alternatively, Gramacy and Lee (2008) and Konomi,
Sang, and Mallick (2014) use a treed partition with nested breaks
parallel to the axes. Guinness and Fuentes (2015) use the Ising
model to uncover stationary partition blocks of the domain
using spectral techniques. We propose a procedure that can
return more flexible partition shapes and is based on repeated
likelihood ratio testing. A comparison of the flexibility of our
partition candidates to some existing methods is in Appendix D,
supplementary materials.

To generate a member of the partition ensemble, we begin
by partitioning the domain into a fine base partition B =
{B1, B2, . .., By} with p equally sized square blocks, where p is
large compared to the expected number of partition blocks. See
Figure 1 for an example. Then we iteratively build our candidate
partition by joining pairs of neighboring blocks according to
tests of local stationarity across the blocks. The iterative algo-
rithm is stopped after looping over all pairs of neighboring
blocks. This process is repeated many times with different order-
ings of the pairs of blocks and different stringencies on the
tests, resulting in a diverse ensemble of partitions from which a
best partition can be selected via an information criterion. The

D+

Figure 1. Example of block joining step of By and Bs at the (j+ 1)th step of the partition estimation algorithm assuming we cannot reject Hy. Shade represents membership

of the block to a partition Di(/) and D(/+1). Dg) %

i

is the green region and Dy;; is the yellow region. The black lines define the base partition B.



choice of base partition is ad hoc, but we show in Section 6 that
since these blocks are small in comparison to the data’s large
spatial domain, predictions using two different resolution base
partitions are similar.

More formally, the iterative method is initialized with D© =

B so that Dgo) = Bjfori = 1,2,...,p. Let DY be the state of

the partition at iteration j, so that Dg,) (the mth block of DY)
consists of a union of B;s. Define the likelihood

19 = J] Les
BicDY)
to be the product of the individual likelihoods of data within
each block B; within Di{,), and let 9,1(1) be the maximizer of this
likelihood. Given a base partition B, define the set Np as the set
of all pairs of neighbor blocks Ng = {{Bs, Bx}|B;s neighbors B}
with np elements ordered randomly. Suppose that (B, By) is the
(j+1)th pair of neighboring blocks in Np. If B; and By are already
members of the same block of DY, we set DD = DU and
move to the next iteration. If B; and By, are in different blocks of

DY, say B € Dg) and By € D,(f;), we test the hypotheses

Hy:0, =06, versus Hj:0; # 0,
using the likelihood ratio statistic
L (0*)L3) 0*) W
NOPRGNTOPROI
D)

where 0% is the maximizer of Lg) (Q)L%) (0). If we reject the null
hypothesis at level o, we keep B, and By, in separate blocks and

set DUHD = DU); if we fail to reject, then we join blocks Dg)
and Dyn) in a block in DUHD _ For all other elements i # £ or m,
set D?H) = Di(’). Figure 1 illustrates the joining of blocks. The
iterative method is stopped after looping over all pairs in Np,
resulting in a candidate partition D = D"® that has q partition

blocks with parameter vectors 6, = 9}(,”3) forh = 1,2,...,q.
Finally, define the likelihood statistic

q
L) =[] @n (5)

h=1

to be the product of individual likelihoods over all blocks of D.

This one candidate partition depends on the significance
level chosen for the likelihood ratio tests and the ordering of
the neighbor pairs in Np. Thus, we suggest repeating this entire
procedure with different randomization orders in N as many
times as possible given computing constraints to obtain a set of
nonnested candidate partitions. In order to produce a diverse set
of candidate partitions, the significance level in the likelihood
ratio testing should be varied in the interval [01'1—%5, 0.01]. From
this ensemble, we use the likelihood statistics to select the par-
tition that minimizes the BIC using the likelihood in Equation
(5). Simulations of the effectiveness of this approximate parti-
tion selection method can be seen in Section 5.2. If smoother
predictions are desired across block definitions, smoothing may
be applied to the edges of the partition blocks after this partition
estimate algorithm is performed. Further details on one possible
block smoothing procedure are described in Section 6.
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3. Efficient Computation of the Stochastic Score

Given estimation of D from Section 2, nonsmooth block weights
wy, are fixed as defined in Equation (3). This section describes
our computational methods for estimating the mean and covari-
ance parameters of the independent Gaussian processes Zj
for h = 0,1,...,q. Typical maximum likelihood estimation
involves an optimization algorithm such as Newton’s method or
gradient descent, where the score and likelihood are evaluated
repeatedly. However, a large number of observations (n >
10,000) often prevents the necessary formation of the covari-
ance matrix. Therefore, in this section, we detail a matrix-free
stochastic approximation to the score that is implemented in
a parameter estimation algorithm similar to a gradient descent
algorithm. Further details of the algorithm are in Appendix C,
supplementary materials.

We extend the Stein, Chen, and Anitescu (2013) stochastic
score approximation to nonstationary covariance estimation.
LetoT = [GOT ey GqT ] be the concatenated vector of all of the
covariance parameters, with 0, being the vector of parameters
for Cy,, and Ky be the n x n covariance with entries as defined in
Equation (2). Define 1, to be the length of this & vector, which in
the case the same covariance form is used for all partition blocks,
is (q+1) x the number of parameters in Cj,. Define Yy (s;) as the
de-trended observation at spatial location s; as

q
Yo(s1) = Y(s1) — E(Y(s1)) = Y(s1) — Y _ on(s)pan(s1). (6)
h=0
Further, let YOT = [Yo(s1), Yo(s2),. . ., Yo(s,)]. Stein, Chen, and
Anitescu (2013) approximate the rth value in the score of the
multivariate normal log-likelihood by:

~ 1 _ _
SH01Y0) ~ 5,01Y0) = SV KKK Yo ()

N
1 T pr—17-(1)
_KIE:UJ‘KG Ko "Ujs
j=1

where Kér) is the n x n partial derivative matrix of the covari-
ance matrix with respect to the rth parameter in 6 for r =
1,2,...,np. Define the random vector U]-T = [Uj(1),..., Uj(n)]
with Uj(k) ~ Bernoulli(1/2,—1,1) and Uj(k) independent of
Uj(¢) for k # (. These assumptions imply thNat the expected
value of the approximate score is zero, making S,(61Y)) a set of
unbiased estimating equations for every parameter 6. We fur-
ther take Uj to be independent of Uy for j # k. Stein, Chen, and
Anitescu (2013) considered allowing for dependence between
Ujand Uy for j # k, but we did not find that dependent sampling
improved our estimates significantly. The impact of the choice
of N will be evaluated in simulation in Section 5. This stochastic
formulation is convenient because formation of the covariance
matrix is not necessary; only matrix-vector multiplications and
solves are required. Stein, Chen, and Anitescu (2013) considered
a stationary model for data on a regular grid. This allows for the
use of circulant embedding techniques to evaluate Equation (7).
In subsequent sections, we develop extensions of these methods
to this nonstationary model for data observed on part of a grid.

Following the recommendation of Guinness and Fuentes
(2017), we model the locally and globally stationary covari-
ances (Cy) with the quasi-Matérn spectral density. Define the
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covariance of the Gaussian processes through their spectral
representation

51 52) :/ =Y () dy (8)
(0,272

Define 6, = [aﬁ,ah,vh,rh]T. Then for scale O’,f, range oy,
smoothness vy, and nugget 7; parameters, the quasi-Matérn
spectral density for two-dimensional fields is

1 2 —1—yy
fuy) = a1 = w)ay; {1 +ap [sinz (%) + sin? (%)]} +1,
)

where ¢, is the normalizing constant and y = (y!,y?) are
the two-dimensional Fourier frequencies defined on the region
(0,271,

3.1. Preconditioned Conjugate Gradient

The primary computational burden of computing the stochastic
score itself is in the linear solves of the form Kgx = y, where
y = Yy or U,. Since the covariance matrix is symmetric and
positive definite, we can apply the preconditioned conjugate gra-
dient algorithm to approximate x within a threshold of accuracy
(Hestenes and Stiefel 1952). Preconditioned conjugate gradient
is an iterative solving method computationally dominated by
matrix-vector multiplication, where instead of solving the linear
system Kox = y, we solve the equivalent equations PpKgx =
Pyy where Py is an n x n preconditioning matrix. In order for
Py to be an effective preconditioner, the condition number of
PyKy should be smaller than the condition number of Ky, and
the forward multiplication Pyx should be fast, ideally less than
O(n%) (Meurant 1984).

Within the preconditioned conjugate gradient algorithm,
we use circulant embedding to speed up multiplication of the
covariance matrix by vectors. To see how circulant embedding
is applicable in this nonstationary case, we write matrix-vector
multiplication as follows

1
Kox = Cox + Z wp o [Ch(wy o x)],
h=1

where o is elementwise vector multiplication, and w, =
[wn(s1), ..., wnp(sn)]T is a vector of weights. In other words,
to multiply Kg by x, we need to matrix-multiply each Cj by
the elementwise product of wy, and x, perform an additional
elementwise product, and sum the results. Since each Cj, matrix
arises from a stationary process on a grid, we can use circulant
embedding to perform the required matrix multiplications in
O(nlog n) time. We further accelerate computation by approxi-
mating the circulant embedding with expansion factor % (Guin-
ness and Fuentes 2017). We apply this same technique to the
design of Py. Note that if the field is not defined on a subset of
a grid, circulant embedding is not typically an option. However,
if a finer grid can well approximate the data locations, circulant
embedding could still be potentially implemented. We explore
this idea further in our analysis of temperature data in Section 6.
Alternatively, methods of Chen, Wang, and Anitescu (2014)
could be implemented in order to retain O(nlog(n)) matrix-
vector multiplication.

Anitescu, Chen, and Wang (2012) fit stationary models and
explore preconditioners based on the inverse of the spectral
density. We extend their preconditioner development to our
nonstationary covariance case by considering four different pre-
conditioners. Letting y1, . . ., ¥, be the Fourier frequencies, all of
the preconditioners have the general form

n
Po(s1s2) = Y glynse 0,
=1

with each candidate preconditioner using a different choice for
g(y,s1). Namely, we consider

1
g1(¥>s1) _]TV)’
1

q
Qy,5) = th(sl)fh(y),

h=1

(ast) = —— 43 e ——

BT ey T =Gy
1

2 o) + /o1

The multiplication Pgx is O(nlogn) for these choices. For
example, define G, to be the covariance matrix formed using
1/fu(y) as the spectral density. Under g3, the preconditioner
multiplication can be written as

auy,s1) =

q
Pyx = Gox + th o [Gp(wy 0 x)],
h=1

which, due to the fact that each Gy, is a submatrix of a circulant
matrix, can be computed quickly using several FFTs, analo-
gously to how Kyx can be computed. Guinness and Stein (2013)
explore similar preconditioners under a different nonstationary
model for time series data.

To test these preconditioners, we simulate data under a model
with a three-block partition and parameter settings in Table 1.
Example simulations for these settings are shown in Figure 2.
For each simulated data vector y, we solve the linear system
Kgx = y using each of the preconditioners. We record the
time to convergence within a set tolerance of le—4 using the
various methods for a sample size of 20,000 data points with a
200 x 100 data matrix for 500 replications. We give a zero vector
as the starting value for all algorithms, but expect the algorithms
to perform much better in practice since we use the solution
from the previous step as the starting value. All preconditioners
were effective at significantly reducing the convergence time and

Table 1. Simulation parameter settings.

V4 Z; (left) Z; (middle) Z3 (right)

o? P o2 P o2 P o2 P
a 0.5 1.0 1.0 1.0 1.0 3.0 03 0.3
b 0.5 1.0 1.0 1.0 3.0 5.0 0.3 0.3
C 0.5 1.0 1.0 1.0 5.0 7.0 03 0.3

NOTE:v = 0.5and t = Oinall cases. Sample draws for these settings are in Figure 2.
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b c

Figure 2. Sample draws from nonstationary models with parameter settings in Table 1.

Table 2. Mean total time in seconds and median iterations until convergence of conjugate gradient solve using various preconditioner matrices.

a b C
Preconditioner Time Iters Time Iters Time Iters
Not conditioned 0.80 (0.001) 59 1.64 (0.003) 118 2.29 (0.005) 164
Stat (g1) 0.26 (0.000) 14 0.61(0.001) 34 0.89 (0.001) 49
Block Stat (g2) 0.47 (0.003) 18 0.57 (0.001) 22 0.72 (0.004) 28
Combo (g3) 0.29 (0.001) 10 0.62 (0.003) 21 0.88 (0.002) 30
Weighted Stat (g4) 0.39 (0.001) 16 1.09 (0.003) 46 1.82(0.004) 77

NOTE: Convergence is defined as the square of the L2-norm of the error vector less than 1e-4. Parentheses are standard error of the mean time estimate and the standard
error of the median iterations until algorithm convergence is omitted since it is less than 0.006 in all reported cases.

number of iterations under all tested parameter settings. We
choose to implement preconditioner g since it is the fastest
in both simulation settings b and ¢, but other choices may be
selected and should theoretically only impact the speed of the
algorithm (Table 2).

3.2. Differentiated Circulant Embedding

Multiplication of the n x n partial derivative matrix Kér) by a
vector must also be computationally efficient. We can write the
elements of the partial derivative matrix as

Ky (s1,50) = th(Sl)wh(SZ)/ Y (0 () dy,

= [0,277]2

where f;fr)

parameter in 6 for r = 1,2,...n,. This implies that Kér) is also
a weighted sum of n x n circulant matrices, and thus, we are
able to multiply it by a vector using circulant embedding. Note
that since each parameter in 6 appears in only one of the (g + 1)
spectral densities fj,, only one term in the sum is nonzero for
each 7. We include the derivatives of the quasi-Matérn spectral
density in Appendix B, supplementary materials.

is the partial derivative of f;, with respect to the "

4. Prediction

Prediction is a common objective in the analysis of environ-
mental data. For variables such as temperature or air quality
measures, this can mean observing data on a subset of a grid
and predicting on a fine grid. These gridded predictions are then
used in other analyses or as initial conditions for other mathe-
matical or statistical models. However, kriging to a large number
of prediction locations is typically computationally expensive.
This section describes how one can compute these predictions
efficiently under our model after estimating 6.

Recall that Yy is the vector of de-trended observed data
collected on a subset of a regular grid, and Kj is the covariance
matrix for Yy. Let Yo, be the vector of missing de-trended values
on the grid, so that [Y{, Y{ ]T is a complete set of values. Define

Kpg = E(Yop YOT )tobea matrlx with dimensions of the number
of predictions locations by n, and K, = E(Yqp Yg;,), which is
a square matrix with dimensions of the number of predictions.
Then the kriging predictor is f/op = KpKy 'Yo. This matrix
product can be embedded in the larger system

[Ke Kg;} |:K9_1Yoi| _ [}fo} .
Koo KppJL 0 Yop

After computing K, 'Yy as outlined in Section 3.1, we perform
the forward multiplication in Equation (10) to obtain the pre-
dicted values f/op. The forward multiplication can be computed
efficiently with circulant embedding. In the case of a large
number of prediction locations, formation of the covariance
matrix of the predictions (K, — Ky Ky IK}Q) is rarely possible
due to memory constraints. However, a similar tool with the
application of elementary matrices may be used to extract the
marginal prediction variances without matrix formation. We
implement these computationally efficient methods for predic-
tion in Section 6.

(10)

5. Simulations

We performed two simulations to explore our two-step estima-
tion procedure. The first simulation assumes that the partition
is known; it compares the stochastic score parameter estima-
tion procedure to Vecchia’s approximation. In the second, we
estimated both the partition and the covariance parameters.
Comparison to other computationally efficient nonstationary
methods is performed on real data in Section 6.
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In both simulation studies, we generated data from a three-
block model at spatial locations s; fori = 1,2,...,nas

3
Y(s) = th(si)zh(Si)>

h=0

where Z, nd GP(up, Cp), and Cp, are from the quasi-Matérn
family. Let up(s;) = Oforh = 1,2,3andi = 1,2,...,n.
We considered the same three covariance parameter settings
that were given in Table 1. The same three-block partition, seen
in Figure 4, was used for each of the three covariance models.
Sample draws from each of the three models are shown in
Figure 2. All timings were obtained using an Intel i7- 6700HQ
with 16 GB of DDR3 RAM running Windows 10 in the 64 bit
program R version 3.4.3 with Microsoft R Open.

5.1. Known Partition Simulation

In this simulation, we assume knowledge of the partition and
evaluate the accuracy and timing of the stochastic score method
of parameter estimation. Additionally, we fix 11((s;) to be 0 for
i =1,2,...nin this simulation study.

We consider Vecchias likelihood as a competitor (Vecchia
1988). Joint distributions can always be written as a product
of an ordered sequence of conditional distributions. Vecchia’s
likelihood replaces the variables in the conditioning sets with a
subset in order to reduce computational burden. Define Yy(s;)
as in Equation (6) for i = 1,2,...,n. Then the approximate
likelihood we consider is

L0, Yo(s1), Yo(s2), ..., Yo(sn)|D)

n
~ L(B, Yo(s1)ID) [ [ L8, Yo(s)| Yo(Si), D),
i=2
where §; is the set of 30 nearest neighbors to the spatial location
s; in the conditioning set (Vecchia 1988).

We generate multivariate normal data with zero mean as
pictured in Figure 2. We consider varying grid sizes of 20 x 40,
26 x 52,30 x 60, 36 x 72, and 40 x 80 corresponding to sample
sizes n = 800; 1352; 1800; 2592; and 3200. We compare these
results under 50 simulation replicates. In addition to varying
sample size, we explore how many Uj vectors (N) are necessary
for sufficient approximation to the score function. As the num-
ber of vectors increases, we know that the approximation to the

score becomes more accurate, but the computing time is slowed.
Thus, for each of the settings above, we consider our stochastic
score method for N = 1, N = 5, and N = 20.

Mean squared error is a poor criterion for estimation eval-
uation in this case since dissimilar covariance parameter val-
ues can produce similar covariance functions. Therefore, as a
criterion for evaluation of the accuracy, we define mean log-
likelihood gain as

50
1 5k vk k
= k§_1 [ZlogL(O ,Y¥) — 2log L8, Y )],

where L is the multivariate normal likelihood, 6 are the true
parameters, 6% are the estimated parameters in the kth simula-
tion iteration, and Y* is the response vector for the kth simula-
tion for simulation replicates k = 1,2,. . ., 50. Note that because
0 is not in fact the maximum likelihood parameters, there is
likelihood to be gained by even approximate estimation, and
thus, the likelihood gain is potentially positive, and a larger value
is preferred. Define mean log-likelihood loss as the opposite
of mean log-likelihood gain or more precisely —1x (mean log-
likelihood gain) (Table 3).

As sample size increases, estimation using the Vecchia like-
lihood approximation has a greater mean log-likelihood loss.
This loss is greater, with a larger variance for setting c¢ than
settings a and b. These results can be seen in Figure 3. Note that
although the mean log-likelihood loss increases as the sample
size increases, the magnitude of the maximized multivariate
normal log-likelihood tends to increase with sample size, in
general. In contrast, the stochastic score methods’ mean log-
likelihood gains are positive for all tested sample sizes, which
is an indication of successful maximization of the likelihood in
optimization. Mean log-likelihood gain results from N = 5
and N = 20 have overlapping empirical confidence intervals
computed from simulation iterations in all tested simulation
settings. In a few cases, these simulation results have nonover-
lapping empirical confidence intervals with the results of N = 1,
meaning estimation with N = 5 or 20 is more accurate than
estimation with N = 1. Therefore, we conclude that N = 5
vectors is sufficient for estimation, and we include settings for
only N = 1 and N = 5 in the next simulation.

In terms of computation time, the stochastic score estimation
method also outperforms estimation with the Vecchia likeli-
hood in all cases for N = 1 and N = 5. Even in the relatively

Table 3. Mean time in seconds until convergence of estimates in various methods and sample sizes in simulation.

Method n=2800 n=1352 n=1800 n=2592 n=3200

ScoreN =1 7.6(0.6) 12.1(0.9) 15.2(1.0) 19.5(1.4) 25.7(2.2)

a ScoreN =5 14.6(1.1) 24.7(1.7) 30.5(1.6) 39.1(2.1) 57.3(3.8)
Score N = 20 45.4(2.5) 81.8(5.4) 96.9(4.7) 123.0(5.2) 173.2(10.8)
Vecchia App. 113.4(4.2) 211.2(6.0) 288.4(11.4) 451.0(16.1) 604.2(27.0)

Score N = 1 20.4(5.0) 36.9(4.7) 31.9(2.2) 62.8(8.5) 69.8(8.4)
b ScoreN =15 33.3(8.7) 44.2(3.9) 90.1(18.9) 104.3(10.3) 129.2(18.1)
Score N = 20 74.9(4.0) 142.5(12.8) 236.5(26.2) 299.1(29.9) 414.4(64.0)
Vecchia App. 111.7(4.9) 194.9(8.2) 263.0(10.9) 385.6(16.6) 476.4(13.6)
Score N = 1 25.4(5.5) 28.7(2.9) 51.6(11.9) 66.0(14.1) 98.5(21.7)

C ScoreN =5 28.3(2.4) 54.3(4.1) 66.0(3.5) 89.3(4.3) 133.5(9.4)
Score N = 20 87.2(9.0) 171.1(23.6) 199.8(12.4) 276.9(16.1) 378.6(22.0)
Vecchia App 128.5(4.7) 227.4(8.1) 315.0(10.8) 465.7(16.8) 627.6(20.4)

NOTE: In parentheses is the simulation standard error. Settings (a,b,c) refer to parameter settings seen in Table 1 and Figure 2.
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Figure 3. Mean log-likelihood gain under nonstationary settings (a,b,c) in comparison to Vecchia likelihood approximation. The shaded regions represent 95% pointwise

confidence intervals in simulation.

small sample size of 3200, it takes just over 10 min on average
for the Vecchia likelihood to converge in nonstationary setting
a, but only about 25 sec for the stochastic score approximation
with 1 vector to reach a more accurate solution. This approxi-
mately 24 times speed up is significant even in small samples,
and offers essential time savings in large samples. Since we need
to perform roughly five times as many linear solves in N = 5
as compared to N = 1, we would expect time to scale as such.
However, the computation time for the solution with N = 5 is
generally less than two times as long as the time for N = 1.
This implies that each step taken with more vectors actually
moves closer to the solution, and therefore, fewer iterations are
needed. Hence, we conclude that especially in larger samples,
the stochastic score approximation is more accurate and faster
than the Vecchia approximation at estimating the maximum
likelihood parameters in our nonstationary model.

5.2. Unknown Partition Simulation

In this simulation study, we evaluate the loss in log-likelihood
using our proposed methods when the partition and parameters
are both unknown. We again generate data with parameters in
Table 1, but also allow for nonzero po. Define fori = 1,2,...n

mo(si) = X(si)B,

where 8 = [0,1]7 and X(s;) = [1, N(1, 1)]. We allow for estima-
tion of this nonconstant, linear mean function that is simulta-
neously estimated with the covariance parameters. Alternating
with steps in the direction of the gradient of the covariance
parameters, at step m of the parameter estimation algorithm,
the current estimate of 8 is 8™, where m is an integer. This
is updated by its generalized least squares solution

X)) IxTk !

B = (XTKy, o

g(m) Y,

where YT = [Y(s51), Y(s2),..., Y(s)1, XT = [X(s1)T, X(s) 7,
., X(sp) 11, and 9 is the estimate of 0 at the mth stage in the
estimation algorithm.

The base partition has blocks B; of size 10 x 10 individual
locations. We consider the significance levels for the likelihood
ratio tests as (0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006,
0.007, 0.008, 0.009), with three random orderings of the neigh-
boring base partition blocks for each significance level. This
produces 30 candidate partitions, from which we select the best
partition using BIC. Given our selected partition, we apply the

stochastic score method with N = 1 and N = 5 Uj vectors.
To evaluate the necessity of partition estimation, we also use the
stochastic score method to estimate parameters using a naive
partition that divides the domain into two blocks of equal size.
We explore the accuracy of the estimation over the varying
sample sizes of n = 5000, n = 9800, and n = 16,200 (Figure 4).

We evaluate the accuracy of our estimated partition with the
Rand index (Rand 1971). This criterion evaluates the accuracy
of clustering, and it is applicable here since a partition is a
spatially-contiguous clustering of the domain. The Rand index
is defined as the proportion of observations that are correctly
clustered as in the true model partition,

n
Rand Index = % Z Zl{t,-j = f,-}},
() i=1 j<i

where (5) is the total number of pairs of observations, f; is an
indicator that is 1 )\Nhen s; and s; are in the same block of the
true partition, and #;; is the analogous indicator for the estimated
partition. Therefore, I{t; = t;} is an indicator function that is
1 when the two partitions agree and 0 otherwise. We again use
likelihood gain as a measure of parameter estimation as in the
last simulation (Table 4).

The automatic partition selection methods always produce
better results than partitioning the domain into two equal blocks
as seen in Figure 5. This arbitrary partitioning is meant to
represent partition selection in Fuentes (2001). So while we
expect the performance of partition selection to depend on
the parameters of the model and significance levels chosen, we
expect the methods to outperform current partitioning meth-
ods. Although unrestricted, the algorithm selects the correct
number of partition blocks in the majority of simulation set-
tings. In simulation setting ¢, where the parameters are more
different between the blocks, the partition selection method
produces partitions with a higher mean Rand index with a
smaller variance. This difference among settings is smaller in the
larger sample sizes as the partitioning procedure performs well
in all simulation settings when there is a large sample size. With
the base partition we selected, the closest possible partition to
the truth has a maximum Rand index of 0.96. One example of a
selected partition can be seen in Figure 4.

Because we estimate both the partition and the covariance
parameters, the mean log-likelihood gain is negative for all sim-
ulation settings. However, this loss is small relative to the sample
size and magnitude of the true log-likelihood. In these larger
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Figure 4. a.True partition, b. base partition, c. best possible partition with assumed base partition (Rand = 0.96), d. minimum BIC partition from simulation for setting 3¢
(Rand = 0.92).

Table 4. Results from the unknown partition simulation that include proportion of simulation iterates that correctly identified the partition to have 3 blocks, log-likelihood
gain as previously defined for three implementations of the stochastic score estimation, and finally, the mean true log-likelihood value 2logL(6, Y), where the true
simulation parameter settings 6 and partition are used.

n Prop 3 blocks LikegainN=1 Like gainN=5 Like gain eq part True like
5000 0.78 —66.7(2.5) —65.2(2.6) —139.1(3.0) 3972.6(11.8)
a 9800 0.92 —129.8(4.9) —127.4(4.8) —240.9(5.9) 7772.0(17.8)
16,200 0.92 —193.0(9.5) —190.2(9.2) —344.3(9.0) 12805.4(25.8)
5000 0.94 —112.0(4.3) —108.6(4.3) —261.8(4.6) 4860.4(15.7)
b 9800 0.84 —188.1(7.1) —184.4(6.9) —425.6(7.2) 9443.9(22.2)
16,200 0.76 —287.8(12.8) —282.9(13.1) —602.7(12.5) 15554.0(24.5)
5000 0.96 —152.3(4.8) —149.2(4.6) —421.9(6.6) 5160.2(16.1)
c 9800 0.82 —246.7(6.6) —243.3(6.6) —632.2(7.9) 10020.8(19.1)
16,200 0.64 —364.7(11.7) —354.9(10.2) —895.6(11.9) 16574.4(21.0)
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Figure 5. Boxplot of Rand indexes for sample sizes (1: n = 5000, 2: n = 9800, 3: n = 16,200) and nonstationary settings (a,b,c) as defined in Table 1 and Figure 2. The
top dotted line represents the maximum possible Rand index given the base partition for the largest sample size (3), and the bottom dotted line represents Rand index for
partitioning the domain into 2 equal blocks.



sample size settings, the difference in the mean log-likelihood
loss in the stochastic score method using N = 1 and N = 5 s
small. However, there is an empirically significant benefit to esti-
mating the partition as opposed to equally dividing the domain.
Additionally, in all tested simulations settings, empirical 95%
confidence intervals in simulation iterations contain the true
mean parameters with interval lengths about 0.01. Hence, we
have shown in simulation the accuracy and computational effi-
ciency of our estimation method when the partition is estimated
from the data.

6. Application to Daily Temperature Data

We applied the methods developed in this manuscript to average
daily temperatures from monitoring locations across the United
States in 2018. Temperature is an important environmental
variable that is of primary interest to track the progress of
climate change (Folland et al. 2001). Additionally, tempera-
ture, particularly extreme temperatures, can impact human and
environmental health (McMichael, Woodruff, and Hales 2006).
Finally, temperature is needed in many numerical models in
order to simulate or predict other environmental variables of
interest (Byun and Schere 2006). Regardless of the interest in
temperature as a variable, all of these analyses require the accu-
rate prediction of temperature at locations without monitoring
stations. Therefore, we implemented the methods presented in
this article to predict temperature at finely gridded locations
across the United States.

Our data is sourced from the National Oceanic and Atmo-
spheric Administration (NOAA) and National Centers for Envi-
ronmental Information’s (NCEI) Global Historical Climatol-
ogy Network Daily (GHCN-D) (Menne et al. 2012). This data
source is comprised of over 20 monitoring networks across
the world including WBAN, US Cooperative Summary of the
Day, and other monitoring systems. The data are updated daily
and reconstructed weekly to ensure comparability across data
sources. We extracted average daily temperature in the con-
tiguous USA for January 2, 2018, but a similar analysis may
be performed on any day of interest. There are average daily
temperature values for 2050 irregularly spaced monitoring loca-
tions. Further information and access to this dataset can be
obtained here: https://registry.opendata.aws/noaa-ghcn/.

Because our method requires locations on a subset of a grid,
we mapped locations to the closest point on a 160 x 240 grid in
an equal area coordinate system. In the center of our domain,
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the grid boxes have side lengths approximately 0.2 degrees lati-
tude and longitude. The mapping sometimes results in multiple
datapoints being assigned to the same location. When this is
the case, we averaged the temperature values and assigned only
one point to the gridded location. The gridded dataset has 1773
observations, and the comparison of the original data and the
gridded approximate locations can be seen in Figure 6.

We first performed 5-fold cross-validation to compare pre-
dictions from our methodology to those from some popular
competing models. Training data is assigned using a simple ran-
dom sample to one of the five possible folds. Using the methods
presented in this article, we defined models! = 1,2,. .., 5where
data from fold [ is excluded. Let Y;(s;) be the average daily
temperature at location s; in model I. Then we modeled

q
Yi(s1) = Zoi(s) + Y on(s1)Zu(s1),
h=1

(11)

where Zy; ~ GP(Bo;, Cor), where By is a constant intercept
parameter, and Zy; ~ GP(0,Cp) for h = 1,2,...q. We
define Cy; and Cy; as in Equation (8) with the quasi-Matérn
spectral densities. We included no covariates in this method
or in the competing methods to compare prediction only with
the respective nonstationary covariances. We implemented the
stochastic score approximation estimation method outlined in
the previous sections for N = 5 and predicted data at the omit-
ted locations in each fold. Prediction locations were assigned to
the partition block assignment of the closest observed location.

In the implementation of our partition selection method, we
generated 30 candidate partitions with base partition config-
urations seen in Figure 7. We used significance levels in the
interval [01'1—%5, .01], where ng = 24 or 96, depending on the base
partition. We found that using this significance range produces
a diverse set of partitions with varying number of blocks. The
best partition was chosen via BIC for each fold /.

Since this partitioning method of weightings causes nons-
mooth covariances and predictions, we also considered smooth-
ing the weights of selected partitions for parameter estimation.
The smoothed weight function at spatial location s; is defined
as a convolution of the weights with a smoothing kernel

wp(s1) = Y wp(s)f (51 — s0).

i=1

(12)

We took f to be a Gaussian kernel with range 0.3 units in the
equal area coordinate system, and we used the FFT to compute

Temp (C)

Figure 6. Original irregularly spaced average temperature (left) and data approximated to a fine grid (right).
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Figure 7. Base partitions used in cross-validation study. Pictured are 4 x 6 (left) and 8 x 12 (right) base partitions
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Figure 8. Nonsmooth (left) and Smoothed (right) example weighting functions for a single partition block.

Table 5. Results of 5-fold cross-validation for various models and estimation methods.

Method Base Partition RMSE Coverage (95% PI) Length of PI Time (mins)
Lattice Kriging - 2.90 0.45 2.8 2.1
Treed GP - 279 0.94 10.6 756.3
FRK - 299 0.78 7.2 0.3
4x6 270 0.88 83 183.6
Stochastic Score 8 x 12 2.67 0.87 8.1 224.2
Smooth 4 x 6 2.78 091 10.2 221.1
Smooth 8 x 12 278 0.90 9.8 278.6

the convolutions quickly. An example of these smoothed weight-
ings is pictured in Figure 8.

For comparison, we include results from several different
applicable models. First, we considered Fixed Rank Kriging
(Cressie and Johannesson 2008). In this model, the spatial com-
ponent is composed of a linear combination of basis functions.
We implemented this method with the package “FRK” in R with
two resolutions of Gaussian basis functions (Zammit-Mangion
and Cressie 2017). We also compare predictions produced from
Lattice Kriging (Nychka et al. 2015). We implemented this
method with the package “LatticeKrig” with default settings in
R (Nychka et al. 2016). Most similar to our approach is the Treed
Gaussian Process (Gramacy and Lee 2008). In this Bayesian
modeling averaging estimation method, the data are partitioned
in a treed structure with an independent model in each block.
We implemented this method with the package “tgp” in R
with constant mean and otherwise default settings (Gramacy
2007; Gramacy and Taddy 2010). Results of the 5-fold cross-
validation can be seen in Table 5. The statistics reported are
computed averaged over the 1773 site locations so that RMSE =

. 12 .
775 Lir [Y(Si) - Y(Si)] , coverage = = > /P I{b; <

Y(si) < i}, length PI = ﬁ 21-1:13(11,- — ?;i), where Y(s)
is the predicted temperature from the appropriate fold model
so Y(s;) = Zle Yi(spI{s; € fold;}, the estimated prediction
interval for the ith site is (l;,-, 1;), and I{.} is an indicator function
that is 1 when the statement is true and 0 otherwise.

Lattice Kriging and Fixed Rank Kriging (FRK) are very fast
methods, but their RMSE values are higher than the other
estimation methods. The lowest RMSE was produced from our
stochastic score methods without weight smoothing. However,
the coverage is lower than the desired confidence level. The
RMSE for the stochastic score with smoothed weights is very
similar to that from Treed Gaussian Process, but the compu-
tation time for all of the stochastic score methods are lower.
Since we value a smooth predictive map and more accurate
uncertainty quantification, we implemented the stochastic score
method with smoothed weights based on the 8 x 12 base
partition for our final demonstration.
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Figure 9. Results of analysis of average daily temperature on January 2, 2018. A. Data approximated to a 160 x 240 grid, B. selected partition before smoothing, where
the unobserved locations are assigned to the block of the closest observed location, C. predictions, D. marginal prediction variance.

We then used the model in Equation (11) with the entire
observed dataset to estimate predictions over finely gridded
locations for January 2,2018. We estimated partitions and mod-
eled the data as described in the 5-fold cross-validation study
with all 1773 observations. Because of the methods presented in
Section 4, prediction to a large number of locations on grid is
computationally efficient. We predicted the 36,627 unobserved
locations on a 160 x 240 grid, which took approximately 39 sec
on our hardware. Pictorial results for locations within the United
States can be seen in Figure 9.

7. Conclusion

In this article, we have presented a new estimation method
for a nonstationary model represented as the weighted linear
combination of locally stationary processes and a globally sta-
tionary process. The biggest hurdle in such a model is often the
definitions of the locally stationary processes, and we offered an
algorithm that uses the data to estimate an irregularly shaped
partition of the domain. Given any partition candidate, we
estimated the parameters in large datasets on subsets of grids
with n observations in only O(nlog n) computational complex-
ity per each step of estimation and O(n) storage. This method
of parameter estimation generalized the use of the stochastic
score approximation to this nonstationary model. Within our
estimation method, we proposed a matrix-free preconditioner,
which reduced computing time for a linear solve of the covari-
ance matrix by approximately 3 times for all tested settings. We
generalized circulant embedding to this nonstationary case, and
described a method for matrix-free prediction.

In simulation, we have shown that our estimation method
with one approximation vector (N = 1) is more accurate
and up to 24 times faster than using the Vecchia Likelihood
Approximation (Vecchia 1988) to estimate parameters of the

same nonstationary covariance. Finally, by applying our method
to a subset of gridded temperature data, we concluded that our
method was more accurate at prediction in both RMSE and
coverage than the fast methods Fixed Rank Kriging (Cressie and
Johannesson 2008) and Lattice Kriging (Nychka et al. 2015).
With several implementations of our model, we demonstrated
RMSEs lower than or similar to the RMSE in prediction using
a Treed Gaussian Process (Gramacy and Lee 2008). However,
the coverages of our methods were lower than that of the Treed
Gaussian Process but significantly faster in computation, with
better than a 63% reduction in computation time. We used our
method with smoothed weighting functions to create a map of
finely gridded average temperatures for January 2, 2018.

This estimation method could be adapted to a multivariate
or spatio-temporal framework, which would involve further
work on defining multivariate or spatial-temporal nonstation-
ary models and proper extensions of the stochastic score for
estimation. Alternatively, many large datasets have irregularly
spaced observations. Further work could investigate the effects
of mapping irregularly spaced locations to a fine grid as we
have done in our data analysis. Although our partition selection
method is more flexible than previous partitioning methods,
future research could improve its performance. Random base
partitioning could achieve more flexible candidate partitions.
Statistical design of the tested significance levels, base partition-
ing, and ordering of the neighbor pairs could further improve
the class of candidate partitions. Additionally, in other appli-
cations, it may be of interest to also partition the domain by
spatially varying regression coefficients. Then, a linear mean
function could be included in the likelihood maximization and
testing of the neighboring base partitions. Finally, the uncer-
tainty quantification of the parameters does not account for the
uncertainty in the selected partition. Bayesian model averaging
may be able to be applied to fully specify the posterior distribu-
tions of the parameters over the candidate partitions.
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