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Raleigh, North Carolina been applied to neuroimaging because it produces efficient and valid statistical
? Cornell University, Ithaca, New York inference. However, diffusion tensor imaging (DTI), a neuroimaging technique
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(p.d.) matrix for each voxel. Currently, only a few geostatistical models for
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USADAD38999 dependence. Motivated by a DTI data set of cocaine users, we propose a spatial
matrix-variate regression model based on the spatial Wishart process. A problem-
atic issue is that the spatial Wishart process has no closed-form density function.
Hence, we propose an approximation method to obtain a feasible Cholesky
decomposition model, which we show to be asymptotically equivalent to the
spatial Wishart process model. A local likelihood approximation method is also
applied to achieve fast computation. The simulation studies and real data appli-
cation demonstrate that the Cholesky decomposition process model produces
reliable inference and improved performance, compared to other methods.
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1 | INTRODUCTION summarize the water diffusion at each location in the

brain. The p.d. matrix is also called a diffusion tensor
Diffusion tensor imaging (DTI), a magnetic resonance (DT), representing the covariance of the local 3D Brow-
imaging (MRI) technique, is used to measure the diffu- nian motion (Schwartzman, 2006; Dryden et al, 2009).
sion process of water molecules in the brain (Soares et al., Since DTI has been used extensively to map white matter
2013). Estimated 3 X 3 positive-definite (p.d.) matrices  tractography in the brain, it has an advantage over other

548 | © 2021 The International Biometric Society. wileyonlinelibrary.com/journal/biom Biometrics. 2022;78:548-559.



LAN ET AL.

Dlometrics wiy gy L=

MRI-based techniques in revealing abnormal topological
organization in the brain (Lo et al, 2010). A primary
clinical objective is to understand how covariates (eg,
age, gender, drug use) affect DTs, reflecting its effects on
brain structure.

Incorporating spatial dependence is important for
achieving efficient and valid inference in imaging data
analysis (Spence et al., 2007; Wu et al., 2013; Xue et al.,
2018). Recently, Lan et al. (2021) also revealed that incorpo-
rating spatial dependence leads to improved performance
in the DTI region of difference selection, validated by an
application to a cocaine user data set (Ma et al., 2017). In
this paper, we focus on geostatistical methods, ie, methods
for random fields commonly used in the geostatistical lit-
erature (Gelfand et al., 2010). Current geostatistical model-
ing only focuses on random variables following univariate
or multivariate distributions (eg, univariate/multivariate
Gaussian). However, the voxel-level variable in DTIis a p.d.
matrix. In the literature, only a few relevant works have
been proposed for spatially-varying p.d. matrices (Gelfand
et al., 2004). This triggers our study of geostatistical mod-
eling of p.d. matrices.

Previous attempts to analyze DTI data can be broadly
classified into univariate modeling and matrix-variate
modeling. To avoid the complexity caused by matrix-
variate data, univariate modeling projects a DT onto
a descriptive scalar quantity such as the magnitude of
isotropy, magnitude/fractional of anisotropy, or mode of
anisotropy (Ennis and Kindlmann, 2006). Among these
scalar quantities, fractional of anisotropy is the most popu-
lar (see Lane et al., 2010; Ma et al., 2017). Several statistical
methods are proposed using fractional of anisotropy of dif-
fusion tensors as responses (eg, Zhu et al., 2013; Liu et al.,
2016). However, since these projections are surjective (eg,
different DTs may project onto the same scalar quantity),
the loss of information caused by univariate modeling
is irreversible. To this end, matrix-variate modeling has
been proposed via parameterizing the DTs as matrix-
variate random distributions such as the lognormal
distributions (Schwartzman, 2006, 2016) or Wishart
distribution (eg, Lee and Schwartzman, 2017). Martin-
Fernandez et al. (2004) proposed a Gaussian Markov
random field for DTI, but the model does not ensure the
diffusion tensor in the space of p.d. matrices. Therefore,
in general, most matrix-variate models have not yet been
extended to spatial modeling because incorporating spatial
dependence for p.d. matrices is nontrivial.

To mitigate these issues, we propose a spatial matrix-
variate regression model. The covariates are incorporated
through the Cholesky decomposition (Zhu et al., 2009),
and the coefficients are spatially-varying to capture
local covariate effects. The Cholesky decomposition is

commonly used to model p.d. matrices (eg, Pourahmadi,
2007; Dryden et al., 2009). Here, we propose a new
Cholesky decomposition process model for spatial data
that approximates the original spatial model via Cholesky
decomposition of p.d. matrices as the responses, study
some theoretical properties, and develop algorithms for
scalable computing.

The spatial dependence among p.d. matrices is achieved
by the spatial Wishart process, a spatial random field
(stochastic process) supporting spatially dependent
Wishart matrices. The first use of the spatial Wishart
process was a prior for a spatially-varying covariance
matrix (Gelfand et al., 2004). In this paper, the spatial
Wishart process is used as a model for p.d. matrix obser-
vations. Considering that the literature comprehensively
describing the statistical properties of the spatial Wishart
process is sparse, we further prove that the spatial Wishart
process as a random field on uncountable locations is valid
and almost-surely continuous given some conditions.

Although the model based on the spatial Wishart pro-
cess is elegant with several nice properties, a bottleneck
of the spatial Wishart process is that its probability den-
sity function is intractable (Viraswami, 1991). Therefore,
instead of directly modeling the DTs, we propose a new
Cholesky decomposition process model that approximates
the original model by taking the Cholesky decomposition
of p.d. matrices as the responses. The Cholesky decompo-
sition process model is composed of six univariate spatial
Gaussian processes, where the parameters retain the inter-
pretations of the original model. Via theoretical results
and simulation studies, we show that the Cholesky decom-
position process model is an asymptotic approximation
and a useful working model. The theoretical results make
an important contribution of both direct and potential
value in applications of DTI and other fields, simplify-
ing matrix-variate models relying on dependent Wishart
matrices (eg, Karagiannidis et al., 2003; Kuo et al., 2007;
Smith and Garth, 2007) to multivariate models relying on
Gaussian distributions.

We also deal with massive spatial data by Vecchia’s
method (Vecchia, 1988; Datta et al., 2016), a local likeli-
hood approximation that approximates the joint density of
spatial variables as a product of conditional densities. To
demonstrate our proposal, we further investigate its per-
formance using simulation studies, and provide data anal-
ysis on cocaine user data (Ma et al., 2017), in comparison to
the univariate spatially-varying coefficient process model
(Gelfand et al., 2003). The novelty of our work is exploring
spatial associations in modeling p.d. matrix-variate data
under the framework of geostatistical modeling, with some
key theoretical contributions of multivariate analysis and
applications to DTI.
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2 | SPATIAL WISHART PROCESS
MODEL

A typical DTI data set (Ma et al., 2017) usually includes
DTs from each subject i € {1,...,N} at each voxel s €
{81, ..., 85}, and subject-level covariates (eg, age, education
level, medical treatments). The primary clinical objective
is to detect local covariate effects on DTs. Let A;(s) be
the 3 X 3 p.d. DT matrix of subject i measured at voxel s
and X; be a design matrix containing an intercept and d
subject-level covariates. The p.d. DT matrices are modeled
as parameterized Wishart matrices (Dryden et al., 2009) to
have mean matrix Z;(s) and degrees of freedom m, denoted
as A;(s) ~ W(Z;(s), m). To model spatial dependence and
ensure that A;(s) is a p.d. matrix, we decompose A;(s) as

A(s) = Li($)Ui()Ly(s)". @

In this decomposition, U;(s) has mean I5 and is the spa-
tially dependent residual term modeling variation that can-
not be explained by the covariates and the regression term
L;(s) is the lower-triangle Cholesky matrix of the mean
matrix Z;(s), ie, EA;(s) = Z;(s) = L;(s)L;(s)”. The spatial
Wishart process for U;(s) is described in Section 2.1, and
the regression construction for L;(s) as a function of X; is
described in Section 2.2. We refer to this model as the spa-
tial Wishart process model in the rest of the paper.

2.1 | Residual term: Spatial Wishart
process

In this subsection, we introduce the spatial Wishart
process as a means of modeling spatial dependence.
Gelfand et al. (2004) provide the construction of the
spatial Wishart process, which is stated as follows. For
Jj€f{l,2,..,m}, let {Z;(s) : s € D} be a mean-zero p-
dimensional multivariate Gaussian process with a p X
p cross-covariance matrix ¥ and a (univariate) spatial
dependence function K(s,s’|®) determined by parame-
ters @, ie, cov(Z;(s), Z;(s')) = K(s,s'|®) x Z, denoted as
Z; ~ GP(0, K(s, s'|®),X). If for each s € D, we collect
U(s) = Z;"zl zZ j(s)ZjT(s)/ m ~ W(Z, m), then the collec-
tion {U(s) : s € D} 1is a spatial Wishart process, a random
field supporting spatially dependent Wishart matrices. The
spatial Wishart process can be understood as a two-level
hierarchical model where the spatial dependence of the
Wishart matrix U(s) is induced by the latent spatial Gaus-
sian processes {Z}}. Also, in light of the application to DTI,
we assume p = 3 by default.

In practice, the number of locations in D is usually
finite. However, Gelfand et al. (2010) emphasize the

importance of ensuring a valid mathematical specification
of a spatial stochastic process when the potential number
of locations is uncountable, ie, that the process satisfies
the Kolmogorov existence theorem (Oksendal, 2003). The-
orem 1 confirms that the spatial Wishart process satisfies
the conditions of the Kolmogorov existence theorem and
is a valid stochastic process.

Theorem 1 (Spatial Wishart Process). The spatial Wishart
process {U(s) : s € D} is a valid stochastic process (ran-
dom field), which gives proper finite-dimensional distribu-
tions for any collections of locations in the spatial domain.

In addition to showing that the random field is valid, we
show that it is almost-surely continuous (Property 1). The
proof of almost-sure continuity is based on Kent (1989) (see
Web Appendix A).

Property 1 (Almost-Sure Continuity). Let {U(s) : s € D}
be a spatial Wishart process. If the correlation function
K(s, s'|®) has a second-order Taylor series expansion with
remainder that goes to O at a rate of 2 + § for some § > 0,
U(s) converges weakly to U(s,) with probability one as
[Is — soll = 0.

Since neuroimaging data are usually collected at a
high resolution and the effect of the disease at proxi-
mally located/neighboring voxels can be similar (see Wu
et al., 2013; Xue et al., 2018), the residuals U;(s) should
be continuous and spatially dependent. Therefore, we
model the residuals {U;(s) : s € D} for i €{1,2,...,N}
as realizations of a spatial Wishart process with degrees
of freedom m, cross-covariance matrix I, and correlation
function K(s, s’ |®), denoted as

U, ~ SWP(m, K(s,s'|®),I). @)

Setting the cross-covariance matrix to I preserves the
marginal distribution A;(s) ~ W(Z;(s), m).

In spatial statistics and neuroimaging, understanding
the spatial dependence is essential. We quantify spa-
tial dependence of the spatial Wishart process using the
expected squared Frobenius norm V(s,s’) = E[|U(s) —
U(s)| |§, where ||.||F is the Frobenius norm. The expected
squared Frobenius norm can also be understood as a gen-
eralized variogram (Cressie, 1992) for matrix-variate data
(Lan et al., 2021), where an increasing spatial dependence
of U(s) and U(s') leads to a smaller V(s,s’). Through
the variogram, we find that the spatial Wishart process
SWP(m, K(s, s'|®),T) is separable (Cressie, 1992) since

V(s, s,) = y(mr E)[l - KT(S, sl|q))2]’ (3)
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FIGURE 1 The diffusion tensors are generated by spatial Wishart process with mean matrix I. The images of the first row are generated

with m = 10 and p € {1, 4, 10} (left, middle, right). The images of the second row are generated with p = 4 and m = {3, 6, 10} (left, middle,
right). This figure appears in color in the electronic version of this article, and any mention of color refers to that version

where the term 1— K(s, s’|®)? is the spatial term and
y(m,X) = %Tr(ZZ) + %TrZ(Z) is the nonspatial term. The
property of spatial separability makes the residual vari-
ation more transparent: The cross-dependence of p.d.
matrices depends on y(m,X) such that an increasing m,
primarily controlling the variance of a Wishart matrix,
leads to smaller cross-dependence; a larger spatial corre-
lation of the underlying Gaussian processes leads to larger
spatial dependence.

The spatial dependence can be visualized via realiza-
tions of the standard spatial Wishart processes (X =1I)
on a 20 x 20 grid with spacing of 1 between adjacent grid
points. Given that the spatial correlation function is expo-
nential, ie, X(s,s’|p) = exp(—”s_—s,”), we visualize the
p-d. matrices in two dimensions as ellipsoids in Figure 1. In
Figure 1, the p.d. matrices are simulated with m = 3 and
p =1,4,10, where a larger p leads to stronger spatial
dependence. In Figure 1, the p.d. matrices are simu-
lated with p = 4 and m = 3, 6, 10, where a larger m leads
smaller cross-dependence. Since the three cases in Figure 1

maintain the same level of spatial dependence, we may
also identify that the spatial and nonspatial variations
are separable.

2.2 | Regression term: Cholesky
decomposition

Expressing the mean matrix Z;(s) in terms of X; is not
straightforward (Zhu et al., 2009; Yuan et al., 2012) because
the responses A;(s) are in the space of p.d. matrices but
the covariates X; are in the Euclidean space. Following
Zhu et al. (2009), we regress the (k, )th element of L;(s),
denoted as l;;(s) on X; as

log Lixk(s) = X; By (s), = X;Bi(s) fork>1,

)

liki(s)

where  Bi(s) = [Boki(8), Bui (), .. Bara($)]T is  the
spatially-varying coefficient vector and fji(s) is the
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coefficient associated with the jth covariate. The roles of
the coefficients Bj;(s) can be explained as linear effect
on log L (s) or ly;(s). To model the spatial dependence
of the mean effects in (4), we assign a mean-zero spatial
Gaussian process prior on

B(s) = [ﬁu(S)T,ﬁzz(S)T’ﬁ33(S)T,ﬁzl(S)T,ﬁsl(S)T,ﬁz.z(S)T]T,
denoted as

2
B~ GP(0,K(s.5'|®g).031),

where ®; is a set of spatial parameters controlling the spa-

tial dependence of mean process, and aé is the variance of

the Gaussian process.

3 | CHOLESKY DECOMPOSITION
PROCESS MODEL

In Section 2, we show that the spatial Wishart process
model provides a means of modeling spatially dependent
p.d. matrices, and the roles of all the parameters are eas-
ily interpretable. Viraswami (1991) and others (eg, Blu-
menson and Miller, 1963; Smith and Garth, 2007) show
that a closed-form probability density function of the spa-
tial Wishart process model is not available in general,
except for some special cases. Therefore, to approximate
the spatial Wishart process model, we further propose the
Cholesky decomposition process model.

The Cholesky decomposition process model is specified
on the Cholesky decomposition elements of A;(s), denoted
as {tjx(s) : k > 1, s € D}, where t;,(s) is the (k, Dth ele-
ment of the lower Choelesky factor of A;(s). Next, we
will show that the Cholesky decomposition process is an
asymptotic approximation to the spatial Wishart process.
This means the interpretations of parameters are shared
with those in Section 2. The Cholesky decomposition pro-
cess model is below.

Diagonal : \/Elog tigk ~ GP
(\/_2Xil3kk(S), C(s,s'|®,), an) fork =1,2,3,
Off-Diagonal:tikllf,-kk ~ QP(Xiﬁkl(S),

C(s, 8" |t (D (8", 05,)  fork > L. (35)

In this expression, \/_ZXiﬁkk(s) and X;Bi(s) are
marginal means of the diagonal and off-diagonal
Gaussian processes at location s, respectively. Also,
Lk () = exp(Xl-ﬁkk(s)) and Ekk(s) is the ordinary least
squares estimates computed using only data at voxel s

from regressing logt;r,(s) on X;. The prior on f(s) =
[B11(8)", Bra($)T, B33 (), Bor ()T, B ()T, B3a(s)]" is the
same as what we defined in Section 2.

To provide a rigorous mathematical validation, we
also prove that {A;(s) = T;(s)T;(s)! : s € D} is a valid
stochastic process and almost-surely continuous (The-
orem 2), where T;(s) is the lower-triangle Cholesky
matrix.

Theorem 2 (Cholesky Decomposition Process). {A;(s) =
T;(s)T;(s)" : s € D} is a valid stochastic process that gives
proper finite-dimensional distributions for any collections of
locations in the spatial domain. Also, if the correlation func-
tion C(s, s'|®) has a second-order Taylor series, expansion
with remainder that goes to 0 at a rate of 2+ & for some
8 > 0, A(s) converges weakly to A(s,) with probability one
as||s — sol| = 0.

To link to the spatial Wishart process model, we set
C(s,s'|®,) = K(s,s'|®,)? and 02, = L Given the asymp-
totic properties in Theorem 3, we nlqnay conclude that
asymptotically (m — o), the two models are equivalent
and the parameters in the two models have the same inter-
pretations: By (s) controls the mean of log t;;(s) and par-
tially describes local variation of ¢;;;(s); By;(s) controls the
mean of t;;(s); ®, controls the spatial residual depen-
dence. Furthermore, if we modify t;;(s) in (5) such that
tixk(s) = exp(X;Bii(s)), the condition that N — oo can
be omitted to show that {\/ﬁ[eikl(sl),...,eikl(sn)]T|Seikl}
is equal in distribution to {\/m[t;;(51), - » tixr(82)]” [Eikic -
However, we show that the specification in (5) leads to
computationally efficient Gibbs sampling for coefficients
(Section 3.1) and a reasonable trade-off according to the
simulation results showing the closeness of parameter esti-
mation (Section 4).

Theorem 3 (Asymptotic Properties). For i € {1,2,..., N},
let {tjy(s):k>lseD} and {ey(s):k>1se D}
be Cholesky decomposition elements of {A;(s) : s € D}
following the Cholesky decomposition process model
and the spatial Wishart process model, respectively.
For sy,...,8, €D, we have the following asymptotic
results:

* Diagonal: As m — oo, ﬁ[log ik (81) —
XiBric(s1)s -, log e (s,) — XiBprc(s,)]" is
equal in  distribution  to \/ﬁ[log tik(81) —
XiBik(51), ..., log tik (8n) — XiBir(s)]" fork =1,2,3;

* Off-Diagonal:

o Let My (dependent of m) and uy; (independent
of m) be the means of {[e“g(sl),...,eikl(sn)]T|Seikl}
and  {[tyq(s1), > tia(8)]" |t} respectively.  As
m — co, M,k converges in probability to uy;, and
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cor(e;x(s), ey (s')|S,,,) converges in probability to
cor(ti(s), tua(s)|tix) = K(s,s'|®)? = C(s, 8’ |®);

o If Bii(s) =0 forall s € D and k > 1, then as m —
and N — oo, {y/mle(s1), ..., eia(sp)1" |Se,, } is equal
in distribution to {\/m[tyi(s1), ..., tua(s )17 [t} for
k>

oIf Bu(s)=0 for all s€eD and k>1 and
that  tiyk(s) = exp(Xifik(s)), then as m — oo,
{\/ﬁ[eikl(sl),...,eikl(sn)]Tlseikl} is equal in distribu-
tion to {/m|ty(s1), ..., ikt (517 [Tigic}, for k > 1.

In the above expression, S, denotes the selected compo-
nents of the latent Gaussian processes of the Wishart process
described in Section 2. S, are expressed as follows: S, =
Se,, =1Zij1(8). Zijp(»]" : se€D,je{l,2,..,m}} and
Se,, ={Ziji(s) : s €D, j€{l,2,...,m}}, where Z;j(s) =
[Zij1(5), Zij2(s), Zij3(s)]" and Z;; ~ GP(0, K(s, s'|®,), 1)
(the term is independent distributed over j, and i is a given
and fixed subject subscript).

The asymptotic results apply to large degrees of freedom,
m, when the off-diagonal coefficients are zeros. In both
models, large m corresponds to small residual variability,
ie, images with small noise. This is a reasonable condition
in our motivating data (see Section 5) where the estimated
residual variance is small. In comparison to the spatial
Wishart process model, the Cholesky decomposition pro-
cess model is more computationally convenient because it
transforms matrix responses to scalars who follow Gaus-
sian processes. Moreover, since the underlying mechanism
of the DT’s spatial dependence is unknown, both models
can be treated as proposed geostatistical models for DTI.
All the proofs for the results in this section are summarized
in Web Appendix B.

3.1 | COMPUTATIONAL DETAILS

In this subsection, we give the computational details of this
model. We fit the model using Markov chain Monte Carlo
(MCMC) and assign priors to parameters. Given that K is
the Matern correlation function, we define ®, = {p,,, v}
as the range and smoothness parameter of the residual
dependence, and ®z = {pg, vg} as the range and smooth-
ness parameter of the mean dependence. We give priors
to these parameters: log p,, and log pg follow a normal dis-
tribution with mean 0 and standard deviation 1; log v,, and
log v follow a normal distribution with mean —1 and stan-
dard deviation 1; 02 and o}, follow a gamma distribu-
tion with shape 0.01 and rate 0.01, which are conjugate
priors allowing Gibbs sampling. The coefficients 8 are also
updated using Gibbs sampling because their full condi-

tional distributions are Gaussian distributions (see Web
Appendix C for complete details).

The computational bottleneck of the Cholesky
decomposition process model is factoring the large
nXn covariance matrix of the residual dependence
and mean dependence (eg, Heaton et al, 2019). We
address this problem using Vecchia’s method (Vec-
chia, 1988), a local likelihood approximation that
approximates the joint density of spatial variables as
a product of conditional densities. Let w be an arbi-
trary Gaussian process. The approximate joint density
is plw(s)), ..., w(sy)] = [Ti, plw(s)lw(sy), s € N(s)l,
where N(s;) is a set of neighboring locations of s; (Datta
et al., 2016). This reduces the computational complexity
from O(n?®) to O(ng?®), where q < n is the largest size of
N(s). This approximation is implemented for t;;;, log ;.
and B, where lexicographical order of locations on the
regular spatial grid is used and N(s;) is the following
q locations with larger ranks. A sensitivity analysis is
presented in Section 4 to investigate the impact of the
tuning parameter g on the Cholesky decomposition
process model.

4 | SIMULATION

In this section, we first investigate the performance of the
Cholesky decomposition process model under data gener-
ated from either the spatial Wishart process or Cholesky
decomposition process model, demonstrating that the
Cholesky decomposition process model produces reliable
results under different geostatistical settings. Also, since
we apply Vecchia’s approximation for fast computation, we
conduct a sensitivity analysis to investigate the impact of q
on parameter estimation.

For both models, we generate the synthetic DTs on 20 X
20 grids with spacing of 1 between adjacent grid points.
To mimic a real DTI study, N = 10 subjects are simulated
with drug-use indicator x; 4,4 € {0, 1} and normalized age
Xiqge € R*. The simulation study involves 50 replications.
For each replication, there are five drug users (x; gr,g = 1)
and five nondrug users (X; 4,4 = 0), and X; 44, is generated
by a positive half-normal distribution (Leone et al., 1961)
with mean O and variance 1 to mimic an age distribution
that is bounded below by entrance criteria. For each repli-
cation, all the coefficients g are generated from a spatial
Gaussian process with variance O'é = 0.01 and correlation
function KC(s, s"|®g). We have By ki = 0, Vs and Sy i =
0, Vs for the intercepts. We have Sy 41k = .5, fors €
S, Barug ik = 0, fors & S Barug i = 0, Vs, for coefficients
associated with drug. We also have Sy qg. = .25, Vs and
Briage = -25, Vs for coefficients associated with age. The
Gaussian process mean for three covariates simulates a
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TABLE 1

Asymptotic (m = 50) simulation results for spatially-varying coefficients with the data generated from the Cholesky

decomposition process model or the spatial Wishart process model. The results are summarized in terms of mean absolute deviation of

posterior mean estimates, 95% posterior coverage, and Monte Carlo standard deviation. The values are averaged over replications, voxels (1),

and covariates (d)

MAD
Parameter q CDP SWP
B 10 10 10
50 .10 .10
Standard .10 .09
B 10 10 10
50 10 .10
Standard .10 .09
Bss 10 10 10
50 A1 .10
Standard q1 .09
B 10 11 10
50 A1 .10
Standard q1 .10
B 10 11 10
50 11 .10
Standard q1 .10
B 10 11 10
50 A1 .10
Standard 1 .10

Coverage 95% MCSD

CDP SWP CDP SWP
95% 93% .05 .05
95% 95% .05 .05
95% 96% .05 .06
94% 95% .05 .05
94% 95% .05 .06
91% 95% .05 .05
94% 94% .05 .05
93% 96% .05 .05
93% 97% .05 .06
97% 99% .08 .07
97% 97% .08 .08
93% 97% .07 .08
95% 99% .07 .07
95% 95% .07 .08
95% 99% .07 .08
95% 99% .08 .08
95% 99% .08 .08
95% 97% .07 .08

Abbreviations: CDP, Cholesky decomposition process model; MAD, mean absolute deviation; MCSD, Monte Carlo tandard eviation; SWP, spatial Wishart pro-

cess model.

scenario that drug has an effect on certain regions of the
brain and increasing age may affect the whole brain. In
all replications, we simulate the data with p, = pg = 2,
v, = vg = 0.5. The degrees of freedom are set to m = 50
(m =3 and m = 30 are in Web Appendix D). To investi-
gate if Vecchia’s approximation with different q affects the
model performance, we set g = 10, 50 and compare it to the
model without Vecchia’s approximation. For each replica-
tion, we collect 5000 MCMC samples after discarding 2000
samples as burn-in.

The simulation results in terms of mean absolute
deviation of posterior mean estimates, 95% posterior cover-
age, and Monte Carlo standard deviation. The mean abso-
lute deviation of posterior mean estimates is defined as
|E[6].] — 6| where O is the true value and E[6].] is the
posterior mean; the 95% posterior coverage is defined as
the empirical percentage that the true value is in the 95%
posterior; the Monte Carlo standard deviation is defined
as \/% Zthl(G(f) — E[6].])2 where 6® is the tth MCMC
sample and there are totally T MCMCM samples. The
results of m = 50 are summarized in Tables 1 and 2; the
results of m = 30 are summarized in Tables D.1 and D.2
of Web Appendix D and are similar to those with m = 50.
The values in Table 1 are averaged over replications, vox-

els (n), and covariates (d). We find that Vecchia’s approx-
imation is acceptable because the computational times
are 6, 11, and 35 hours for models with 10 neighbors, 50
neighbors, and without Vecchia’s approximation and the
mean absolute deviation is nearly identical for all the three
methods.

We further conduct simulations with m = 3 to study
the performance when the asymptotic approximation in
Theorem 3 is violated. The results of m = 3 (Tables D.3
and D.4 of Web Appendix D) have inflated coverage when
data are generated from the SWP model. Combining these
results, we conclude that if and only if m is large, then
the CDP model provides a reasonable approximation to the
SWP model.

In addition to small m, a concern with our method is
that it assumes continuity and stationarity over space, and
thus, that it may perform poorly in the presence of (cross-
ing) fiber tracts. To examine the robustness of the proposal
method in these cases, Web Appendix E conducts a simu-
lation with (crossing) fiber tracts. We find that for the cases
considered here, the proposed method is able to estimate
the population mean DTI in the presence of (crossing) fiber
tracts. This agrees with Fuglstad et al. (2015) who find that
spatial models are often robust to nonstationarity.
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TABLE 2

Asymptotic (m = 50) simulation results for spatial parameters with the data generated from the Cholesky decomposition

process model or the spatial Wishart process model. The results are summarized in terms of mean absolute deviation of posterior mean
estimates, 95% posterior coverage, and Monte Carlo standard deviation. The values are averaged over replications

MAD
Parameter q CDP SWP
o =2 10 0.17 0.20
50 0.17 0.20
Standard 0.10 0.14
v, = 0.5 10 0.033 0.033
50 0.033 0.033
Standard 0.022 0.022
pp=2 10 0.13 0.13
50 0.13 0.13
Standard 0.10 0.13
vg = 0.5 10 0.038 0.038
50 0.038 0.038
Standard 0.038 0.058

Coverage 95% MCSD

CDP SWP CDP SWP
98% 98% 0.15 0.19
96% 96% 0.16 0.19
98% 96% 0.16 0.20
98% 98% 0.035 0.027
98% 98% 0.032 0.029
97% 96% 0.040 0.031
98% 98% 0.20 0.25
98% 98% 0.20 0.24
98% 98% 0.21 0.25
96% 96% 0.040 0.050
96% 98% 0.044 0.052
98% 96% 0.043 0.053

Abbreviations: CDP, Cholesky decomposition process model; MAD, mean absolute deviation; MCSD, Monte Carlo standard deviation; SWP, spatial Wishart

process model.

Next, we compare the performance of the Cholesky
decomposition process model and the univariate spatially-
varying coefficient model (Gelfand et al, 2003). In
clinical studies and neuroimaging, the most interesting
covariate effect is the drug-use effect (x; 4,,) (Brick and
Erickson, 1998). The six coefficients comprehensively
but not concisely describe the local covariate effects,
which may not be interpretable to clinicians who prefer
scalar quantities (eg, fractional anisotropy). However,
since the six coefficients capture the covariate effects
without information loss, our method can accurately
project the information onto any clinically meaningful
scalar quantity. One of the useful quantities is fractional
anisotropy, projecting a p.d. matrix onto [0,1], defined as

T V=22 + (=23 )2+ (A3 —21 2
fra(A) = \/;\/( : 2)\/%( +h) ,where {4, 1,, 45}
1A +A5

are the eigenvalues of a diffusion tensor A (Ennis and
Kindlmann, 2006). To demonstrate this, we estimate the
treatment effect of cocaine use on each voxel s in terms of
fractional anisotropy, denoted as 8p4(s) = fra(EV(s)) —
fra(EO(s)). Assuming X l’ as the covariates excluding
drug use, the term Z(@(s) = % Zil E[Z(8)|X], Xgrug = d]
is to describe the averaged (over subjects) mean matrix at
voxel s under drug-use status d € {0,1}. We use a Monte
Carlo outcome regression estimator (Rotnitzky et al., 1998)
to estimate &y 4(s), defined as

N
S\FA(S) = % Z (IE[fFA[zi(s)]Ixi,drug =1, rest]
i=1

— ElfralZi()11%; grug = 0, 7est]), (6)

where the expectation can be empirically obtained by
MCMC samples.

Since the spatial matrix-variate methods in terms of
coefficients estimation have consistent results, we simply
use the results of the Cholesky decomposition process
model with g =10 and m = 50. We plot the posterior
means of dr4(s) in Figure 2, combining all voxels s and
replications. We compare it to the univariate spatially-
varying coefficient model (Gelfand et al., 2003) with logit
transformation of fractional anisotropy as responses and
its associated Monte Carlo-based outcome regression esti-
mator (Rotnitzky et al., 1998)

N

~ 1

8ra(8) = 55 2 (ELf jogit Vil X drug = Lorest]
i=1

- [E[fl;}git[yi(s)“xi,drug =0, rest]), @)

where y;(s) is response and f,g;; is the logit transforma-
tion function. In Figure 2, the Cholesky decomposition
process model produces more precise estimates for 4 (s)
for s € S with smaller uncertainties, revealing that utiliz-
ing the whole matrix information plays a key role in detect-
ing covariate effects. This claim is further verified in real
data analysis (see Figure 4).

5 | APPLICATION: COCAINE USER
DATA

In this section, we apply the model to a data set of cocaine
users (Ma et al, 2017). The data are provided by the
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FIGURE 2 The left panel is g4 (s) for s € S. The right panel is x4 (s) for s ¢ S. Estimates of 6r4(s) produced by the Cholesky
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FIGURE 3 The covariate effects of cocaine use on DT expressing by the posterior z-scores of six spatially-varying coefficients. This figure
appears in color in the electronic version of this article, and any mention of color refers to that version

Institute for Drug and Alcohol Studies of Virginia Com-
monwealth University (VCU). Eleven cocaine users and
eleven non-cocaine users participated in this study. Besides
their cocaine-use status, their age and education years are

also recorded. Following the conventions in cocaine use
studies (eg, Lane et al., 2010; Ma et al., 2017), we focus on
the corpus callosum, a brain region that plays important
roles such as transferring motor, sensory, and cognitive
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FIGURE 4 The left panel is the posterior z-scores of 6, based
on the Cholesky decomposition process model. The right panel is
the posterior z-scores of 8., based on the univariate model. This
figure appears in color in the electronic version of this article, and
any mention of color refers to that version

information between the brain hemispheres. This region
contains 15273 voxels.

We first fit the Cholesky decomposition process model
to the data, in order to investigate the covariate effects and
spatial dependence among voxels. We set the design matrix
X; as

[1, Xidrug> Xi,age> Xi,edu> Xi,handedness> xi,gender]’ represent-
ing the intercept, drug-use (x;4r,g =1 if subject i is a
cocaine user, otherwise x; 4, = 0), age, education years,
handedness (X; pandedness = 1 if subject i is a left-handed,
otherwise X; pandedness = 0), and gender (X;gepger = 1 if
subject i is female, otherwise X; g¢nqer = 0). All continuous
covariates are standardized. We set g = 50 for Vecchia’s
approximation and 8000 MCMC samples are collected
after 3000 samples as burn-in. We apply the proposed
stationary model and note that our simulations suggest
a degree of robustness to the stationarity assumption;
however, for applications with severe nonstationarity, a
more sophisticated model could be applied such as those
discussed in Section 6.

To understand the spatial dependence of the DTs, we
study the posterior density of the spatial dependence
parameters py, vy, pg, and vg, where the posterior mean
estimates are 3.034, 1.75, 3.17, and 1.51, respectively, and the
95% credible regions are [2.81,3.19], [1.39,1.93], [2.89,3.38],
and [1.28,1.67], respectively. These results indicate spatial
dependence. Therefore, these spatial parameters are well
identified by the large multisubject data set. The approxi-
mation of the Cholesky decomposition process to the spa-
tial Wishart process holds if m = o}, is large. For our
data, the posterior 95% interval of m = o, is [33.13,33.89]
and the off-diagonal coefficients are close to zeros. Both
support the asymptotic approximation. We also explored
prior sensitivity by refitting the model with the uniform
prior ranging from O to 1000 on the spatial range and
smoothness. The 95% credible regions for p,, v, pg and vg
are [2.84,3.32], [1.14,1.73], [2.61,3.21], and [1.11,1.70], respec-

tively, which are similar to the original fit, and so we con-
clude that the results are not sensitive to the prior.

To test for significance and quantify uncertainties, the
covariate effects expressed by their posterior z-scores

(Louis, 1984) are visualized. The posterior z-scores are
E[6].]
sD[6].]
SD(6].] is the posterior standard deviation. The posterior

z-scores of the cocaine use are in Figure 3; the poste-
rior z-scores of the other covariates are in Web Appendix
F (Figure F.1-4). All the covariates have effects on cer-
tain brain regions. The cocaine use is a covariate whose
diagonal coefficients have many absolutely large posterior
z-scores located at some regions. We also note that the cor-
pus callosum is strongly oriented in the left-right direction.
This may be a reason why the diagonal coefficients By,
which can be interpreted as the influence of the covariates
on the diffusion in the coordinate directions, capture most
of the variations.

Furthermore, we use the estimator in (7) to quan-
tify the drug-use effect on fractional anisotropy dr4(s).
Figure 4 (left) provides the posterior z-scores of SF 4(8)
based on the Cholesky decomposition process model and
Figure 4 (right) provides the posterior z-scores of the
Bayesian outcome regression estimator based on the uni-
variate spatially-varying coefficients model (Gelfand et al.,
2003) with the logit transformation of the DTs’ frac-
tional anisotropy as responses. The Cholesky decomposi-
tion process model provides a more definitive region where
cocaine use has a strong effect. This demonstrates the
advantages of the matrix-variate modeling over univariate
modeling. The regions of differences are located at the sple-
nium, a component at the posterior end of the corpus cal-
losum, indicating group differences between cocaine users
and noncocaine users. This result is consistent with previ-
ous clinical studies on cocaine use (eg, Lane et al., 2010).

defined as

, Where E[0].] is the posterior mean and

6 | CONCLUSION

In this paper, we propose geostatistical modeling for p.d.
matrices with applications to DTI. The spatial Wishart pro-
cess as a random field for spatially dependent p.d. matrices
offers a useful and elegant approach. A bottleneck of the
spatial Wishart process model is that the probability den-
sity function is intractable. We alleviate this problem by
proposing the Cholesky decomposition process model that
is composed of Gaussian processes and is asymptotically
equivalent to the spatial Wishart process model, which
brings the statistical and computational benefits brought
from Gaussian processes.

An important area of future work is to formally deal
with crossing fiber tracts. Although our simulation study
suggests that the proposed method can recover the pop-
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ulation mean DTI even in the presence of fiber tracts,
adapting the method to this important case may lead to
improvements. If the tracts are known a priori, than one
could propose separate spatial models in each tract. A more
sophisticated approach would be to build on spatial mod-
eling for stream networks (Ver Hoef et al., 2006). These
methods define a covariance kernel that weighs “river dis-
tance” and “spatial distance,” which could be adapted to
account for “within tract” and “across tract” distances. If
the tracts are not known in advance, one may consider
a treed Gaussian process (Gramacy and Lee, 2008) that
simultaneously searches for homogeneous subregions and
models spatial dependence in the subregions.
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SUPPORTING INFORMATION

Web Appendices, Tables, and Figures referenced in Sec-
tions 4 and 5, and R code for implementation are avail-
able with this paper at the Biometrics website on Wiley
Online Library.
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