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MRI-based techniques in revealing abnormal topological

organization in the brain (Lo et al., 2010). A primary

clinical objective is to understand how covariates (eg,

age, gender, drug use) affect DTs, reflecting its effects on

brain structure.

Incorporating spatial dependence is important for

achieving efficient and valid inference in imaging data

analysis (Spence et al., 2007; Wu et al., 2013; Xue et al.,

2018). Recently, Lan et al. (2021) also revealed that incorpo-

rating spatial dependence leads to improved performance

in the DTI region of difference selection, validated by an

application to a cocaine user data set (Ma et al., 2017). In

this paper, we focus on geostatistical methods, ie, methods

for random fields commonly used in the geostatistical lit-

erature (Gelfand et al., 2010). Current geostatistical model-

ing only focuses on random variables following univariate

or multivariate distributions (eg, univariate/multivariate

Gaussian).However, the voxel-level variable inDTI is a p.d.

matrix. In the literature, only a few relevant works have

been proposed for spatially-varying p.d. matrices (Gelfand

et al., 2004). This triggers our study of geostatistical mod-

eling of p.d. matrices.

Previous attempts to analyze DTI data can be broadly

classified into univariate modeling and matrix-variate

modeling. To avoid the complexity caused by matrix-

variate data, univariate modeling projects a DT onto

a descriptive scalar quantity such as the magnitude of

isotropy, magnitude/fractional of anisotropy, or mode of

anisotropy (Ennis and Kindlmann, 2006). Among these

scalar quantities, fractional of anisotropy is themost popu-

lar (see Lane et al., 2010; Ma et al., 2017). Several statistical

methods are proposed using fractional of anisotropy of dif-

fusion tensors as responses (eg, Zhu et al., 2013; Liu et al.,

2016). However, since these projections are surjective (eg,

different DTs may project onto the same scalar quantity),

the loss of information caused by univariate modeling

is irreversible. To this end, matrix-variate modeling has

been proposed via parameterizing the DTs as matrix-

variate random distributions such as the lognormal

distributions (Schwartzman, 2006, 2016) or Wishart

distribution (eg, Lee and Schwartzman, 2017). Martín-

Fernández et al. (2004) proposed a Gaussian Markov

random field for DTI, but the model does not ensure the

diffusion tensor in the space of p.d. matrices. Therefore,

in general, most matrix-variate models have not yet been

extended to spatial modeling because incorporating spatial

dependence for p.d. matrices is nontrivial.

To mitigate these issues, we propose a spatial matrix-

variate regression model. The covariates are incorporated

through the Cholesky decomposition (Zhu et al., 2009),

and the coefficients are spatially-varying to capture

local covariate effects. The Cholesky decomposition is

commonly used to model p.d. matrices (eg, Pourahmadi,

2007; Dryden et al., 2009). Here, we propose a new

Cholesky decomposition process model for spatial data

that approximates the original spatial model via Cholesky

decomposition of p.d. matrices as the responses, study

some theoretical properties, and develop algorithms for

scalable computing.

The spatial dependence among p.d. matrices is achieved

by the spatial Wishart process, a spatial random field

(stochastic process) supporting spatially dependent

Wishart matrices. The first use of the spatial Wishart

process was a prior for a spatially-varying covariance

matrix (Gelfand et al., 2004). In this paper, the spatial

Wishart process is used as a model for p.d. matrix obser-

vations. Considering that the literature comprehensively

describing the statistical properties of the spatial Wishart

process is sparse, we further prove that the spatial Wishart

process as a random field on uncountable locations is valid

and almost-surely continuous given some conditions.

Although the model based on the spatial Wishart pro-

cess is elegant with several nice properties, a bottleneck

of the spatial Wishart process is that its probability den-

sity function is intractable (Viraswami, 1991). Therefore,

instead of directly modeling the DTs, we propose a new

Cholesky decomposition process model that approximates

the original model by taking the Cholesky decomposition

of p.d. matrices as the responses. The Cholesky decompo-

sition process model is composed of six univariate spatial

Gaussian processes, where the parameters retain the inter-

pretations of the original model. Via theoretical results

and simulation studies, we show that the Cholesky decom-

position process model is an asymptotic approximation

and a useful working model. The theoretical results make

an important contribution of both direct and potential

value in applications of DTI and other fields, simplify-

ing matrix-variate models relying on dependent Wishart

matrices (eg, Karagiannidis et al., 2003; Kuo et al., 2007;

Smith and Garth, 2007) to multivariate models relying on

Gaussian distributions.

We also deal with massive spatial data by Vecchia’s

method (Vecchia, 1988; Datta et al., 2016), a local likeli-

hood approximation that approximates the joint density of

spatial variables as a product of conditional densities. To

demonstrate our proposal, we further investigate its per-

formance using simulation studies, and provide data anal-

ysis on cocaine user data (Ma et al., 2017), in comparison to

the univariate spatially-varying coefficient process model

(Gelfand et al., 2003). The novelty of our work is exploring

spatial associations in modeling p.d. matrix-variate data

under the framework of geostatisticalmodeling,with some

key theoretical contributions of multivariate analysis and

applications to DTI.
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2 SPATIALWISHART PROCESS
MODEL

A typical DTI data set (Ma et al., 2017) usually includes

DTs from each subject 𝑖 ∈ {1, … ,𝑁} at each voxel 𝒔 ∈

{𝒔1, … , 𝒔𝑛}, and subject-level covariates (eg, age, education

level, medical treatments). The primary clinical objective

is to detect local covariate effects on DTs. Let 𝑨𝑖(𝒔) be

the 3 × 3 p.d. DT matrix of subject 𝑖 measured at voxel 𝒔

and 𝑿𝑖 be a design matrix containing an intercept and 𝑑

subject-level covariates. The p.d. DT matrices are modeled

as parameterized Wishart matrices (Dryden et al., 2009) to

havemeanmatrix𝚺𝑖(𝒔) and degrees of freedom𝑚, denoted

as 𝑨𝑖(𝒔) ∼ (𝚺𝑖(𝒔),𝑚). To model spatial dependence and

ensure that 𝑨𝑖(𝒔) is a p.d. matrix, we decompose 𝑨𝑖(𝒔) as

𝑨𝑖(𝒔) = 𝑳𝑖(𝒔)𝑼𝑖(𝒔)𝑳𝑖(𝒔)
𝑇 . (1)

In this decomposition, 𝑼𝑖(𝒔) has mean 𝑰3 and is the spa-

tially dependent residual termmodeling variation that can-

not be explained by the covariates and the regression term

𝑳𝑖(𝒔) is the lower-triangle Cholesky matrix of the mean

matrix 𝚺𝑖(𝒔), ie, 𝔼𝑨𝑖(𝒔) = 𝚺𝑖(𝒔) = 𝑳𝑖(𝒔)𝑳𝑖(𝒔)
𝑇 . The spatial

Wishart process for 𝑼𝑖(𝒔) is described in Section 2.1, and

the regression construction for 𝑳𝑖(𝒔) as a function of 𝑿𝑖 is

described in Section 2.2. We refer to this model as the spa-

tial Wishart process model in the rest of the paper.

2.1 Residual term: Spatial Wishart
process

In this subsection, we introduce the spatial Wishart

process as a means of modeling spatial dependence.

Gelfand et al. (2004) provide the construction of the

spatial Wishart process, which is stated as follows. For

𝑗 ∈ {1, 2, … ,𝑚}, let {𝒁𝑗(𝒔) ∶ 𝒔 ∈ } be a mean-zero 𝑝-

dimensional multivariate Gaussian process with a 𝑝 ×

𝑝 cross-covariance matrix 𝚺 and a (univariate) spatial

dependence function (𝒔, 𝒔′|𝚽) determined by parame-

ters 𝚽, ie, cov(𝒁𝑗(𝒔), 𝒁𝑗(𝒔
′)) = (𝒔, 𝒔′|𝚽) × 𝚺, denoted as

𝒁𝑗 ∼ (𝟎,(𝒔, 𝒔′|𝚽), 𝚺). If for each 𝒔 ∈ , we collect

𝑼(𝒔) =
∑𝑚

𝑗=1 𝒁𝑗(𝒔)𝒁
𝑇
𝑗 (𝒔)∕𝑚 ∼ (𝚺,𝑚), then the collec-

tion {𝑼(𝒔) ∶ 𝒔 ∈ } is a spatial Wishart process, a random

field supporting spatially dependentWishartmatrices. The

spatial Wishart process can be understood as a two-level

hierarchical model where the spatial dependence of the

Wishart matrix𝑼(𝒔) is induced by the latent spatial Gaus-

sian processes {𝒁𝑗}. Also, in light of the application to DTI,

we assume 𝑝 = 3 by default.

In practice, the number of locations in  is usually

finite. However, Gelfand et al. (2010) emphasize the

importance of ensuring a valid mathematical specification

of a spatial stochastic process when the potential number

of locations is uncountable, ie, that the process satisfies

the Kolmogorov existence theorem (Oksendal, 2003). The-

orem 1 confirms that the spatial Wishart process satisfies

the conditions of the Kolmogorov existence theorem and

is a valid stochastic process.

Theorem 1 (Spatial Wishart Process). The spatial Wishart

process {𝑼(𝒔) ∶ 𝒔 ∈ } is a valid stochastic process (ran-

dom field), which gives proper finite-dimensional distribu-

tions for any collections of locations in the spatial domain.

In addition to showing that the random field is valid, we

show that it is almost-surely continuous (Property 1). The

proof of almost-sure continuity is based onKent (1989) (see

Web Appendix A).

Property 1 (Almost-Sure Continuity). Let {𝑼(𝒔) ∶ 𝒔 ∈ }

be a spatial Wishart process. If the correlation function

(𝒔, 𝒔′|𝚽) has a second-order Taylor series expansion with

remainder that goes to 0 at a rate of 2 + 𝛿 for some 𝛿 > 0,

𝑼(𝒔) converges weakly to 𝑼(𝒔0) with probability one as

||𝒔 − 𝒔0|| → 0.

Since neuroimaging data are usually collected at a

high resolution and the effect of the disease at proxi-

mally located/neighboring voxels can be similar (see Wu

et al., 2013; Xue et al., 2018), the residuals 𝑼𝑖(𝒔) should

be continuous and spatially dependent. Therefore, we

model the residuals {𝑼𝑖(𝒔) ∶ 𝒔 ∈ } for 𝑖 ∈ {1, 2, … ,𝑁}

as realizations of a spatial Wishart process with degrees

of freedom 𝑚, cross-covariance matrix 𝑰, and correlation

function(𝒔, 𝒔′|𝚽), denoted as

𝑼𝑖 ∼ (𝑚,(𝒔, 𝒔′|𝚽), 𝑰). (2)

Setting the cross-covariance matrix to 𝑰 preserves the

marginal distribution 𝑨𝑖(𝒔) ∼ (𝚺𝑖(𝒔),𝑚).

In spatial statistics and neuroimaging, understanding

the spatial dependence is essential. We quantify spa-

tial dependence of the spatial Wishart process using the

expected squared Frobenius norm (𝒔, 𝒔′) = 𝔼||𝑼(𝒔) −

𝑼(𝒔′)||2𝐹 , where ||.||𝐹 is the Frobenius norm. The expected
squared Frobenius norm can also be understood as a gen-

eralized variogram (Cressie, 1992) for matrix-variate data

(Lan et al., 2021), where an increasing spatial dependence

of 𝑼(𝒔) and 𝑼(𝒔′) leads to a smaller (𝒔, 𝒔′). Through

the variogram, we find that the spatial Wishart process

(𝑚,(𝒔, 𝒔′|𝚽), 𝚺) is separable (Cressie, 1992) since

(𝒔, 𝒔′) = 𝛾(𝑚, 𝚺)[1 −(𝒔, 𝒔′|𝚽)2], (3)
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F IGURE 1 The diffusion tensors are generated by spatial Wishart process with mean matrix 𝑰. The images of the first row are generated

with𝑚 = 10 and 𝜌 ∈ {1, 4, 10} (left, middle, right). The images of the second row are generated with 𝜌 = 4 and𝑚 = {3, 6, 10} (left, middle,

right). This figure appears in color in the electronic version of this article, and any mention of color refers to that version

where the term 1 −(𝒔, 𝒔′|𝚽)2 is the spatial term and

𝛾(𝑚, 𝚺) =
2

𝑚
𝑇𝑟(𝚺𝚺) +

2

𝑚
𝑇𝑟2(𝚺) is the nonspatial term. The

property of spatial separability makes the residual vari-

ation more transparent: The cross-dependence of p.d.

matrices depends on 𝛾(𝑚, 𝚺) such that an increasing 𝑚,

primarily controlling the variance of a Wishart matrix,

leads to smaller cross-dependence; a larger spatial corre-

lation of the underlying Gaussian processes leads to larger

spatial dependence.

The spatial dependence can be visualized via realiza-

tions of the standard spatial Wishart processes (𝚺 = 𝑰)

on a 20 × 20 grid with spacing of 1 between adjacent grid

points. Given that the spatial correlation function is expo-

nential, ie, (𝒔, 𝒔′|𝜌) = exp(−
||𝒔−𝒔′||

𝜌
), we visualize the

p.d. matrices in two dimensions as ellipsoids in Figure 1. In

Figure 1, the p.d. matrices are simulated with 𝑚 = 3 and

𝜌 = 1, 4, 10, where a larger 𝜌 leads to stronger spatial

dependence. In Figure 1, the p.d. matrices are simu-

lated with 𝜌 = 4 and 𝑚 = 3, 6, 10, where a larger 𝑚 leads

smaller cross-dependence. Since the three cases in Figure 1

maintain the same level of spatial dependence, we may

also identify that the spatial and nonspatial variations

are separable.

2.2 Regression term: Cholesky
decomposition

Expressing the mean matrix 𝚺𝑖(𝒔) in terms of 𝑿𝑖 is not

straightforward (Zhu et al., 2009; Yuan et al., 2012) because

the responses 𝑨𝑖(𝒔) are in the space of p.d. matrices but

the covariates 𝑿𝑖 are in the Euclidean space. Following

Zhu et al. (2009), we regress the (𝑘, 𝑙)th element of 𝑳𝑖(𝒔),

denoted as 𝑙𝑖𝑘𝑙(𝒔) on 𝑿𝑖 as

log 𝑙𝑖𝑘𝑘(𝒔) = 𝑿𝑖𝜷𝑘𝑘(𝒔), 𝑙𝑖𝑘𝑙(𝒔) = 𝑿𝑖𝜷𝑘𝑙(𝒔) for 𝑘 > 𝑙,

(4)

where 𝜷𝑘𝑙(𝒔) = [𝛽0𝑘𝑙(𝒔), 𝛽1𝑘𝑙(𝒔), … , 𝛽𝑑𝑘𝑙(𝒔)]
𝑇 is the

spatially-varying coefficient vector and 𝛽𝑗𝑘𝑙(𝒔) is the

 1
5
4
1
0
4
2
0
, 2

0
2
2
, 2

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/b

io
m

.1
3
4
4
5
 b

y
 C

o
rn

ell U
n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

9
/0

1
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



552 LAN et al.

coefficient associated with the 𝑗th covariate. The roles of

the coefficients 𝜷𝑘𝑙(𝒔) can be explained as linear effect

on log 𝑙𝑖𝑘𝑘(𝒔) or 𝑙𝑖𝑘𝑙(𝒔). To model the spatial dependence

of the mean effects in (4), we assign a mean-zero spatial

Gaussian process prior on

𝜷(𝒔) = [𝜷11(𝒔)
𝑇,𝜷22(𝒔)

𝑇,𝜷33(𝒔)
𝑇,𝜷21(𝒔)

𝑇,𝜷31(𝒔)
𝑇,𝜷32(𝒔)

𝑇]𝑇 ,

denoted as

𝜷 ∼ 
(
𝟎,

(
𝒔, 𝒔′|𝚽𝛽

)
, 𝜎2

𝛽
𝑰
)
,

where𝚽𝛽 is a set of spatial parameters controlling the spa-

tial dependence of mean process, and 𝜎2
𝛽
is the variance of

the Gaussian process.

3 CHOLESKY DECOMPOSITION
PROCESS MODEL

In Section 2, we show that the spatial Wishart process

model provides a means of modeling spatially dependent

p.d. matrices, and the roles of all the parameters are eas-

ily interpretable. Viraswami (1991) and others (eg, Blu-

menson and Miller, 1963; Smith and Garth, 2007) show

that a closed-form probability density function of the spa-

tial Wishart process model is not available in general,

except for some special cases. Therefore, to approximate

the spatial Wishart process model, we further propose the

Cholesky decomposition process model.

The Cholesky decomposition process model is specified

on the Cholesky decomposition elements of𝑨𝑖(𝒔), denoted

as {𝑡𝑖𝑘𝑙(𝒔) ∶ 𝑘 ≥ 𝑙, 𝒔 ∈ }, where 𝑡𝑖𝑘𝑙(𝒔) is the (𝑘, 𝑙)th ele-

ment of the lower Choelesky factor of 𝑨𝑖(𝒔). Next, we

will show that the Cholesky decomposition process is an

asymptotic approximation to the spatial Wishart process.

This means the interpretations of parameters are shared

with those in Section 2. The Cholesky decomposition pro-

cess model is below.

𝐃𝐢𝐚𝐠𝐨𝐧𝐚𝐥 ∶
√

2 log 𝑡𝑖𝑘𝑘 ∼ 

(√
2𝑿𝑖𝜷𝑘𝑘(𝒔),(𝒔, 𝒔

′|𝚽𝑢), 𝜎
2
𝑚

)
for 𝑘 = 1, 2, 3,

Off-Diagonal:𝑡𝑖𝑘𝑙|𝑡𝑖𝑘𝑘 ∼ 
(
𝑿𝑖𝜷𝑘𝑙(𝒔),

(𝒔, 𝒔′|𝚽𝑢)𝑡𝑖𝑘𝑘(𝒔)𝑡𝑖𝑘𝑘(𝒔
′), 𝜎2

𝑚

)
for 𝑘 > 𝑙. (5)

In this expression,
√

2𝑿𝑖𝜷𝑘𝑘(𝒔) and 𝑿𝑖𝜷𝑘𝑙(𝒔) are

marginal means of the diagonal and off-diagonal

Gaussian processes at location 𝒔, respectively. Also,

𝑡𝑖𝑘𝑘(𝒔) = exp(𝑿𝑖𝜷𝑘𝑘(𝒔)) and 𝜷𝑘𝑘(𝒔) is the ordinary least

squares estimates computed using only data at voxel 𝒔

from regressing log 𝑡𝑖𝑘𝑘(𝒔) on 𝑿𝑖 . The prior on 𝜷(𝒔) =

[𝜷11(𝒔)
𝑇 , 𝜷22(𝒔)

𝑇 , 𝜷33(𝒔)
𝑇 , 𝜷21(𝒔)

𝑇 , 𝜷31(𝒔)
𝑇 , 𝜷32(𝒔)

𝑇]𝑇 is the

same as what we defined in Section 2.

To provide a rigorous mathematical validation, we

also prove that {𝑨𝑖(𝒔) = 𝑻𝑖(𝒔)𝑻𝑖(𝒔)
𝑇 ∶ 𝒔 ∈ } is a valid

stochastic process and almost-surely continuous (The-

orem 2), where 𝑻𝑖(𝒔) is the lower-triangle Cholesky

matrix.

Theorem 2 (Cholesky Decomposition Process). {𝑨𝑖(𝒔) =

𝑻𝑖(𝒔)𝑻𝑖(𝒔)
𝑇 ∶ 𝒔 ∈ } is a valid stochastic process that gives

proper finite-dimensional distributions for any collections of

locations in the spatial domain. Also, if the correlation func-

tion (𝒔, 𝒔′|𝚽) has a second-order Taylor series, expansion

with remainder that goes to 0 at a rate of 2 + 𝛿 for some

𝛿 > 0, 𝑨(𝒔) converges weakly to 𝑨(𝒔0) with probability one

as ||𝒔 − 𝒔0|| → 0.

To link to the spatial Wishart process model, we set

(𝒔, 𝒔′|𝚽𝑢) = (𝒔, 𝒔′|𝚽𝑢)
2 and 𝜎2

𝑚 =
1

𝑚
. Given the asymp-

totic properties in Theorem 3, we may conclude that

asymptotically (𝑚 → ∞), the two models are equivalent

and the parameters in the twomodels have the same inter-

pretations: 𝜷𝑘𝑘(𝒔) controls the mean of log 𝑡𝑖𝑘𝑘(𝒔) and par-

tially describes local variation of 𝑡𝑖𝑘𝑙(𝒔); 𝜷𝑘𝑙(𝒔) controls the

mean of 𝑡𝑖𝑘𝑙(𝒔); 𝚽𝑢 controls the spatial residual depen-

dence. Furthermore, if we modify 𝑡𝑖𝑘𝑘(𝒔) in (5) such that

𝑡𝑖𝑘𝑘(𝒔) = exp(𝑿𝑖𝜷𝑘𝑘(𝒔)), the condition that 𝑁 → ∞ can

be omitted to show that {
√

𝑚[𝑒𝑖𝑘𝑙(𝒔1), … , 𝑒𝑖𝑘𝑙(𝒔𝑛)]
𝑇|𝑺𝑒𝑖𝑘𝑙 }

is equal in distribution to {
√

𝑚[𝑡𝑖𝑘𝑙(𝒔1), … , 𝑡𝑖𝑘𝑙(𝒔𝑛)]
𝑇|𝑡𝑖𝑘𝑘}.

However, we show that the specification in (5) leads to

computationally efficient Gibbs sampling for coefficients

(Section 3.1) and a reasonable trade-off according to the

simulation results showing the closeness of parameter esti-

mation (Section 4).

Theorem 3 (Asymptotic Properties). For 𝑖 ∈ {1, 2, … ,𝑁},

let {𝑡𝑖𝑘𝑙(𝒔) ∶ 𝑘 ≥ 𝑙, 𝒔 ∈ } and {𝑒𝑖𝑘𝑙(𝒔) ∶ 𝑘 ≥ 𝑙, 𝒔 ∈ }

be Cholesky decomposition elements of {𝑨𝑖(𝒔) ∶ 𝒔 ∈ }

following the Cholesky decomposition process model

and the spatial Wishart process model, respectively.

For 𝒔1, … , 𝒔𝑛 ∈ , we have the following asymptotic

results:

∙ Diagonal: As 𝑚 → ∞,
√

𝑚[log 𝑒𝑖𝑘𝑘(𝒔1) −

𝑿𝑖𝜷𝑘𝑘(𝒔1), … , log 𝑒𝑖𝑘𝑘(𝒔𝑛) − 𝑿𝑖𝜷𝑘𝑘(𝒔𝑛)]
𝑇 is

equal in distribution to
√

𝑚[log 𝑡𝑖𝑘𝑘(𝒔1) −

𝑿𝑖𝜷𝑘𝑘(𝒔1), … , log 𝑡𝑖𝑘𝑘(𝒔𝑛) − 𝑿𝑖𝜷𝑘𝑘(𝒔𝑛)]
𝑇 for 𝑘 = 1, 2, 3;

∙ Off-Diagonal:

◦ Let 𝝁𝑚,𝑘𝑙 (dependent of 𝑚) and 𝝁𝑘𝑙 (independent

of 𝑚) be the means of {[𝑒𝑖𝑘𝑙(𝒔1), … , 𝑒𝑖𝑘𝑙(𝒔𝑛)]
𝑇|𝑺𝑒𝑖𝑘𝑙 }

and {[𝑡𝑖𝑘𝑙(𝒔1), … , 𝑡𝑖𝑘𝑙(𝒔𝑛)]
𝑇|𝑡𝑖𝑘𝑘}, respectively. As

𝑚 → ∞, 𝝁𝑚,𝑘𝑙 converges in probability to 𝝁𝑘𝑙 , and
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𝑐𝑜𝑟(𝑒𝑖𝑘𝑙(𝒔), 𝑒𝑖𝑘𝑙(𝒔
′)|𝑺𝑒𝑖𝑘𝑙 ) converges in probability to

𝑐𝑜𝑟(𝑡𝑖𝑘𝑙(𝒔), 𝑡𝑖𝑘𝑙(𝒔
′)|𝑡𝑖𝑘𝑘) = (𝒔, 𝒔′|𝚽)2 = (𝒔, 𝒔′|𝚽);

◦ If 𝜷𝑘𝑙(𝒔) = 𝟎 for all 𝒔 ∈  and 𝑘 > 𝑙, then as 𝑚 → ∞

and𝑁 → ∞, {
√

𝑚[𝑒𝑖𝑘𝑙(𝒔1), … , 𝑒𝑖𝑘𝑙(𝒔𝑛)]
𝑇|𝑺𝑒𝑖𝑘𝑙 } is equal

in distribution to {
√

𝑚[𝑡𝑖𝑘𝑙(𝒔1), … , 𝑡𝑖𝑘𝑙(𝒔𝑛)]
𝑇|𝑡𝑖𝑘𝑘}, for

𝑘 > 𝑙;

◦ If 𝜷𝑘𝑙(𝒔) = 𝟎 for all 𝒔 ∈  and 𝑘 > 𝑙, and

that 𝑡𝑖𝑘𝑘(𝒔) = exp(𝑿𝑖𝜷𝑘𝑘(𝒔)), then as 𝑚 → ∞,

{
√

𝑚[𝑒𝑖𝑘𝑙(𝒔1), … , 𝑒𝑖𝑘𝑙(𝒔𝑛)]
𝑇|𝑺𝑒𝑖𝑘𝑙 } is equal in distribu-

tion to {
√

𝑚[𝑡𝑖𝑘𝑙(𝒔1), … , 𝑡𝑖𝑘𝑙(𝒔𝑛)]
𝑇|𝑡𝑖𝑘𝑘}, for 𝑘 > 𝑙.

In the above expression, 𝑺𝑒𝑖𝑘𝑙 denotes the selected compo-

nents of the latent Gaussian processes of the Wishart process

described in Section 2. 𝑺𝑒𝑖𝑘𝑙 are expressed as follows: 𝑺𝑒𝑖31 =

𝑺𝑒𝑖32 = {[𝑍𝑖𝑗1(𝒔), 𝑍𝑖𝑗2(𝒔)]
𝑇 ∶ 𝒔 ∈ , 𝑗 ∈ {1, 2, … ,𝑚}} and

𝑺𝑒𝑖21 = {𝑍𝑖𝑗1(𝒔) ∶ 𝒔 ∈ , 𝑗 ∈ {1, 2, … ,𝑚}}, where 𝒁𝑖𝑗(𝒔) =

[𝑍𝑖𝑗1(𝒔), 𝑍𝑖𝑗2(𝒔), 𝑍𝑖𝑗3(𝒔)]
𝑇 and 𝒁𝑖𝑗 ∼ (𝟎,(𝒔, 𝒔′|𝚽𝑢), 𝑰)

(the term is independent distributed over 𝑗, and 𝑖 is a given

and fixed subject subscript).

The asymptotic results apply to large degrees of freedom,

𝑚, when the off-diagonal coefficients are zeros. In both

models, large 𝑚 corresponds to small residual variability,

ie, images with small noise. This is a reasonable condition

in our motivating data (see Section 5) where the estimated

residual variance is small. In comparison to the spatial

Wishart process model, the Cholesky decomposition pro-

cess model is more computationally convenient because it

transforms matrix responses to scalars who follow Gaus-

sian processes.Moreover, since the underlyingmechanism

of the DT’s spatial dependence is unknown, both models

can be treated as proposed geostatistical models for DTI.

All the proofs for the results in this section are summarized

in Web Appendix B.

3.1 COMPUTATIONAL DETAILS

In this subsection, we give the computational details of this

model. We fit the model using Markov chain Monte Carlo

(MCMC) and assign priors to parameters. Given that  is

the Matern correlation function, we define 𝚽𝑢 = {𝜌𝑢, 𝜈𝑢}

as the range and smoothness parameter of the residual

dependence, and 𝚽𝛽 = {𝜌𝛽 , 𝜈𝛽} as the range and smooth-

ness parameter of the mean dependence. We give priors

to these parameters: log 𝜌𝑢 and log 𝜌𝛽 follow a normal dis-

tribution with mean 0 and standard deviation 1; log 𝜈𝑢 and

log 𝜈𝛽 follow a normal distributionwithmean−1 and stan-

dard deviation 1; 𝜎−2
𝛽

and 𝜎−2
𝑚 follow a gamma distribu-

tion with shape 0.01 and rate 0.01, which are conjugate

priors allowing Gibbs sampling. The coefficients 𝜷 are also

updated using Gibbs sampling because their full condi-

tional distributions are Gaussian distributions (see Web

Appendix C for complete details).

The computational bottleneck of the Cholesky

decomposition process model is factoring the large

𝑛 × 𝑛 covariance matrix of the residual dependence

and mean dependence (eg, Heaton et al., 2019). We

address this problem using Vecchia’s method (Vec-

chia, 1988), a local likelihood approximation that

approximates the joint density of spatial variables as

a product of conditional densities. Let 𝜔 be an arbi-

trary Gaussian process. The approximate joint density

is 𝑝[𝑤(𝒔1), … ,𝑤(𝒔𝑛)] =
∏𝑛

𝑖=1 𝑝[𝑤(𝒔𝑖)|𝑤(𝒔𝑘), 𝒔𝑘 ∈ 𝑁(𝒔𝑖)],

where 𝑁(𝒔𝑖) is a set of neighboring locations of 𝒔𝑖 (Datta

et al., 2016). This reduces the computational complexity

from (𝑛3) to (𝑛𝑞3), where 𝑞 ≪ 𝑛 is the largest size of

𝑁(𝒔). This approximation is implemented for 𝑡𝑖𝑘𝑙, log 𝑡𝑖𝑘𝑘,

and 𝜷, where lexicographical order of locations on the

regular spatial grid is used and 𝑁(𝒔𝑖) is the following

𝑞 locations with larger ranks. A sensitivity analysis is

presented in Section 4 to investigate the impact of the

tuning parameter 𝑞 on the Cholesky decomposition

process model.

4 SIMULATION

In this section, we first investigate the performance of the

Cholesky decomposition process model under data gener-

ated from either the spatial Wishart process or Cholesky

decomposition process model, demonstrating that the

Cholesky decomposition process model produces reliable

results under different geostatistical settings. Also, since

we apply Vecchia’s approximation for fast computation, we

conduct a sensitivity analysis to investigate the impact of 𝑞

on parameter estimation.

For both models, we generate the synthetic DTs on 20 ×

20 grids with spacing of 1 between adjacent grid points.

To mimic a real DTI study, 𝑁 = 10 subjects are simulated

with drug-use indicator 𝑥𝑖,𝑑𝑟𝑢𝑔 ∈ {0, 1} and normalized age

𝑥𝑖,𝑎𝑔𝑒 ∈ ℝ+. The simulation study involves 50 replications.

For each replication, there are five drug users (𝑥𝑖,𝑑𝑟𝑢𝑔 = 1)

and five nondrug users (𝑥𝑖,𝑑𝑟𝑢𝑔 = 0), and 𝑥𝑖,𝑎𝑔𝑒 is generated

by a positive half-normal distribution (Leone et al., 1961)

with mean 0 and variance 1 to mimic an age distribution

that is bounded below by entrance criteria. For each repli-

cation, all the coefficients 𝜷 are generated from a spatial

Gaussian process with variance 𝜎2
𝛽
= 0.01 and correlation

function(𝒔, 𝒔′|𝚽𝛽). We have 𝛽𝑖𝑛𝑡,𝑘𝑘 = 0, ∀𝒔 and 𝛽𝑖𝑛𝑡,𝑘𝑘 =

0, ∀𝒔 for the intercepts. We have 𝛽𝑑𝑟𝑢𝑔,𝑘𝑘 = .5, for𝒔 ∈

 , 𝛽𝑑𝑟𝑢𝑔,𝑘𝑘 = 0, for𝒔 ∉  𝛽𝑑𝑟𝑢𝑔,𝑘𝑙 = 0, ∀𝒔, for coefficients

associated with drug. We also have 𝛽𝑘𝑘,𝑎𝑔𝑒 = .25, ∀𝒔 and

𝛽𝑘𝑙,𝑎𝑔𝑒 = .25, ∀𝒔 for coefficients associated with age. The

Gaussian process mean for three covariates simulates a
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TABLE 1 Asymptotic (𝑚 = 50) simulation results for spatially-varying coefficients with the data generated from the Cholesky

decomposition process model or the spatial Wishart process model. The results are summarized in terms of mean absolute deviation of

posterior mean estimates, 95% posterior coverage, and Monte Carlo standard deviation. The values are averaged over replications, voxels (𝑛),

and covariates (𝑑)

MAD Coverage 𝟗𝟓% MCSD

Parameter 𝒒 CDP SWP CDP SWP CDP SWP

𝜷11 10 .10 .10 95% 93% .05 .05

50 .10 .10 95% 95% .05 .05

Standard .10 .09 95% 96% .05 .06

𝜷22 10 .10 .10 94% 95% .05 .05

50 .10 .10 94% 95% .05 .06

Standard .10 .09 91% 95% .05 .05

𝜷33 10 .10 .10 94% 94% .05 .05

50 .11 .10 93% 96% .05 .05

Standard .11 .09 93% 97% .05 .06

𝜷21 10 .11 .10 97% 99% .08 .07

50 .11 .10 97% 97% .08 .08

Standard .11 .10 93% 97% .07 .08

𝜷31 10 .11 .10 95% 99% .07 .07

50 .11 .10 95% 95% .07 .08

Standard .11 .10 95% 99% .07 .08

𝜷32 10 .11 .10 95% 99% .08 .08

50 .11 .10 95% 99% .08 .08

Standard .11 .10 95% 97% .07 .08

Abbreviations: CDP, Cholesky decomposition process model; MAD, mean absolute deviation; MCSD, Monte Carlo tandard eviation; SWP, spatial Wishart pro-

cess model.

scenario that drug has an effect on certain regions of the

brain and increasing age may affect the whole brain. In

all replications, we simulate the data with 𝜌𝑢 = 𝜌𝛽 = 2,

𝜈𝑢 = 𝜈𝛽 = 0.5. The degrees of freedom are set to 𝑚 = 50

(𝑚 = 3 and 𝑚 = 30 are in Web Appendix D). To investi-

gate if Vecchia’s approximation with different 𝑞 affects the

model performance,we set 𝑞 = 10, 50 and compare it to the

model without Vecchia’s approximation. For each replica-

tion, we collect 5000MCMC samples after discarding 2000

samples as burn-in.

The simulation results in terms of mean absolute

deviation of posteriormean estimates, 95% posterior cover-

age, and Monte Carlo standard deviation. The mean abso-

lute deviation of posterior mean estimates is defined as

|𝔼[𝜃|.] − 𝜃| where 𝜃 is the true value and 𝔼[𝜃|.] is the
posterior mean; the 95% posterior coverage is defined as

the empirical percentage that the true value is in the 95%

posterior; the Monte Carlo standard deviation is defined

as
√

1

𝑇

∑𝑇

𝑡=1(𝜃
(𝑡) − 𝔼[𝜃|.])2 where 𝜃(𝑡) is the 𝑡th MCMC

sample and there are totally 𝑇 MCMCM samples. The

results of 𝑚 = 50 are summarized in Tables 1 and 2; the

results of 𝑚 = 30 are summarized in Tables D.1 and D.2

of Web Appendix D and are similar to those with 𝑚 = 50.

The values in Table 1 are averaged over replications, vox-

els (𝑛), and covariates (𝑑). We find that Vecchia’s approx-

imation is acceptable because the computational times

are 6, 11, and 35 hours for models with 10 neighbors, 50

neighbors, and without Vecchia’s approximation and the

mean absolute deviation is nearly identical for all the three

methods.

We further conduct simulations with 𝑚 = 3 to study

the performance when the asymptotic approximation in

Theorem 3 is violated. The results of 𝑚 = 3 (Tables D.3

and D.4 of Web Appendix D) have inflated coverage when

data are generated from the SWPmodel. Combining these

results, we conclude that if and only if 𝑚 is large, then

the CDPmodel provides a reasonable approximation to the

SWP model.

In addition to small 𝑚, a concern with our method is

that it assumes continuity and stationarity over space, and

thus, that it may perform poorly in the presence of (cross-

ing) fiber tracts. To examine the robustness of the proposal

method in these cases, Web Appendix E conducts a simu-

lationwith (crossing) fiber tracts.We find that for the cases

considered here, the proposed method is able to estimate

the populationmeanDTI in the presence of (crossing) fiber

tracts. This agrees with Fuglstad et al. (2015) who find that

spatial models are often robust to nonstationarity.
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TABLE 2 Asymptotic (𝑚 = 50) simulation results for spatial parameters with the data generated from the Cholesky decomposition

process model or the spatial Wishart process model. The results are summarized in terms of mean absolute deviation of posterior mean

estimates, 95% posterior coverage, and Monte Carlo standard deviation. The values are averaged over replications

MAD Coverage 𝟗𝟓% MCSD

Parameter 𝒒 CDP SWP CDP SWP CDP SWP

𝜌𝑢 = 2 10 0.17 0.20 98% 98% 0.15 0.19

50 0.17 0.20 96% 96% 0.16 0.19

Standard 0.10 0.14 98% 96% 0.16 0.20

𝜈𝑢 = 0.5 10 0.033 0.033 98% 98% 0.035 0.027

50 0.033 0.033 98% 98% 0.032 0.029

Standard 0.022 0.022 97% 96% 0.040 0.031

𝜌𝛽 = 2 10 0.13 0.13 98% 98% 0.20 0.25

50 0.13 0.13 98% 98% 0.20 0.24

Standard 0.10 0.13 98% 98% 0.21 0.25

𝜈𝛽 = 0.5 10 0.038 0.038 96% 96% 0.040 0.050

50 0.038 0.038 96% 98% 0.044 0.052

Standard 0.038 0.058 98% 96% 0.043 0.053

Abbreviations: CDP, Cholesky decomposition process model; MAD, mean absolute deviation; MCSD, Monte Carlo standard deviation; SWP, spatial Wishart

process model.

Next, we compare the performance of the Cholesky

decomposition process model and the univariate spatially-

varying coefficient model (Gelfand et al., 2003). In

clinical studies and neuroimaging, the most interesting

covariate effect is the drug-use effect (𝑥𝑖,𝑑𝑟𝑢𝑔) (Brick and

Erickson, 1998). The six coefficients comprehensively

but not concisely describe the local covariate effects,

which may not be interpretable to clinicians who prefer

scalar quantities (eg, fractional anisotropy). However,

since the six coefficients capture the covariate effects

without information loss, our method can accurately

project the information onto any clinically meaningful

scalar quantity. One of the useful quantities is fractional

anisotropy, projecting a p.d. matrix onto [0,1], defined as

𝑓𝐹𝐴(𝑨) =
√

1

2

√
(𝜆1−𝜆2)2+(𝜆2−𝜆3)2+(𝜆3−𝜆1)2√

𝜆2
1+𝜆2

2+𝜆2
3

, where {𝜆1, 𝜆2, 𝜆3}

are the eigenvalues of a diffusion tensor 𝑨 (Ennis and

Kindlmann, 2006). To demonstrate this, we estimate the

treatment effect of cocaine use on each voxel 𝒔 in terms of

fractional anisotropy, denoted as 𝛿𝐹𝐴(𝒔) = 𝑓𝐹𝐴(𝚺(1)(𝒔)) −

𝑓𝐹𝐴(𝚺(0)(𝒔)). Assuming 𝑿′
𝑖 as the covariates excluding

drug use, the term 𝚺(𝑑)(𝒔) =
1

𝑁

∑𝑁

𝑖=1 𝔼[𝚺(𝒔)|𝑿′
𝑖 , 𝑥𝑑𝑟𝑢𝑔 = 𝑑]

is to describe the averaged (over subjects) mean matrix at

voxel 𝒔 under drug-use status 𝑑 ∈ {0, 1}. We use a Monte

Carlo outcome regression estimator (Rotnitzky et al., 1998)

to estimate 𝛿𝐹𝐴(𝒔), defined as

𝛿𝐹𝐴(𝒔) =
1
𝑁

𝑁∑

𝑖=1

(
𝔼[𝑓𝐹𝐴[𝚺𝑖(𝒔)]|𝒙𝑖,𝑑𝑟𝑢𝑔 = 1, 𝑟𝑒𝑠𝑡]

− 𝔼[𝑓𝐹𝐴[𝚺𝑖(𝒔)]|𝒙𝑖,𝑑𝑟𝑢𝑔 = 0, 𝑟𝑒𝑠𝑡]
)
, (6)

where the expectation can be empirically obtained by

MCMC samples.

Since the spatial matrix-variate methods in terms of

coefficients estimation have consistent results, we simply

use the results of the Cholesky decomposition process

model with 𝑞 = 10 and 𝑚 = 50. We plot the posterior

means of 𝛿𝐹𝐴(𝒔) in Figure 2, combining all voxels 𝒔 and

replications. We compare it to the univariate spatially-

varying coefficient model (Gelfand et al., 2003) with logit

transformation of fractional anisotropy as responses and

its associated Monte Carlo-based outcome regression esti-

mator (Rotnitzky et al., 1998)

𝛿𝐹𝐴(𝒔) =
1
𝑁

𝑁∑

𝑖=1

(
𝔼[𝑓−1

𝑙𝑜𝑔𝑖𝑡
[𝑦𝑖(𝒔)]|𝒙𝑖,𝑑𝑟𝑢𝑔 = 1, 𝑟𝑒𝑠𝑡]

− 𝔼[𝑓−1
𝑙𝑜𝑔𝑖𝑡

[𝑦𝑖(𝒔)]|𝒙𝑖,𝑑𝑟𝑢𝑔 = 0, 𝑟𝑒𝑠𝑡]
)
, (7)

where 𝑦𝑖(𝒔) is response and 𝑓𝑙𝑜𝑔𝑖𝑡 is the logit transforma-

tion function. In Figure 2, the Cholesky decomposition

process model produces more precise estimates for 𝛿𝐹𝐴(𝒔)

for 𝒔 ∈  with smaller uncertainties, revealing that utiliz-

ing thewholematrix information plays a key role in detect-

ing covariate effects. This claim is further verified in real

data analysis (see Figure 4).

5 APPLICATION: COCAINE USER
DATA

In this section, we apply the model to a data set of cocaine

users (Ma et al., 2017). The data are provided by the
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F IGURE 2 The left panel is 𝛿𝐹𝐴(𝒔) for 𝒔 ∈  . The right panel is 𝛿𝐹𝐴(𝒔) for 𝒔 ∉  . Estimates of 𝛿𝐹𝐴(𝒔) produced by the Cholesky

decomposition process model and the univariate model. The red dashed lines are the true values.  is a set of spatial locations inside a 4 × 4

region in the middle of the image. This figure appears in color in the electronic version of this article, and any mention of color refers to that

version

F IGURE 3 The covariate effects of cocaine use on DT expressing by the posterior z-scores of six spatially-varying coefficients. This figure

appears in color in the electronic version of this article, and any mention of color refers to that version

Institute for Drug and Alcohol Studies of Virginia Com-

monwealth University (VCU). Eleven cocaine users and

elevennon-cocaine users participated in this study. Besides

their cocaine-use status, their age and education years are

also recorded. Following the conventions in cocaine use

studies (eg, Lane et al., 2010; Ma et al., 2017), we focus on

the corpus callosum, a brain region that plays important

roles such as transferring motor, sensory, and cognitive
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F IGURE 4 The left panel is the posterior z-scores of 𝛿𝐹𝐴 based

on the Cholesky decomposition process model. The right panel is

the posterior z-scores of 𝛿𝐹𝐴 based on the univariate model. This

figure appears in color in the electronic version of this article, and

any mention of color refers to that version

information between the brain hemispheres. This region

contains 15 273 voxels.

We first fit the Cholesky decomposition process model

to the data, in order to investigate the covariate effects and

spatial dependence among voxels.We set the designmatrix

𝑿𝑖 as

[1, 𝑥𝑖,𝑑𝑟𝑢𝑔, 𝑥𝑖,𝑎𝑔𝑒, 𝑥𝑖,𝑒𝑑𝑢, 𝑥𝑖,ℎ𝑎𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠, 𝑥𝑖,𝑔𝑒𝑛𝑑𝑒𝑟], represent-

ing the intercept, drug-use (𝑥𝑖,𝑑𝑟𝑢𝑔 = 1 if subject 𝑖 is a

cocaine user, otherwise 𝑥𝑖,𝑑𝑟𝑢𝑔 = 0), age, education years,

handedness (𝑥𝑖,ℎ𝑎𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠 = 1 if subject 𝑖 is a left-handed,

otherwise 𝑥𝑖,ℎ𝑎𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠 = 0), and gender (𝑥𝑖,𝑔𝑒𝑛𝑑𝑒𝑟 = 1 if

subject 𝑖 is female, otherwise 𝑥𝑖,𝑔𝑒𝑛𝑑𝑒𝑟 = 0). All continuous

covariates are standardized. We set 𝑞 = 50 for Vecchia’s

approximation and 8000 MCMC samples are collected

after 3000 samples as burn-in. We apply the proposed

stationary model and note that our simulations suggest

a degree of robustness to the stationarity assumption;

however, for applications with severe nonstationarity, a

more sophisticated model could be applied such as those

discussed in Section 6.

To understand the spatial dependence of the DTs, we

study the posterior density of the spatial dependence

parameters 𝜌𝑢, 𝜈𝑢, 𝜌𝛽 , and 𝜈𝛽 , where the posterior mean

estimates are 3.034, 1.75, 3.17, and 1.51, respectively, and the

95% credible regions are [2.81,3.19], [1.39,1.93], [2.89,3.38],

and [1.28,1.67], respectively. These results indicate spatial

dependence. Therefore, these spatial parameters are well

identified by the large multisubject data set. The approxi-

mation of the Cholesky decomposition process to the spa-

tial Wishart process holds if 𝑚 = 𝜎−2
𝑚 is large. For our

data, the posterior 95% interval of 𝑚 = 𝜎−2
𝑚 is [33.13,33.89]

and the off-diagonal coefficients are close to zeros. Both

support the asymptotic approximation. We also explored

prior sensitivity by refitting the model with the uniform

prior ranging from 0 to 1000 on the spatial range and

smoothness. The 95% credible regions for 𝜌𝑢, 𝜈𝑢, 𝜌𝛽 and 𝜈𝛽

are [2.84,3.32], [1.14,1.73], [2.61,3.21], and [1.11,1.70], respec-

tively, which are similar to the original fit, and so we con-

clude that the results are not sensitive to the prior.

To test for significance and quantify uncertainties, the

covariate effects expressed by their posterior z-scores

(Louis, 1984) are visualized. The posterior z-scores are

defined as
𝔼[𝜃|.]
𝑆d[𝜃|.]

, where 𝔼[𝜃|.] is the posterior mean and
𝑆d[𝜃|.] is the posterior standard deviation. The posterior
z-scores of the cocaine use are in Figure 3; the poste-

rior z-scores of the other covariates are in Web Appendix

F (Figure F.1-4). All the covariates have effects on cer-

tain brain regions. The cocaine use is a covariate whose

diagonal coefficients have many absolutely large posterior

z-scores located at some regions. We also note that the cor-

pus callosum is strongly oriented in the left-right direction.

This may be a reason why the diagonal coefficients 𝜷𝑘𝑘,

which can be interpreted as the influence of the covariates

on the diffusion in the coordinate directions, capture most

of the variations.

Furthermore, we use the estimator in (7) to quan-

tify the drug-use effect on fractional anisotropy 𝛿𝐹𝐴(𝒔).

Figure 4 (left) provides the posterior z-scores of 𝛿𝐹𝐴(𝒔)

based on the Cholesky decomposition process model and

Figure 4 (right) provides the posterior z-scores of the

Bayesian outcome regression estimator based on the uni-

variate spatially-varying coefficients model (Gelfand et al.,

2003) with the logit transformation of the DTs’ frac-

tional anisotropy as responses. The Cholesky decomposi-

tion processmodel provides amore definitive regionwhere

cocaine use has a strong effect. This demonstrates the

advantages of the matrix-variate modeling over univariate

modeling. The regions of differences are located at the sple-

nium, a component at the posterior end of the corpus cal-

losum, indicating group differences between cocaine users

and noncocaine users. This result is consistent with previ-

ous clinical studies on cocaine use (eg, Lane et al., 2010).

6 CONCLUSION

In this paper, we propose geostatistical modeling for p.d.

matrices with applications toDTI. The spatialWishart pro-

cess as a random field for spatially dependent p.d. matrices

offers a useful and elegant approach. A bottleneck of the

spatial Wishart process model is that the probability den-

sity function is intractable. We alleviate this problem by

proposing the Cholesky decomposition process model that

is composed of Gaussian processes and is asymptotically

equivalent to the spatial Wishart process model, which

brings the statistical and computational benefits brought

from Gaussian processes.

An important area of future work is to formally deal

with crossing fiber tracts. Although our simulation study

suggests that the proposed method can recover the pop-
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ulation mean DTI even in the presence of fiber tracts,

adapting the method to this important case may lead to

improvements. If the tracts are known a priori, than one

could propose separate spatialmodels in each tract. Amore

sophisticated approach would be to build on spatial mod-

eling for stream networks (Ver Hoef et al., 2006). These

methods define a covariance kernel that weighs “river dis-

tance” and “spatial distance,” which could be adapted to

account for “within tract” and “across tract” distances. If

the tracts are not known in advance, one may consider

a treed Gaussian process (Gramacy and Lee, 2008) that

simultaneously searches for homogeneous subregions and

models spatial dependence in the subregions.
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