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We propose computationally efficient methods for estimating stationary multivariate
spatial and spatial-temporal spectra from incomplete gridded data. The methods are
iterative and rely on successive imputation of data and updating of model estimates.
Imputations are done according to a periodic model on an expanded domain. The peri-
odicity of the imputations is a key feature that reduces edge effects in the periodogram
and is facilitated by efficient circulant embedding techniques. In addition, we describe
efficient methods for decomposing the estimated cross spectral density function into a
linear model of coregionalization plus a residual process. The methods are applied to two
storm datasets, one of which is from Hurricane Florence, which struck the southeastern
United States in September 2018. The application demonstrates how fitted models from
different datasets can be compared, and how the methods are computationally feasible
on datasets with more than 200,000 total observations.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

There are several exciting scientific campaigns to produce and observe multivariate data that vary over space and time.
For example, large climate centers such as the National Center for Atmospheric Research (NCAR) produce high resolution
simulations of the Earth system. These models include dozens of variables evolving in concert over space and time. The
National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA)
have deployed numerous satellites that collect observations of the Earth surface and atmosphere. NASA and NOAA recently
launched a pair of satellites in its ongoing geostationary operational environmental satellite (GOES) program, the GOES-16
and GOES-17 spacecraft, that sit in geostationary orbit, continually monitoring light reflected by the Earth surface and
atmosphere in 16 separate wavelength bands. In turn, the raw data are processed to produce dozens of physically relevant
variables, such as atmospheric water vapor content and land surface temperature.

A statistical framework for analyzing these data should, at a minimum, include (1) sufficiently flexible statistical models
capable of capturing complex multivariate dependencies, and (2) computationally efficient tools for estimating the models
from data. [10] provide a thorough review of existing modeling and estimation frameworks. [ 18] conducted a theoretical
analysis of a number of multivariate spatial models from the literature and concluded that many of them impose
oversimplistic restrictions on the coherence between pairs of variables. For example, separable and kernel convolution
multivariate spatial models [22] have constant coherence. In the linear model of coregionalization (LMC) [3], when
component processes have spectral densities that decay with different rates, the coherence always converges to a non-zero
constant as the frequency increases.
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It is desirable to have models that do not impose such restrictions, for example, to have a model class that allows the
coherence to decay to zero as frequency increases. [18] showed that the multivariate Matérn models [2,12] do possess
such flexibility. However, likelihood-based estimation of parameters in multivariate Matérn models is not computationally
feasible for the massive datasets mentioned in our opening paragraph. Computational issues come from two sources.
The first is that the data size prohibits formation and factoring of the covariance matrix, necessary operations for
evaluating the likelihood function. There exist promising approximations that could in principle apply to the multivariate
case, such as Vecchia’s likelihood approximation [8,13,17,26] and hierarchical matrix approximations [1,21,25], but
these approximations are untested for multivariate models, and it is not yet clear how to optimally implement them,
and how their performance will compare to univariate cases. Such work would be a welcome development to the
literature. However, a second and perhaps more serious computational problem, even for fast approximate methods,
is that multivariate spatial models contain many more parameters, usually on the order of the square of the number
of components. The large number of parameters poses a serious issue for optimization of the (approximate) likelihood
function, which typically requires many iterations until convergence over a large parameter space. We demonstrate this
problem with a simple example in Section 4.

Nonparametric spectral methods offer the potential of addressing both the modeling and computational demands
for multivariate spatial and spatial-temporal data. In this framework, a discrete Fourier transform (DFT) is applied to
each multivariate component, and then the periodogram vectors are smoothed over frequency to generate nonparametric
estimates of the cross spectral density matrices. This approach is reasonably flexible from a modeling standpoint, since
the only assumption is that the cross spectral density matrices vary smoothly with frequency. For example, the class of
stationary spatial-temporal models includes non-separable models and asymmetric spatial-temporal models [11]. The
approach is also computationally inexpensive, since we can evaluate the DFTs quickly with FFT algorithms. However,
nonparametric spectral methods have limited applicability since they typically apply only to complete, gridded data on
rectangular domains. Moreover, even if we have such data, edge effects can introduce severe biases in the spatial and
especially the spatial-temporal cases [16]. Tapering [7] and differencing [20] have the potential to reduce edge effects,
but differencing is not possible when there are missing values, and [14] showed that tapering can be ineffective under
certain missingness scenarios and suboptimal compared to imputation-based methods.

This paper provides methods that addresses edge effects and extend the applicability of nonparametric spectral
methods to incomplete gridded multivariate spatial-temporal data. This is achieved by leveraging the simple, yet powerful
technique of periodic imputation introduced for the univariate case in [14]. We also introduce a method for decomposing
the estimated cross spectral density function into an LMC cross spectral density function plus a residual cross spectral
density function, which can be used as tool for exploring the spatial-temporal variation in the data. We apply the methods
to compare the multivariate spatial-temporal covariances of data from an ordinary storm and from Hurricane Florence,
demonstrating that these methods can computationally feasibly estimate multivariate spatial-temporal models with more
than 200,000 observations. We also show how the estimates can be interpreted to distinguish among models.

2. Iterative spectrum estimator
2.1. Model and notation

Let x € Z% be a location on the d-dimensional integer lattice, and let Y(x) = (Y;(x), ..., Yp(x))T € RP be a p-variate
mean-zero random process on Z%. The process Y is stationary if x; — x, = x3 — x4 implies that E(Y(x;)Y(x2)") =
E(Y(x3)Y(x4)"), in which case we can define K(h) = E(Y(x)Y(x + h)T) as the covariance between the process at pairs
of locations separated by lag h = (hy, ..., hg). Cramér’s Theorem [6] states that K has the representation

K(h) = (w)exp(2riw - h)dw, (1)
(o, 13

where i = +/—1, and w - h = wih; + - - - + wghy. The matrix-valued function f(w) € CP*® has (j, k) entry fi(w), and must
be a Hermitian positive definite matrix in order that K is a real and positive definite function. We call f the cross-spectral

density (CSD) function.
Let ji,...,jn € {1,...,p} and x4, ..., x, be a sequence of locations and U = (Yj,(x1), ..., Y;,(xn)) be the vector of
observations. In this notation, n is the total number of individual observations, and we may observe between 0 and p of
the components at any location. Because the process is stationary, we can assume without loss of generality that each

location x; falls “northeast” of the location (1, ..., 1) and “southwest” of some location a = (ay, ..., a4). Formally we say
that x; falls in the observation lattice X,, where
Xe={(r1,....1ra) e € {1, ..., ar}}. (2)

The methods in this paper involve imputing the multivariate process onto a domain larger than the observation lattice
Xq. To this end, define b = (b, ..., bg) with b; > a; for each j, and the corresponding embedding lattice X;. Let (U, V)
denote a complete vector of observations on X, that is (U, V) contains each of the p elements of Y(x) at each location
x € Xp, ordered with the observations U first, then the missing values V second. Fig. 1 provides a visual description of
these definitions.
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Fig. 1. For a p = 3 component dataset, observation lattice X, (light + dark gray) and embedding lattice X} (gray + white), for a = (16, 16) and
b = (20, 20). Dark gray represents locations for observations in U, light gray and white represent locations for observations in V. Note that locations
of missing data on X, need not be the same in each component.

In the next subsection, we describe methods for iteratively imputing the missing values V on Xp. However, we first
describe how we obtain a CSD estimate given a complete set of observations (U, V) on Xp. We propose the following
routine for obtaining a CSD estimate f[(U, V)]:

V(o) = Z Yj(x) exp(—27i - X), (3)
xeX,,
|Vi()?
0 = argmaxa;Fb [ logfo(w fjg(—w)] , (4)
o) = (fy(@)fy (@) ">y Mk(v)uzy(w —v). (5)

very (fo (V) (v)

The symbol Fp refers to the set of Fourier frequencies on a grid of size b, and * is complex conjugate. Each computation
written in terms of w is computed for every w € Fy. If the equation is written in terms of j, it is computed for each
j € {1,...,p}, and likewise, equations written in terms of j and k are computed also for each k € {1, ..., p}. In (3), we
compute the DFT of the complete dataset on Xp. In (4), we maximize Whittle’s loglikelihood approximation for some
parametric spectral density fy. In Sections 4 and 5 we use the quasi Matérn spectral density proposed in [15]. In (5), we
smooth the sample covariances of the normalized DFT entries with kernel y, and multiply by the square roots of the
estimated parametric spectral densities.

[14] suggested the parametric normalization in (5) as a method for reducing smoothing bias, which allows for the
use of wider smoothing kernels, resulting in estimates with smaller variance. If instead f, is assumed to be constant,
the routine for obtaining a CSD estimate reduces to a standard routine described, for example, in [4] for multivariate
time series. Nonparametric or semiparametric CSD estimation methods are desirable because the estimated CSD function
f(w) is automatically positive definite at every frequency if the support of y includes at least p Fourier frequencies in Fj.
However, when the dimension d of the field is larger than 1, substantial bias is imparted by edge effects [16,20]. In the
next subsection, we describe iterative imputation methods for reducing edge effect bias.

2.2. Iterative periodic imputation methods

[19] proposed a method for estimating a univariate time series spectrum from incomplete data by iteratively imputing
the missing data on the observation domain. [14] showed that when d > 1, univariate spectral density estimates can be
improved dramatically when data are iteratively imputed onto embedding lattice X, with a conditional simulation from a
periodic model on Xj. Here, we propose an extension of the periodic imputation method to the estimation of multivariate
cross spectral densities. At iteration ¢, the missing values V are imputed according to a Gaussian process model with a
covariance function that is periodic on Xp,

1 ® -
— > Fw)exp(2mio - h), (6)

wely

R(Z)(h) —

where f“) is the CSD function at the ¢th iteration, and m = ]_[_1 b; is the total number of locations in Xp. With the
complete dataset (U, V), we update the spectrum estimate with f @) _ f [(U, V)] and iterate. After a burn-in period of

3
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B iterations, we update with a weighted average of the previous and current spectrum, and we monitor changes in f©
for convergence. The full estimation algorithm is as follows:

Estimation Algorithm: _
Initialize with f"(w) = f[(U, 0)].
For ¢ € {1,...,B},

1. Simulate V given U from Gaussian process with covariance R,
2. Given (U, V), set f“+V =F[(U, V)].

For ¢ > B

1. Simulate V given U from Gaussian process with covariance R®).
2. Given (U, V), set

{—B—-1 1 -
(e+1) _ (€ U. V).
f Z—Bf +Z—Br[(’ )]
3. Stop if
L w) - ()
max -2 - i <
J,w f; (a))

and return CSD estimate f = f(*V,

Drawing Gaussian V given U is the main computational challenge for the iterative methods. All of the other operations
are either pointwise multiplications, divisions, DFTs, or convolutions, which can be computed with a DFT. Drawing V given
U involves an unconditional simulation from R® on X, which can be done with DFTs and pointwise multiplications. It
also involves solving a linear system with the covariance matrix for U under R'“). This is the most demanding step. We use
preconditioned conjugate gradient (PCG), which is an iterative method for solving positive definite linear systems [24].
The forward multiplications in PCG can be done in O(pm log m 4 p>m) with circulant embedding techniques [27]. We use
a preconditioner based on Vecchia’s approximation [26] that can be computed in O(pm) time.

3. Factor decompositions

The CSD f(w) has an interpretation as the covariance matrix for Y(w), the variation in Y at frequency w. This is
admittedly difficult to communicate to a diverse audience. One solution is to simply report the estimated cross covariance
function, the inverse DFT of f. To further facilitate interpretability of a p-dimensional multivariate model, it can be useful
to consider lower-dimensional representations for the CSD functions. To this end, we propose a factor model consisting
of the linear model of coregionalization (LMC) plus a residual process Z(x),

J
Y(x) =Y AW(X)+ Z(x), (7)
j=1
where A; € RP, Wy, ..., W) are univariate process components of the LMC, independent of each other and of Z, a p-variate
spatial process with correlated components. The CSD function for this process is
J
flo)="Y_AAlg(»)+ h(w), (8)

j=1

where gj(w) > 0 is the univariate spectral density for Wj, and h is the CSD function for Z.

There is a clear lack of identifiability in assigning power from f(w) to either ZAJ-A]»ng(w) or h(w); for example, any
model written as (8) can be rewritten as f(w) = hi(w), where hi(w) = ZA,-A}gg(w)—i—h(w), For this reason, we argue that
it is not meaningful to ask for an “optimal” or “true” value of J. We take the position here that since the purpose of the
factor model is to explain variation in the response with a lower-dimensional model, we should assign as much power
as possible to the factor term over a range of values of J. This is analogous to how one views the number of components
in a principal components analysis. Then the amount of variation explained by the factor term can be used as one way
to distinguish among models.

3.1. Profiled optimization

After the CSD function f has been estimated using the proposed periodic imputation methods, we aim to select
Aq,...,A;and g, ..., g in order to minimize the amount of power assigned to the residual process Z. To quantify the

4
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power, we consider the sum of the variances of the residual processes, which can be written in terms of the sum of traces
of the residual CSD function,

p J
) Var(z(x)) = % 3 Te(h(w) = % > Tr(fw) - Y AATg()). 9)
k=1 j=1

w€elFy w€eFp

subject to gj(w) > 0 and f(w) - ZA]-A]-ng(a)) nonnegative definite for each w. Even for ] = 1, minimizing the loss
function over all gj(w) is demanding because there are potentially thousands or millions individual frequencies w € Fp.
This intractability has motivated a theoretical study to find closed-form minimizers over gj(w) for fixed A = (A4, ..., A;).
This allows us to solve the global optimization problem by profiling out gj(w) and numerically minimizing the sum-of-
variance criterion over A. Further, we can assume without loss of generality that each A; lies on the unit sphere because
the radius of A; can be absorbed into gj(w), so the numerical optimization is over a J(p — 1)-dimensional space.

The sum-of-variance criterion can be rewritten as

p p J p J p
D IPIICEED I IPWCEED B WICED B IIOI I ¥ (10)
weFy k=1 weFy k=1 j=1 wely k=1 welFy j=1 k=1

The first term on the right does not depend on g; or A;, and so minimizing the criterion corresponds to maximizing the
second term subject to gj(w) > 0 and h(w) nonnegative definite for each w. For fixed A with ), Ajzk = ||Ajll> = 1, this
corresponds to maximizing ) Zj gj(w). Since the nonnegative definiteness criterion applies separately to each w, we
can maximize ngj(a)) separately for each w.

The theorem gives a result for finding the minimizers over g;(w), .. ., gj(w) for fixed A. Following the theorem are two
corollaries that give specific results for the cases ] = 1 and J = 2. To state the theorem, parameterize nonnegative gj(w)
as exp(¢;), and define the J x J matrices

C = diag(e®, ..., e9), B=A"f(w) 'A. (11)
Further, define the Lagrangian function
e, ... g A) =€ +---+e9 +rdet(C”' — B) (12)

and its gradient VL.

Theorem 1. For fixed A = (A4, ..., Aj), the minimizer of

J
Tr(h(w)) = Tr(f(w) — ) eIAA] )
j=1

with respect to cy, ..., ¢j, subject to h(w) nonnegative definite, is either a solution to VL = 0 or for some k € {1, ..., ]}, the
minimizer of
Tr(f(a)) -3 eCfAjAjT).
j#k

Proof. Assume without loss of generality that ||A;[l, = 1 for every j. We first show that h(w) is nonnegative definite but
not strictly positive definite at the minimizer. To establish a contradiction, suppose that h(w) is strictly positive definite
at the minimizer. Thus there exists ¢ > 0 such that for any ||u], = 1,

J
u’ (f(a)) - ZAjAjreCf)u > ¢.
j=1
Now consider the quadratic form

J J
o~ X £
u'(flw)— Y AAl(¢T+e/Nu>c— - WAy >e—e=0.
=1 U
This establishes that each e% could have been increased by ¢/J, and thus were not the minimizers of the trace, giving a
contradiction.
This means that the determinant of h(w) is zero at the minimizer. Consider the matrix

)
AT c |-
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Its determinant must be zero because it is equal to det(C~') det(h(w)). Its determinant is also equal to
det(f(w))det(C™" — B).

We know that det(f (w)) > 0 because f(a)) is strictly positive definite; therefore det(C~' — B) = 0 at the minimizer.
The theorem follows from using the method of Lagrange multipliers, that is, we seek to maximize Zﬁz] €% subject to

det(C~! — B) = 0, and checking the endpoints e5 = 0. O

The theorem states that the minimizers either solve the gradient of the Lagrangian or are the solution to a subproblem.
This arises because we must check the boundaries of the parameter space when using the method of Lagrange multipliers.
We must reparameterize gj(w) = exp(c;) because it is possible that the maximizer of ngj(w) subject to h(w) nonnegative
definite includes one or more negative gj(®). The following two corollaries give concrete solutions for the cases ] = 1 and
J=2.

Corollary 1. For fixed Ay, Tr(f () — A1A] g1(®)) is minimized by gi(») = (A"f(w) 'AT)~1.

Proof. When | = 1, ™! = eI, and B = By; = Alf(w)~'A;. Therefore, det(C~' — B) = 0 if and only if e~ = By; if and
only if 1 = 1/By;. O

Corollary 2. For fixed A;, Ay, Tr(f(») — A1Al g1(w) — AyALgy(w)) is minimized by either

(1) g1(w) =0 and g(w) = 1/By,
(2) g&2(w) =0 and gi(w) = 1/By,
(3)

_ By — /BBy

1) _ By1 — +/B2By
B T det(B) '

)
Proof. Setting VL = 0 yields the three equations
el +Ale™N(e”? —Byp)l =0, €?+Ale (e —B)l=0, (e —Bn)e 2 —Byp)— BBy =0.
Eliminating A gives the following two equations
e(1 — B1e) = e?(1 — Bpe?), (e ' — By)(e”? — By) — BizBa1 = 0.
One can verify that the solution is

e = Bz = VBuBn o, Bu—vBuBy
det(B) det(B)

According to Theorem 1, the solution is either the above, or the solution to one of the one-factor problems, establishing
the corollary. O

€2

)

3.2, Conditional expectation of component processes

The conditional expectations of the jth factor component given the data are

)]

1 ; 1 ,
= ﬁEvU[Z E(wj(w)ww))]ew = 75 2 §wAf@) E[¥(@) | U]e

w€eFp w€eFp

1 .
E(W;(x)|U) = Eyiy[E(W;(x)|U, V)] = Eyjy [E<ﬁ Z Wi(w)e'™

w€elFy

The conditional expectation of Y(w) given U is

E(Y(w)lU)=E L Y(X)e_iw‘x U) = L E(Y(X)|U)e_iw'x,
vm Jm

xeXp xeXp

where W is the DFT of W;. Therefore, in order to compute the conditional expectation of W;, we simply compute E(V|U),
then take the DFT of (U, E(V|U)) to obtain E((w)|U), and then take the inverse DFT of

(@A f (@) E(M(@)|U).

We use the expected factors in Section 5 to explore the decomposition of the estimated spectrum from a thunderstorm
dataset.
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Table 1
True values of multivariate Matérn parameters in simulation study for
three-component model..

Variance oji Inverse range aj, Smoothness v

1.00 157 181 025 025 025 0.500 0.625 0.750
157 400 475 025 025 025 0625 0.750 0.875
1.81 475 9.00 025 025 025 0.750 0.875 1.000

4. Simulations

The purpose of the simulation study is to demonstrate some of the computational issues with maximum likelihood
estimation of the multivariate Matérn parameters, and show how our proposed methods are capable of producing fast
and accurate estimates of the CSD function, even when we do not assume knowledge of the parametric form of the model.

The cross covariances in the multivariate Matérn model introduced by [12] can be written in terms of the Matérn
function,

rV
2V-1r(v)

M(r; v) is the Matérn function, written in terms of K,, a modified Bessel function of the second kind, with parameter
v. The parameters aj, ajj, and vj; represent the marginal variance, the inverse range, and the smoothness of Y;. These
marginal parameters must all be positive. To ensure positive definiteness of the multivariate Matérn, [12] give conditions
on the parameters in the bivariate Matérn model, and [2] give conditions on the parameters in a more general p-variate
setting.

In the simulation study, we consider p = 2, 3, and 4. The inverse range and smoothness parameters are o = 0.25
and vy, = 0.540.5(j + k — 2)/(2p — 2). To define the variance parameters, let 8 be a p x p matrix with By = 0.8U=4 The
variance parameters are

F(vi) T+ DF (e + 1)
(v + 1) I'(vi)IM (Vi)

Cov(Yj(x), Y(x + h)) = Kje(h) = opM(llhllej s vi),  M(r;v) = Ku(r); (13)

ojk = jk Bik- (14)
This particular model parameterization is from the parsimonious multivariate Matérn family [12]. Table 1 presents the
specific parameter values used when p = 3, and Fig. 2 shows one realization from the p = 3 model. Due to the symmetry
constraints ojx = 0y, Ajk = oj, and Vi = vy;, the full multivariate Matérn has 3p(p + 1)/2 unique parameters. For p = 2,
this is 6 parameters; for p = 3, 18 parameters; for p = 4, 30 parameters. A mentioned in Section 1, the large number of
free parameters is one aspect of the computational difficulty of working with the multivariate Matérn model.

We specify grid size (16, 16) and simulate 70 datasets for each value of p € {2, 3, 4} with no missing values on
the grid. Scenarios with missing values, along with a comparison to tapering, were considered for the univariate case
in [14]. To estimate multivariate Matérn parameters, we use the exact Gaussian likelihood function, maximized using
the optim function in R with the default Nelder-Mead algorithm. The estimation procedure makes no assumptions that
the true model is a member of the parsimonious multivariate Matérn family since we aim to evaluate the performance
of maximum likelihood on Multivariate Matérn under weak assumptions. We run the Nelder-Mead algorithm for 6000
iterations, stopping at each 1000 iterations to report estimation progress and elapsed time.

For our proposed periodic imputation methods, we take three choices of expansion parameter 7 € {1.00, 1.25, 1.50},
and we use the parametric variant of the iterative algorithm, run for 50 burn-in iterations, and an averaging tolerance of
& = 0.01. We use a Gaussian smoothing kernel, with four bandwidth choices in {0.15, 0.20, 0.25, 0.30}; a bandwidth of
b corresponds to (100b)% of the frequency domain. For the parametric filter, we use the quasi-Matérn spectral density

(
—v—d)2
02( o 51n2(w1/2)+sin2(a)2/2))> . (15)
2

The parameter o~ can be profiled out, so at each iteration, Whittle’s likelihood is optimized over the two-dimensional
parameter space («, v) for each of the p components.
To evaluate the estimators, we consider a spectral norm criterion

- § A (F72(@) (Fl@) — F(0) ) V(@) (16)

where Amax(M) is the largest absolute eigenvalue of matrix M, f is the true CSD function, f -12

square root, and f is the estimate.

The results of the simulation study are given in Table 2. When no periodic embedding is used (r = 1.0), the estimates
are computed extremely fast but are poor relative to the other estimators. The poor performance when t = 1.0 highlights
the fact that spectral estimators based on the periodogram of the observed data can suffer from severe edge effects. The

is the inverse symmetric

7
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Fig. 2. One realization from the three-component multivariate Matérn model used in the simulation study.
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Table 2

Simulation study results, showing 0.25, 0.50 and 0.75 quantiles of spectral norms over 70 simulation replicates for 2-, 3-, and
4-component models. Periodic imputation methods are evaluated at three expansion factors and with kernel bandwidth 0.30.
Maximum likelihood is conducted in R with optim function using Nelder-Mead algorithm. Time is average time in minutes
over 70 simulation replicates.

Components  Quantile  Periodic imputation expansion Maximum likelihood multivariate Matérn Nelder-Mead
factor iterations

1.00 1.25 1.50 1000 2000 3000 4000 5000 6000

2 0.25 1.206 0.253 0.243 0200 0.181 0.170 0.173  0.170 0.172
0.50 1.630 0.276 0.266 0277 0218 0.208 0.204 0.204 0.201
0.75 2.540 0.304 0.295 0341 0275 0272 0245 0242 0.239
time 0.078 0.227 0.261 16.2 33.1 50.0 66.5 83.0 98.3

3 0.25 1.300 0.306 0.302 0579 0415 0392 0386 0361 0.360
0.50 1.767 0.337 0.328 0.686 0487 0455 0441 0440 0.428
0.75 2.494 0.379 0.358 0958 0563 0526 0.504 0.487 0.488
time 0.081 0.273 0.296 22.2 44.4 67.4 89.8 112.2 138.3

4 0.25 1412 0.372 0.358 1627 0713 0.587 0535 0521 0.504
0.50 1.888 0.398 0.383 2096 0927 0720 0.667 0.605 0.594
0.75 2.654 0.429 0.407 2.847 1197 0.834 0.801 0719 0.681
time 0.090 0.363 0.416 29.8 59.8 90.2 118.1 1474 175.9

periodically embedded estimators are nearly as accurate or more accurate than maximum likelihood, even after 6000
Nelder-Mead iterations. When p = 2 the periodic imputation estimators are slightly worse in terms of spectral norm,
whereas the periodic imputation estimators are better when p = 3 and p = 4, even though no knowledge of the true
CSD functions is assumed. Further, the periodic imputation methods are much faster. They converge on average in less
than 25 s in every case, whereas the maximum likelihood estimates converge in several thousand iterations and take on
the order of one to three hours.

The simulations were conducted on a single node of the Cheyenne supercomputer managed by the National Center for
Atmospheric Research [5]. Each node has 36 2.3-GHz Intel Xeon E5-2697V4 processors, and each processor has 2 threads.
One processor was used to manage the parallel tasks, and each of the remaining 35 processors analyzed two datasets in
parallel on the two threads. The computing times in Table 2 should be understood in the context that only a single thread
was used to analyze each dataset. We can expect up to, for example, a four-fold speedup for each task when running the
code on a two core machine with four total threads.

5. Multivariate spatial-temporal analysis of storms

Launched in November 2016, the GOES-16 satellite now sits in geostationary orbit, allowing its Advanced Baseline
Imager (ABI) to capture images of the Earth’s atmosphere in 16 wavelength bands at up to 500 m resolution in space and
up to 30 s in time. GOES 16 produces terabytes of data per day and provides a wealth of information about atmospheric
processes. In this section, we perform a multivariate spatial-temporal analysis of images from two separate storms, one of
which is an ordinary convective storm formed over Florida from July 22, 2018, while the other is from Hurricane Florence
on September 14, 2018, the day it made landfall with the southeastern U.S. coastline. The analysis is demonstrative of the
sort of comparisons that are possible with our proposed methods.

For each storm, we analyze 60 images from 4 wavelength bands separated by 1 min. Band 1 has a native resolution of
1 km, while the resolution of the other bands is 2 km. We locally average the Band 1 data to coincide with the resolution
of the other bands. Fig. 3 contains images from Band 1 at the beginning, middle, and end of the hour. A stationary model is
unrealistic for the entire scene, and so we subset the data to the black polygons in Fig. 3, where the stationary assumption
is more tenable. Fig. 4 contains the subsetted images from the middle time point at the four wavelength bands. Table 3

8



J. Guinness Journal of Multivariate Analysis 187 (2022) 104823

Table 3
Information about Advanced Baseline Imager bands used in multivariate
spatial-temporal analysis.

Band Wavelength Nickname

1 0.47 microns Blue Band

6 2.2 microns Cloud Particle Size Bands

7 3.9 microns Shortwave Window Band

9 6.9 microns Mid-Level Tropospheric Water Vapor Band

t=30 t=60

t=30 t=60

Fig. 3. Data from ordinary storm (top) and from Hurricane Florence (bottom) at three time points (of 60), with subsetted data indicated by black
polygons. Band 1 (“blue” band) plotted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

contains information about the bands selected for the analyses. We choose one band in the visible spectrum since the
visible spectrum bands are all highly correlated due to the grayscale color of clouds; Band 6 contains information about
particle sizes; Band 7 can be used for ice detection; and Band 9 contains information about water vapor content in the
mid-troposphere [23]

The ordinary storm has observation lattice size a = (55,57, 60) in longitude, latitude, time, with 253,504 total
observations; Florence has a = (47, 31, 60), with 167,804 total observations. For both storms, we specify expansion factor
t = 1.25, extending the lattice by 25% in each of the three dimensions, and we again use the quasi Matérn parametric
spectral density. Before estimation, we subtract off the sample mean 71, from each component. We use B = 20 burn-in
iterations, and we specify convergence tolerance parameter ¢ = 0.005. The ordinary storm CSD estimates converge after
6 averaging iterations, which took 3.40 h total for burn-in and convergence. Florence converged after 15 iterations and
took 1.43 h. All computations are in the R programming language and run on an Intel Core i5-7200 CPU (2 cores, 4 threads
at 2.50 GHz) with 8GB memory. Vecchia's preconditioner is implemented in C++ with the Rcpp package [9].

To visualize the fits, we include plots of the estimated real part of the coherences for the two storms in Fig. 5. We see
that for the ordinary storm, the coherence between Bands 1, 6, and 7 persists throughout the frequency domain, while
Band 9 has a slight negative coherence with the other bands throughout the domain. The situation is quite different for the
Hurricane Florence data; Band 9 has a small amount of positive coherence with Bands 1 and 7 and is negatively coherent
with Band 6. The coherences weaken at the highest frequencies. Bands 1, 6, and 7 are weakly coherent.

The total variation differs widely between the four bands; for example, in the ordinary storm, the estimated standard
deviations are 41.15, 0.70, 0.01 and 0.20. These differences in variation are not necessarily a reflection of the relative
importance of the bands, so instead of decomposing the estimated CSD functions f directly - which would undoubtedly
return vectors A; attempting to explain variation in Band 1 - we decompose the normalized CSD function

Flw) = 24D (17)
Gii(0)Cik(0)
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Fig. 4. Data from ordinary storm (top) and from Hurricane Florence (bottom) at ¢t = 30, from Bands 1, 6, 7, and 9.
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Fig. 5. Estimated real part of coherences for ordinary storm (top row) and Hurricane Florence (bottom row) at various frequencies w = (w1, wz, w3).
“Low” refers to wj = 0, “mid” to w; = 1/4, and “high” to w; = 1/2. In each 3 x 3 group of coherence matrices, rows correspond to latitudinal
frequencies, columns to longitudinal frequencies.

where @(0) is estimated covariance function at lag zero, that is, the estimated variance. Table 1 provides a summary of
the decompositions. For the ordinary storm, the ] = 1 decomposition puts most of its weight on Bands 1, 6, and 7. When
J = 2, Ay is nearly unchanged, and A, explains variation in Band 9. For the Hurricane Florence data, when | = 1, A points
mostly in the direction of Bands 1, 6, and 9. When ] = 2, A; changes little, and A, explains common variation in Bands
1 and 6 (see Table 4).
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Table 4

Estimated factor decompositions for the | = 1 factor model and the | = 2 factor model for both
the Ordinary Storm and Hurricane Florence, namely the loadings placed on each band in the factor
decompositions. The bottom row gives the percent of variance exlained by the factors.

Band Ordinary Storm Hurricane Florence
J=1 =2 J=1 ]=2
Aq Aq Ay A A Ay
1 —0.498 —0.492 0.000 —0.444 —0.446 —0.642
6 —0.634 —0.634 0.000 0.463 0.458 —0.763
7 —0.590 —0.594 0.000 —0.107 —0.104 —0.031
9 0.049 0.054 —1.000 —0.760 —0.762 —0.064
% explained 43.3% 58.5% 34.0% 55.1%
Band 1 Band 6 Band 7 Band 9
- g .
- 450 L - 2.2
L 400 g - 2.0
s - 350 L 5 - 18
5 L 300 |, - 1.6
L 250 L5 L4
- 200 L > - 1.2
L 150 - [~ 10
-8 -
- 450 L - 2.2
5 - 400 L. - 20
9 - 350 L - 1.8
E L 300 | - 1.6
1 L 250 . 14
= - 1.2
- 200 -2
- 150 -1 Lo
- - 8 n
- 450 L - 2.2
4 - 400 - 2.0
£ i 18
Q - 350 L s '
= - 300 | . - 1.6
N - 14
[} - 250 -3
- - 200 L - 12
- 150 -1 - 10

Fig. 6. Data from time t = 30 (top row), one factor representation (middle row), and two factor representation (bottom row). Factor representations
use the expected values of W; given the data.

Lastly, in Fig. 6, we plot the original ordinary storm data from t = 30, and the expected ] = 1 and ] = 2 factor
representations of each band k,

J
T+ Gu(0) Y ARE(W(x)|U). (18)
j=1
We can see that the one-factor representation ignores variation in Band 9 but captures much of the variation in Bands 1,

6, and 7. This is expected since these three bands are strongly coherent across frequencies. The two-factor captures some
of the variation in Band 9 but still oversmooths.

6. Discussion

We have introduced simple, flexible, and computationally efficient methods for estimating stationary multivariate
spatial-temporal models from incomplete gridded data. The methods rely on successive imputation of data onto an
expanded lattice under a model that is periodic on the expanded lattice. The simulation studies demonstrate that the
periodic domain expansion is crucial for addressing edge effects; when no expansion is performed, the estimates of the
spectrum are poor. The new estimates are competitive with maximum likelihood - though much faster - when there are
p = 2 multivariate components, and the estimates are faster and more accurate than maximum likelihood with p > 2
components. We have argued that this arises both from the computational demand of evaluating the likelihood function,
and of maximizing over the large number of parameters in the multivariate Matérn model.

11



J. Guinness Journal of Multivariate Analysis 187 (2022) 104823

Table 5

Expanded simulation study results. 0.25, 0.50, and 0.75 quantiles of spectral norms for p = 2-, 3-, and 4-component models, for all four smoothing
kernel bandwidths, 0.15, 0.20, 0.25, and 0.30, for three expansion factors 7, for the periodic imputation methods. Time is average time in minutes
to convergence over 70 replicates.

T = 1.00 T=125 T =150
bandwidth 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30
2 0.25 1.362 1.303 1.248 1.206 0.305 0.262 0.253 0.253 0.270 0.239 0.241 0.243
0.50 1.809 1.717 1.660 1.630 0.343 0.286 0.276 0.276 0.305 0.276 0.270 0.266
0.75 2.726 2.619 2.567 2.540 0.373 0.316 0.303 0.304 0.330 0.294 0.293 0.295
minutes 0.085 0.075 0.080 0.078 0.289 0.263 0.237 0.227 0.354 0.316 0.296 0.261
3 0.25 1.547 1.428 1.353 1.300 0.423 0.338 0.315 0.306 0.388 0.323 0.312 0.302
0.50 1.992 1.856 1.798 1.767 0.449 0.376 0.349 0.337 0.410 0.346 0.329 0.328
0.75 2.776 2.630 2.544 2.494 0.479 0.410 0.391 0.379 0.449 0.383 0.363 0.358
minutes 0.091 0.082 0.082 0.081 0.384 0.326 0.282 0.273 0.413 0.354 0.327 0.296
4 0.25 1.806 1.604 1.480 1.412 0.501 0.405 0.375 0.372 0.447 0.381 0.361 0.358
0.50 2.238 2.092 1.964 1.888 0.532 0.441 0.399 0.398 0.475 0.405 0.390 0.383
0.75 3.105 2.898 2.754 2.654 0.569 0.479 0.448 0.429 0.509 0.439 0.414 0.407
minutes 0.102 0.089 0.092 0.090 0.487 0.424 0.380 0.363 0.593 0.489 0.445 0.416
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2
E E z N -
) 2 2
L @w
(=}
3 3 2 L o
E g g S
e
— <
I

hi
hi
hi
n
1o

Low Temporal Frequency Mid Temporal Frequency High Temporal Frequency
low mid hi low mid hi low mid hi
o
g 3 £ | e
= = =
-2
=t =t 2 o
2] g g r 3
L3
I
£ = =

-

Fig. 7. Estimated imaginary part of coherences for ordinary storm (top row) and Hurricane Florence (bottom row) at various frequencies w =
(w1, @y, w3). “Low” refers to w; = 0, “mid” to w; = 1/4, and “high” to w; = 1/2. In each 3 x 3 group of coherence matrices, rows correspond to
latitudinal frequencies, columns to longitudinal frequencies.

The paper describes a method for decomposing the estimated spectrum into a linear model of coregionalization plus
a residual multivariate process. The decomposition is meant as an exploratory tool for understanding the variation in the
data. Finding an optimal such decomposition proved to be an interesting topic, and we have provided some theoretical
results that make the numerical search over possible decompositions feasible. The factor decomposition was applied to
two storm datasets, where we found that two-component decompositions explained roughly half of the variation in the
data.

Only one- and two-factor decompositions were pursued here. Higher-order decompositions are in principle computa-
tionally feasible using Theorem 1 and some tedious algebra, but we leave this problem for future work. We have also not
explored the predictive capabilities of the fitted models. Prediction is an interesting and important topic in multivariate
spatial-temporal models, see for example [28], but we have decided to focus instead on exploring the model fits and how
they differ for two types of storms.
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Fig. 8. Hurricane Florence data from time t = 30 (top row), one factor representation (middle row), and two factor representation (bottom row).
Factor representations use the expected values of W; given the data.

This paper explores only stationary models. We have argued that fitting stationary multivariate spatial and spatial
temporals has remained a difficult task, despite significant advances in the univariate case. A look at the storm data
indicates that nonstationary models are needed as well. We leave that topic for future work but note that it may be
possible to partition the spatial-temporal domain into blocks, and use the methods proposed in this paper to fit separate
stationary models to each of the blocks of data. It would be interesting to explore methods for stitching the stationary
models together into a globally nonstationary model.

Finally, we have not addressed the important issue of how to obtain standard errors for the cross spectral densities,
which is complicated by the missing values. This will become especially important as we move towards analyzing datasets
with a large number of multivariate components; in this case, we often desire a procedure for selecting the non-zero
components of the cross spectral density or its inverse.

Acknowledgments

This work was supported by the National Science Foundation, USA under grant numbers 1613219 and 1916208 and
the National Institutes of Health, USA under grant number RO1ES027892.

Appendix. Supplementary table and figures

Table 5 contains simulation results for the periodic imputation methods for all four bandwidths. Fig. 7 contains
estimated imaginary parts of the coherences for both storm datasets. Fig. 8 shows Hurricane Florence data and estimated
one- and two-factor representations of the data.
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