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ABSTRACT

We study the problem of sparse signal detection on a spatial domain. We propose a novel approach to
model continuous signals that are sparse and piecewise-smooth as the product of independent Gaussian
(PING) processes with a smooth covariance kernel. The smoothness of the PING process is ensured by
the smoothness of the covariance kernels of the Gaussian components in the product, and sparsity is
controlled by the number of components. The bivariate kurtosis of the PING process implies that more
components in the product results in the thicker tail and sharper peak at zero. We develop an efficient
computation algorithmbasedon spectralmethods. The simulation results demonstrate superior estimation
using the PING prior over Gaussian process prior for different image regressions. We apply our method
to a longitudinal magnetic resonance imaging dataset to detect the regions that are affected by multiple
sclerosis computation in this domain. Supplementary materials for this article are available online.
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1. Introduction

In this article, we discuss linear regression models for two- or

three-dimensional image responses, image covariates, or both,

in which the signal is assumed to be continuous, sparse and

piecewise smooth. The methodological development is moti-

vated by a study of multiple sclerosis (MS) using magnetic

resonance imaging (MRI) (Sweeney et al. 2016; Pomann et al.

2016; Mejia et al. 2016), where subjects with MS are imaged

repeatedly over multiple hospital visits, and the objective is to

identify the brain regions that are damaged over time. Although

a healthy brain would not changemuch during the study period,

a diseased brain is expected to exhibit changes in a small num-

ber of regions of interest that are associated with the disease.

This is an example, where using an image-on-scalar regression

framework, would require the signal to be continuous, sparse

and piecewise smooth.
Modeling a continuous, sparse and piecewise-smooth sig-

nal for high-dimensional data poses several challenges such
as (i) handling the complex spatial dependence of the data,
(ii) accounting for a simultaneously sparse and continuous,
where sparsity is defined in terms of the number of nonzero
smooth pieces that comprise the signal, and (iii) accommodat-
ing a possibly large dimensional signal. Approaches to estimate
a sparse signal exist both by using a frequentist perspective
(such as Tibshirani 1996; Tibshirani et al. 2005) as well as
a Bayesian paradigm. We focus on the latter as it allows to
also quantify estimation uncertainty. In a Bayesian framework,
parameter sparsity is modeled using the traditional spike and
slab prior (Mitchell and Beauchamp 1988), the horseshoe prior
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(Carvalho, Polson, and Scott 2010), normal-gamma prior (Grif-
fin and Brown 2010), double-Pareto prior (Armagan, Dunson,
and Lee 2013), or Dirichlet-Laplace prior (Bhattacharya et al.
2015). However, none of these priors ensures a smooth spa-
tial structure. In the context of high-dimensional data, this
adds computational challenges as well. Reducing computational
demand is an important task that we address in this article.

Estimating sparse and spatially smooth signals has been
attracting increasing interest in image regression. For image-
on-scalar regression, Yan and Liu (2017) and Chen et al.
(2016) tackled a similar problem. The first article considers
a Laplacian-type penalty and the second article introduces
a fused SCAD-type penalty to account simultaneously for
spatial smoothness and sparsity. In the context of functional
magnetic resonance imaging (fMRI) studies, Zhang et al.
(2016) and Musgrove, Hughes, and Eberly (2016) considered
similar regression models. Their estimation approach uses a
spike-and-slab prior to induce sparsity and considers spatial
smoothness for the parameter selection. However, the approach
does not guarantee that the estimated signal is smooth. In
scalar-on-image regression, there is limited work on sparse
and piece-wise smooth signal estimation. Goldsmith, Huang,
and Crainiceanu (2014) and Li et al. (2015) proposed priors
that account separately for spatial dependence and sparsity.
For the same problem, Wang and Zhu (2017) proposed a
penalty based on the total variation. Spatial dependence is still
not fully incorporated in this approach. In Kang, Reich, and
Staicu (2016), the proposed soft-thresholded Gaussian process
(GP) prior account for both spatial dependence and sparsity
simultaneously. The method is computationally very expensive.
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In the context of image response and image predictors, there
is a more limited research (Morris et al. 2011; Jog, Carass, and
Prince 2013; Sweeney et al. 2013). Noh and Park (2010), and
Tang, Wang, and Zhu (2013) considered a varying co-efficient
model that accounts for sparsity but not smoothness. To the best
of our knowledge, only Boehm-Vock et al. (2015) and Jhuang
et al. (2018) considered both smoothness and sparsity for image-
on-image regression. Their methodology captures the spatial
dependence using copulas, which is computationally expensive
for large datasets. Our proposed prior has nice conjugacy
structure and leads to computational advantages.

In this article, we propose a novel prior for modeling con-
tinuous, sparse and piecewise smooth signals. We construct the
prior as the location-wise product of independent GPs with
smooth covariance kernel. The proposed prior has both high
mass around zero, which creates sparsity in the estimation, and
a smooth covariance kernel that ensures large support for the
spatially varying function. To handle the heavy computational
burden associated with this kind of prior, we propose to use the
discrete Fourier transformation (DFT) that decorrelates the sta-
tionary part of the response. Specifically, we use the fast Fourier
transformation (FFT). The FFT algorithm requires regularly
spaced input data. In reality, the datasets are not often on a
regular grid. To bypass this issue, we propose a fast imputa-
tion technique to transform the data into a regular grid. If the
dimension of the dataset is manageable for computation in the
spatial domain, one can exploit the conjugacy structure of our
prior to get the full conditional distribution of parameters given
the error process is Gaussian. We analyze the performance of
our prior with respect to commonly used GP prior in different
linear image regressions with signals that are sparse, piecewise
smooth and continuous.

The remainder of the article is organized as follows. In the
next section, we describe the image-on-scalar regression model
along with the new sparse prior process. We discuss the usage
of our new prior to other image regression models in Section 3.
In Section 4, we describe other computational aspects that we
use for faster computation. In Section 5, we evaluate the finite
sample performance of this new prior in the case of different
image regressionmodels.We apply ourmethod to a longitudinal
MRI data in Section 6 and end with some concluding remarks
in Section 7.

2. TheModeling Framework

Our research is motivated by a longitudinal study of MS via
MRI images. We introduce the main ideas for the case when
we have images collected at multiple time points for a single
subject. Specifically, let Yi(v) be the intensity of the ith MRI
image collected at time ti and for a three-dimensional voxel v for
an MS subject. Consider the following linear image-on-scalar
regression model:

Yi(v) = α(v) + tiβ(v) + Ei(v), (1)

where α(v) is a spatially varying intercept function and β(v) is
an unknown continuous function that quantifies the effect of
time. Additionally, it is assumed that β(·) is piecewise smooth
and sparse. The error Ei(v) is a spatially correlated mean-zero

error process, independent across visits. We hypothesize that
β(v) = 0 for most of the voxels except for voxels forming spa-
tially contiguous subsets where β(v) �= 0. Thus, an alternative
formulation of our proposed model could be writing it in terms
of a frequentist hypothesis testing problem. However, in our
Bayesian framework, we may specify a sparse prior for β(v) in
the above model (1) itself and assess the frequentist properties
of our decision rules for identifying the voxels with β(v) �= 0 in
terms of true positive (TP) and false positive (FP) proportions.
In this article, our proposed sparse prior for β(v) is a product of
independent GPs. We formally describe its properties and the
error process in the remainder of this section.

2.1. PING Process

Let β1(v), . . . ,βq(v) be q independent and identically dis-
tributed GPs with mean E{βj(v)} = 0, variance V{βj(v)} =
1, and covariance kernel cov{βj(v),βj(v

′)}=K(v, v′) for j =
1, . . . , q. The zero-mean product of independent Gaussian
(PING) stochastic process is defined as the point-wise product
of independent GPs, β(v) = σβ1(v) · β2(v) · . . . · βq(v),
where σ > 0 is a scale parameter. The stochastic process
β = {β(v) : v ∈ V} constructed in this way is denoted
β ∼ PING(q, σ 2,K).

2.1.1. Properties of theMarginal Distribution

We first discuss the distribution of the PING process at a single
location v. The theoretical properties of the marginal distribu-
tion of β(v) have been studied by Stojanac, Suess, and Kliesch
(2017) and Gaunt (2018). Gaunt (2018) provided detail results
on characteristic function and propose estimates for the tail
behavior of product normals. We briefly revise some of its
properties here for completeness. Themarginal density function
fq(x) for the product of q standard normals is given by fq(x) =

1
(2π)q/2

G
q,0
0,q(

x2

2q |0), where G(·) denotes the Meijer G-function

(Stojanac, Suess, and Kliesch 2017). The kth marginal moment
is E{β(v)k} =

[

(k − 1)!!
]q

where n!! is the product of all
numbers from 1 to n that have the same parity as n. The density
is unimodal and symmetric about zero; thus, all the odd-order
moments are zero. The variance isV{β(v)} = σ 2. The marginal
kurtosis is equal to 3q−3which is an increasing function of q. As
a result, the marginal density has thicker tail and sharper peak
at zero for larger q. This is depicted in the first row of Figure 1.
Furthermore, fq(x) ∼ q exp(−q(x2/2q)1/q) as x goes to infinity
and thus the tail is heavier than Gaussian for q > 1 and it gets
heavier as q increases; (see Gaunt (2018)).

2.1.2. Properties of the Bivariate Distribution

Next, we study the bivariate properties of the PING process
at a pair of locations v1 and v2. From the construction of the
PING process with q components, this bivariate distribution
is in fact the distribution of the product of q bivariate nor-
mals. Simple calculations show that its mean is E{β(vj)} =
0 for j = 1, 2, and its covariance is cov{β(v1),β(v2)} =
σ 2Kq(v1, v2), implying a correlation coefficient that is smaller
than the correlation of each individual Gaussian components
and that further decays with the number of components, q.
In particular, if K(·) is the powered exponential correlation

kernel, K(v1, v2) = exp{−
( ||v1−v2||2

ρ

)ν}, the PING covariance
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Figure 1. Comparison of Gaussian density with PING-3 and PING-5 densities.

is exp{−
( ||v1−v2||2

ρq−1/ν

)ν}, where the ν and ρ are smoothness and

range parameters, respectively. Therefore, while the covariance
decreases with q for a fixed kernel function, strong spatial cor-
relation can be maintained for large q by simply increasing the
parameter ρ with q. The smoothness of the product process is
the same as that of its individual components for these power
exponential cases.We expect that separating sparsity and spatial
dependence hold for other kernel functions as well. To quantify
the shrinkage properties, we study the kurtosis of this product
distribution. Kurtosis of a multivariate random variable Z of

dimension pwith meanμz and covariance matrix�Z is defined
as E[(Z − μZ)T�−1

Z (Z − μZ)]2 − p(p + 2) (Mardia 1970).
The kurtosis of a general product of bivariate normal random
variable is summarized by the following theorem.

Theorem 1. Let Z1, . . . ,Zq be such that Zi
ind∼ BVN(0, 0, σ 2

i1,
σ 2
i2, ρ) for i = 1, . . . , q and Pq = Z1

⊙

. . .
⊙

Zq. The mean
and the covariance matrix of Pq are E(Pq) = 0 and

cov(Pq) =
[ ∏q

i=1 σ 2
i1 ρq

∏q
i=1 σi1σi2

ρq
∏q

i=1 σi1σi2
∏q

i=1 σ 2
i2

]

.
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The kurtosis is Kurt(q,m) = 2×3q

(1−mq)2
[1 + 2( (1+2m)m

3 )q +
( 1+2m

3 )q − 4mq] − 8, withm = ρ2 and it increases with q.

Here, “BVN” stands for bivariate normal and
⊙

denotes the
element wise product.We allow varying variances for individual
components as the kurtosis does not depend on the variances.
Supplementary materials for details. The “increasing” prop-
erty of the kurtosis results from the application of arithmetic
and geometric means inequality. The distribution of β(v) for
two locations v1 and v2 under a PING process has the above-
mentioned properties with σi1 = σi2 = 1 for i > 1. Since it is
a unimodal symmetric distribution, higher kurtosis suggests a
heavier tail andhigher peakedness at zero as q increases; Figure 1
depicts the joint density function of β(v1) and β(v2) for q =
1, q = 3 and q = 5, and for different correlations. In this plot, we
observe that the mass at zero increases with q while they share
the same covariance structure with unit variance term. Figure
1 of the supplementary material shows the conditional density
of β(v) for an arbitrary location v given β(v′) with v �= v′. The
conditional density at one location tends to have a shorter peak
as the value at other location moves away from zero. Also, the
conditional densities tend to be more positively skewed, as we
condition on higher values for the other location.

2.1.3. Multivariate Properties

Let Pq = Z1
⊙

. . .
⊙

Zq be random vector of length p where

Z1 ∼ MVN(0,�1) and Z2, . . . ,Zq
ind∼ MVN(0,�2) and �2

has diagonal entries equal to one. Then, we have E(P′
qPq) =

trace(�1) for all q and �2
⊙

. . . (q-times)
⊙

�2 → Ip, as q
increases to infinity, where Ip is the p × p identity matrix. The
distribution of β(v) for a finite set of locations has the above-
mentioned properties as β2(v), . . . ,βq(v) have the same covari-
ance kernel with one total variance. In general, it is difficult to
explicitly calculate kurtosis in multivariate setup. However, we
have following alternative result.

Theorem 2. The multivariate kurtosis of Pq increases with q.

This can be proved using the method of induction and
Theorem 1. The proof is in the supplementary materials.

To summarize, for q = 1, the PING process is the standard
GP and as q increases PING has a mass near zero and its tail
probabilities increase. Furthermore, an appropriate rescaling of
the spatial correlation parameters, canmaintain the smoothness
properties of the original GP. Therefore, the PING process is
an attractive model for a sparse and smooth signal. However,
because of the differentiability property, the posterior mode
for PING is never zero, unlike Bayesian LASSO. The number
of terms q plays a major role in the application of the PING
process, and we recommend to select this tuning parameter
using cross-validation.We discuss our cross-validation in detail
in Section 5.1.

2.2. Error Distribution andMatern Correlation

Next, we discuss the error process Ei(v). To account for both
large- and small-scale spatial deviations of Yi we consider the

following decomposition, similar to Reich et al. (2018) of Ei(v),

Ei(v) =
J

∑

j=1

Zj(v)γij + ǫi(v), (2)

where the first term is a linear combination of known basis
functions Zj’s and γij are unknown coefficients for ith visit and
jth basis and captures The large-scale deviation. The second
term ǫi is intended to capture small-scale deviations.We assume
that ǫi is mean-zero GP with stationary and isotropic Matern
covariance function as follows:

cov(ǫi(v), ǫi(v
′)) = C(θ) = σ 2I(v = v′) + τ 2Mν

( ||v − v′||
φ

)

,

(3)

whereMν(h) = 21−ν

Ŵ(ν)
(3h

√
ν)νKν(3h

√
ν) andK is themodified

Bessel function of the second kind. The Matern covariance has
four parameters θ = (σ 2, τ 2,φ, ν), that represent the variance
of the non-spatial error (nugget), the variance of the spatial
process (partial sill), the spatial range and the smoothness of the
correlation function respectively.

The large-scale spatial structure is described by J random-
effect covariates {Z1, . . . ,ZJ}. Amongmany different choices for
Zj’s, we consider outer product of B-spline basis functions. The
error in approximating the non-stationary covariance function
using B-splines decreases at a rate of J−α/2 (Shen and Ghosal
2015), where J is the number of B-spline basis and α is the
regularity of the process. Thus, with large J, this can approximate
any covariance function.We assume the random effects are nor-
mally distributed, that is, γi = (γi1, . . . , γiJ)

T ∼ Normal(0,�),
where � is the J × J covariance matrix. The nonstationary
component of the covariance is

NS(v, v′) =
J

∑

j=1

J
∑

l=1

Zj(v)Zl(v
′)�jl. (4)

Then, the overall covariance becomes sum of Equations (3)
and (4).

3. Extension to Other Image RegressionModels

The model in the previous section is designed for image-on-
scalar regression. Our sparse prior can be easily adapted for
other image regressions, as described next.

3.1. Image-On-image Regression

Consider the case of a linear image-on-image regression model
(see, e.g., Gelfand et al. 2003; Morris et al. 2011; Jog et al. 2015,
2017; Hazra et al. 2019)

Yi(v) = α(v) +
p

∑

j=1

Xij(v)βj(v) + Ei(v), (5)

where Yi is the image response and the Xij’s are the image
predictors for subject i. Here, α(·) is an unknown intercept
as before and βj(·) are spatially varying piecewise smooth and
sparse covariate effects, and Ei(·) is the error process.



1072 A. ROY ET AL.

We put the PING prior on each of βj(·) for sparse and
smooth estimation. The selection of q is done based on a cross
validation technique which is discussed in Section 6. This gives
local variable selection as the subset of the covariates with beta
shrunk toward zero changes with s.

3.2. Scalar-On-Image Regression

Finally, consider the case of a scalar-on-image regression
model (see Wang and Zhu 2017; Kang, Reich, and Staicu 2016;
Goldsmith, Huang, and Crainiceanu 2014; Li et al. 2015). This
model is

Yi =
n

∑

j=1

Xi(vj)β(vj) + ǫi, (6)

where Yi is the scalar response and Xi is an image with n spatial
locations for subject i. Here, β(·) are spatially varying piecewise
smooth and sparse covariate effect, and ǫi is the error which
follows N(0, σ 2). We again put a PING prior on β(·) for sparse
and smooth estimation and its performance is studied Section 5.

4. Computational Details

Theprior on intercept (α) aswell as the components in the PING
prior (βk’s that comprise the PING prior) are assumed to be
mean-zero GP with stationary and isotropic Matern covariance
function:

cov(α(v),α(s′)) = C(θ0) = σ 2
0 I(v = v′) + τ 20Mν0

( ||v − v′||
φ0

)

,

(7)

cov(βk(v),βk(v
′)) = C(θ1) = τ 21Mν1

( ||v − v′||
φ1

)

. (8)

No nugget variance is assumed for the components of PING to
ensure smoothness. For small and moderate datasets, standard
Markov chain Monte Carlo (MCMC) algorithms apply to the
PING model and computation is straightforward. One advan-
tage of the PING prior is the elements of the jth component
(

βj(v1), . . . ,βj(vn)
)

have multivariate Gaussian full conditional
distribution given the other (q − 1) GPs, and thus Gibbs steps
can be used to update the PING process parameters. For large
n, however, these updates become slow and we use spectral
methods, described in the remainder of this section.

4.1. TheModel in Spectral Domain

Similar to Reich et al. (2018), we partially decorrelate the data
by using the DFT. Let us denote spectral representation of
the processes Yi(v),α(v),β(v),βk(v), Xi(v),Zj(v) and ǫi(v) as

Ỹi(ω), α̃(ω), β̃(ω), β̃k(ω), X̃i(ω), Z̃j(ω) and ǫ̃i(ω) for frequency
ω ∈ F ⊂ R

3. Since DFT preserves linearity, the spatial model
in Equation (2) in the spectral domain can be written as

Ỹi(ω) = α̃(ω) + X̃i(ω) ∗ β̃(ω) +
J

∑

j=1

Z̃j(ω)γij + Ẽi(ω), (9)

β̃(ω) = β̃1(ω) ∗ β̃2(ω) ∗ · · · ∗ β̃q(ω). (10)

The notation ∗ denotes convolution. The GP α(v),βk(v), and
ǫi(v) are stationary and defined over a discrete spatial domain.
To avoid computationally expensive Bessel function and spec-
tral aliasing calculations, we use the quasi-Matern spectral den-
sity (Guinness and Fuentes 2017), which mimics the flexibility
of the Matern spectral density for α̃(ω), β̃k(ω) and ǫ̃i(ω),

λ(ω|θ = (σ 2, τ 2,φ, ν)) = σ 2 + τ 2
[ 1

φ2
+ h(ω)

]−ν−d/2
, (11)

where d is the dimension, ω ∈ [0, 2π ]d and h(ω) =
∑d

j=1 sin(ωj/2)
2. More specifically,

Ẽi(ω) ∼ Normal(0, λ̃(ω|θ)), (12)

α̃(ω) ∼ Normal(0, λ̃(ω|θ0)),
β̃k(ω) ∼ Normal(0, λ̃(ω|θ1)),

where λ̃(ω|θ)) = λ(ω|θ))/2 if ω ∈ {0,π}3 and λ̃(ω|θ) =
λ(ω|θ) otherwise. All the parameters in θ have the same inter-
pretation as in Equation (3). For β̃k, the nugget variance is zero.

4.2. ImputationMethod

Each spectral element Yi(ω) is a function of Yi(v) for all v ∈ V ,
and thus spectral methods require complete data. However, in
practice, data are often not collected on a complete regular grid
and thus the responseYi(v) is missing atmany locations v ∈ V if
we transform it into a regular grid. For example, in brain images,
we consider the complete regular grid as the 3D cube in which
the skull is inscribed; from this perspective the medical images
involve missingness. Missing values are handled naturally in a
Bayesian context within a Gibbs sampler that draws the missing
values from their conditional distribution given the observed
data and the other parameters. Because imputation is applied
during each MCMC iteration to account for imputation uncer-
tainty, this step must be computationally efficient.

Denote the conditional mean by

μi(v) = α(v) + Xi(v)β(v) +
J

∑

j=1

Zj(v)γij,

and define Yi1 to be the vector of observed data for subject
i and Yi2 to be the vector representing the missing values.
Likewise, letμi1 andμi2 be the corresponding vectors of means.
The conditional distribution of (Yi1,Yi2) given all of the other
parameters is
[

Yi1

Yi2

]

|rest of the parameters ∼ Normal

([

μi1

μi2

]

,

[

�11 �12

�21 �22

])

(13)

and thus the conditional distribution ofYi2 givenYi1 and the rest
of the parameters is normal withmeanμi2+�21�

−1
11 (Yi1−μi1)

and covariance �22 − �21�
−1
11 �12.

For large datasets, direct sampling from this distribution is
unfeasible. The limiting computational task in computing the
conditional mean is solving a linear system with �11. Since �11

is symmetric and positive definite, this can be achieved with
a preconditioned conjugate gradient (PCG) algorithm (Golub
and Van Loan 2012), an iterative method for solving the linear
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system �11a = b. The goal of iterative linear solvers is to
generate a sequence a1, a2, . . . that converges to a = �−1

11 b.
The algorithms generally require us to compute �11ak at each
iteration k to check for convergence and to generate the next vec-
tor in the sequence, and thus the algorithms are fast when this
forward multiplication can be computed quickly. In this case,
forwardmultiplications with�11 can be computed inO(n log n)
time and O(n) memory with circulant embedding algorithms
(Wood and Chan 1994), as can the forward multiplication with
�21. This is because�11 and�21 can be embedded in the larger
circulant matrix �, that is,

�

[

ak
0

]

=
[

�11 �12

�21 �22

] [

ak
0

]

=
[

�11ak
�21ak

]

,

and fast Fourier transform can be exploited to compute the
forward multiplication with the (nested block) circulant matrix
�, since (nested block) circulant matrices are diagonalizable by
the (d-dimensional) DFT. The PCG algorithm uses an approx-
imate inverse of �11, called a preconditioner, to encourage the
sequence ak to converge to a is a small number of iterations.

Completing the imputation step requires us to simulate a
residual vector with covariance matrix �22 − �21�

−1
11 �12. To

accomplish this, we first simulate a vector (εi1, εi2) with mean
zero and covariance as in Equation (13), which is again efficient
with circulant embedding. Then, we form and the residual εi2−
�21�

−1
11 εi1, which has the desired and can be computed in the

same fashion as the conditioned mean. Further computation
details for the conditional draws can be found in Stroud, Stein,
and Lysen (2017) and Guinness and Fuentes (2017).

4.3. Sampling

Total variances are updated from their posterior inverse gamma
distributions. All other Matérn parameters are updated using
Metropolis sampling. The DFT of the PING process parameters
is the convolution of frequencies as in (10). Conducting a full
conditional Gibbs update, even in the spectral domain, is com-
putationally expensive. One can improve the computational effi-

ciency usingPCGas described inAlgorithm1of the supplemen-
tary materials. However, for our real-data application, this still
imposes a serious computational burden. The existingMetropo-
lis techniques for a joint update of large coefficient vectors,
such as the gradient adjustedMetropolis–Hastings (Roberts and
Rosenthal 1998) or Hamiltonian Monte Carlo (Duane et al.
1987) mix slowly. Here, we introduce a new sampling technique
that uses Metropolis steps for updating each βk(·). The general
q-component model can be written as follows:

Yi(v) = α(v) + βk(v)β−k(v)ti + Ei(v), (14)

where β−k = β1 · · · βk−1 · βk+1 · · · βq. Denote the estimated

values at the N-th stage of the MCMC iteration as YN (samples
using PCG), αN , βN

k and βN
−k. We can calculate the error at the

Nth stage as EN = YN − αN − βN
k βN

−kt.
We can rewrite our model in (14) as

Yi(v)

β−k(v)
=

α(v)

β−k(v)
+ βk(v)ti + Ei(v)

(

1

β−k(v)
− 1

)

+ Ei(v).

Except for βk(v) and the last Ei(v), replacing all other values by
the ones from the Nth step gives

YN
i (v)

βN
−k(v)

=
αN(v)

βN
−k(v)

+ βk(v)ti + ENi (v)

(

1

βN
−k(v)

− 1

)

+ Ei(v).

(15)

The notation YN
i denotes the a full response dataset including

imputedmissing values from theNth iteration. Toupdateβk(ω),
we sample β̃u

k (ω) according to step (ii) from Algorithm 1,
take the inverse DFT to obtain βu

k (v), and then form the

Metropolis candidate βN
k (v) + c

βu
k (v)−βN

k (v)

||βu
k (v)−βN

k (v)||2
. Here c acts as

a tuning parameter and || · || denotes the ℓ2 norm, defined
as ||β||22 =

∫

v∈V β2(v)dv. We are essentially sampling β̃u
k (ω)

from an approximatedmodel and then shrinking it back toward
β̃N
k (ω). Smaller values of c generate higher acceptance rate and

vice versa. This step is described in detail in Algorithm 1.

Algorithm 1: Sampling algorithm of β1 in spectral domain for the model Yi(v) = α(v) + β1(v)β−1(v)ti + Ei(v)

(i) Calculate Qi(v) = YN
i (v)

βN
−k(v)

− αN (v)

βN
−k(v)

− ENi (v)
(

1
βN

−k(v)
− 1

)

. The superscript N denotes the values at N-th step on the MCMC.

Transform Qi(v) into spectral domain to get Q̃i(ω).
(ii) Generate β̃u

k (ω) ∼ Normal(M(ω),V(ω)), where V(ω) = 1
∑

i(t
2
i )

(1/λ̃(ω|θk) + 1/λ̃(ω|θ))−k, where λ̃(ω|θk) and λ̃(ω|θ)

are the spectral variances of the prior on β̃k(ω) and the error process Ẽi(ω) respectively as described in Section 4.1 with θ1
and θ as corresponding Matern parameters andM(ω) =

∑

i Q̃i(ω)/V(ω).

(iii) Convert β̃u
k (ω) into spatial domain βu

k (v) using spectral methods for spatial data as in Section 2 of Reich, Chang, and
Foley (2014).

(iv) Adjust the update βc
k(v) = βN

k (v) + c
βu
k (v)−βN

k (v)

||βu
k (v)−βN

k (v)||2
.

(v) Convert βc = βc
k(v) · βN

−k(v) back into spectral domain to get β̃c, again by using spectral methods for spatial data as in
Section 2 of Reich, Chang, and Foley (2014).
(vi) Calculate the acceptance probability for the MH step,

Pβc
k ,β

N
k

= min

{

1,
exp(−

∑n
i=1 ||(ỸN

i − β̃cti)/λ̃(.|θ)/||22 − ||β̃c
k/λ̃(.|θk)||22)

exp(−
∑n

i=1 ||(ỸN
i − β̃cti)/λ̃(.|θ)/||22 − ||β̃N

k /λ̃(.|θk)||22)

}

.
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In our simulation, we adjust c to maintain an acceptance
rate of around 0.6 for this scheme to ensure good mixing. If
acceptance is lower than 0.55, we decrease the value of c, and
if it is higher than 0.70, we increase c under the restriction
that c ≤ ||βu

1 − βN
1 ||2. If we start the algorithm with small

Ei(v), the convergence is faster. To ensure that, we propose to
get least-square estimates of α and β from the data. Then assign
βi = β1/q as the starting value if q is odd.We also recommend to
take odd q, so that it will be easier to take 1/q-th power, although
this is not necessary for starting from the least-square estimate.
In the supplementary materials, Figure 7 illustrates the output
of MCMC chain at the 5000th iteration with a random starting
point for our algorithm as well as HMC and shows that our
algorithm performs overwhelmingly better than HMC and also
with respect to the speed as well.

We use this spectral method for all image-on-scalar regres-
sions in this article. For the simulated image-on-image and
scalar-on-image regressions in Section 5 the datasets are small,
so we use Gibbs sampling for the PING process parameters;
for larger datasets, the Metropolis scheme explained above
could also be adapted to image-on-image and scalar-on-image
regressions.

5. Simulation Results

In this section, we present simulation results for all three
regression setups, namely image-on-scalar regression, image-
on-image regression, and scalar-on-image regression. We
compare the results in terms of mean squared error (MSE) with
respect to the posterior mean, TP, and false negative (FN) for
different levels of signal-to-noise ratios (SNR). To compute TP
and FN, we need to identify the voxels with nonzero signals. To
do that, we construct 95% credible intervals from the 0.025 and
0.975 quantiles of the MCMC samples at each voxel separately
and identify the voxels for which the credible intervals do
not include zero. Based on this identified set of voxels, we
compute the proportions TP and FN, where TP is defined as
the proportion of locations such that the credible intervals do
not include zero given the true parameter value is non-zero
and FN is defined as the proportion of locations such that the
credible intervals do not include zero given the true parameter
is zero.

While comparing estimation accuracies between our PING
prior and other competing methods, we select q based on a
leave-one-visit-out cross validation technique. In this approach,
we select the value q that produces the smallest out-of-sample
prediction MSE for each simulated dataset.

5.1. Image-On-Scalar Regression

Here, we consider the image-on-scalar regression model in Sec-
tion 2 for images of dimension 20× 20× 20 with 20 visits. The
model is

Yi(v) = α(v) + tiβ(v) + ei(v), (16)

here v ∈ {1, . . . , 20}3 with i = 1, 2, . . . , 20 and ti’s are 20 equidis-
tant points such that

∑

i ti = 0 and
∑

i t
2
i = 20 obtained by

standardizing the times i = 1, 2, . . . , 20. The true signal is zero

for most of the spatial locations but has subregions that are non-
zero. Let, d1 = (6, 14, 6), d2 = (6, 10, 14), d3 = (14, 6, 14), d4 =
(14, 14, 14) and d5 = (6, 6, 6), κ(v) = 2[exp(−4||v−d1||22/20)+
exp(−1.5||v−d2||22/20)+exp(−4||v−d3||22/20)+exp(−4||v−
d4||22/20) + exp(−4||v − d5||22/20). The true signal is β(v) =
κ(v) if κ(v) ≥ 0.1 and β(v) = 0 otherwise. The plot of the
true slope β(v) is in the supplementary material (Figure 2).
The error process ei(v) is assumed to be GP with stationary
Matern covariance function. The true reparameterized Matern
parameters for intercept process α(v) are (1, 0.95, 10, 1) and the
last three parameters for error are (0.90, 10, 1). After generating
the data on 20×20×20 grid, we treat the valuesmissing outside
of the inner grid 18 × 18 × 18. Here, we use the imputation
technique to impute those missing values in our estimation.

We put GP prior with Matern covariance function on the
intercept process α(v) and PING prior (Section 2.1) on the
slope. We represent θ = (σ 2, τ 2,φ, ν), θ0 = (σ 2

0 , τ
2
0 ,φ0, ν0)

and θ1 = (σ 2
1 , τ

2
1 ,φ1, ν1) as the Matern parameters for the

error, intercept and first component in the PING process prior
on slope, respectively. For other components of the PING prior,
theMatern parameters are (1, τ 21 ,φ1, ν1).We reparameterize the
Matern parameter θ = (σ 2, τ 2,φ, ν) to θ ′ = (ϑ2, ζ 2,φ, ν)

as ϑ2 = (σ 2 + τ 2) and ζ 2 = τ 2

σ 2+τ 2
. Here, ϑ2 is called the

total variance. The total variance of error is set at 0.09, 0.017,
and 0.009 to achieve different SNRs which are mentioned in the
Table 1. All these results, compiled in Table 1 are based on 50
replications and 10,000 postburn samples after burning in 10000
samples.

We fit the model with priors : ϑ−2,ϑ−2
0 ,ϑ−2

1 ∼ Gamma(0.1,
0.1); logit(ζ ), logφ, log ν ∼ N(0,1), and logit(ζ0), logφ0, log ν0
∼ N(0,1). For the PING process: We set ζ1 = 1 (as nugget
variance is zero) and logφ1, log ν1 ∼ N(0,1). The priors are the
same for the next two regressions as well.

Table 1. Total MSE, MSE for the subregion with true β = 0 along with standard
errors in the bracket, power, coverage, and FP for the slope of the image-on-scalar
simulation with different SNRs for Gaussian, and PINGwhere q is selected via cross-
validation in each dataset.

Fitted model

SNR Metric Gaussian PING

Total MSE 2.2 2.3
(0.25) (1.42)

1 MSE for β = 0 2.49 1.25
(0.36) (0.54)

TP 0.97 0.94
FP 0.06 0.00

Coverage 0.92 0.98
Total MSE 0.96 0.52

(0.12) (0.04
5 MSE for β = 0 1.49 0.50

(0.23) (0.06)
TP 1 1

FP 2.19 × 10−1 0.00
Coverage 0.88 0.98
Total MSE 0.76 0.28

(0.08) (0.03)
10 MSE for β = 0 1.19 0.26

(0.21) (0.04)
TP 1 1

FP 2.72 × 10−1 0.00
Coverage 0.85 0.99

NOTE: The reported MSEs and corresponding variances in bracket are all multiplied
by 1000 for clarity.
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From the values in Table 1, we infer that there is not much
difference between PING estimates and GP when the SNR is
low. However, as SNR increases, PING estimates become much
better than GP. Across datasets, the most commonly selected
number of components (35/50 datasets) was q = 5. Figure 3
of the supplementary material compares the estimates for one
slice of the 3-D slope across different methods along with the
true β(v). GP prior overestimates the regions where the true
value is zero as shown in Figure 3 of the supplementarymaterial.
This results in higher FP and higher MSE for locations where
the true value is zero. We calculate the MSE for β = 0 as
∑

s:β0(s)=0(β(s))2 and total MSE as
∑

s(β(s) − β0(s))
2, where

β0(·) is the truth. Here all methods have high power.

5.2. Image-On-Image Regression

We consider image-on-image regression model as in Section 3

Yi(v) = α(v) +
10

∑

j=1

Xij(v)ηj(v) + ei(v), (17)

on data collected over 100 locations, selected at random in
[0, 1]2 with i = 1, . . . , 20 observations at each location. The
ten spatially varying predictors (Xij’s) are generated using the
reparameterized Matern parameters, generated randomly. First
a random vector of four elements are generated from N(0, 1).
We exponentiate the first, third, and fourth element and take
inverse logit transformation of the second element to get those
reparameterized Matern parameters for each predictor. These
predictors are generated only once for the whole simulation.We
change the domain of the images for this simulation from pre-
vious case and only consider data at 100 locations to construct
a dataset of manageable dimension for easier computation.

The error process ei(v) is assumed to be GP with stationary
Matern covariance function, independent over i. And ηj(v) = 0
for j = 1, . . . , 5. Rest of those five η’s have the structures,
plotted in Figure 4 of the supplementary material. These are
zero at most of the locations with some non-zero subregions.
To generate η6, we divide the whole [0, 1]2 space into a 50 × 50
grid. Thenwe generate a randomnumber h in {1, 2, 3}. Then, we
generate h set of co-ordinates in [0, 1]2. Let these be u1, . . . , uh.
Let us define κ(v) =

∑h
i=1 2 exp(−3||v − 50ui||22/50). Then,

η6(v) = κ(v) if κ(v) ≥ 0.1 and η6(v) = 0 otherwise.
Other fourβj’s are generated similarly. The true reparameterized
Matern parameters for intercept are (1, 0.95, 10, 1) and last three
parameters for error are (0.9, 10, 1). The total variance of error
is set to 0.57, 0.11 and 0.06 to achieve different SNRs which are
mentioned in the table.We reportMSE, power, FP and coverage
averaged over η. All these results, compiled in Table 2 are based
on 50 replications and 5000 postburn samples after burning in
5000 samples.

In Table 2, we see that the PING process prior consistently
gives a better estimate in terms of MSE. For most of the repli-
cated datasets (around 60%), the cross-validation-based selec-
tion of q again turns out to be 5. The GP prior overestimates
the regions where the true value is zero. This results in higher
FP for GP prior. Here, all methods have similar power. As the
SNR increases, the results using PING are even better than those

Table 2. Total MSE, MSE for the subregion with true η = 0 along with standard
errors in the bracket, power, coverage and FP error for the slope of the image-on-
image simulation with different SNRs for Gaussian, and PING as choices of prior.

Fitted model

SNR Metric Gaussian PING

Total MSE 3.69 0.97
(0.44) (0.19)

1 MSE for η = 0 2.91 0.49
(0.42) (0.14)

TP 0.87 0.84

FP 0.20 × 10−1 0.01 × 10−1

Coverage 0.97 0.99
Total MSE 0.97 0.20

(0.12) (0.05)
5 MSE for η = 0 0.88 0.12

(0.11) (0.03)
TP 0.97 0.96

FP 0.29 × 10−1 0.01 × 10−1

Coverage 0.97 0.99
Total MSE 0.54 0.11

(0.06) (0.02)
10 MSE for η = 0 0.5 0.07

(0.06) (0.02)
TP 0.98 0.97

FP 0.33 × 10−1 0.01 × 10−1

Coverage 0.96 0.99

NOTE: The number of components in PING are selected via cross-validation. The
reported MSEs and corresponding variances in bracket are all multiplied by 1000
for clarity.

using Gaussian. For most of the replicated datasets, the optimal
choice for q happens to be 4.

5.3. Scalar-On-Image Regression

Finally, we replicate the simulation from (Kang, Reich, and
Staicu 2016) with 100 observations. For each observation, there
is a two-dimensional image Xi of dimension 20 × 20 with an
exponential covariance structure having range parameter 3. The
model is

Yi
ind∼ Normal(

20
∑

j,k=1

Xijkβjk, σ
2), (18)

Here, the coefficient β = ((βjk))1≤j,k≤20 is a matrix of dimension
20 × 20. The true β is generated in such a way that it has five
peaks. Let, d1 = (4, 16), d2 = (16, 4), d3 = (4, 4), d4 = (16, 16),
and d5 = (10, 10) and κ(v) =

∑5
1 2 exp(−20||v−di||22/50). The

true beta is β(v) = κ(v) if κ(v) ≥ 0.1 and β(v) = 0 otherwise.
Only in this set up, we have number of observations much less
than number of parameters to be estimated. We consider three
choices of σ 2 in generating the data, 0.1, 1 and 1.5.

The prior for σ−2 is Gamma(0.1, 0.1). Rest of parameters
have the same prior as in the previous subsections. In this
subsection, we also compare our method with fused lasso (Tib-
shirani et al. 2005) and functional principal component analysis
(fPCA) (Jones and Rice 1992). Fused lasso estimates are com-
puted using the genlasso package in R (Arnold and Tibshi-
rani 2020). After smoothing the images using fbps function
of refund package (Goldsmith et al. 2020), eigendecompo-
sition of the sample covariance is computed. After that lasso
regularized principal components regression is performed. The
leading eigenvectors that explain 95% of the variation in the
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Figure 2. Comparison plot of the estimates for the slope of the scalar-on-image simulationwith different true variances for Gaussian, PING 3, and PING 5 as choices of prior
along with fused lasso and functional PCA estimates.

sample images are used to get the final estimate. The MSEs
due to functional PCA estimates turn out to be overwhelming
larger than the other competitive. Thus, they are not included in
Table 3. However, Figure 2 includes pictorial illustrations for all
the estimates.

We report MSE, TP, FP rate, and coverage in the estimation
of the slope β matrix. All these results, compiled in Table 3,
are based on 50 replications and 5000 postburn samples after
burning in 5000 samples. Here, we see that the estimates from

the PING process prior are superior to those of the GP, fused
lasso and functional PCA (fPCA) in all metrics. In particular,
fPCA results are very noisy. In Figure 2 the estimated parameters
from PING are less noisy than all other estimates.

We also compare PING with STGP method (Kang, Reich,
and Staicu 2016). While comparing with STGP, we consider
the low-rank approximation of each component of PING. The
low-rank approximation is incorporated following the works in
the kernel convolution of Higdon, Swall, and Kern (1999) and
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Table 3. Total MSE, MSE for the subregion with true β = 0 along with standard
errors in the bracket, power, coverage and false-positive error for the slope of the
scalar-on-image regression model with different true variances for Gaussian, and
PING as choices of prior along with fused lasso and functional PCA estimates.

Fitted model

σ Metric Gaussian PING Fused lasso

Total MSE 30.1 6.2 28.2
(1.8) (2.1) (76.9)

MSE for β = 0 20.1 2.1 7
(1.32) (0.66) (29.6)

1.5 TP 0.79 0.75 0.56

False positive 8.14 × 10−3 0.34 × 10−3 0.00
Coverage 0.97 0.96 –
Total MSE 25.6 3.3 20.9

(1.71) (0.77) (56.32)
MSE for β = 0 1.66 0.11 4.36

(1.12) (0.32) (18.64)
1 TP 0.86 0.91 0.69

False positive 14.24 × 10−3 0.68 × 10−3 3.39 × 10−3

Coverage 0.96 0.96 –
Total MSE 20.90 0.31 14.73

(0.98) (0.02) (39.92)
MSE for β = 0 12.75 0.18 2.28

(0.44) (0.01) (10.99)
0.1 TP 0.94 1.00 0.90

False positive 1.76 × 10−2 0.37 × 10−2 0.15
Coverage 0.94 0.96 –

NOTE: The reported MSEs and corresonding variances in bracket are all multiplied
by 1000 for clarity.

Table 4. Total MSE, MSE for the subregion with true β = 0 along with standard
errors in thebracket, power andType I error for the slopeof the scaler-on-image sim-
ulation with different true variances for soft-thresholded Gaussian process (STGP)
and PING as choices of prior.

Fitted model

σ Metric STGP PING

Total MSE 4.22 1.30
(1.57) (0.59)

MSE for β = 0 0.11 0.48
(0.15) (0.18)

1.5 TP 0.85 0.95
False positive 0.10 0.06

Total MSE 3.8 0.68
(1.54) (0.28)

MSE for β = 0 0.08 0.32
(0.13) (0.09)

1 TP 0.86 0.96
False positive 0.10 0.06

Total MSE 2.86 0.026
(1.26) (0.08)

MSE for β = 0 0.03 0.12
(0.09) (0.02)

0.1 TP 0.86 0.96
False positive 0.11 0.07

NOTE: The reported MSEs and corresonding variances in bracket are all multiplied
by 1000 for clarity.

Nychka et al. (2015) as in Kang, Reich, and Staicu (2016). Due to
this modification, all the results change from the previous table
and the comparison results with STGP are provided separately
in Table 4. We show results using PING with q, selected via
our one-leave-out cross-validation. For most of the replicated
datasets (around 75%), the cross-validation-based selection of q
turns out to be 3. In the supplementarymaterials, a plot ofMSEs
for different choices of q is given.

We can see that the estimates from the PING process prior
are superior STGP in terms of overall MSE, the TP rate, and

coverage, but not in terms of the MSE at the subregion where
the truth is zero. In fact STGP and PING-based estimates are
nearly indistinguishable graphically; results not included here.
Due to thresholding, STGP estimates are more conservative. In
this case, the cross-validation-based selection of q turns out to
be 8 for around 70% of the replicated datasets.

In all the simulations, PING estimates work well as a
shrinkage estimate, producing much better results than other
alternatives. All the PING estimates are presented for the q,
selected by our proposed cross validation. Thus the proposed
cross validation technique works well to make good selection
for q.

6. Application to Longitudinal MRI Data

Next, we turn to the study of MS using MRI images. In a
natural history cohort followed at the National Institute for
Neurological Disorders and Stroke, each subject was scanned
approximately once permonth over several hospital visits. In the
subset of the study published in Sweeney et al. (2016), several
individuals were scanned over 3 years. We focus on the set of
images from a single subject. Using a 1.5T GE scanner with
clinically optimized scanning parameters, whole-brain magne-
tization transfer fluid attenuation inversion recovery (FLAIR)
volumes were acquired. All the modalities were interpolated
to a voxel size of 1 mm3 yielding images of dimension 182 ×
218× 182. We use normalized FLAIR images in our study by z-
scoring using normal-appearing white matter (Shinohara et al.
2011, 2014). We also use subtraction-based logistic inference
for modeling and estimation (SuBLIME) mask. The SuBLIME
mask is a 4D image with three dimensions for space and one for
time. For each time point, the 3D image is a map of where there
were new/enlarging lesions between the corresponding pair of
time points. All imageswere registered longitudinally and across
the modalities and rigidly aligned to the Montreal Neurological
Institute standard space (Fonov et al. 2009). Sweeney et al.
(2016) have a complete description of the study along with
the acquisition parameters. We are interested to study how the
image intensity varies over time. Let Yi(v) denote the image
intensity at a 3-dimensional voxel v of i-th image at time ti,
which denotes the number of days passed between ith and the
first visit of a single subject. In general, v is used to denote
voxel. We normalize the time covariate ti and set the image of
the first visit as the baseline. We consider the following model
from Section 2, Yi(v) = α(v) + β(v)ti + Ei(v) where α(v) is
the spatially varying intensity image at baseline visit and β(v)
quantifies the brain regions that are deteriorated over time due
to MS. We consider a linear model in time after performing
some exploratory analysis onmodel selection among the higher
order polynomials in t at each voxel; the linear model corre-
sponds to the smallest AIC and BIC. Preliminary analysis that
confirms linearity in the change overtime is included in the
supplementary material. It is expected that the healthy brain
tissue does not change much, while changes occur in the MS-
affected brain regions and the number of such regions is small.
Thus, the effect β(v) is expected to be sparse, and in addition,
it is also desired to be piecewise smooth and continuous, due to
the complex spatial dependence in the brain. However, we have
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Figure 3. Estimated slope β(v) of the middle slice using different priors along with the color scale along the reduced SuBLIME mask.

also fitted following nonlinear model:

Yi(v) =
K

∑

j=1

βj(v)Bj(ti) + Ei(v), (19)

here Bj(·) stands for the B-Spline basis functions and βj(v) is
the spatially varying coeffients. Since β1(v) corresponds to the
effect at the 0th time point, we put PING(1) which is standard
Gaussian prior on β1(v) and PING(q) on βj(v) for j ≥ 2. We
consider linear B-spline bases with four equidistant knots after
performing predictionMSEbased cross validation on the degree
and number of bases.

For the error process, we consider the nonstationary covari-
ance model as discussed in Section 2.2. We use GP prior with
Matern covariance function for α. Further details of the model
specifications are γi ∼ N(0,�) where � ∼ IW(J + 0.1, c

J+0.1 IJ)

and c−1 ∼ Gamma(0.1,0.1), where “IW” stands for inverse
Wishart, J = 63 = 216 B-spline basis functions. We reduce the
dimensionality of the images to 91 × 109 × 91 using resize
function of imager package of R due to computational and
storage issues; the reduced images preserve the overall structure
of the original images. The time of the visits is roughly every
month. We normalize the time vector such that the sum of
squares of the times is one. We present the analysis for one
MS subject in the study. The real data plot of an axial view for
the subject’s first 12 visits is in Figure 6 of the supplementary
material.

We use both the proposed method with the signal modeled
using the PING process, and with the signal modeled via a GP.
We select optimal q based on a leave-one-out cross-validation
method as described in Section 5.1. The estimates are based on
5000 postburn MCMC samples after 5000 burn-in. We sample
the values in the image outside of the brain using the techniques
of Section 4.2 after every 30 iterations. We performed the cross
validation for q between 3 and 9 and found that q = 5 gave the
smallest MSE. To show the effect of q, we present the results for
q = 3 and q = 5 in Figures 3 and 4. For the nonlinear model
in Equation (19), the prediction MSE is the best for PING(3)
prior on the B-spline coefficients βj(v) for j ≤ 2. For PING-3, it
is around 0.09 which is slightly better than the prediction MSE
values from the linearmodel. For, PING-5 andGaussian, predic-
tionMSEs are 0.12 and 0.10, respectively. The overall prediction
MSE is marginally improved for the nonlinear model over the
linearmodelwhich had 0.13 as the best predictionMSE. Figure 3
compares the estimates from Gaussian, PING-3, and PING-5
for the middle cross section along with the reduced SuBLIME
mask. The reduced SuBLIME is a 3-D mask which aggregates

Figure 4. ROC curve constructed from the Gaussian, PING-3 and PING-5 estimates
in detecting lesions flagged by reduced SubLIME mask.

the original SuBLIMEmasks over time. Thus, this reduced SuB-
LIME mask identifies all the brain regions that turn into lesions
between the subject’s first visit to the 11th visit. The estimated
effect with a Gaussian prior is very noisy, and it is difficult to be
used by practitioners who wish to identify regions affected by
the MS. In contrast, the PING-based estimates clearly highlight
the regions of interest that are affected by the disease. The results
agree with the ones obtained with the SuBLIME. To further
investigate this, we plot the receiver operating characteristic
(ROC) curve in detecting the lesions flagged by SuBLIMEmask
in Figure 4 based on the estimates of β from the model in 1.
We see that PING-3 estimate is better than Gaussian and PING-
5 is slightly better than PING-3. Due to storage issues of the
posterior samples, the ROC curves are constructed based on the
same level of cutoffs on the posterior estimates in detecting new
lesions, flagged by the SuBLIMEmask. PING estimates perform
much better than the correspondingGaussian estimate based on
the ROC curve. For the nonlinearmodel, it is difficult to prepare
such plots combining the B-spline coefficients.

7. Conclusion and Discussion

We propose a new class of prior, called the PING prior, for
estimating spatially sparse and smooth signals. We analyze the
performance of our prior in different kinds of image regressions,
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namely image-on-scalar, image-on-image, and scalar-on-image.
We develop techniques to tackle huge dimensional datasets by
transforming into the spectral domain. Our simulations show
that this new prior outperforms the Gaussian prior for all the
image regressions, we considered. An R package to fit PING
for different image regression is available at https://github.com/
royarkaprava/PING.

Our simulation results suggest that PING priors give better
estimates thanGaussian at the locationswhere true value is zero.
This results in lower FP for PING. All of the methods have high
TP for both image-on-scalar and image-on-image regression
models. For the scalar-on-image model, they even have better
TP thanGaussian alongwith lower FP andMSEs. The versatility
in application of this prior is well studied in the simulation
section of this article. In the MRI data acquired longitudinally
in a patient with MS, although there is little improvement in
prediction MSE from Gaussian to PING, the disease affected
areas are more easily distinguishable in PING estimates due to
the shrinkage. For the nonlinear model, wavelet bases can also
be considered instead of B-splines (Torabi et al. 2007; Hackmack
et al. 2012; Zhang et al. 2016; Wang et al. 2016). In this case,
selecting the PING prior for each basis coefficient allows for
abrupt changes in space and time.

An area of futurework is the selection strategy for q, the num-
ber of components in PING. In this article, our selection cri-
terion is based on leave-one-out cross-validation performance.
The selected q has also shown the best performance in Figure 4
in detecting the affected brain regions. However, one possible
future direction is to put a prior on q and develop compu-
tations using reversible jump MCMC (RJMCMC). RJMCMC
algorithms are in general computationally expensive. To cir-
cumvent the computational complexities in RJMCMC, another
possible alternative is to write the PING prior as,

β(v) = σ

Q
∏

i=1

β
Zi
i (v), βi(v) ∼ GP(0,K),

Zi ∼ Ber(pi), pi ∼ Beta(α,β),

for some fixed large enough Q. Due to the huge dimensionality
of MRI data, the convergence is rather slow using this prior.
However, for smaller dimensional datasets, this is a possible
alternative to selecting the number of components in the PING
prior.

The applicability of our proposed PINGprior is not restricted
to the models, described in this article. This prior can be used
to estimate any sparse and piece-wise smooth function. As long
as the dimension of the data is manageable, one can develop
efficient Gibbs sampler to estimate each component of the PING
prior. One can also consider to use PCG to update each com-
ponent of PING from its full conditional using the methods
developed in Section 4.2 for moderately large images exploiting
conditional distribution of multivariate normal. To do that, we
need to stack all the observations and one of the PING com-
ponents in one large vector and get a conditional distribution
of that large vector given other components of PING. Based on
that expression, one can sample from the full conditional distri-
bution of that PING component given the stack of observations
using PCG. Details of this computation technique are in the
supplementary materials.
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