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Abstract

We derive a single-pass algorithm for computing the gradient and Fisher information of Vecchia’s Gaussian process log-
likelihood approximation, which provides a computationally efficient means for applying the Fisher scoring algorithm for
maximizing the loglikelihood. The advantages of the optimization techniques are demonstrated in numerical examples and
in an application to Argo ocean temperature data. The new methods find the maximum likelihood estimates much faster and
more reliably than an optimization method that uses only function evaluations, especially when the covariance function has
many parameters. This allows practitioners to fit nonstationary models to large spatial and spatial-temporal datasets.
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1 Introduction

The Gaussian process model is an indispensible tool for the
analysis of spatial and spatial-temporal datasets and has
become increasingly popular as a general-purpose model
for functions. Because of its high computational burden,
researchers have devoted substantial effort to developing
numerical approximations for Gaussian process computa-
tions. Much of the work focuses on efficient approximation
of the likelihood function. Fast likelihood evaluations are
crucial for optimization procedures that require many eval-
uations of the likelihood, such as the default Nelder—Mead
algorithm (Nelder and Mead 1965) in the R optim func-
tion. The likelihood must be repeatedly evaluated in MCMC
algorithms as well.

Compared to the amount of literature on efficient like-
lihood approximations, there has been considerably less
development of techniques for numerically maximizing the
likelihood (see (Geoga et al. 2020) for one recent example).
This article aims to address the disparity by providing:

1. Formulas for evaluating the gradient and Fisher informa-
tion for Vecchia’s likelihood approximation in a single
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pass through the data, so that the Fisher scoring algo-
rithm can be applied. Fisher scoring is a modification of
the Newton—Raphson optimization method, replacing the
Hessian matrix with the Fisher information matrix.

2. Numerical examples with simulated and real data demon-
strating the practical advantages that the new techniques
provide over an optimizer that uses function evaluations
alone.

Among the sea of Gaussian process approximations pro-
posed over the past several decades, Vecchia’s approximation
(Vecchia 1988) has emerged as a leader. It can be computed
in linear time and with linear memory burden, and it can
be parallelized. Maximizing the approximation corresponds
to solving a set of unbiased estimating equations, leading to
desirable statistical properties (Stein et al. 2004). It is general
in that it does not require gridded data nor a stationary model
assumption. The approximation forms a valid multivariate
normal model, so it can be used for simulation and condi-
tional simulation. As an approximation to the target model,
it is highly accurate relative to competitors (Guinness 2018).
Vecchia’s approximation also forms a conceptual hub in the
space of Gaussian process approximations, since a general-
ization includes many well-known approximations as special
cases (Katzfuss and Guinness 2017). Lastly, there are pub-
licly available R packages implementing it (Finley etal. 2017,
Guinness and Katzfuss 2018).
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The numerical examples in this paper show that, in real-
istic data and model scenarios, the new techniques offer
significant computational advantages over default optimiza-
tion techniques. Although it is more expensive to evaluate the
gradient and Fisher information in addition to the likelihood,
the Fisher scoring algorithm converges in a small number
of iterations, leading to a large advantage in total computing
time over an optimization method that uses only the likeli-
hood. For isotropic Matérn models, the speedup is roughly
2 to 4 times, and on more complicated models with more
parameters, the new techniques can be more than 20 times
faster. This is a significant practical improvement that will be
attractive to practitioners choosing among various methods.

2 Background

Let 51, ..., s, be locations in a domain D. At each s;, we
observe a scalar response y;, collected into column vector

= ..., y,l)T. Along with the response, we observe
covariates x; = (x;1, ..., Xjp) collected into an n x p design
matrix X. In the Gaussian process, we model y as a mul-
tivariate normal vector Y with expected value E(Y) = Xp
(B € RP), and covariance matrix E((Y —XB8)(Y —XB)T) =
Xy, where the (i, j) entry of Xy is Ky (s;, s;). The function
Ky is positive definite on D x D and depends on covariance
parameters 6. The loglikelihood for 8 and 6 is

n 1
IOg fﬂ,@(y) = —5 10g(27'r) — z log det Eg

1 Tl
—E()’—Xﬂ) Xy (y—XB). (D

Unless Xy has some exploitable structure, evaluation of
the loglikelihood involves storing the n? entries of £y and
performing O(n®) floating point operations to obtain the
Cholesky factor of Xy, both of which are computationally
prohibitive when 7 is large.

Vecchia’s loglikelihood approximation is a modification
of the conditional representation of a joint density func-
tion. Let g(1) = @, gi) C (1,...,i — 1) and y,() be
the corresponding subvector of y. Vecchia’s loglikelihood
approximation is

6B, 0) =Y log f5.6(3ilye)- )

i=1

leading to computational savings when |g(i)| is small for
every i. The quality of the approximation depends on two
choices: how the observations are ordered, and given the
ordering, how the conditioning sets g(i) are chosen. Stein
et al. (2004) found that choosing some far-away points in
the conditoning set can improve the approximation when
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coordinate-based orderings are used. Guinness (2018) stud-
ied how the choice of ordering, given selection of nearest
neighbors in the conditioning set, impacted the quality of the
approximation, finding that coordinate-based orderings can
be far from optimal, preferring space-filling orderings.

As mentioned in the introduction, Vecchia’s likelihood
approximation corresponds to a valid multivariate normal
distribution with mean X 8 and a covariance matrix $o. To
motivate why obtaining the gradient and Fisher information
poses an analytical challenge, consider the partial derivative
of Vecchia’s loglikelihood with respect to 0;:

(B, 0) l _ 18 _
o6, 7O Xp'E, 0 B8, 25— xp)
1 [~ 0%
(), v

where (0 29 /06;) is an n x n matrix of partial derivatives of
£ with respect to 6. Not only is 9%y /00; too large to store
in memory, the covariances £y are not easﬂy computable, nor
are their partial derivatives. In the next section, we outline
a simple reframing of Vecchia’s likelihood that leads to a
computationally tractable method of evaluating the gradient
and Fisher information.

3 Derivations for single-pass algorithm

To derive formulas for the gradient and Fisher information,
it is helpful to rewrite the conditional likelihoods in terms of
marginals. To this end, define u; = yg(;) and v; = (yg(i), ¥i)-
Define the design matrices for u; and v;, respectively, as Q;
and R;, and define the covariance matrices for u; and v;,
respectively as A; and B; (suppressing dependence on 6).
The notation is chosen to follow the mnemonic device that
the first of the two letters alphabetically is a subvector or
submatrix of the second letter. Vecchia’s loglikelihood can
then be rewritten as

(B, 0) =) _log fp0(v;) —log fp.o(u;) )

i=1

=— % > [logdet B; —logdet A; ] (5)
i=1
] n
— 32 [ = Rp) B v — Rip)
i=1
—; = Qi) AT i — Qi) |
- glog(ZTr). (6)
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Our proposed algorithm for obtaining the likelihood, gradi-
ent, and Fisher information involves computing the following
quantities in a single pass through the data.

n
(logdet) = Y " (logdet B; — logdet A;) (7

i=1

(dlogdet3) = Z(Tr(B_lB, ) = Tr(AT A ,)) (8)
(ySy) = Z(U,TB — uiTAi_lui) ©)

(XSy) = Z(R,TB1 —ora; ) (10)

n

xsx) =Y (RiTBi_lRi -

i=

ofa'o)  an
1
n
(dySyi) =—3 (viT BB ;B\,
i=1
—u,.TA;lA,-,jA;lui) (12)
n
(axsyd) =~ (RfBi—lB[,jBi—lvi
i=l1
—Ql-TAi_lA,',in_lu,') (13)
n
(@xsx3) = -y (RTB7'Bi B R
i=1

—ol a7 A ;47 0)) (14)

n
(Trik) = [Tr(B;‘Bi,jB;‘Bi,k)
i=1

—Tr(A;lAi,in—lA,-,k)] , (15)

where A; ; and B; ; are the matrices of partial derivatives
of A; and B;, respectively, with respect to 6;. The quantities
having the form (d * j) are simply the partial derivatives of
the corresponding quantity (*) with respect to ;. Each of
these quantities can be updated at eachi = 1,...,n, and
so all can be evaluated in a single pass through the data. We
refer to them collectively as our single-pass quantities.

3.1 Profile likelihood, gradient, and Fisher
information

Given covariance parameter 6, denote the maximum Vecchia
likelihood estimate of B as E (6). Since 3(9) has a closed form
expression (Sect. 3.2), we can maximize the profile likelihood
0 (3(0), 0) over 6 alone. The profile likelihood can be written
in terms of our single-pass quantities as

(B ®),0) = ,g log(27) — %(logdet)

1 ~ —~ ~
- 5 [wsy) —2s9)B©) + BO) xswpe) | (16)

Therefore the partial derivatives can also be written in terms
of the single-pass quantities as

A(B©), 0)

%6, —7(dlogdetj)

1 N N ~
— 5 [(avsy3) —2(axsy$)B®) + B©) (@xsxi)pe) |

1[ 2(XSy )m+2ﬁ(6) (XSX) 5(9)], 17

where (83(0) /00;) is the column vector of partial derivatives

of the p entries of §(6) with respect to covariance parameter
6;. The Fisher information is

1 & B _ _ _
ZO) =3 3 [Tr(Bi VB B Big) — Tr(ATV A A 1A,-,k)]
i=1

1
= 5 (Tr3k).

It remains to be shown that E () and 0 E (0)/00; can be com-
puted using our single-pass quantities.

3.2 Mean parameters

The profile likelihood estimate //3\ (0) satisfies 04(B,0)/0B; =
0 forevery j = 1, ..., p. These partial derivatives are
ae(B,0)/9B1 n
. _ T p—1 T 4,—1
: =Y R/ BT wi—Rip)—0Q] A7 wj—0iP),
3B, 6)/0pp ] =1
(18)

giving the equation

[Z (R BTk - Q,-TA,-‘Q,»)} pe)

i=1

:[j(R B ol A7 )} (19)

i=1

Therefore, the profile likelihood estimate of g is

B6) = (xsx)~(xsy), (20)

afunction of our single-pass quantities. Taking partial deriva-
tives with respect to 6; yields

IB®)
89_,»

= (xsx)~l(d@xsyq) — (xsx) " (dxsx9)(xsx) " (xsy),
(2D

also a function of our single-pass quantities.
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Fig.1 Results of optimization timing study for n = 4900, |g(i)| = 30. Each plot shows histograms of time (in seconds) until convergence for one
of the four covariance functions over 200 replicates. The plotted numbers indicate the median time until convergence

10km variogram, spatial warping model

10km variogram, space—time warping model

Fig.2 Plot of Argo data and variograms evaluated at 10 km for the spatial-only model, and the spatial-temporal model

4 Numerical studies

This section contains timing results, comparing the R optim
implementation of the Nelder—-Mead algorithm to the Fisher
scoring algorithm presented in this paper. In Fisher scoring,
we add a small amount of regularization to the diagonal of
the information matrix when its condition number is less than
10~*. We also penalize certain values of the parameters (see
Sect. 4.1). For both Nelder—-Mead and Fisher scoring, we con-
sider neighbor set sizes |g(i)| = 20 and 30, and data sizes
n = 4900 and n = 10,000; however, only the |g(i)| = 30
and n = 4900 cases are shown here. The results from the
other settings are shown in the appendix and follow a sim-
ilar pattern. For each setting, we simulate 200 datasets. In
Nelder-Mead, we evaluate only the likelihood, not the gra-
dient and Fisher information. The Fisher scoring algorithm
stops when the dot product between the step and the gradi-
ent s less than 10~ or after 100 iterations. Default stopping
criteria were used for the Nelder—Mead algorithm, and it was
capped at 1000 iterations. We simulate all datasets from the
same model:

Y(s) =+ Z(s) +&(s), (22)
where © = 0, Z is a Gaussian process with exponential
covariance function K (s1, s2) = o2 exp(—||s1 — 2| /), and
e(s) are ii.d. N(0, %) with t2 = 0.2. We take (02, o) =
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(2, 0.3). Data are simulated on an evenly spaced grid of loca-
tions on [0, 1]%. In addition to the exponential covariance
with unknown variance and range, we estimate parameters
in three covariance models that generalize the exponential:

o’ Isi—s2ll\" - (lIs1—s2ll
K(SI’SZ)_F(v)ZV—1< " ) Ky (T) (23)
2
K(s1,52) = FoyT (ILs1 = Ls2 )" Ky (I Ls1 — Ls2|)
(24)
J 2
o
K(s1.52) = exp ;bjw,-(sl)w,-(sz)) oz T
<||S1—82||)”IC (IISl—S2||>
2R ok (=) (25)
o o

The first is an isotropic Matérn covariance function. The
second is a geometrically anisotropic Matérn covariance,
with anisotropy parameterized by the 2 x 2 lower triangular
matrix L. The third is a Matérn covariance with a nonsta-
tionary variance function. The nonstationary variances are
defined in terms of pre-specified known basis functions ¢;
and unknown parameters b ;. For identifiability purposes, the
J = 8 basis functions are an orthogonal basis that is also
orthogonal to a constant function. The orthogonal basis is
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formed by applying Gram—Schmidt orthogonalization to a
set of 2D Gaussian basis functions.

Excluding p, which is estimated by profile maximum like-
lihood, but including the nugget variance 72, the four models
have 3, 4, 6, and 12 unknown parameters. Each model has
a multiplicative variance parameter o2, In the Nelder-Mead
algorithm, we profile out o2, whereas in Fisher scoring, we
do not. We found that profiling o> does not substantially
influence convergence speed in Fisher scoring. All positive
parameters are mapped to the real line by a log transform.
We use the implementation of Vecchia’s approximation in
version 0.2.3 of the GpGp R package, which uses OpenMP
to parallelize each component of the likelihood. All comput-
ing was done on an 8-core (16 thread) Intel Xeon W-2145
(3.7GHz, 4.5GHz Turbo) processor with 16GB RAM. We
parallelized over components of the likelihood within each
dataset but did not parallize over datasets; each dataset and
method was handled in sequence.

Histograms of the timing results are given in Fig. 1. Con-
sidering the median times, Fisher scoring is 2-3 times faster
for the isotropic models (3 and 4 parameters), more than
10 times faster for the stationary Matérn model (6 param-
eters), and at least 15 times faster for the nonstationary
model (12 parameters). We can also compare the maximum
loglikelihoods returned by Fisher scoring to the loglikeli-
hoods returned by Nelder—Mead to diagnose convergence.
For the isotropic models, the two loglikelihoods never dif-
fered by more than 0.001 units, indicating that both methods
converged within the allowed number of iterations. The
parameter estimates are very close as well; the estimates of
the smoothness parameters from the two methods differ by
less than 0.001 in terms of root mean squared difference. In
the stationary model, the Fisher scoring loglikelihood was
more than 0.001 units larger than the Nelder—-Mead loglike-
lihood in 16 of the 200 datasets, whereas the reverse was
never true. In the nonstationary model, the Fisher scoring
loglikelihood was more than 10 units larger than the Nelder—
Mead loglikelihood in 29 of the 200 datasets, and more than
1 unit larger in 185 of the 200 datasets. Not only does the
Nelder-Mead algorithm take much longer in the nonsta-
tionary model, it rarely converged within 1000 iterations.
The root mean squared difference between the smoothness
parameter estimates from the two methods is 0.176 in the
nonstationary case.

4.1 Identifiability

Surprisingly, the maximum likelihood estimate of the nugget
variance can be a negative number. In a separate simula-
tion study, we simulated data from an exponential covariance
model on a 30 by 30 grid with zero mean and zero nugget, and
used the R optim function to maximize the exact Gaussian
likelihood with respect to the four isotropic Matérn covari-

ance parameters over an unconstrained parameter space. We
found that in 50 of 100 simulated datasets, the software
returned a negative value of the nugget. Negative nugget esti-
mates tend to occur when the maximum likelihood estimate
of the smoothness parameter is less than 0.5. In this sce-
nario, the covariance function has a narrow peak at distances
smaller than the minimum spacing between locations.

A negative nugget is obviously the wrong answer. It is
common for practitioners to maximize the likelihood over
log-transformed parameters, which makes it impossible to
return a negative nugget. However, this practice is prob-
lematic for gradient- or Newton-based optimization schemes
when the true maximizer is a negative number in the untrans-
formed space because the likelihood becomes flat as the
log-transformed parameter heads toward negative infinity.
Our solution is to do the optimization in the log-transformed
space but impose a penalty on very small values of the nugget
and smoothness parameters, since it is not sensible to return
negative nugget estimates. The penalties are

pen(t?) = —0.01log(1 4 0.01/72),
pen(v) = —0.011log(1 4+ 0.2/v).

The likelihood function also has difficulty jointly identify-
ing variance and range parameters when the range parameter
estimate is much larger than the maximum distance between
points in the dataset. This is a theoretically well-studied prob-
lem (Zhang 2004) that no optimization routine can overcome.
We have found that penalizing large variance parameters
helps improve convergence of Fisher scoring without sac-
rificing accuracy. We used the penalty

02/5276)’

pen(az) =log(l + ¢

where &2 is the estimate of the residual variance parameter
in a least squares fit of the response to the constant covariate.
This imposes essentially no penalty on the parameter unless
it is several times larger than the least squares estimate, after
which the penalty increases roughly linearly in o-2. These two
identifiability problems could also be handled by using pri-
ors in a Bayesian framework, but we do not pursue that here
because identifiability is not the focus of this paper. These
penalties were used in the simulation studies presented in the

paper.

5 Case study: Argo ocean temperature data

Argo is a global program that deploys floating ocean tem-
perature sensors (International Argo 2019). Each Argo float
operates on a 10-day cycle, during which it descends to a
2000 m depth and returns to the surface, collecting tem-
perature and salinity measurements along the depth profile.
The floats drift freely in the horizontal direction with ocean

@ Springer
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Table 1 Optimization results

Loglikelihood

Time (min)

for four models fit to Argo float

data Model Fisher scoring Nelder-Mead Fisher scoring Nelder-Mead
Isotropic spatial —6164.063 —6164.063 0.67 1.86
Isotropic space-time —237.015 —237.018 0.96 4.19
Warping spatial —5809.566 —5812.656 1.72 26.82
Warping space-time 0.000 —69.088 1.83 29.45

Reported loglikelihoods are differences from largest loglikelihood

currents. As of May 2019, 3799 floats covered the globe.
We analyze a subset of the observations collected at 100
dbar (approximately 100 m depth) between January 1 and
March 31, 2016. Preprocessed data were provided by Mikael
Kuusela and are described in more detail in Kuusela and Stein
(2018). In total, we used 32,492 measurements over the 3-
month period. The data are plotted in Fig. 2.

We model the data from day ¢ and location s on the sphere
S c R3 as

Y (s, )=Bo+Bi1L(s)+P2L>(s) + Z(s + D(s), 1) + £(s, 1),

where L(s) is the latitude of location s, Z(s, t) is a Gaus-

sian ith i function Kg, ® : R3 R3
process with covariance function Ky, ® : —

is a spatial warping function, and &(s, f) are i.i.d. mean

zero normals with variance 72. We consider both spatial and

spatial-temporal models for Ky:

Ko((s1.11), (52, 12)) = (dy (51, 52))" Ky (do (51, 52))

_ 9
2v=11(p)
2
2v=11(p)
(dy((s1, 11), (52, 12))) -

Ko((s1,11), (52, 2)) = (do((s1, 1), (52, 2)))" K,

The function d,, is Euclidean distance scaled by either a spa-
tial range parameter or spatial and temporal range parameters

ls1 —s2ll
dﬁl(sl’ 52) = T’ dOl((Sl’ t1)5 (s27 tz))

1/2
lls1 — s21I? L= n?
Ol2 052
1 2

The warping function & is assumed to be a linear combina-
tion of the gradients of the five spherical harmonic functions
of degree 2, where the gradient is with respect to the three
Euclidean coordinates. We use degree 2 because the degree
0 function is constant, and the degree 1 spherical harmonics
have constant partial derivatives (as a function of s), and so
degree 1 warpings simply translate all points by the same
vector and do not affect the covariances. We also consider
the special case of ®(s) = 0 for all s, which corresponds
to isotropic models in space and time. The spatial warping
model has 9 parameters, while the space-time warping model
has 10. The isotropic models have 4 and 5 parameters.

We fit each model using both Fisher scoring and Nelder—
Mead, with the results given in Table 1. Fisher scoring is able
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to fit the space-time warping model in 1.83 min, whereas
Nelder—Mead ran for 29.45 min and returned a loglikelihood
value 69.09 units lower. In the spatial-only warping model,
Fisher Scoring finished in 1.72 min, whereas Nelder—Mead
returned a loglikelihood value 3.09 lower after 26.82 min.
The two methods produced nearly the same loglikelihoods
on the isotropic models, with Fisher scoring running 4.4 times
faster on the space-time model and 2.8 times faster on the spa-
tial model. The results closely mirror the numerical study,
where Fisher scoring had its largest improvements in both
speed and reliability when fitting models with many param-
eters. Finally, in Fig. 2, we plot Var(Y (s, t) — Y (s + h, 1))
as a function of s, with ||| = 10 km. The images show that
the warping model produces an anisotropic variogram, with
larger increment variances near the equator.

6 Discussion

We believe that practitioners will benefit from the availability
of high quality algorithms for fitting nonstationary Gaussian
process models to large spatial and spatial-temporal datasets.
The methods are applicable to any covariance function that
is differentiable with respect to its parameters. This is impor-
tant because it separates the tasks of constructing models
and developing methods for fitting the models, freeing us to
select the most appropriate covariance function for the data
rather than the most appropriate model for which a special-
ized method exists. The Fisher scoring algorithm, as well as
anisotropic, nonstationary variance, and warping covariance
functions, are implemented in version 0.2.3 of the GpGp R
package (Guinness and Katzfuss 2018), which is available
on the Comprehensive R Archive Network.

Acknowledgements This work was supported by the National Science
Foundation under Grant Nos. 1613219 and 1916208 and the National
Institutes of Health under Grant No. RO1ES027892.

Extended timing results

This section contains histograms of timing results for
lg(@)] = 20 and 30, and n = 4900 and 10,000 (Figs. 3,
4,5,6).
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Fig.3 Results of optimization timing study for n = 4900, |g(i)| = 20. Each plot shows histograms of time (in seconds) until convergence for one
of the four covariance functions over 200 replicates. The plotted numbers indicate the median time until convergence
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Fig.4 Results of optimization timing study for n = 4900, |g(i)| = 30. Each plot shows histograms of time (in seconds) until convergence for one
of the four covariance functions over 200 replicates. The plotted numbers indicate the median time until convergence
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Fig. 5 Results of optimization timing study for n = 10,000, |g(i)| = 20. Each plot shows histograms of time (in seconds) until convergence for
one of the four covariance functions over 200 replicates. The plotted numbers indicate the median time until convergence
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Fig. 6 Results of optimization timing study for n = 10,000, |g(i)| = 30. Each plot shows histograms of time (in seconds) until convergence for
one of the four covariance functions over 200 replicates. The plotted numbers indicate the median time until convergence
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