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—— Abstract

We initiate the study of generalized AC® circuits comprised of arbitrary unbounded fan-in gates
which only need to be constant over inputs of Hamming weight > & (up to negations of the input
bits), which we denote GC°(k). The gate set of this class includes biased LTFs like the k-OR (outputs
1 iff > k bits are 1) and k-AND (outputs 0 iff > & bits are 0), and thus can be seen as an interpolation
between AC® and TCC.

We establish a tight multi-switching lemma, for GC°(k) circuits, which bounds the probability
that several depth-2 GCO(k) circuits do not simultaneously simplify under a random restriction. We
also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we
can show many results obtained from the multi-switching lemma for depth-d size-s AC® circuits lifts
to depth-d size-s°? GC°(.01log s) circuits with no loss in parameters (other than hidden constants).

Our result has the following applications:

Size-22("" depth-d GC°(Q(n'/?)) circuits do not correlate with parity (extending a result of

Hastad (SICOMP, 2014)).

Size-n?1°e™) GCY(Q(log? n)) circuits with n-?*° arbitrary threshold gates or n**® arbitrary

symmetric gates exhibit exponentially small correlation against an explicit function (extending a

result of Tan and Servedio (RANDOM, 2019)).

There is a seed length O((logm)®~* log(m/¢) log log(m)) pseudorandom generator against size-m

depth-d GC°(log m) circuits, matching the AC® lower bound of Hastad up to a loglogm factor

(extending a result of Lyu (CCC, 2022)).

Size-m GC°(logm) circuits have exponentially small Fourier tails (extending a result of Tal

(CCC, 2017)).
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1 Introduction

Proving superpolynomial circuit lower bounds against explicit functions is one of the most
central questions in complexity theory. However, after the initial flurry of work resulting in
Blum’s lower bound of 3n — o(n) [5], followed by a recent revival 30 years later leading to the
state of the art 3.1n — o(n) size lower bound by Li and Yang [15], this problem has proven to
be extremely difficult. Furthermore, there are various proof barriers that give strong evidence
that our current intuition is not developed enough to tackle this problem [4, 25, 1].
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In order to gain more understanding on this problem, researchers considered circuits with
constant depth whose gates are AND, OR, or NOT with unbounded fanin. To this end there
has been a fruitfullline of work culminating in the state of the art average case hardness of
depth d size 2277 ACC circuits computing the parity and majority functions [7, 9] (with
this result being tight for parity). A natural followup question to ask is how powerful AC®
would then be if @ (parity) or MAJ (majority) gates were added, corresponding to the circuit
classes AC’[@] and TCY. With regard to ACY[@], Oliveira, Santhanam, and Srinivasan [21]
proved that it is average case hard for any size-22(n/17Y) ACg[eB} circuit to compute MAJ,
improving earlier work by Razborov [24]. Smolensky [29] proved exponential size lower
bounds even if one replaces the & gate with a MOD,, gate for prime p (MOD,, is the gate
that outputs 0 iff p divides the sum of the input bits. ).

As we see, MAJ is a hard function demonstrating exponential circuit lower bounds for
almost all the circuit classes mentioned thus far, and so we would guess TCY is extremely
powerful and thus challenging to show circuit lower bounds for. This is evident in the current
state of the art for TC°, which is stark in contrast with the landscape of AC°[&]. In 1993,
Impagliazzo, Paturi, and Saks [10] showed that parity is hard for depth-d size—Q(nlJrEI_F?S)
circuits for some constant C;pg > 1, which remains as the current state of the art modulo
the case of d = 2, where Kane and Williams established a n?4%-size lower bound [11]. In
fact, a bootstrapping result by Chen and Tell [6] shows that if one slightly improves (e.g.
decreases Cypg) this superlinear lower bound against certain NC!'-complete problems (NC1
is the class of O(logn)-depth, polysized, constant fan-in circuits), we would immediately get
superpolynomial lower bounds and a separation of TC? and NC!, attesting to the hardness
of this task.

Due to the halted state of affairs for TC? circuits, we study a circuit class not as strong as
TCY, but still captures the motivation of analyzing “AC® with the power of majority” After
it had been shown AC? circuits cannot efficiently compute the majority of n bits, it seemed
natural that the next step would be to add unbounded MAJ gates to AC® to create TCC.
However, due to having unbounded fan-in, TC® gives a size-s circuit the power to calculate
the majority of up to s bits. Hence, one could argue the reason why size s TC? circuits are
much harder to analyze than ACY is because they are getting much more power than simply
calculating the majority of n bits when s > n. In order to maintain the unbounded fan-in
property of the circuit but also ration the computational power we give AC® to be “just
sufficient” to compute the majority of n bits, one can consider the following circuit class.

» Definition 1 (AC’(k) Circuits). Define the unbounded fan-in gates k-OR to output 1 iff
there are at least k ones in the input string, and k-AND to output 0 iff there are at least k

zeros in the input string. Define the class of constant depth circuits created by negations and
{K’-AND, k’-OR}s for k' < k to be AC°(k).

One can observe that AC%(n/2) is a natural circuit class that contains the majority of n bits
and doesn’t add “extra power” like the majority of a much larger quantity of bits. Therefore,
analyzing ACO(n/ 2) will give us a better understanding on how much power majority gives
to circuits. More generally, AC®(k) also allows us to nicely interpolate between AC® and TCY,
since a size-s ACY circuit is characterized by AC%(1), while a size-s TC? circuit is characterized
by AC%(s/2). Hence, studying AC®(k) for increasing k is a necessary step and a compelling
intermediary model that can help us understand the power of TCO.

For how large of a k will AC®(k) trivially collapse to AC’? An immediate observation is
that AC°(k) contains the majority gate over 2k bits, for which we know 22*"*") gize AC°
lower bounds. Hence, for k& = polylog(n), we have a superpolynomial size seperation between
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AC® and AC°(k). Even for any k = w(1), it is unknown whether AC%(k) is equivalent to AC°.
A standard argument would be to represent a k-OR with fan-in m as a width-k DNF with
(7]’;) clauses (check over all size k subsets of input bits to see if some subset are all 1s) or
a width-(m — k) CNF with (7}') clauses (check over all size m — k subsets of input bits to
see if all subsets contain some 1). Therefore, if we have a size s circuit made from k-OR
k (since a gate
in the original circuit can have fan in size up to s) and depth d + 1 (one can naively get
depth 2d, but by alternating CNFs and DNFs, we can collapse the depth to d + 1). Hence,
we see that a size s lower bound for ACY translates to a size s'/* lower bound for ACY_, (k).

and k-AND gates, we can turn this into an AC® circuit with size s - (Z) SK

This reduction is not an equivalence, as we pay with a reduction in depth, as well as an
asymptotically weaker size lower bound for any k = w(1). For example, a polynomial size
bound for AC® cannot be converted to a polynomial size lower bound for AC’(k) for any
superconstant k. Consequently, the relationship between AC® and ACO(k) already becomes
nontrivial in the mild regime of k = w(1).

In this paper, we study an even more general class of circuits, which we denote as GC°(k).

» Definition 2 (G(k) gates/GC°(k) circuits). Let G(k) be the set of all unbounded fan-in
gates that are constant over all input bits with > k ones, or over all input bits with > k
zeros (notice for k > 1 this includes negations by definition). Define GC°(k) to be the class
of constant depth circuits created from G(k) gates.

Some concrete examples of G(k) gates are arbitrary gates of fan-in k, majority of 2k bits,
the k-OR, and functions that compute parity if the input has < k& ones, and is 0 otherwise.
Notice that this is indeed a generalization of AC°(k).

On top of being an alternative generalization of AND/OR gates which may be of inde-
pendent interest, one nice property about G(k) is that it includes a generalized notion of
k-AND and k-OR gates to arbitrary LTFs (functions of the form sgn(> " w;z; — 6)).

» Definition 3 (k-balanced LTFs). Let f(z) = sgn(}_;_, wiz;—0) be an LTF, and let o : [n] —
[n] be a permutation sorting the w; in increasing magnitude (i.e. |wy(1)| < -+ < |wemy]). We
say f is k-balanced if k is the smallest index j such that — 3, [wy(iy| + 32~ [Wo(y| < 16].

One can verify that k-balanced LTFs are indeed in G(k) (see Theorem 51). Therefore, our
results can also be seen as a study of arbitrary LTFs that are biased.

Various notions of balancedness (or regularity in some literature) for LTFs has been
defined in previous work about threshold functions [26, 22, 8], but are all distinct from the
combinatorial definition we have proposed. In light of being able to show lower bounds for
this characterization of balanced, it may be of interest to explore this class of balanced LTFs
in other contexts regarding LTF circuit complexity.

1.1 Our Results

We outline all the results we obtain regarding AC(k) (or more generally GC’(k)) circuits.
The core result from which all the other results are derived from is an optimal multi-
switching lemma for GCO(k) circuits. We state the result without getting into the fine-grained
definitions.

» Theorem 4 (Multi-Switching Lemma for GC(k) Circuits (Informal)). Let F = {Fy,..., Fn}
be a list of G(k) o AND,, circuits on {0,1}"™. Then

PII% [Fl, do not all simultaneously “simplify”] < (28m)*/"(O(pw))*
pr~ivp

18:3

CCC 2023



18:4

Tight Correlation Bounds for Circuits Between AC0O and TCO

The theorem statement and proof is formally written in Theorem 20. This bound can be
proven to be optimal in the regime of large ¢. See the appendix (Theorem 52) for the proofs
of this claim.

It is illuminating to compare this result to the multi-switching lemma for AC? circuits,
which bounds the probability by the very similar expression of mt/”(O(pw))t. The only
difference is that in the new lemma, the m and 2* are coupled in the base of the exponent.
This seems to hint that as long as 2 = O(m), one gets the same probability bound when
using either the AC® or GC%(k) version of the multi-switching lemma. In practice, the
parameter m is upper bounded by s, the size of the circuit. Hence, we would intuit that any
result obtained from the multi-switching lemma for depth d size s AC° circuits can then be
lifted to size s GCg(log s) circuits. This indeed turns out to be the case as we demonstrate
through four different results. We obtain a surprising lifting theorem: any depth d size s
AC® lower bound obtained by the multi-switching lemma immediately lifts to depth d size
599 GC°(.01 log s)-circuits with no loss in parameters. We demonstrate three different results
exhibiting this phenomenon.

For the first result, denote PAR to be the parity gate.

» Theorem 5 (Optimal Correlation Bounds Against Parity). Let C' be a size m depth d
GCO(k)—ciTcuit. Then the correlation of C against parity is

B, [(—1)C ) +PARG))| < 9=Qa(n/(ktlogm)® ™)+

In particular, we get a 22(""/*)_size lower bound for GCY(Q(n'/?)) circuits almost matching
the lower bound of 22" ™) e know for AC®! This is especially surprising in light of
the fact that GC(Q(n'/%)) is a much stronger class than AC"; there exist singleton G(n'/%)
gates that cannot be computed by size 0(2”1/2d) ACY circuits. This can be seen as a limited
dual result to [24], who showed ACS augmented with parity gates requires size 202 4
compute majority, whereas we show /—\Cg augmented with n'/%-biased majority gates requires
size 220" to compute parity. It also contrasts with [21], who surprisingly showed that
adding parity gates to AC’ improved optimal circuit constructions of majority. Here, we
show that majority gates whose threshold value is shifted to Q(n'/¢) has no effect on AC”s
ability to calculate parity, even though such gates adds a lot of power to AC’. (majority

2
1/d cannot be computed by size 22"/*") ACH

gates whose threshold has been biased to n
circuits).

Notice that this result is tight in an extremely sensitive way. Letting PAR,, denote the
parity gate over n bits, we see PAR,1/4 € G(nl/d), and we can calculate the parity of n bits
by creating a depth d n'/%-ary tree of PAR,,:1/a gates, where the ith layer from the bottom
has n'~%/¢ PAR,,1/a gates that take the parity of all the bits fed below it in blocks of n'/<.
This is a depth d size O(nlfl/ 4) circuit computing parity. Therefore, we have a simple
counterexample of a GCY(n'/?) circuit computing parity (which is sublinear in size!). This
demonstrates a sharp threshold behavior where the exponential lower bound of 20(n?) g
tight up to the hidden constant factor of the Q(-) in GCY(Q(n'/4)), and if the constant is too
large, we suddenly go from requiring exponentially large circuits to only needing sublinear
size ones.

This theorem is tight in all other parameters as well. We show that this result is
tight in the size parameter by giving a size-22n") GCO(.lnl/d) circuit computing parity.
Furthermore, we show that the correlation bound is tight by giving a size-m GCO(k) circuit
that approximates parity.
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For what k will analyzing ACO(k) give implications for TC’? A result by Allender and
Koucky ([2], Theorem 3.8) states that there exists an absolute constant C'4 i such that MAJ,
can be written as an AC”(n?) circuit with depth < Cag /e and size O(n'*¢). Therefore,
beating the current state of the art depth d size Q(n1+0;55) lower bound for TC? reduces to
beating depth Cy g d/e size n(1+50”)(2+€) Jower bounds for GC®(n®) circuits for any choice of
e. In our paper, we show exponential size lower bounds against parity when e = 1/d but at
depth d rather than C4xd?. It would be interesting to see whether with some NC'-complete
problem can display strong lower bounds for ACO(nl/ 4) for depth larger than d, even if it
may be less than Caxd? (but a function other than parity would need to be considered).

Another angle researchers have taken towards understanding the power of threshold
circuits has been to start with an AC® circuit and augment some of the gates to arbitrary
threshold gates [33, 17, 27]. Our multi-switching lemma shows that we can instead start
with a base GC”(log s) circuit and obtain the same state of the art parameters as [27] if we
started from an AC® circuit.

» Theorem 6. There exists a function RW € P (introduced by Razborov and Widgerson [23])
and absolute constant T such that for C, a size n*(1°5™) GC®(Q(log? n))-circuit with n-?*°

THR gates, we have

|E, [(_1)RW(1)+C(x)} | < 9= Q(n1%).

The original motivation to study AC® with a small number of THR gates was to use this
to gradually convert circuits gate by gate from AC® to TCY. This result “speeds up” this
process by augmenting all AC® gates to G(log2 n) gates (which contain unbalanced LTFs as
discussed above). If one tried proving this theorem by expanding the Gc° (log2 n) circuits
into an ACY circuit, completing the proof would require solving a longstanding open problem
regarding correlation bounds against w(logn)-party NOF protocols! In Section 4.2, we point
out this observation explicitly along with the proof.

As another application, we can create PRGs for GCO(log m) circuits whose seed length
matches that of size m AC? circuits. This is accomplished by fully derandomizing Theorem 4
and using the partition-based PRG approach in [18]. The resulting PRG for GC(logm) has
identical seed length as Lyu’s PRG, thereby also matching Hastad’s AC® lower bound barrier
up to a loglogm factor (see [31, 28, 12] for a discussion on why an o(log?(m/¢)) seed length
implies breakthrough circuit lower bounds).

» Theorem 7. For every m,n,d >3 and e > 0, there is an e-PRG for size-m GCy(logm)
with seed length O(log?~* (m)log(m/e)loglogm)

The proof is covered in Section 4.3. Notice that if we had simply expanded out all
gates as width logm CNF/DNFs, we would have a size ~ m!°s™ AC?1+1 circuit, and plug-
ging in Lyu’s near-optimal PRG would yield us a suboptimal seed length of O((log2 m+
log(1/¢)) log?* mloglog m).

Finally, we establish results on the Fourier spectrum of GCO(k) circuits. It can be shown
that every Boolean function, when written as a map {£1}"* — {%1}, can be uniquely

expressed as a multivariate polynomial f(z) =>_ SCn) ]?(S )] L,cqxi. We show exponentially

ics
small Fourier tail bounds for any C' € GC°(k). More concretely,

» Theorem 8. For arbitrary C € GCY(k) of size m, the following is true for any 0 < £ < n.

> Cs) < y )

|S|=¢
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Linial, Kushilevitz, Mansour, and Tal [13, 16, 19, 30] showed that with small Fourier
tails, one can get a variety of Fourier structure results, efficient learning algorithms, and
correlation bounds. We demonstrate applications of such techniques to GCO(k:) in detail in
Section 4.4.

1.2 The Switching Lemma

To grasp this section, an understanding of Lyu’s witness/transcript proof of the switching
lemma [18] would be helpful. We still give an overview of the proof here and provide intuition
from an information-theoretic lens, which differs in certain places than the intuition presented
n [18]. After the overview, we will highlight the necessary changes needed to prove the more
general lemma for GC°(k) circuits.

Say we have a k-OR o AND circuit F' (in the formal proof, we consider general G(k) o
{AND, OR} circuits). For A C [n] and z € {0,1}", denote p(A, 2) to be the restriction/partial
assignment where all variables whose indices are in A are kept alive/unfixed, and all remaining
variables x; with ¢ ¢ A are fixed to the corresponding bit in z, z;. Consider a random
restriction p(A, z), where z ~ {0,1}" is a uniformly random ground assignment, and A is
a random subset of [n] such that each element is added with probability p. To show that
with low probability, F'|, has decision tree depth > ¢, it suffices to create a specific canonical
decision tree (CDT) for each p and argue that this tree has depth > ¢ with low probability
(because if the decision tree depth of F|, is > ¢, then surely the canonical decision tree has
depth > t). We consider the following CDT, where we first initialize a counter ctr < 0, and
then scan the bottom layer clauses from left to right.

If the clause is fixed to 1 and ctr = k, terminate since we know that F' evaluates to 1.
Otherwise increment ctr and move to the next clause.

If the clause is fixed to 0, move to the next clause.

If the clause is ambiguous, query all variables in the clause, and behave accordingly as
above.

If we think of our CDT as an algorithm that queries certain bits of the input, then bad
p that creates a depth > ¢ CDT will produce a unique “transcript” of large size recording
the behavior of CDT (i.e. the clauses and variables the CDT queries from). Like [18], we
consider transcripts that store (¢;), the indices of the clauses queried, along with a set P
that further elucidates which variables in the clauses were queried in an information-efficient
manner. We get the following inequality

Pr[DT(F1,) 2 1] < Pr[CDT(F1,) = 1]

IN

Z Pr[(¢;, P) is a large transcript for p) (1)
p

large transcripts
(Z’i ’P)

via the union bound. A natural thought is to then bound each term in the sum. Unfortunately,
it turns out that the number of transcripts (¢;, P), when counted naively by multiplying
the total possible lists (¢;) by the total possible sets P, is far too large to get our switching
lemma due to the vast amount of possible (¢;).

However, it turns out that (¢;) contains redundant information. Say P is a partial
transcript for p if it can be completed with a suitable (¢;) to form a transcript for p. We can
show that given p and P that is a partial transcript for it, there is a unique list (¢;) that
completes P to a full transcript. Hence
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Z Pr[(¢;, P) is a large transcript for p
P

large transcripts
(zi 1P)

= Z Pr[P is a partial transcript for p] (2)

partial transcripts P

which is a sum of far fewer terms, making the union bound feasible. It remains to bound
each individual term in the sum.

We want to bound the probability a particular P is a partial transcript for p. If we
were given the complementary (¢;)’s, this would be easy. The (¢;) along with P would give
a transcript of the specific set of > t variables that the CDT queried, which p must keep
alive in order to have any hope of (¢;, P) being a transcript for p. This would happen with
probability < p?, which is a sufficiently small probability to apply the union bound. However,
the trickiness arises due to ¢; not being specified. It turns out different (¢;) might couple
with the same P to form transcripts for different p! Therefore if we use no information about
p, then we have no hope of recovering a fixed (¢;).

On the other hand, if we were given complete information about p, then we can recover a
unique (¢;) or deduce none exists. However, this eliminates all randomness of p and we get
the trivial large upper bound of 1 for each term. Therefore, for such an approach to work,
we need to condition on partial information about p and hope that it is enough information
to recover (¢;) but not too much information to the point where we get a weak bound on the
probability due to the lack of randomness.

This motivates us to think of a restriction by first assigning a uniform random string
z to x and then covering up a p-subset A with stars to create a restriction p(A, z). The
intuition for this is that hopefully the random string z, combined with P, will be enough
information from p to fix (¢;), from which we can use the remaining randomness in p (namely
A) to obtain the p' bound. In particular, we hope that there is a “transcript searcher” S,
which on input (z, P), can recover a completed transcript (¢;, P) such that all p designed by
initially assigning « = z will have partial transcript P only if (¢;, P) is its transcript. If such
a function exists, then we could say

Pr[P is a partial transcript for p] = E,p, lzj’\r[P is a partial transcript for p(A, z)]
P
=E. v, lj’\r[S(z, P) is a transcript for p(A, z)]

<p'
where the last inequality follows since p must keep the variables in the transcript alive.
Alas, such an § cannot exist. There can exist different restrictions created from the same
ground assignment z that are witnessed by different completions of P (this ambiguity
is an unavoidable side effect of not being able to condition on all information about p).
We cannot hope for a unique completion, but what if our S output all of these potential
completions with decent probability over the randomness in z7 Say p is good if P is a
partial transcript for it. In formal terms, say we can construct S such that for any good
p, Pr.[S(z, P) is a partial transcript for p] > + (earlier we were demanding v = 1, which
turned out to be impossible). Then we can deduce

18:7
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Pr[P is a partial transcript for p] (3)
p

=, Prp(A, 2) is good]

Pr,[S(z, P) is a transcript for p(A, 2)]

=E
APr, [S(z, P) is a transcript for p(A, z)|p(A, 2) is good]

—_

< —E\ Pr[S(z, P) is a transcript for p(A, 2)

—_ 2

= ;EZ I/)\r[S(z, P) is a transcript for p(A, 2)]
<p'/y. (4)
Stringing Equations (1),(2), and (4) lets us bound

Pr[DT(F|,) > t] < (p'/v) - #{partial transcripts P}
p

It turns out we can define our partial transcripts P and construct a transcript searcher such
that the above term is small enough to give us the desired switching lemma. See Theorem 20
for the technical details.

1.2.1 Comparison to Lyu [18]

Although the proof structure for proving our switching lemma is similar to Lyu’s [18] proof of
the AC® switching lemma, some changes are necessary to accommodate the general structure
of G(k) o {AND, OR} circuits.

We need to create a more complex CDT that can compute G(k) o {AND, OR} circuits, and
a corresponding new definition of witnesses/partial witnesses that records the transcript
of the complex CDT so that our witness searcher can effectively reconstruct a transcript
given information about p and a partial witness.

Because our CDT contains more steps, there will naturally be more possible tran-
scripts/witnesses. As the switching lemma hinges on a low quantity of possible partial
witnesses to union bound over, we need to argue with our new CDT, the number of
partial witnesses can be controlled by the parameter k. This makes designing the CDT
and partial witness to be an act of balancing contrasting parameters

For example, the more complicated a CDT procedure is, the closer to the true decision
tree depth it will reach (and hence a tighter bound on Pr,[CDT(F|,) > t] can be
expected), but the larger the possible number of transcripts it will have (thereby
increasing the number of terms we union bound over). Therefore, this approach
demands the designed CDT to be complicated enough to give a small depth decision
tree with high probability, but simple enough to be tractable to analyze with a union
bound.

Similarly, the more that a partial witness keeps track of, the larger amount of possible
partial witnesses we will need to union bound over. However, if we keep track of too
little, there will not exist an effective witness searcher that can use the information
from the partial witness to construct the whole witness. Hence we need to keep track
of just the right amount of information.
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In the argument for AC circuits, one would show a multi-switching lemma on depth 2 AC°
circuits. In other words, one would argue that a collection of ACg circuits simultaneously
simplify after a one random restriction is applied to all of them. Rather than the natural
idea of proving a switching lemma for the analogous GCY(k) circuits, we consider the
hybrid class of G(k)o{AND, OR} circuits. It turns out a switching lemma on these simpler
circuit classes suffice to depth reduce and prove bounds on GCg(k‘) as we will see below.

1.3 The Depth Reduction Lemma

The multi-switching lemma gives a simplification lemma for depth 2 circuits. To extend this to

constant depth circuits, we would like to iteratively decrease the depth of the circuit and induct.

The argument for AC® circuits was quite simple. Say we have a depth 3 ORoAND o OR circuit

F. Using the switching lemma, we can say with high probability, F|, is an OR o DT circuit.

We now expand each bottom layer decision tree into an OR o AND; circuit by enumerating
over all 1-paths. Consequently this simplifies F'|, to a ORo (ORoAND;) = ORo AND; circuit,
since an OR of OR of variables is simply a single OR over all variables involved, getting us a
depth reduction from depth 3 to 2.

What happens when we try the same argument for a k-OR o k-AND o OR circuit F'? By
our switching lemma, F'|,, with high probability will simplify to a k~-ORo DT, circuit. We can
then unravel the decision trees into ORy: 0o AND; CNFs, resulting in a k-OR o ORy: o AND,
circuit. Here, we reach an issue: a k-OR o OR circuit is not necessarily itself a k-OR function!
We could have up to (k — 1)2¢ input bits of a k-OR o ORy: be 1 while still evaluating to 0
(set all 2¢ bits of k — 1 of the bottom depth ORs to be 1). The best we can do is say the
function is in G((k — 1)2* + 1), which is too large of a blowup in the “k” parameter for our
switching lemma to handle.

We rewind a bit to our k&-ORoDT, circuit and unravel the bottom-layer trees to ORy: 0cANDy
DNFs by enumerating over 1-paths. But we now make the key observation about each DNF
which follows from the fact any assignment uniquely defines a path on a decision tree: any
assignment of x makes at most 1 ANDy clause true. To use more standard terminology, the
DNF created from decision trees is unambiguous. This means the pathological case above
of all clauses under k — 1 ORy: gates being satisfied cannot happen. In fact, we can prove
something stronger. Since at most one clause under each ORy: gate can be satisfied in the
unraveled k-OR o ORst o AND; circuit, the number of middle layer OR5: clauses that are
satisfied will be precisely the total number of bottom layer AND; clauses that are satisfied.
Hence, a k-OR over the OR gates is exactly the same as a k-OR over the AND; clauses
themselves, and we can indeed collapse to a k-OR o ANDy circuit! This gets us our depth
reduction. A slightly more involved argument is carried out to show the more general
G(k) o DT circuit can be calculated by a G(k) o AND; circuit, but the heart of the argument
is captured in the k-OR case itself.

1.4 Putting It All Together

We now have all the ingredients to simplify GCg(k) circuits. The argument will be the
following inductive process, where we are effectively inducting on circuits of the form
GCY(k) o {AND, OR},, rather than GCY directly. Given a GCY(k) circuit,

1. Add a trivial (d+ 1)-st layer at the bottom that is simply the identity gate (think of it as
an AND; gate)

2. By the multi-switching lemma, we know the depth 2 G(k) o {AND, OR} subcircuits simplify
to DT, trees with high probability, resulting in a GCY_, (k) o DT, circuit.
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3. By the depth reduction lemma, each of the bottom depth 2 G(k) o DT; subcircuits can be
calculated by a G(k) o {AND,, OR,} circuit, resulting in a GCJ_, (k) o {AND, OR} circuit.
4. The depth has reduced by 1, so we go back to Step 2 and induct.

This argument allows us to use the multi-switching lemma along with the depth reduction
lemma to establish size lower bounds for GCg(k) bounds. We show a formal argument of
this outline in Section 3.

2 Preliminaries

2.1 Notation

[n] ={1,2,...,n} denotes the set of the first n positive integers. ([Z]) denotes the set of all
size k subsets of [n]. log is assumed to be in base 2. This paper concerns constant-depth
circuits, and so the depth variable, d, should be treated as a constant. In particular hidden
constants in O(-) or () may depend on d. For S C [n], we denote z° =[], ¢ ;.

2.2 Random Restrictions and Partial Assighments

A partial assignment or restriction is a string p € {0, 1,*}™. Intuitively, a x represents an
index that is still “alive” and hasn’t been fixed to a value yet.

An alternative way of defining a restriction is by the set of alive variables and a “ground
assignment” string. Given a “x set” A and a ground assignment z € {0,1}", we define p(A, 2)
to be the partial assignment where we assign

* 1€A
zi 1€ A

Sometimes, A may be in the form of an indicator {0,1}" string, where the set is defined to
be the set of indices containing a 1.

We also define a composition operation on partial assignments. For two restrictions p', p?,
define p! o p? so that

1 1

pi P £
ou=1" "7

Pi  Pi =%

Intuitively, one can see this as fixing bits determined by p! first, and then out of the remaining
alive positions, fix them according to p2.

A random restriction is simply a distribution over restrictions. A common random
restriction we will use is I,, the distribution where each index will be assigned % with
probability p, and 0,1 each with probability lg—p.

The main reason for defining restrictions is to observe their action on functions. Given
a restriction p and function f : {0,1}" — {0,1}, we define f|,: {0,1}" — {0,1} to be the
function mapping f|,(z) := f(pox).

2.3 Models of Computation

Circuits

We measure the size of a circuit by the total number of wires (including input wires) in it.
We define the width of a DNF or CNF to be the maximum number of variables in any of its
clauses. We also use k-DNF (resp. k-CNF) to denote DNF (resp. CNF) of width at most
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k. ACY are depth d circuits with unbounded fan-in whose gate set is {AND, OR,NOT}. In
general, if we have a gate G, a subscript G}, will refer to its fan-in (in this case, G is fixed to
have fan-in k). We now define more general circuit classes that we analyze in this work.

» Definition 9 (k-OR/k-AND/ACY(k)). Define k-OR,, : {0,1}™ — {0,1} to be a function
that evaluates to 1 iff x contains > k ones. Analogously define k-AND,,, to be 0 iff © contains
> k zeros. Define ACg(k) to be the class of depth d circuits with unbounded fan-in whose
gate set is {k'-AND, k’-OR,NOT} for all k' < k.

In more generality, we define G(k) gates and GCY(k) circuits.

» Definition 10 (G(k)/GC"(k)). Define a gate set G(k) to be the set of all arbitrary fan-in
gates such that they are constant on inpuls with > k ones (we call such gates orlike) or
are constant on inputs with > k zeros (we call such gates andlike). GC°(k) is the class of
constant depth circuits made by G(k) gates.

In the rest of the paper, we may write circuit classes GCj(k) o {AND, OR} or G(k) o
{AND, OR}. In the literature, this usually refers to the circuit class whose gates above the
bottom layer are in G(k), and whose bottom layer gates can either be AND or OR with no
restriction on the choice. However, in this paper, assume this notation implicitly restricts
AND gates to only be under orlike G(k) gates and OR gates to only be under andlike G(k)
gates.

On top of being an alternate generalization of AND/OR gates, G(k) gates capture arbitrary
LTFs that are “unbalanced” in some sense. We will use the {£1} bits to define these, but
one can convert between {0,1} and {£1} via the map b — (—1)°.

» Definition 11 (Balance of an LTF/TC°(k)). Consider an arbitrary LTF f: {1} — {1}
with f(z) = sgn(d_wix; — 0). Let o : [n] — [n] be a permutation ordering (w;) such that
|wo1y| < -+ < |we(n)|. Define the balance of f (denoted as bal(f)) to be the smallest integer
k such that — %, ., |wi| + D, lwi| < [0]. Now denote TC(k) to be the class of constant
depth circuits made out of THR gates with balance < k.

We prove that up to negations in the inputs and output, THR gates with balance k are
in G(k) in the appendix (Theorem 51). All results in this paper hold for TC’(k), but from
now on, we will only refer to GC°(k) as it is the more general class.

Decision Trees

We assume knowledge of decision trees (see Definition 3.13 in [20] for a reference). We will
be using slightly more complex models of decision trees in this work.

» Definition 12 (Partial Decision Trees). For a collection of functions F = {F1,...,Fn}, we
say F can be computed by an r-partial depth-t DT if there exists a singe depth r tree such
that for all F; and paths m of T, F;|x can be computed by a depth t decision tree (here, F|,
is F' acted on by the restriction induced by taking path = down T').

» Definition 13 ((d,C)-tree). Let d be an integer and C a computational model (e.g. a circuit
class). A function is computable by a (d,C)-tree if it is computable by a depth t decision tree
with C functions as its leaves. That is, there exists a depth d decision tree T such that for
every path @ in T, F|, € C.
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2.4 Pseudorandomness and Probability

We will use various pseudorandom primitives and terminology. We will use U,, to denote the
uniform distribution over n bits unless specified otherwise.

» Definition 14 (e-error PRG/Seed Length). A distribution D over {0,1}™ is called an e-error
PRG for a computational model C if for all C € C,

|Eene,, [C’(m)] - ]Ez~D[C(m>” <e

The seed length s of D is defined to be the minimal quantity s such that the following is true:
there exists a polytime computable function G : {0,1}* — {0,1}"™ such that the distribution
of G(z) over z ~ Us is exactly D.

» Definition 15 ((g, k)-wise independent source). A distribution D over {0,1}" is an (e, k)-
wise independent source if for all 1 < iy < --- <ip <n and a € {0,1}*,

| Pr [z @iy .. .2 =] —27% <e.
x~D )

There exists constructions of these sources with seed length O(loglogn + k +1log(1/¢)) [3].

» Definition 16 (k-wise Independent Hash Family). Let H be a distribution over hash functions
mapping {0,1}™ — {0,1}™. We say that H is k-wise independent if for any k input-output
pairs (x1,y1), - - (T, yr) € {0,1}™ x {0,1}™ where x1,...,x: are distinct, it holds that

. N\ — ] — o—km
Pr Vi€ k], h(r) = ] =27

Such functions can be sampled using O(k(n +m)) bits (Chapter 3.5.5 of [32]).

» Definition 17 (k-wise p-bounded Subset). Let A be a random subset of [n]. A is a k-wise
p-bounded subset iff for all subsets S C [n] of size < k, Pra[S c A] < plSl.

For example, R, is n-wise p-bounded.

2.5 Fourier Analysis

Every Boolean function f: {£1}" — {£1} has a unique representation as a multilinear real
polynomial

Given f, we can think of the Fourier transform of f, fto be a function mapping 2"} — R
such that f(S ) = c¢g. This is well defined by the uniqueness of the polynomial representation
of S. One can explicitly compute f(S) = E,[f(z)z5]. By Parseval’s, one can derive
> SCn] f(S)Q = 1. There are various quantities involving the Fourier coeflicients that we

will work with.

» Definition 18 (Fourier Tails). For a Boolean function f, define

W2E[f] = Y F(9)2

|S|=k
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» Definition 19 (Discrete Derivative/Influence). For Boolean f and i € [n], define the discrete

derivative
- _ f(x(ial)) _ f(x(ia—l)
where 2070 = (z1,...,2i_1,b,i1,...,2,). Now for S C [n] with S = {iy,... i}, define

Dsf=D; D, ...D

ik
Now for S C [n], define the influence

Infs(f) = Epmys1yn [Dsf(2)?].

Finally, define the degree k influence

Inf*(f) = > Infs(f).

|S|=k

3 Simplification Theorem of GC)(k) Circuits

» Theorem 20. Let F be computable by a depth-2 G(k) o {AND, OR},, circuit. Let A be a
(t + w)-wise p-bounded subset of [n], and x a uniform string. Then

11\31;[DT(F|,)(A’I)) >t < (20pw)t2k.
Proof. The proof will follow that of Section 5 in [18]. We urge the reader to first read the
overview given in Section 1.2. As discussed there, the main differences between this proof and
the one presented there are present in the constructions of the canonical decision tree and
witness searchers, the definition of witnesses, and the counting of partial witnesses. These
are altered to support the more general G(k) gates. Besides this, the general proof strategy
remains the same. Let m be the fan-in of the F'. We present a procedure that constructs a
decision tree (which we deem the “Canonical Decision Tree”) in Algorithm 1.

The difference between the CDT defined in [18] and the one presented here is the use of
ctr. Intuitively, this is added in to keep track of the number of satisfied clauses we see before
we reach our limit of k. We rigorously prove this in the following claim.

> Claim 21. The CDT correctly outputs F'(«).

Proof. The CDT scans the clauses in order to find the first one not fixed to zero. There are
only two return statements in the algorithm, so we consider the two cases of terminating on
each one. Suppose we terminate at the first return statement and output F(1™). Notice ctr
is incremented each time the CDT encounters a satisfied clause. Therefore, when ctr = k,
at least k C; evaluate to 1, and therefore F(C1,...,Cp,) = F(1™) by virtue of F € G(k)
being orlike, proving correctness. Now suppose we terminate after the while loop and output
C(z 00). If CDT finishes the while loop without terminating, that must mean all clauses
must be determined by the partial assignment x. This is because for any clause Cj/, if the
clause wasn'’t already determined in the algorithm when j* = 5, all unknowns of C; would
have been queried and fixed in the partial assignment x, thereby determining it. Therefore,
in this case, C(x) is determined, and in particular is equal to C(x o 0™). <
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Algorithm 1 Canonical Decision Tree.

Input: (orlike G(k)) o AND,, circuit F' = G(C4,...,Cy,), black-box access to a
string o € {0,1}"™.

initialize:
Jj 0
x4 (x)"
ctr <0
while j* < m do
Find the first j > j* such that C;j(z) # 0. If no such j exists, exit the loop.
B; « the set of unknown variables in Cj(x) (may be empty).
Query ap;.
Set zp; < ap,.
if Cj(z) =1 then

ctr < ctr + 1;

if ctr =k then

| return G(1™)

end

end

Jred

end

return F(z o 0").

Therefore, CDT is indeed a decision tree computing F'. Define CDT(F) to be the depth
of the canonical decision tree Tx.If p is bad (i.e. DT(F|,) > t), then clearly CDT(F|,) >
DT(F,) >t and so T, will result in at least ¢ queries for some choice of a (this is equivalent
to saying that some path of Tp|, must have length > ). We define a witness that will
effectively be the transcript of the algorithm on this particular a.

» Definition 22. Let F' be the circuit described above and p a restriction. Lett > 1. Consider
the tuple (r,¢;, s;, B;, «;) where
r € [1,t+ k] is an integer
(l1,...,¢.) € [m]" is an increasing list of indices
(s1,.-.,8r) is a list of non-negative integers, at most k of which are allowed to be 0, such
that s := % _,s; € [t,t +w —1]
(B1,...,B;) is a list of (potentially empty) subsets of [w] satisfying |B;| = s;.
(a1,...,q.) is a list of (potentially empty) bit strings satisfying |a;| = s;.

(r,4;, 8, Bi, ;) is called a t-witness for p if there exists an « € {0,1}" such that

When we run Tg, on «, Cy, is the i-th term queried by Tp),.

Tr), queries s; variables in Cy,, and the relative location of those variables within Cy,
are specified by set B;.

Tp), receives o in response to its i-th batch query.

The size of the witness (r,¢;, s;, Bi, o) is defined to be s := Y ._, s;. We may denote the
size of a witness W as size(W).

>> Claim 23. For every p such that DT(F|,) > ¢, there exists a t-witness for p
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Proof. We simply run 7|, on « that causes at least ¢ queries to be issued. We then record
the transcript until the number of variables queried exceeds t, after which we halt. To be
more explicit, we let r be the number of times the CDT stops at a clause before either
outputting a bit or exeeding ¢ queries. At the ith stop, say on clause C}, we set ¢; = j, s; to
be the number of unknown variables queried (which may be 0), B; to be the subset of [w]
indicating the relative positions of the variables in the clause, and «; being the query replies
received from the black-boxed «. We can first verify this creates a valid tuple.

r € [1,t + k]. Every time we stop at a clause, either it evaluates to 1 and we increment
ctr, or we have to query at least 1 variable. Since ctr can incremented at most k times
and we can query variables from at most ¢ clauses before reaching our quota of ¢ queried
variables, it follows we stop at most ¢ + k times.

(£1,...,¢.) € [m]" is an increasing list of indices since the CDT linearly sweeps the clauses
in increasing index order.

(s1,-..,8r) is a list of non-negative integers, at most ¢ of which are allowed to be 0, such
that s :== >/, s; € [t,t +w — 1]. A particular s; being zero implies that the CDT’s
1th stop was at a clause C; that was already determined to be 1, and hence ctr was

incremented. Since ctr can be incremented at most k times, at most k of the s;’s are zero.

s is the total number of variables queried before halting. Notice after the penultimate
clause is queried, there are < t clauses queried. Consequently when the ultimate clause is

queried, there clearly will be < ¢t + w variables queried, since k is the width of the clause.

Of course, since the transcript halted after this clause, > ¢ variables had to be queried.
(B1,...,B;) is a list of (potentially empty) subsets of [w] satisfying | B;| = s; trivially by

construction.
(a1,...,q.) is a list of (potentially empty) bit strings satisfying |a;| = s; trivially by
construction.
We can then easily see by construction of the tuple, it is indeed a t-witness for p. <

We note that the difference between Definition 4 in [18] and the one here is the relaxation to
allow (s1,...,$,) to contain up to k zeros, rather than to all be positive. As evident in the
proof, this is to handle cases the CDT encounters a clause that was already fixed to 1, which
causes the corresponding s; value to be 0. This wasn’t recorded in Lyu’s witness definition
because in the case of CNFs, one satisfied clause determines the value of the circuit, and the
CDT immediately halts. Why do we still record that the CDT didn’t query any variables at
a clause instead of just ignoring this behavior and moving on? It turns out if we don’t include
this piece of information, the witness searcher we create will not have enough information to
reconstruct the whole witness (see the “balancing act” discussion in Section 1.2.1).
We now move on to define partial witnesses.

» Definition 24. Let F be a circuit and p a restriction. We call (v, s;, B;, ;) a partial
t-witness for p if there exists ({1, ..., L) such that (r,;, s;, B;, ;) is a t-witness for p.

We note the following important claim.

> Claim 25. If P is a partial witness for p, then there exists exactly one list of integers (¢;)
such that (¢;, P) is a witness for p.

Proof. By construction of Algorithm 1, #; must be be the index of the first clause not fixed
to 0 by p. But now, we notice ¢ must be the index of the first clause after Cy, not fixed to
0 by poaj. We then continue this induction to get our unique list (¢;), Where ¢; will be
forced to be the index of the first clause after ng.fl that is not fixed to 0. <
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Therefore, by Claims 23 and 25

Pr[DT(F|,) >t] < Z Pr[(¢;, P) is a t-witness for p]
! P "

< Z Pr[P is a partial t-witness for p] (5)
G

where P ranges over all partial t-witness tuples.
Going back to our proof, we now define our witness searcher S as Algorithm 2.

Algorithm 2 Witness Searcher S.

Input: (orlike G(k)) o AND,, circuit F(C1,...,Cp), ground assignment z € {0,1}",
partial witness W = (r, s;, B, ;) .

initialize:

75«0

x4 ()"

ctr + 1

while ctr < r do

while j* <m do

Find the first j > j* such that C;(z) = 1. If no such j exists, exit the inner
while loop.

thr — ]

Query ap;.

Set the B portion of z to be agy..

ctr < ctr + 1

JrJ

end

end
return (¢;, W)

We now prove the following essential property about S, stating in a probabilistic way, it
can use a partial witness to reconstruct a total witness for p.

» Lemma 26. Let P be a partial witness, and let s be its size. Define a restriction p to be
good for P if P is a partial t-witness for it.

Pr[S(z, P) is a t-witness for p(A, z)|p(A, z) is good for P] =27°

Furthermore this event is solely dependent on zy, where I is the set of variable indices
referred to by the unique completion of P with respect to p.

Proof. If p = p(A, 2) is good, then by Claim 25 we know there exists unique ¢; such that
(¢;, P) witnesses p. In particular, we know that A must contain all the indices I that (¢;, B;)
identify. Let I; be the index set identified by ¢; and B; (so I = I; U---U1,). Now condition
on a fixed p. This means all bits in z not covered by A are fixed. In particular, only source of
randomness left are the bits covered by A, which is a superstring of z;. We now claim every
21, is assigned the unique bit string such that Cy, |sz # 0 (not forced to be unsatisfied) iff S
successfully outputs (¢;, P). This consequently proves the lemma, since this has probability
27111 = 275 of happening.

By construction of TFx|, we know that all clauses before Cy, was falsified by p. Upon
inspection, we see S correctly skips past these clauses (as z is a completion of p). Now we
note Cy, was not fixed to 0 p, causing T, to query all unknowns in Cy, at the time (which
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might be nothing if Cp, was fixed to 1), which is z,. Inspecting S, we see S will set the
correct 41 iff Cy, (2) is satisfied iff z;, is assigned the unique string such that Czi|zlj =0
(since all variables outside I ocurring in Cy, is fixed by p). S then (importantly) replace zr,
with ay, so that all variables encountered thus far are assigned exactly as 1|, did.

We then repeat this argument r times, noting that due to z o ay, o--- o «;, being a
completion of po ay, o---oay,, S rightfully skips all clauses between Cy, and Cy, ,. We
then similarly argue that S will set £;11 to be the j + 1st clause 1|, queries iff z7,,, is the
unique string such that Cy, |ij+1 Z 0. <

Combining Equation (5) and Lemma 26, it follows that
Pr[DT(F|,) >t] < E Pr[P is a partial t-witness for p]
p p

P

< ZE Pr,[S(z, P) is a t-witness for p(A, z)]
5 APr. [S(z, P) is a t-witness for p(A, 2)|p(A, 2) is good]

< Z 2size(P) lir[S(z, P) is a t-witness for p(A, 2)] (6)
P

Notice a necessary condition for a restriction p(A, z) to be t-witnessed by a size-s W is for A
to cover the s variables that W recorded as the CDT needing to query, which happens with
probability < p® (as s <t+ w and A is (t + w)-wise p-bounded). Hence, every term in the
sum in (6) can be bounded by p*?*(”) and it remains to find the number of partial t-witness
tuples P.
For a fixed s, we can bound the number of potential partial witnesses naively by noting
the number of choices of (r,s;) can be bounded by the number of ways to write s as the
sum of at most s + k nonnegative integers, which is Y2°T5 (*17) < S2EF (207K) < 92stk
(notice that we get a larger count here than the analogous quantity of 22° in Lyu’s proof
[18], which is a side effect of looking at a more complicated circuit class),
the choices for (B;) can be bounded by [T, (3’) < w*,
and the choices for (a;) can be bounded by 2%,
giving a total count of (8w)*2*. Combining this count with the previous paragraph’s

observation and (6), while remembering to sum over all sizes, we derive

t+w—1 t+w—1
PrDT(Fl,) > ] < Y (2p)*(8w)*2" = > (16pw)*2" < (20pw)*2". <
P s=t s=t

» Remark 27. One may ask whether the failure probability of (20pw)?2¥ tight. We show that
PARg. can be expressed as a G(k) o AND,, cirucit and prove this saturates the above bound
in the Appendix (Theorem 52).

After defining witnesses, partial witnesses, and witness searchers for G(k) o {AND, OR}
circuits, we notice that Lyu’s proof of the multi-switching lemma directly goes through
with these definitions with zero changes (even down to the exact algorithm of the canonical
partial decision tree and global witness searcher). Due to this, we defer the proof of the
multi-switching lemma to the appendix. However, we do highlight here what properties
about the circuit class is needed in order to invoke Lyu’s lift from a switching lemma to a
multi-switching lemma. The key properties needed were that

the number of partial witnesses for a depth ¢ canonical decision tree needed to be small,

and

there needed to exist a witness searcher function & such that for all p and a partial

witness for p, S recovers the full witness with decent probability over an advice string.
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given a complete witness, there needed to be a small chance that a random restriction
witnessed it

» Theorem 28. Let F = {F,...,F,} be a list of G(k) o AND,, circuits on {0,1}™. Then
Plr:z [F|, does not have r-partial depth-t DT] < 4(64(28m)Y/"pw)*
p~iip
Proof. See Theorem 56. |

» Remark 29. At this point, we can observe an aspect of the expression that illuminates an
important unifying flavor of the rest of the results. Notice that the only difference in the
failure probability expression between the standard AC® multi-switching lemma in (lyu) and
the above one for G(k) is that every occurrence of m is multiplied by a factor of 2¥. This
means if constants in the exponent can be ignored, the multi-switching lemma asymptotically
gives the same result as the AC® version if 2% ~ m. In particular, we can expect any result for
size s ACY circuits to immediately extend to GCO(log 8) circuits with no loss in parameters!
This will be demonstrated in various settings in future sections.

With our multi-switching lemma in hand, we can simplify depth 2 circuits with high
probability. To extend this to constant depth circuits, we also require a depth reduction
lemma. In the case of AC’, this was trivial enough to embed in the main proof, but in the
case of GCO(kJ), we need to be more delicate and use more specific properties of decision trees.

» Lemma 30. Any depth 2 circuit of the form G(k) o DT, with top gate fan-in m can be
expressed as a circuit in G(k) o {AND, OR},, of size m2®.

Proof. Say the circuit we start with is F'(D1, ..., D,,), where D, are the bottom layer depth
w decision trees. Assume F is orlike (the andlike case is analogous). By enumerating over
all 1-paths, expand out each D; as an OR of ANDs, namely C? VvV C% V - -V Ci... Now define
a function F’ over m2% bits, where

F(1m™) ST >k

F(VZ, Ti,.. ., Vi, x')  otherwise

o1 12
F'(z],.. Z3w, X7, .., xh%) z{

Clearly by construction, F’ € G(k). Therefore to prove the lemma, it suffices to show that
over all input assignments, F(Dy,...,D,,) = F'(C},...C3.,C% ...,C%).

If > k of the D; are satisfied, we know since F is an orlike G(k) function, F(Dy,...,Dy,) =
F(1™). This also clearly implies > k of the C’; are satisfied. Therefore by construction of F”,
F'(CY,...,0m) also evaluates to F((1™).

If < k of the D, are satisfied, then we need to use the following observation. For any
assignment of inputs, at most one of the clauses C?, ..., C%,, can be satisfied for each i, since
each assignment uniquely defines a path in a decision tree. In more conventional terms, the
DNF created by the decision tree D; is unambiguous. Therefore the amount of D, satisfied is
exactly equal to the number of C; satisfied, and so < k clauses C’f are satisfied. This forces
us into the second case of the piecewise definition of F’, and so

2w 2%
F(Cy,....ce) =F(\/ C},....,\/ C]") = F(Dy,..., D)
1=1 =1

as desired. <

We have finally built up the tools to prove our main result: a constant depth simplification
lemma.
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» Theorem 31. Let G be any gate, and let F be a G o GCY(k) circuit of size m. Then for
p= W(12811)(?7%2]“)1/7”)_d'"1 and any t > 1,

P

T [F|, is not computed by a ((2* — 1)t,G o DT,,)-decision tree] < 4d-27"
p~iip

Proof. WLOG assume the circuit is layered (all paths down the circuit are of length exactly
d+1). We first append an extra layer of {AND, OR}; gates to the bottom of the circuit
so that the input level fan-in is 1. We then apply a random restriction py ~ R,, with
Po = W and use Theorem 28 on all the depth-2 subcircuits to deduce that

Plg [F|, is not computed by (t,G o GCy_,; (k) o DT,,)-decision tree] < 4-27F.
pPo~1pg

Letting F(©) be a good tree from above which does simplify, we see that there are at most
2 leaves of the partial decision tree, with each leaf containing a G o GC(k)q_; o DT,, circuit
(which we will refer to as “leaf-circuits”). By Lemma 30, these circuits can be simplified to
G 0 GCY_, (k) o {AND, OR},, circuits. We apply Theorem 28 on the depth-2 subcircuits of a
particular leaf-circuit with p; = m, using 2t instead of #, union bound over all 2¢
leaves, and then apply Lemma 30 to get that

Pr [F©], isnota (t+ 2t,G o GCY_,(k) o {AND, OR},-decision tree] < 4272 .2

PlNRm
=4.27¢,

Iterating this argument d — 2 more times, where we apply Theorem 28 on the depth

2 subcircuits using p; = and 2%t instead of ¢ on the ith iteration, and then

union bound over all 2(2'~D? Jeaves, we get that on the ith iteration, our desired single
depth simplification happens with probability 2 -2~*. If the desired simplifications happen
on all iterations, we result in a ((2¢ — 1)¢,G o DT,,)-decision tree with probability at most
Zf;ol 4-27t =4d- 27t (via a union bound over the d iterations) and with a restriction from

R, where p=[]p; = W - (128w(m2F)t/w)=d+1 The conclusion follows. <
With this theorem, we can let G be a G(k) gate to get the following corollary.

» Corollary 32. Let C be a GCY(k) circuit of size m and let p = Then

1
40(128(k+logm))d—1*

Pr [DT(Cl,) = 1] < 2- ozt
p~Ivp

Proof. Applying Theorem 31 to C with w = k+1logm, it follows for p; = 128(128(kj10g )T

PRr [C|, is not computed by a ((2%71 — 1)t, G(k) 0 DTk 10g m)-decision tree] < 4d-27".
pr~dtpy

Fix a p such that C simplifies to such a tree, T. By Lemma 30, the leaf circuits simplify

to G(k) o {AND, OR} i 410g m circuits. Let ¢ be a leaf, and let Cy be the associated leaf-circuit.
By Theorem 20, we know that for py = 1/40w, Prrwg, [DT(Cyl;) > 297 1] < 9-2""tok

Union bounding over all < 2(2°=Dt Jeaves 4, it follows that

Pr [C|por is not computed by a (247! — 1)t, DTya-1,)-decision tree]
p~Rp, , T~Ryp,

< 2@t g2t gk 4 g 9t
<2.27tFk (7)
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Because po7 ~ Ry, p,, P i=p1P2 =
is simply a DTya_q, (7) implies

40(128(k+110gm))d—1’ and a ((2471 = 1)t,DTga-1,)-tree

Pr [DT(CY,) > (2% —1)t] <2271
p~1Ivp

The desired result then follows after a change of variables from t — ¢/(2¢ — 1). <

4 Applications of The GC°(k) Simplification Theorem

4.1 Exponential Lower Bounds Against Parity

Given Theorem 20 and Corollary 32, we can establish correlation bounds of GCY(k) circuits
against PAR (parity).

» Theorem 33. Let C € GCY(k) have size m and let PAR be the parity function. Then the
correlation of C' and PAR is

yd—1
Eww{o,l}" [(_1)C(w)+PAR(:v)} < 27Q(n/(k+log m) )+lc'

Proof. The uniform distribution is equivalent to performing a fair random restriction (a
random restriction where non-star variables are set to a uniform bit), and then filling in
the xs with uniform bits. We will show that under a fair random restriction, C' will become
constant with high probability while PAR becomes a parity over the live variables. Averaging
over these live variables then gives a correlation of zero. The total correlation is then the
probability C' doesn’t become constant.

Let p = Applying Corollary 32, we see that

1
20(128(k+logm))a—1"

Pr [DT(C|,) > pn/d] > 2-2 @05 F,
p~Rp
By a Chernoff bound, we know p will have > pn/2 stars with > 1 — 9—pn/8 probability. Let
& be the event both of these events happen, and fix such a p. Consider performing a random
walk down the depth < pn/4 decision tree (start at the root and iteratively pick which
of the 2 children to travel to uniformly, effectively filling in < pn/4 of the variables with
uniform bits), which induces a random restriction 7. No matter which path restriction T was
taken, C|,or becomes constant, while PAR| ., becomes a parity over > pn/2 —pn/4 = pn/4
variables. The correlation of these two functions is trivially 0. Therefore,

By o1 [(-1) O HPARE)
= |E,E,[(—1)Cle(®)+PARI (=),
< P[] + E,[[Ey [(—1) 0+ PARL ] ]
+

<2. 2~ 4(2%7"11) k + 2*””/8]EP[IET|ET[(—1)C|P°T(m)+PAR|P°*(x)]|]5]

< 27Q(n/(k+logm)d_1)+k. <
n/k)TT)

1/d

As an application, we can observe that for 0 < k < .1n one can set m = 20

in the above lemma such that the correlation is < 1/2, yielding us the following corollary.

» Corollary 34. For some absolute constant C, integer d, and 0 < k < .1n'/¢, GCg(k)
1

circuits computing PAR,, requires size 22((n/k)77T),
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This is an interesting result in multiple ways. First, notice the dependence of the lower bound
on the “k” parameter is extremely tight and the corollary becomes absurdly false if £k =n
This is seen by the fact PAR,1/a € G(n'/%), and so one can create a size O(n'~/) GCY(n'/?)

formula computing PAR,, simply by having the ith depth from the bottom have n!~*/¢

PAR, 14 gates, each of which takes in inputs from n'/¢

gates below it. Hence we observe a
“sharp threshold” behavior where a difference in constants can change an exponential lower
bound to a sublinear one. )

We also observe that this lower bound almost matches the classic 22" ") construction
for ACg circuits calculating parity. Thus, augmenting AC® with unbounded fan-in gates
which have the power to calculate the majority of polynomially many bits has no effect on
its ability to calculate parity, even thought we know such gates require exponentially sized
ACg circuits. In fact, by an argument resembling Shannon’s classic circuit lower bound, there
exists gates in G(k) which require size 20(n'/2%) ACY circuits.

We can also show that the size lower bound in Corollary 34 and the correlation bound in
1
Theorem 33 is tight. In particular, the gap between the 22(*“~") lower bound for AC® and

29U ) hound established for GC°(.1n!/?) cannot be bridged. We defer the formal proofs to
Appendix A.2.

4.2 Correlation Bounds for GC°(k) Circuits With Few Arbitrary
Threshold Gates

In this section, we prove that state of the art correlation bounds against AC” circuits [27] with

a small number of threshold gates extends to if we instead start with GC°(log?n) circuits.

We first give an overview of their proof. As in previous works studying this correlation
[23, 33, 17, 27|, the hard function we uncorrelate with is

m T

RW, i.r(x) = @ /\ Tijk

i=1 j=1 (=1

A uniform string can be sampled by performing a random restriction and then filling the s
with uniform bits. Driven by this, the overlying strategy is to apply a random restriction, and
show the circuit collapses while the RW function maintains integrity. It turns out because
our multi-switching lemma gives no loss in parameters (up to constants), we can apply the
exact same argument in [27], except replace the ACY simplification lemma (Corollary 3.2
of [27]) with our more general Theorem 31.

» Theorem 35. Fiz u. Let v = .005logn and ¢ = \/n/(v+1) There exists a func-
tion RWy, o € P and small enough constant T such that for all circuits ANY, o THR o
GCY(Q(log® n)) circuits F where each of the u THR o GCY subcircuits of F has size at most
7 logn

s=n , we have

By, [(—1)RV@HC@)] < 900 /0)

Proof. We immediately apply Theorem 31 to F' with G being the top ANY, o THR circuit,
m = u - 2E/100d) 10" n 4, — logm, t = q/2 and k = (¢/100d) log® n to get that for o/ ~ R,
where p = n=¢/%0,

Pr[F|, is an (m/2, ANY,, o THR o DT, )-decison tree] < 1 — 4d - 279/2,

1/d.
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This computational model is now void of G(k) gates, and we can essentially port in the rest
of [27] to finish. By the “Second Step” and “Third Step” under Section 2 of [27], one can
compose p’ with another restriction to get a final random restriction p that simplifies the
tree further and prunes the fan-in to an ANY, o THR o AND,, circuit.

It was shown in Lemma 4.3 of [27] that the same random restriction p will have RW|,
equal(after restricting additional bits and negating input bits and/or the output) GIP, /2 41
except with probability 2=2(P9), Theorem 21 in [27] then states that an ANY, o THRo AND,
circuits can be calculated by a randomized NOF (v+1)-party protocol with error v = 92— /u
using O(uv®lognlog(n/v)) = O(q¢*°v®logn) bits. Finally, by Theorem 14 in [27], we can
conclude the correlation between GIP, /5,41 and ANY, o THR o AND, is at most 2= /u)
Hence the overall correlation can be bounded, via union bound, by the sum of the error
probabilities and the correlation of GIP, /3,1 and ANY, o THR o AND,, yielding

|EwNUn[(_1)RW(I)+C(I)] <d4d-279% ¢ 9= Upa) 4 9= ™ /u) — 9=Q(n""/u)

as desired. |

With this theorem, we can prove the actual correlation bound for GC®(k) circuits with
arbitrary gates.

» Theorem 36. Let C be a GC°(Q(log? n)) circuit, g of whose gates are arbitrary THR gates.
Then

499

E[(_1)0($)+RW(1)] < 29 5——9),

n.249)

In particular, plugging in g = ©( tells us

E[(_1)C(w)+RW(I)] < 279(71'249)
Proof. This follows from Theorem 35 exactly like how Theorem 3 follows from Lemma 6
in [17]. |

» Remark 37. We note that an argument analogous to the above can be used to show
2-2(n*) correlation bounds against GC°(Q(log®n)) circuits with 4% gates, via the same
argument presented in [27].

It is worth noting that if we had tried performing this argument by expanding the size
nlogn) G(:O(log2 n) circuit naively into an AC® circuit, not only would we get a loss in
parameters, but the argument will not go through. The proof crucially relied on correlation
bounds against v = .005logn party protocols. Had we asymptotically increased the size
of our circuit by writing it as an AC® circuit, then after applying random restrictions to
prune the fan-in of our circuit, we will be left with trying to uncorrelate against arbitrary
w(logn)-party protocols, a longstanding open problem (Problem 6.21 in [14]).

4.3 Derandomizing the Multi-Switching Lemma and PRGs for GC°(k)

Using the same techniques appearing in [12, 18], we can completely derandomize our switching
and multi-switching lemma. We defer the proof to the appendix (Theorem 62).

» Theorem 38. Let F = {F},...,F,} be a list of size m G(k) o {AND, OR},, circuits. Let
(A, 2) be a joint random wvariable such that

A is a (t + w)-wise p-bounded subset of [n]

Conditioned on any instance of A, z e-fools CNF of size < m?.
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Then

jli’r [Flpca,z) has no r-partial depth-t DT] < 4(m2F)t/7 (64pw)t 4 (64wm)t T (2m)2kT . ¢
Z

Proof. See the Theorem 62 in the appendix. |

Using the derandomized multi-switching lemma, we can use the partition-based template
in order to create PRGs for GC° (k). The arument to reduce any constant depth to depth 2
will be a very similar argument. [18] simply uses a CNF PRG to tackle the base case of ACg
circuits, but we cannot do so with a G(k) o AND,, circuit unless we want to expand it out as
a CNF and incur a multiplicative k loss in our seed length. We instead use the derandomized
switching lemma one more time to simplify GC(k) o AND,, to a DTiogm and then fool this
with an (¢/m,logm)-wise independent seed. We quickly prove this latter statement in the
following lemma.

» Lemma 39 (PRG for Depth ¢ Decision Trees). There exists a e-error PRG with O(loglogn +
t +log(1/e)) seed length for DT,.

Proof. Let D be a (g/2%,t)-wise independent distribution, samplable using O(loglogn + t +
log(2!/e)) = O(logn +t +log(1/¢)) bits. For arbitrary 7' € DTy, label the leaves Ly, ..., Lot,
and let the value of leaf L; be ¢;. Then

T(z) = Zﬂj - 1(T'(x) reaches Lj).

Note that ¢; - 1(T'(z) reaches L;) depends on at most ¢ bits, and so D will £/2*-fool it.
Therefore,

|]Eac~Un [T(JZ)] - EJND [T(l‘)] |

2t
< Z |[Ez~v[l; - 1(T(x) reaches L;)] — Epop[l; - 1(T(z) reaches L;)]|
j=1

2t
<Y
j=1
=ec. <
With this, we are now ready to prove our final PRG for GC?(logm).

» Theorem 40. Form,n € N and w < logm, there is an e-error PRG with O((wlog®* (m)+
log?(m)) log(m/e) loglogm) seed length for GCY(logm) o AND,, circuits.

Proof. Let ¢ = 512w and ¢t = 10log(m/e).
Let H : [n] — [{] be a 2t-wise independent hash function which needs O(tlogn) =
O(lognlog(m/e)) bits. We will let H; be an n-bit string such that (H;); = 1 iff H(j) = 1.
Let &' = ¢/(¢-2!%") and set X1, ..., X, to be strings that ¢’-fool GCY_ (logm) 0 ANDjog m
circuits of size 4m? if d > 2, which by the inductive hypothesis uses

O(log®*(m) log(m/e) loglog m)

random bits per X;. If d = 1, use the PRG from Lemma 39 giving a seed length, which
needs O(log(m/e)) seed per X;.
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Let Y be a string that ¢/((64mw)*+**1(2m)?")-fools CNF of size m?, samplable using

t+w

O(log mlog((mw)***m! /) loglogm) = O(log(m/e) log® mlog log m)

bits.

The PRG will sample the above strings and output the following computation
Y& (X1 AHp) @@ (X, A Hp)

where A and @ are the bitwise AND and XOR operations, respectively. Therefore, we get a
total seed length of

O(log nlog(m/e)+£log(m/e) + log(m/e)log® mloglog m)
= O(log(m/¢) log® mloglog m)

ifd=1 and

O(log nlog(m/e)+£1og? ! (m)log(m/e) log log m + log(m/e) log® m log log m)
= O((wlog®*(m) + log?(m)) log(m/e) log log m).

Let C be an arbitrary GCY(logm) o AND,, circuit, and let Uy, ... Uy be independent and
uniform n-bit strings. Like in [18] we use a hybrid argument to prove the theorem using the
hybrid distributions

Di=Y® @ U;nH)® P (Xi A H))
1<5<i i<j<e

for 0 < i < £. Noting Dy is the PRG output, while Dy is a uniform string, it suffices to show
[Eznp,, [C(2)] = Exnp,[C(a)]| < e/t (®)

for all 1 <14 </, from which summing over all ¢ and applying the triangle inequality gets the
desired result.

Notice each H; is 2t-wise %—bounded. Conditioned on H, note that Z; := Y@®1§j<z‘(Ui/\
H;) © @, j<((Xi A H;) e/((64maw)' T+ (2m)?")-fools CNF of size m? since Y does. Let F
be the collection of all bottom depth-2 G(k) o {AND,,, OR,,} subcircuits of C. Therefore,
if we let £ be the event that F|, g, z,) has no logm-partial depth-t DT, by Theorem 38 it
follows

(€]

Pr
H,Y,Uci, X>i

< 4(m210gm)t/ 10gm(64w/£)t 4 (64mw)t+w(2m)2tlogm/ logm | 3

(64muw)?t(2m)?t
€

2t t
<4-2 (1/16) + (64mw)4010g(m/€)*1°gm

£
40

IN

4(1/4)" +
9
20

IN

Conditioning on =&, H,Y,U;, X~;, we see upon replacing all depth 2 subcircuits with
DT;s and applying Lemma 30, C|,(g,,z,) is computable by a depth-t DT where each leaf
Lj is an GC§_, (k) o {AND, OR},, circuit of size < m - 21°8™ 4 m < 2m?, and will become a
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DTiogm tree if d = 1. In either case, we see by construction that X; will fool it. Formally,
we note that conditioned on the good events above, we have C,y, z,)(y) = 23;1 L;i(y) -
1{T(y) reaches L;}. By construction of Xj,

|]EX13 [LJ(Xl + Zz) . ]].{T(X,L + Z,L) reaches LJH

— By, [L;j(U; + Z;) - 1{T(U; + Z;) reaches L;}]| c

S i

Summing over all 1 < j < 2!, applying the Triangle Inequality, and using linearity of
expectation, we see

Ex,[Cor,,z)(Xi + Zi)| = Bu, [Cp, 2y (Ui + Zi)]| < 25

Therefore,

Bz, [C(2)] = Banp,[C(2)]| < Pr(€] + Pr[=£] -

&\m

£

20—

and (8) is proven. <
From this, we immediately get PRGs for size-m GC(logm) circuits.

» Theorem 41. For every m,n,d and € > 0, there is an e-PRG for size-m GCg(log m) with
seed length O((log?*(m) + log®(m)) log(m/e) log log m)

Proof. Add trivial fan-in 1 gates to the bottom so that we effectively have a GC3(log m)oAND;
circuit. By Theorem 40, we can fool this with seed length

O((log®~*(m) + log?(m)) log(m/e) log logm). <

4.4 Fourier Spectrum Bounds for GC°(k)

Linial, Mansour, Nisan, and Tal showed that many notions of the Fourier spectrum of a
function class is intimately related [16, 19, 30]. [30] writes out four key properties and
conveniently describes the implications existing between them. We report a slightly altered
version here.

» Theorem 42 ([16, 19, 30]). Say for a class of functions, C we have the following property.
ESFT: Exponentially small Fourier tails. For all f € C,

W2E([f] < Cem %1,

for some constant C.
Then, C also satisfies the following for some constant C’.
SLPT: Switching lemma type property. For all f € C,d,p,

Pr [deg(Cl,) > d] < C"- O(pt)".
pr~ivp

InfK: Bounded total degree-k influence. For all f € C,0 < k < n,
Inff[f] < C" - O(t)F.

L1: Bounded Ly norm at the kth level. For all f € C,0<k <mn,
Y If@l<c-omt

|S|=k

FMC: Fourier mass concentration. For all f € C, f is e-concentrated on tO(t108(1/))
coefficients.
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Due to the above unification result, it appears like we can bootstrap Corollary 32 to give
us a plethora of information about the Fourier spectrum of GCO(k). Unfortunately, upon
closer inspection, the Corollary doesn’t quite give the exact property of SLPT. We instead
show that GC°(k) has ESFT. Our proofs will use the following lemma.

» Lemma 43 ([16]). For f: {£1}" — {£1}, 0<{<n, and p € [0,1],
W=A(f] < 2By, W2*P(f],]
We first start off with depth 2 circuits.

» Lemma 44. Let f be a G(k) o {AND,OR},,. Then
W2L[f] < 2.9~ /80wtk

Proof. Let p =1/40w and ¢t = ¢/80w. By Theorem 20, if p ~ R,, f|, becomes a depth-t DT
with > 1 — (20w/40w)2% = 1 — 27tk probability. Such trees have no Fourier mass above
level t. Say p is good if f|, does indeed become a DT. Using Lemma 43 it follows
WZ(f] < 2B i, [W2P(f],]
< 2B, ok, [WZ* |, ]|p is good] +2-27+F
< 9.9—t/80w+k <

We can now use this as a base case to prove ESFT for GC°. We will need to utilize the
following lemma.

» Lemma 45 ([30]). Let f: {£1}" — {£1}, 0 <€ <n, and let T be a depth d decision tree
such that for any leaf £ and the corresponding restriction py induced by the root-to-leaf path,
we have W=4[f|,,] <e. Then W=*+d[f] <e.

We now state and prove the theorem. Define the effective size of a Boolean circuit to be
the number of gates in the circuit at distance 2 or more from the inputs.

» Theorem 46. Let f be a GCY(k) o {AND, OR},, circuit with effective size m. Then
sz[f] < 44 .9~ 80w(128(kf10g7n))d*1 +k

Proof. We apply induction. The base case of d = 1 is taken care of by Lemma 44.
We now prove the inductive step for depth d. Sample p ~ R, with

1 1
128w (m2k) 1/ (ktlogm) 128w’

p

and let t = pl/2 = £/256w. By Theorem 28, all the bottom depth-2 G(k) o {AND, OR},, sub-
circuits of f|, can be calculated by a (k +log m)-partial depth-t decision tree with probability
> 1—4-27% By Lemma 30, this implies f|, becomes a (¢, GC_; (k) o {AND, OR} . 10g m )-tree
T. Furthermore, each leaf circuit has effective size < m. Call p good if f|, simplifies to such
a tree. Then

W] < 2Bper, WP fLo)) < 2Eper, W[ f,]lp is good] + 8- 27",

Fix a good p. For a leaf L of T, let 71, be the restriction induced by the path to L in T'.
We know by Lemma (cite) that

WZPE[£],] < max WPt [l por, ] < max W22 £, ]
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AS f|por, is a GCY_; (k) o {AND, OR}j 410 m circuit for every L we can then use the inductive
hypothesis to bound

¢ ¢
max W2 Pé/Q[f|po7_ ] < 49-1.9 80(k+logm)(l2p8(k+log m))d— 3tk _ 4971 . 97 Sow(128(ktlog m)d 1 +k'
leaf L
Putting this all together, we get
>/ >pl . —

W=E[f] < 2B, [W=P[f|,]|p is good] + 8- 27°

<2. 49-1 .97 80w(128(k-:'logm))d*1 +k +8- 2*5/2561“

¢
< 4% . 97 B0w(128(ktlogm)d—1 +k <

We can bootstrap Theorem 46 with Theorem 42 to yield the following properties about
GCY(k)

» Theorem 47. Let f be a size-m GCY(k) circuit and define t := (k +logm)?=1. Then the
following is true for some C

ESFT: W2![f] < C - 2% . 272(%),

SLTP: For all 0 < p < 1, Pr,wp, [deg(f|,) = €] < C- O(pkt)".
InfK: Inf'[f] < C - O(kt)".

L1: 3751 |f( )| < C-O(kt)".

FMC: f is e-concentrated on 20((kHos(1/e))tlogt) coefficients.
where [ and any hidden constants only depend on d.

Lol ol S

Proof. Add a trivial (d 4 1)-st layer of AND; gates at the base of f and apply Theorem 46
to deduce that

e
W2*[f] < 4% . 27 s0(2stktiog m)T T +k7

proving the first item. Now since we know W=¢[C] < 1 (by Parseval’s) and k > 1, it follows
that

W2(f] < WENYE < Cq-2700),

Therefore, the second, third, and fourth items follow by applying Theorem 42 (as well as a
version of the fifth item with weaker parameters). We now prove Item 5.

Notice that for w :=t - O(k + log(1/¢)), we have by Item 1 that W=*[f] < /2. Now by
Item 4,

Z|f |<ZOkt (C'kt)™. 9)

|S|<w

Now let F = {5 : |S| < w and |f(5)| > (Ceéf)“,} Notice that

SRS =1- 3 F92- Y F(S)?

SeF 1S|>w 18| <w,S¢F
_e/2
>1—-¢/2—
21-</2 = e 2 7S
|Sl<w
>1—ce.
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By Equation (9), the maximum number of terms in F can be at most

€/2
(C'kt)w

(C,kt)w/ < > _ 2(C/kt)2w/€ — 2O(w log(kt)+log(1/e)) 20((k+10g(1/5))t10gt)

and thus Item 5 is proved. |

As a first application, the work of Kushilevitz and Mansour [13] allows us to translate
FMC to learnability results.

» Lemma 48 ([13]). Let f be a Boolean function such that there exists a t-sparse multivariate
polynomial g (over the Fourier basis) such that B, [(f(z) — g(2))?] < e. There exists a
randomized algorithm, whose running time is polynomial in t,n,1/e,log(1/8) such that given
blackbox access to f and 6 > 0, outputs a function h such that over the randomness of the
algorithm,

PrE; v, [(f(z) — h(z))’] < O(e)] 2 1 - 4.
Using this lemma, we can derive a learning algorithm for GC°(k).

» Theorem 49. There exists an algorithm such that given blackbox access to any C € GCY(k)
of size m and 6 > 0, outputs a function h such that over the randomness of the algorithm,

PrE, 0, [(f — )% < O()] 2 16,
Furthermore, this algorithm runs in poly(n, 26((k+1°g(1/5))(k+1°gm)d_l), 1/e,log(1/9))
Proof. From Theorem 47, for any C' € GCg(k), there exists g of sparsity

t = 90((k+105(1/2))(k-+log m)* )

created by taking the Fourier expansion of C' and only keeping the e-concentrated coefficients
S c 2" such that

Epnga1ye[(C(2) — 9(2))?] < Epogaryn (Z 6(5)$S> =Y C(S)? <e.

5¢s 5¢s
The result then follows by Lemma 48. |

We also can prove a new correlation bound result with this Fourier spectrum. It is known
that MAJ is a symmetric function that has Og(log?~!(m)/\/n) correlation against size-m
ACS[QB] circuits. A natural question to ask is whether Majority is special in this regard, or if a
random symmetric function (use n+ 1 coin tosses to assign a bit to each Hamming level) will
display Og4(log?!(m)/n®) correlation against size-m ACY[@] circuits for some a. Tal ([30],
Theorem 6.1) used ESFT and L1 of AC” to prove that random symmetric functions (or more
specifically balanced symmetric functions) display O4(log?~!(m)/y/n) correlation against
size-m ACg circuits, so it is natural to believe that this should similarly be true against
ACO[@]. Unfortunately, since PAR has all its Fourier weight at level n, this proof approach
is doomed to fail for AC[@] circuits, as the class doesn’t demonstrate ESFT. However, we
can now give partial progress towards this goal by showing a random symmetric function
uncorrelates with GC°(k) circuits, as this class contains gates which calculate parity as long
as the Hamming weight of the input is at most k. This result can be seen as finding out how
general of a circuit class we can stretch the Fourier argument before we reach the roadblock
on this approach demonstrated by PAR.
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» Theorem 50. Let f € GCO(k), and let g be a symmetric function, both mapping {+1}" —

/3
{£1}, and let (k +logm)i~1 <O (W)  Then
d-1
corr(f, g) = Eu[f(2)g(x)] < |§(0)] + Cak(k +\/l%g m)

Proof. We note for ¢’ to be picked later, we can decompose

corr(f, g) = |Eg[f(x)g(2)]]
= Z
<O+ Y FSESI+ Y 17) (1)

|S|<e! |S|>¢

We will bound the first summation using L1, and the second summation by ESFT. The
second summation can be bounded as follows using Cauchy-Schwarz.

S RS < W) Werlg) < Vad o mmE < yve ()

|S|>

if we set ¢/ = cq(k +logn)(k +logm)?=! for some constant cq only depending on d. Now
to bound the first summation, note since g is symmetric, g(S) is constant over all S of same
cardinality. Therefore,

1 1
952 < [
A= (5)

(S = /2(5)2 —
[g(S)] 9(8) (j5) 5%31571=|8]

Hence using L1 from Theorem 47, we can bound

(6] md7 ‘
SICECTE S ol ol e I

|S|<e 1<e<er |S|=¢ 1<e<e!

where Cy is some constant depending on d. We bound this sum by a geometric series of the
same first term and with common ratio 1/2. Indeed, we see that the ratio of consecutive
terms will be

<Cdk:(k+log m)4—1 >£+1

n/(L+1 Cak(k+1 =1 [+ 1)+ Cgk(k +1 d-1

(6D ) _ Cakthtlogm)™ [ DT Caklh+logm)™ /7 < 172
(Cdk(k+logm)d1> \/ﬁ ¢ \/ﬁ

n/e

1/3
where the last inequality follows from the assumption (k+logm)?~! < O (m) . Hence

the quantity in Equation (12) can be upper bounded by twice the first term, so

C’dk:(k: +logm)d-t
|S|<e!
Hence from (10),

=N 1 Cik(k +1 d—1
corr/,g) < [gO) + = + ak{ *ﬁm) | «
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5

Open Problems

We conclude with some directions for future research.
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A Deferred Proofs

A.1 Showing TC%(k) C GC°(k)

Here, we prove that circuits created by biased LTF gates are indeed contained in GCO(k).

» Theorem 51. Any THR gate f with balance < k (see Definition 3) is, upon negating
certain input bits, in G(k).

Proof. Let f:{0,1}" — {£1} be defined as f(z) =sgn(> ., w;(—1)" — 6). By negating
input bits, we can assume each w; > 0. Furthermore, since the definition of G(k) is
symmetric (solely depends on the sum of input bits), we can assume WLOG that 0 < w; <
-++ < wy. Since f has balance < k, we know that — >, , w; + > ;o w; < 6. Assuming
=D i<k Wi + ;o wi < [0], we will show f is an orlike G(k) gate (an analogous proof will
show the case for —6 and andlike).
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Consider x such that > x; > k. Let S, C [n] denote the set where i € S, iff x; = 1. It
follows that

f(x) =sgn waiJrZwifG

1€Sy i¢S,
= sgn wai+Zwi70+2 Z w; — 2 Z w; (13)
i<k i>k i€[k]\ Sy i€lk+1,n]NS,

We know by assumption that — Zigk wi + ) ;o wi — 0 < 0. Since [Sg| >k,
[[k]\ Sz| =k — kNS, <|[k+1,n] NS,

and each element in [k]\ S, is strictly smaller than each element in [k +1,n]NS,. Combining
these observations with the fact w; < --- < w,, it follows

2 Z w; — 2 Z w; < 0.

i€[k]\Sa i€lk+1,n]NSy
Therefore,
i<k i>k i€[k]\ S i€[k+1,n]NS,

Combining this with (13) it follows f(z) = —1 for any « with > x; > k. Hence f is an orlike
G(k) gate as desired. <

A.2 Tightness of the GC°(k) Switching Lemma and Correlation Bounds

In this section, we give constructions which show that various bounds we establish are indeed
tight. We first show that the switching lemma we established is tight.

» Theorem 52. Let p,w,t, k be parameters such that pkw < 1/2 and t > k/2. There exists
a G(k) o AND,, circuit C such that

Pr [DT(C|,) > ] > 2k/2( 5pw)t
p~1Lip

Proof. We will take C' = PARy,,. To see that this is computable in G(k) o AND,,, write
PARkw(x) = PAR]C(PARU,(xl7 [N ,Iw), ey PARw(x(k—l)w-i-la NN 7ka))-

Now, write out each bottom layer PAR,, as a size w2*~! CNF which takes the ORs of the
2v~1 AND clauses corresponding to w-bit inputs with an odd number of ones. Notice that
for any assignment,

at most one of the 2! clauses under each OR can simultaneously be satisfied,

which implies at most k& of the bottom layer clauses can be simultaneously satisfied.
By the first bullet point, we can turn the OR gates into PAR gates, turning C into a
PARj.9w-1 0 AND,, circuit. By the second bullet point, we can replace the top PARj 5.1 gate
with the gate G € G(k) which calculates parity if at most k input bits are one, and outputs 0
otherwise. Consequently, C can be calculated by a G(k) o AND,, circuit.
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We can now directly calculate the simplification probability. Notice that if > ¢ variables
are alive in p, then C|, must have decision tree depth > ¢ (since even if d — 1 input bits are
known, parity remains ambiguous). Hence we calculate

kw

kw\ .

R CUCPEVES B W FCEES
i i=t

o (2 (22

t

> 282 (5pw)*
where the third inequality follows from the fact (k/t)! is increasing in t for ¢ > k/2 <

» Remark 53. Notice that if PAR,, was written as a width n-CNF and the classical switching
lemma was applied, we would get a “failure to simplify” probability bound of < (5pn).
However, if we rewrite PAR,, as a G(tlog(n/t)) o AND,, /10g(n/+) circuit in a similar manner as
above, and use Theorem 20, we get a bound of < (20pn/tlog(n/t))t2t1°8("/t) < (20pn? /t?)t,
which is asymptotically stronger when ¢ = w(y/n). This shows that we can potentially
obtain tighter parameters by expressing functions as a more compact GCO(k) circuit and
applying Theorem 20 rather than using the classical switching lemma on a larger AC® circuit
computing the same function.

We will now show that the circuit lower bound established in Corollary 34 is tight. We
thank an anonymous reviewer for pointing us to this construction.

1
» Theorem 54. There exists a size-20(/F) =) GCY(k) circuit which computes PAR,,.

Proof. Split the input string into k blocks of size n/k bits each. We can compute the parity

of each of the n/k-size blocks straightforwardly using a depth d — 1 circuit made out of
1

_1_ gates; iteratively group the bits into blocks of (n/k)7-T, and use a gate to take

(n/k)T=1

the parity of each block, thereby creating a depth d — 1 tree of PAR( T gates. Finally,
k) T
we can take a PARy, of these k depth-(d — 1) circuits to get a depth d circuit which computes
the parity of all n bits. We now focus on converting this parity-riddled circuit to a GCO(k)
one.
Consider the top depth-2 subcircuit, which is a PAR; o PAR 1 circuit. Notice that

(n/k)d-1
PAR; € G(k) and PAR _1is trivially computable by a decision tree in DT ST
(n/k)d-1 (n/k)TT
Therefore by Lemma 30, this top subcircuit can be replaced by a size 20((n/k)T=T) G(k) o

OR( /% A Consequently, we have converted our original depth-d circuit into a new one
k) T

where the first 2 layers are made from gates in G(k).

(n/k)d—1
or DNF to convert the remaining PAR( /5 L. gates to AND/OR gates while preserving the

depth. Convert the third layer PAR( /k)dlfl gates to a DNF (OR of ANDs), and then collapse
the 2nd and 3rd layer as they both consist solely of OR gates. The third layer now consist
of AND gates, so replace the fourth layer PAR( sy T gates with a CNF (AND of ORs) to

again induce a collapse of the consecutive AND layers. Repeat this procedure down to the
bottom of the circuit.

1
We now use the fact that any PAR 1 can be expressed as a size 20(("/k) 1) CNF
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Clearly after this procedure, all gates are in G(k) (in fact, all but the top gate are AND
or OR). Notice that at each stage, we increased the circuit depth by 1 when plugging in the

DNF/CNF, but then reduced the circuit depth when collapsing layers of the same gate type.

Hence the final circuit is still of depth d. We already calculated the top depth-2 subcircuit is

1
of size 20((/k)*=1)  Assuming we didn’t collapse any gates, we would have replaced each of

the o(n'~¢) parity gates with a size-20((n/k) 1) circuit, so clearly the final circuit size is at

most
20((n/k)ﬁ) + o(n/k) . 20((”/k)ﬁ) < 20((n/k)ﬁ)
Therefore at the end of this procedure, we get our desired circuit. <

We now show that not only is the size lower bound tight, but the average case correlation
bound established in Theorem 33 as well.

» Theorem 55. Assume m > k*. There is a GCO(k;) circuit C of size < m such that

EI[(_l)C(z)+PAR(z)] > 9Uk) 9—0(n/(k+logm)?~1)

Proof. Let M = max{k,cqlogm}, where ¢, is a constant such that the parity over
(clogm)?=! bits can be computed by an ACY§ circuit of size < m. Split the input into
[n/M?=1] blocks of size < M9, If M = cqlogm, each block can be calculated by an ACH
circuit of size m, and if M = k, each block can be calculated by a < k% < m-size GC_, (k)
circuit using a tree of PARgs. Now if (n/M d_l] = 1, this circuit computes the parity of all
n bits and we are done, so assume [n/M?7!] > 2.

Join all the [n/M%~| subcircuits by the gate G defined to compute parity if the Hamming
weight of the input is at most &, and to equal 0 otherwise. Clearly G € G(k). Therefore, if
the subcircuits were constructed to be in ACS, we can collapse the top two layers into one
using Lemma 30 (similar to Theorem 54), giving us a GC)(k) circuit. If the subcircuits were
GCY_,(k), we trivially get a GCY(k) gate after adding G. In the case more than k of the
[n/M dil] input blocks have parity 1, our circuit will be constant, and thus will agree with

parity about half the time. Let us crudely lower bound the correlation in this case to be 0.

When < k have parity 1, the top gate computes parity exactly. Therefore our correlation is
simply the probability at most k of the input blocks have parity 1, which is simply

d—1
27{n/M‘i—1] Z ([”/J‘Z ]) > 27[n/Md_1—| L 90(k) > 9Qk) . 9=0(n/(k+logm)?~")
i<k

This gives our correlation lower bound as desired. |

A.3 Proof of the GC°(k) Multi-Switching Lemma

We prove the multi-switching lemma here.

» Theorem 56 (Proof of Theorem 28). Let F = {F,...,Fy} be a list of G(k) o AND,,
circuits on {0,1}™. Then

P11:2 [Fl, does not have r-partial depth-t DT] < 4(64(25m)"/"pw)?
pr~ivp
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Proof. We follow the proof in [18] exactly, where the only difference is that the “Canonical

Partial Decision Tree” (CPDT') will use the modified CDT we created in Algorithm 1, the

definition of global witnesses (resp. global partial witnesses) will now use the witnesses (resp.

partial witnesses) that we defined in Definition 22 (resp. Definition 24), and the “Global

Witness Searcher” will run the modified witness searcher we created in Algorithm 2.
Consider the following CPDT procedure.

Algorithm 3 Canonical Partial Decision Tree.

Input: A list of G(k) o {AND, OR},, circuits F = {F1,..., F},}, black-box access to
a string 8 € {0,1}", and an auxiliary string z € {0,1}".

initialize:

x4+ (%)™

7+« 1.

counter < 0.

while counter < ¢t do

Find the smallest ¢ > j such that DT(F;|,) > w. If no such 7 exists, exit the loop.

Yy ()"

I+ 0.

while Fj|;o, (%) is not constant and counter < ¢t do
Ciq < the term that T, from Algorithm 1 will query.

B, 4 < the set of unknown variables in C; ¢|zoy-
YBi,g * ZBig-
I~ TUB,,.
counter <— counter + |B; 4|.
end
Query By, and set x; + [;.
J .
end
return

With this, we can define the following notion of a “global witness” to intuitively be a
transcript on adversarially chosen inputs.

» Definition 57. Let t,w be two integers. Consider a list of G(k) o {AND, OR},, circuits
F={F,...,Fn}. Suppose p € {0,1,x}" is a restriction. Let (R, L;,S;,W;, 5;) be a tuple,
where

1<R<Z f s an integer;

1< L <Ly <---<Lr<misalist of R non-decreasing indices;

Si....,Sr is a list of R integers such that Zf;l S; € [t,t+ w];

Wi, ...,Wg is a list of witnesses (as per Definition 22). For everyi € [R], W; has size

Si,'

Bi,...,Br are R strings where |3;] = S; for every i € [R].

We call the tuple a (r,t)-global witness for p, if it satisfies the following.

1. Set py = p. Wi is a Sy-witness for Fr,|,, .

2. For every i > 2, let I;_1 C [n] be the set of variables involved in W;_1. Note that
|[I;i—1| = Si—1 since the size of W;_1 is S;—1. Identify B;—1 as a partial assignment in
{0,1,%}™ where only the part B;_1.1,_, is set and other coordinates are filled in with *.
Construct p; = pi—1 0 Bi—1. Then W, is a S;-witness for Fr,

The size of the global witness is defined as Zf;l S;.

Pi*
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» Lemma 58. Consider a list of G(k) o {AND, OR},, circuits F = {Fy,...,Fy,}. Suppose
p € {0,1,%}" is a restriction such that F|, does not have w-partial depth-t decision tree.
Then there exists an (r,t)-global witness for p.

Proof. Same as the proof of Corollary 1 in [18]. <

We now define partial global witnesses, as there are far too many global witnesses to
union bound over.

» Definition 59. Let t,w be two integers. Consider a list of G(k) o {AND,OR},, circuits
F =A{F,...,F,}. Suppose p € {0,1,%}" is a restriction. Let (R, L;, S;, P;, 8;) be a tuple,
where

1<R< % is an integer;

1<Li <Ly <---<Lg<misalist of R non-decreasing indices;

S1....,Sg is a list of R integers such that Zle S; € [t,t +w];

Py, ..., Pg is a list of partial witnesses. For every i € [R], P; has size S;.

Bi,...,Br are R strings where |3;| = S; for every i € [R].
We call (R, L;, Si, P;, B;) a (r,t)-global partial witness for p, if we can complete P; to get a
witness W; for every i € [R], such that (R, L;, S;, W3, ;) is a global witness for p.

By a simple induction, one can show the following claim.

> Claim 60. Given a global partial witness for p, there is exactly one way to complete it
and get a global witness for p.

We now construct a global witness searcher that will reconstruct a global witness from a
partial one using advice, and present it as Algorithm 4.

Algorithm 4 Global Witness Searcher.
Input: A list of DNFs F = {F},..., F,,}, a global partial witness (R, L;, S;, Pi, 8;),
and an advice z € {0,1}".

initialize:

c+ 1.

while ¢ < R do

Run Algorithm 2 on (Fy_, p), P.,y). If it reports ERROR, report ERROR. and
terminate the procedure. Otherwise let W, be the witness returned.

I. < the set of variables involved in W.,.

Identify (. as a partial assignment, where only ;. is fixed.

pletD)  p(e) o B,

c+c+1.

end

return =

We note the following important lemma about the searcher, which we denote S.

» Lemma 61. Let P be a size S global partial witness. Say p is good if P is a global partial
witness for p, then

Pr[S(z, P) is a global witness for p(A, z)|p is good] = 2%

z
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Proof. Same as proof of Lemma 8 in [18], but we instead appeal to Lemma 26 whenever
Lyu’s proof refers to Lemma 6. <

By this lemma, we have

Pr.[S(z, P) is a global witness for p(A, z)]
Pr,[S(z, P) is a global witness for p(A, z)|p is good]

/f\’r [p(A, 2) is good for P] =Ex
= 25, Pr[S(z, P) is a global witness for p(A, z)]

z
< 2°E, lir[S(z, P) is a global witness for p(A, z)]

< (2p)° (14)

where the last inequality follows from the fact that p needs to keep the S variables specified
by the global witness alive in order to have any hope of being witnessed by it. By the
(t + w)-wise p-boundedness of A, this happens with probability < p®.

Finally, if we let Ng be the number of global witnesses of size S, we can see by using
Lemma 58 and Claim 60, along with (14) that

Pr[F|, has no r-partial depth-t DT] < g Pr[P is a global partial witness for p]
p p
P

t+w
<> Ns(2p)® (15)
S=t

We can upper bound Ng as follows.

There are < % . (;/”T) < 2m*/" ways to pick (R, L;)

There are < 25 choices for (S;) (since there are < 2"~ ways to write n as an ordered
partition)

From Theorem 20, we know that there are (8w)“2* partial witnesses of size S, giving a
total amount of < [,(8w)%2F = (8w)S2FF < (8w)32kt/"

There are clearly 9.5 — 98 possibilities for (5;).

Combining all this tells us that Ng < 2m!/"(32w)52**/7. Hence, from (15), we deduce

t+w
Pr[F|, has no r-partial depth-t DT] < Z Ns(2p)®
p
S=t
t+w
S mt/’r‘2kt/’r‘ 2(32pw)3
S=t
< 4(64(2%m) Y "pw)! «

» Theorem 62 (Proof of Theorem 38). Let F = {Fi,...,F,,} be a list of size m G(k) o
{AND, OR},, circuits. Let (A, z) be a joint random variable such that

A is a (t + w)-wise p-bounded subset of [n]

Conditioned on any instance of A, z e-fools CNF of size < m?.
Then

Ili’r [Flpca,z) has no r-partial depth-t DT] < 4(m28)" (64pw)t + (64wm)t T (2m) T . &
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Proof. All steps of the proof of Theorem 28 follow identically until we reach the step
EE[F|p(A’z) has no w-partial depth-t DT]
=Pr Z Pr[(R, L, S;, P;, ;) is a global partial witness for p(A, z)]
(R,L,Si,P;,Bi)
From Claim 60, we can deduce the event decomposes
1{(R, L;, S;, P;, ;) is a global partial witness for p(A, z)}
= Z 1{(R, L;, Si;, W, 5;) is a global witness for p(A, z)}.

W;:completion of P;
For a fixed A and (R, L;, S;, W3, 5;), we can let
pSEEOSOWoBD () — 1{(R, L, S;, Wi, 8;) is a global witness for p(A, z)}.

We will now show that h is a predicate computable by a small size CNF, so that z will
fool it. h is true iff W; is a witness for F,|,(a,2)08,...5,_, for all 1 <4 < R. Now for each i,
one can verify W; = (v, 4;, s;, B;, «;) is a witness by a size m CNF as follows.

For all j < ¢y, Cj is falsified by p(A,2). This is true iff (=C1) A (=C2) A -+ A (=Cy, ).

Notice —C; becomes an OR clause by De Morgan’s Law
C}, is satisfied, which is an AND of variables.

Cj is falsified by p(A, z) o a; for ¢1 < j < la, which is true iff (=Cy,11) A+ A (=Cpy—1).

Each —C; is an OR clause
and so on and so forth until we verify C; ,.

Each bullet points gives a disjunction of (maybe trivial) conjunctions, so for all bullet
points to hold, we simply take the AND of all of them, resulting in a CNF whose size is

bounded by m (since our CNF is essentially Fp,, but with some gates and negations changed.

Hence, if we want to verify W; simultaneously over all i, we take the AND of all R < m
CNFs to get a size m? CNF. Hence, z e-fools h. From Theorem 20, we know over a uniform
string x,

Z EA]EzhE\R7Li’S“W“Bi)(l‘) < 4(m2k)t/r(64pw)t
(R,L;,S8:,W;,B;)

Therefore, over z, we have

II\)r [F|,(A,2) has no w-partial depth-t DT] = Z EAEzhE\R’L"’Si’Wi’Bi)(Z)
. (R,L;,S:,W;,B;)
< Z EA(E _,'_]Eth\R,Li,Si,Wiﬁi)(x))
(R,L;:,S:,W;,8:)
< 4(m2F)VT (64pw)t + Z €.
(R,Li,8:,Wi,B4)
The number of tuples (R, L;, S;, W;, 3;) can be bounded as follows.
From the proof of Theorem 56, we know there are 2m?/"2kt/ "(32w)® many global partial
witnesses of size S.
We now multiply by the number of (¢;) possible for each partial P; of size S;, which is at

most (tfk) < m%+*_ Hence, the total number of (W) over all 1 <i < R is

%
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Hence the total number of size-S tuples is upper bounded by 2m?/72k/7 (32uw)SmS+kt/m <
(32mw)® (2m)?**/7. Summing over all t < S <t 4+ w gives us a grand total of

t+w
> (32mw)® (2m)**T < (64maw)® (2m) T
S=t

Therefore,

Pr[F|y(a,4) has no r-partial depth-t DT] < 4(m2F) T (64pw)* + (64maw)+ (2m)2FT . c. <
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