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Numerous models exist for users to simulate land change to communicate with an audience concerning future

land change. This article raises four fundamental questions to help model users decide whether to use any

model: (1) Can the user understand the model? (2) Can the audience understand the model? (3) Can the user

control the model? (4) Does the model address the goals of the specific application? This article applies these

questions to the popular cellular automata–Markov (CA–Markov) model as IDRISI’s CA–Markov module

expresses. Sensitivity analysis examines 120 ways to set the module’s parameters. Verification compares the

module’s behavior to the software’s documentation. Results show that the cellular automata’s allocation fails to

follow the quantity of change that the Markov module computes. The module’s behavior is likely to cause users

to misinterpret the validation metrics and to miscommunicate with audiences. Thus, the answers to the four

questions were not satisfactory for this article’s case study. This article’s framework helps users to judge a

model’s appropriateness for a specific application by combining sensitivity analysis with verification in a

manner that helps to interpret validation. Users should answer the four questions as they decide whether to use

any software’s modules. Key Words: CA–Markov, IDRISI software, sensitivity analysis, validation, verification.

D
ynamic simulation models have been the pre-

dominant tools used to support the analysis of

future changes among land categories (Houet,

Verburg, and Loveland 2010; Noszczyk 2019).

Scientists have developed numerous land change

models to depict possible land changes and to support

landscape planning and environmental management

(Verweij et al. 2018; Roodposhti et al. 2019;

Sankarrao et al. 2021). Therefore, it can be difficult

for a prospective model user to decide which model(s)

to use because many models exist. Also, there is a

need to encourage the use of more quantitative and

qualitative methods to assess the quality of software

and algorithms (N€ust and Pebesma 2021; Tullis and

Kar 2021; Wilson et al. 2021). This article raises four

fundamental questions to guide users to decide

whether to use any model to address the goals of the

user’s specific application: (1) Can the user under-

stand the model? (2) Can the audience understand

the model? (3) Can the user control the model? (4)

Does the model address the goals of the specific appli-

cation? We encourage users to ask themselves these

questions repeatedly when working with geographic

information systems (GIS) software and algorithms to

study geographical phenomena. The answers to these

questions must be satisfactory for a user to be able to

control the model’s parameters to create various sce-

narios of landscape change in a manner that will com-

municate helpful insights. A model must be well

documented for the user to have any hope to answer

satisfactory to Question 1. A model must be suffi-

ciently straightforward to answer satisfactory to

Question 2. A model must have parameters that allow

the user to control the output to answer satisfactory

to Question 3. The answer to Question 4 depends on

the alignment between the goals and the model. If

the answers to Questions 1 through 3 are not satisfac-

tory, then the likely answer to Question 4 is also not

satisfactory. We recommend prospective users apply

our four fundamental questions to evaluate the appro-

priateness of any model for their specific goals.
We apply our four questions to evaluate a cellular

automata–Markov (CA–Markov) model as the Selva

version of the IDRISI software expresses in its

CA–Markov module (Eastman 2006, 2012; Eastman

and Toledano 2018). We select IDRISI’s CA–Markov
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module for several reasons. Cellular automata (CA)

and Markov matrices are general mathematical con-

cepts that exist in other software, so our analysis can

offer insights that might apply to other software. CA

is popular and makes theoretical sense when a cell’s

neighbors influence the likelihood that the cell

experiences change through time. The Markov pro-

cess is popular in mathematics and land change

modeling software. We suspect Markov’s popularity

derives from its mathematical convenience because

we have neither theory nor evidence that landscapes

change according to a Markov process. CA–Markov

is integrated into the IDRISI software, which makes

CA–Markov easily accessible to IDRISI’s 100,000

users worldwide. IDRISI’s modules are better docu-

mented than some other software packages so we

have a better chance of having the information nec-

essary to answer the four questions than we would

have with some other software packages. The crea-

tors of the IDRISI software introduced the CA–

Markov module as experimental, which warrants its

testing. The creators of IDRISI have considered

removing CA–Markov from the software, but users

wanted CA–Markov to remain in the software

because they have frequently claimed that CA–

Markov is helpful. CA–Markov has been popular in

the literature for many years. Examples include

Aksoy and Kaptan (2021), Aliani et al. (2019), and

Ghosh et al. (2017).
Any model that simulates transitions among land

categories across time and space must perform two

tasks. First, the model must specify the size of the

area that transitions from one category to another

category during each time interval, which is a con-

cept known as quantity. The Markov part specifies

the quantity in a CA–Markov model. Second, the

model must specify the spatial distribution of the

transitions, which is a concept known as allocation.
The CA part controls the allocation in the CA–

Markov model (Eastman 2012; Mas et al. 2014;

Camacho Olmedo et al. 2015). If a module’s param-

eters allow the user to specify the quantity separately

from the allocation, then the user can control two

important components to create various scenarios of

simulated change, in which case the user might be

able to answer satisfactory to Question 3.
The behavior and output of a module derive from

three factors: (1) the user’s decisions concerning

how to format the input data, (2) the user’s selection

of the module’s parameters, and (3) the software’s

design (Dahal and Chow 2015; Liao et al. 2016; Lin

et al. 2020). For the evaluation of the first two fac-

tors, we apply sensitivity analysis to measure how

the model’s output varies depending on eight ways

to format the input data and fifteen ways to set the

model’s parameters. Thus, the number of combina-

tions of data format and parameter selection is eight

multiplied by fifteen, which generates 120 runs in

the sensitivity analysis. For the evaluation of the

third factor, we cannot apply sensitivity analysis

because we do not control the software’s design.
Some users are tempted to evaluate a model based

on its predictive power, which can be an unfair cri-

terion to evaluate a module for several reasons. First,

there are many ways to format the input data, and

each one can influence the module output. Second,

there are many ways to select the module’s parame-

ters and each one can influence the output. More

important, the purpose of many models is to extrapo-

late from the calibration time interval, not necessar-

ily to predict accurately during the extrapolation

time interval. If the patterns in the reference data

are not stationary from the calibration interval to

the extrapolation interval, then an extrapolation

from the calibration interval will not have predictive

power because the patterns in the landscape are not

consistent through time. Thus, low measures of vali-

dation might be due more to the landscape’s nonsta-

tionarity than to the model failing to do what the

software developers intended. Nevertheless, valida-

tion is an important consideration for many users

(van Vliet et al. 2016). For example, Memarian

et al. (2012) applied IDRISI’s CA–Markov to an

application where validation revealed more errors

than correctly simulated change, which is typical for

land change models (Pontius et al. 2008; Pontius

et al. 2018). Memarian et al. (2012) concluded that

“CA–Markov shows poor performance for land use

and cover change simulation due to uncertainties in

the source data, the model, and future land use and

cover change processes in the study area” (542). The

CA–Markov algorithm might have behaved exactly

how the software developers intended, but the vali-

dation results derived from poor data quality, inap-

propriate selection of model parameters, or

nonstationarity of the processes, in which case it is

inappropriate to blame the algorithm for the valida-

tion results. Therefore, this article illustrates an

insightful method to evaluate 120 runs in a manner

that distinguishes validation from verification.
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Validation measures predictive power; verification

tests whether a module behaves as its documentation

leads the user to believe it will.
We illustrate our four fundamental questions by

applying IDRISI’s CA–Markov module to a

10,000 km2 region in Beja District, Portugal, which

is a mixed agro-silvo-pastoral environment with low

urban density (Viana, Gir~ao, and Rocha 2019;

Viana and Rocha 2020). Our innovation is to com-

bine sensitivity analysis with verification in a man-

ner that helps to interpret validation. This is

important because errors that the validation reveal

might derive from an inappropriate conceptual

model or an unintended behavior of a software’s

module. Our purpose is to judge a model’s appropri-

ateness for a specific application and to describe how

the CA–Markov module behaves for the application.

Our results give insights into the general CA–

Markov concept and also into IDRISI’s implementa-

tion in its CA–Markov module.

Material and Methods

Study Area and Data

The study area is the Beja District in southeastern

Portugal, which covers 11 percent of Portugal’s

mainland and had 144,000 inhabitants in 2021

(Statistics Portugal 2021). Beja is flat in its southeast

and has extensive plains cut by tiny hills in its north

and west. The landscape is a mixed agro-silvo-pasto-

ral land-use system. Figure 1 shows the reference

maps of land categories at three time points: 1995,

2007, and 2018. We calibrate the model using the

reference change between 1995 and 2007, CA–

Markov simulates change from 2007 to 2018, and

then validation compares the simulated change to

the reference change between 2007 and 2018.
Our study uses Carta do uso e ocupaç~ao do solo

(COS) maps from 1995, 2007, and 2018 produced

by the Portuguese General Directorate for Territorial

Development (DGT). DGT used photo interpreta-

tion, vector polygon data, cartographic accuracy of

0.5m, minimum mapping unit of 1 ha, and a hierar-

chical nomenclature system (DGT 2018). We con-

verted the COS maps into raster format at four

spatial resolutions: 10� 10m, 20� 20m, 50� 50m,

and 100� 100m. We aggregated the COS categories

in two ways to produce either two or five categories.

The two categories are the agricultural category and

the aggregation of all nonagricultural categories. The

five categories are the aggregated nonagriculture cat-

egory and four types of agricultural categories based

on the second hierarchical level: arable land, perma-

nent crops, pastures, and heterogeneous areas.

Table 1 specifies how the two and five land-use cat-

egories derive from the COS levels.

IDRISI’s CA–Markov Model

We used the CA–Markov module in the Selva

version of the IDRISI software (Eastman 2006, 2012;

Eastman and Toledano, 2018). The software’s docu-

mentation describes three stages: (1) calculation of

the transition area matrix, (2) development of the

suitability images, and (3) allocation of change. The

software reads land-use maps at two time points and

the duration of the extrapolation to compute a tran-

sition area matrix, which expresses the extrapolated

quantity of each transition from one category to

another category. The software also reads a collec-

tion of suitability images that express the suitability

of each pixel for each of the land categories. The

suitability maps and a spatial filter influence the

allocation of simulated change.
Figure 2 presents an overview of the modeling

process for our application. The upper left of

Figure 2 shows Stage 1, which computes the Markov

transition area matrix that derives from the land-use

map at 1995, the land-use map at 2007, and the

eleven-year duration for extrapolation. The upper

right of Figure 2 shows Stage 2, where the user con-

verts the driver maps to suitability maps and sets the

parameters that control the neighborhood configura-

tion of CA’s spatial filter. The middle of Figure 2 is

Stage 3, which allocates the simulated change from

2007 to 2018. Our experimental design repeats the

simulation for the two thematic scales, four spatial

resolutions, three neighborhood shapes, and five

neighborhood sizes. This generates 120 combina-

tions; thus, we ran the CA–Markov module 120

times. For each run, verification compares the size of

change in the extrapolated area transition matrix to

the size of change for the simulated maps to see

whether the module performs as its documentation

describes. The bottom of Figure 2 shows validation

to compare each run of simulated change to the ref-

erence change from 2007 to 2018. The following

subsections describe the modeling procedures during

each stage.

Four Fundamental Questions to Evaluate Land Change Models 3



Figure 1. Reference land use in 1995, 2007, and 2018 and changes from 1995 to 2007 and 2007 to 2018 for the Beja District with a

five-category classification.

Table 1. Land-use category description

Category in model Category in COS [level] Description

Nonagriculture Artificial surfaces, forest and seminatural

areas, wetlands, and water bodies [1]

Urban fabric; artificial nonagricultural

vegetated areas; forests; open spaces with

little or no vegetation; inland wetlands

Agricultural areas Agricultural areas [1] Areas principally occupied by agriculture,

interspersed with significant natural or

seminatural areas

Arable land Arable land [2] Lands that are rain-fed or irrigated under a

rotation system used for annually

harvested plants and fallow lands

Permanent crops Permanent crops [2] Lands not under a rotation system,

includes fruit orchards, olive groves, and

shrub orchards such as vineyards

Pastures Pastures [2] Lands that are used for at least 5 years for

fodder production

Heterogeneous areas Heterogeneous areas [2] Landscapes in which permanent crops on

the same parcel, meadows, and/or

pastures are intimately mixed with

natural vegetation or natural areas

Note: COS¼Carta do uso e ocupaç~ao do solo.
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Calculation of the Transition Area Matrix. The
first stage computes the transition area matrix, which
extrapolates land change in terms of quantity.

IDRISI’s Markov module controls this first stage.
The Markov module computes Markov proportions
during the calibration time interval then multiplies

each loss proportion by 11/12 to account for the fact
that the extrapolation interval is eleven years and
the calibration interval is twelve years. We used the
default proportional error of zero where the Markov

module allows the user to set a proportional error.
The resulting matrix of proportions is multiplied by
the category sizes at 2007 to compute the size of

each extrapolated transition from 2007 to 2018
(Muller and Middleton 1994; Eastman 2006, 2012).
Matrix A in Equation 1 expresses the size of each

extrapolated transition, which IDRISI’s CA–Markov
module then reads as input for the allocation.

A ¼
a11 � � � a1J
..
. . .

. ..
.

aJ1 � � � aJJ

2
64

3
75 (1)

Entry aij in row i and column j of matrix A is the
area that is category i at the start of the extrapola-
tion and category j at the end of the extrapolation.

The number of categories is J.
Development of the Suitability Maps. The user

must convert driver maps into suitability maps in

the second stage. Each suitability map portrays the
appropriateness of each cell for a particular land-use
category. Slope, water bodies, and soil type are the
driver maps that determine our suitability maps. The

slope data are from Instituto Geogr�afico Português,
water bodies are from the Agência Portuguesa do
Ambiente, and soil type data are from Cartas de Solos
e de Capacidade de Uso do Solo collected from the
Direç~ao-Geral de Agricultura e Desenvolvimento Rural.
We developed one suitability map for the nonagri-

culture category and another for the agricultural cat-
egory for the two-category case. For the five-category
case, the four agricultural categories use the same

agricultural suitability map. Flatter slopes have
higher suitability for agriculture. Closer distances to
water bodies have higher suitability for agriculture.
We rescaled the soil type map onto the [0, 1] inter-

val where larger values indicate higher suitability for

Figure 2. Flow diagram of the modeling framework. The dark infilled rectangles represent the various ways we formatted the input data

and set the neighborhood configuration parameters, which generate 120 runs. Ovals indicate software procedures.

Four Fundamental Questions to Evaluate Land Change Models 5



agriculture. A weighted linear combination multicri-

teria evaluation combined the suitability maps by

using weights for slope as 0.4, distance to water bod-

ies as 0.4, and soil type as 0.2. Data availability

influenced variable selection and expert opinion

determined the suitability values and the weights.
Change Allocation. In the third stage, the CA–

Markov module allocates the extrapolated quantities

in the transition area matrix A. CA consists of cells,

states, time, neighborhoods, and transition rules

(Torrens 2000). Equation 2 expresses conceptually

how the simulated change derives from a cell’s cate-

gory, the number of cells that change from one cate-

gory to another, the suitability maps, and the cell’s

neighbors (Wolfram 1984; White and Engelen

2000).

tþ1Cm ¼ f tCm, aij, Smj,
tNm

� �
(2)

where tþ1Cm denotes the category at time tþ 1 of

cell m; tCm denotes the category at time t of cell m;
aij is the matrix entry that gives the extrapolated size

of transition from category i to category j; Smj is the
suitability of cell m for category j, and tNm denotes

the condition at time t of the neighborhood of

cell m.

IDRISI’s CA–Markov requires the land-use map

at 2007 and the Markov transition area matrix A for

the extrapolation from 2007 to 2018. The CA mod-

ule allows the user to define the neighborhood con-

figuration of a spatial filter. The spatial filter defines

a cell’s neighborhood in terms of shape and size

(Verburg et al. 2004). Figure 3 shows three filter

shapes: diamond, ring, and square. The diamond

shape includes pixels that are within the same

Manhattan distance from the central cell. The ring

shape is the outermost cells at a distance identical to

the square type, where the neighborhood size is the

number of cells on one side. The square shape is a

square neighborhood that fills the ring (White and

Engelen 2000; Pan et al. 2010). Figure 3 shows how

the spatial filter has fifteen combinations that derive

from three shapes and five sizes.

Model Validation and Verification

A three-way cross-tabulation compares the simu-

lated change to the reference change for validation.

We compared the reference map at 2007, the refer-

ence map at 2018, and each of the 120 simulated

maps at 2018. This comparison generates five com-

ponents: misses, hits, wrong hits, false alarms, and

Figure 3. Fifteen combinations of the spatial filter’s shape and size.

6 Viana, Pontius, and Rocha



correct rejections. Misses are reference changes simu-

lated as persistence. Hits are reference changes simu-
lated as changes to the correct gaining category.
Wrong hits are reference changes simulated as
change to the wrong gaining category, which

requires more than two categories. False alarms are
reference persistence simulated as changes. Correct
rejections are reference persistence simulated as per-

sistence. Quantity error is the absolute difference
between misses and false alarms. Allocation error is
two times the minimum of misses and false alarms.

Equation 3 computes the figure of merit (FOM),
which is a measure of the accuracy of change, where
0 percent means no intersection between simulated

change and reference change and 100 percent means
perfect intersection between simulated change and
reference change (Pontius et al. 2007; Pontius et al.
2008; Pontius, Peethambaram, and Castella 2011;

Varga et al. 2019).

FOM ¼ Hits

MissesþHitsþWrong Hitsþ False Alarms
100%

(3)

In addition, we computed the square kilometers

per year of four concepts. Equation 4 computes the
annual reference change during the calibration inter-
val. Equation 5 computes the annual extrapolated
change according to a Markov process. Equation 6

computes the annual simulated change according to
a CA–Markov output map. Equation 7 computes the
annual reference change during the extrapolation

interval.

Reference change during calibration interval

¼ Change area from 1995 to 2007

12years
(4)

Extrapolated change via Markov

¼ Markov change area from 2007 to 2018

11 years
(5)

Simulated change via CA�Markov

¼ HitsþWrong Hitsþ False Alarms from 2007 to 2018

11 years

(6)

Reference change during extrapolation interval

¼ Change area from 2007 to 2018

11 years

(7)

If the result from Equation 4 is greater than the

result from Equation 5, then the Markov process

extrapolates decelerating change, which a Markov

process frequently does. If the result from Equation 5

equals the result from Equation 6, then IDRISI’s

CA–Markov is verified concerning how the module

simulates the quantity of change. If the result

from Equation 5 equals the result from Equation 7,

then the reference data demonstrate stationarity dur-

ing the calibration and extrapolation intervals con-

cerning Markov proportions. If the result from

Equation 4 equals the result from Equation 7, then

the reference data demonstrate stationarity during

the calibration and extrapolation intervals concern-

ing the size of annual change.

Results

Figure 4 uses Equations 4 through 7 to generate a

bar for each of the 120 runs. In Figure 4, each row

of bars shows one data format for fifteen filters, and

each column of bars shows one filter for eight data

formats. Each bar has brown, blue, and orange seg-

ments. The sum of these segments is the annual ref-

erence change during the calibration interval, which

Equation 4 expresses. The difference between

Equations 4 and 5 is the orange segment, which is

the deceleration of annual change that the Markov

extrapolation implies. Equation 5 gives the sum of

the brown and blue segments, which is the annual

change according to matrix A from IDRISI’s Markov

module. Equation 6 computes each brown segment,

which is the annual change in each simulation map.

The difference between Equations 5 and 6 generates

each blue segment, which indicates a deficit where

the simulated change is less than the change in

matrix A. A deficit implies a lack of verification of

the CA–Markov module concerning the size of

change. Figure 4 shows larger deficits with smaller

filter sizes.

Figure 4 uses dotted rectangles to show the annual

reference change during the extrapolation interval,

which Equation 7 computes. Reference change dur-

ing the extrapolation interval is slower than refer-

ence change during the calibration interval because

change to the landscape decelerated. A Markov pro-

cess implies deceleration, which the orange segments

indicate. The dotted rectangles in Figure 4 are below

the orange segments, which indicates that the decel-

eration in the landscape is more severe than in a

Four Fundamental Questions to Evaluate Land Change Models 7



Markov process. Verification revealed this conclu-

sion because verification generated the orange and
blue segments. If we had assumed that the module
behaved as its documentation describes, then we

would have compared the dotted rectangles to the
brown segments. The brown segments in Figure 4B
and the top row of Figure 4A are smaller than the

dotted rectangles; therefore we would have

concluded that the deceleration in a Markov process

is more severe than in the landscape, which is the
opposite of the truth.

More variation occurs down the columns of bars

that reflect the variation in data format than across
the rows of bars that reflect the variation in the fil-
ter. This indicates that a user’s decisions concerning

the data format are more influential than the

Figure 4. Annual change for 120 runs. Each row is one of eight data formats and each column is one of fifteen spatial filters. The

height of each stacked bar is the change during the calibration interval.

8 Viana, Pontius, and Rocha



decisions concerning the filter. Comparison across

each row of graphs shows how the filter influences

the size of the simulated change, but the filter is sup-

posed to influence the allocation, not the quantity.

This further reveals that the module does not

behave as its documentation describes concerning

the quantity of simulated change.
Figure 5 presents the misses, hits, wrong hits, and

false alarms generated from the comparison of the

reference map for 2007, the reference map for 2018,

and each of the 120 simulated maps for 2018. Each

run produces one bar. The layout in Figure 5 is the

same as in Figure 4, meaning each row of bars shows

one data format for fifteen filters and each column

of bars shows one filter for eight data formats.

Results vary most by the number of categories, then

by the spatial resolution. Aggregation from five cate-

gories to two categories shrank all the components

of validation. With five categories, FOMs ranged

from 4.11 percent to 7.66 percent, implying the size

of the overall error is approximately twenty-three to

twelve times the size of hits. With two categories,

FOMs ranged from 3.80 percent to 8.79 percent,

implying the size of the overall error is twenty-five

to ten times the size of hits. Coarser resolutions

caused an increase in simulated change, thus an

increase in false alarms.

If false alarms are smaller than misses, then the

simulated change is smaller than the reference

change during the extrapolation interval, which is

the case for most of the runs in Figure 5B. The rea-

son for the difference is CA’s deficit that caused the

simulated change to be less than the change that

matrix A dictated, which the verification revealed

in Figure 4B. If a user were to see Figure 5B without

performing verification, then the user would con-

clude that the quantity error derives from how the

Markov process dictates less change than the refer-

ence change during the extrapolation interval, but

Figure 4B shows that the proper conclusion is just

the opposite. If the simulation would have followed

matrix A of the Markov extrapolation, then the sim-

ulation would have simulated more change than

what occurred according to the reference data during

the extrapolation time interval. Thus, the verifica-

tion revealed information that prevents misinterpre-

tation of Figure 5.
Figure 6 shows the spatial allocation of misses (12

percent), hits (2 percent), wrong hits (1 percent),

false alarms (10 percent), and correct rejections (75

percent) where the percentages in parentheses indi-

cate the percentage of the spatial extent. These

results are for the run with five land categories at

the 50m resolution and a square filter of size

11� 11. The filter causes the CA–Markov model to

allocate the gain of a category around the patches

where the category existed at the start of the simula-

tion. The filter prevents CA–Markov from simulat-

ing a leapfrog pattern, where a category would gain

at a place that is not spatially connected to the cate-

gory’s previous place. The FOM is 8 percent for the

result in Figure 6.

Discussion

This section answers the four questions of our pro-

posed evaluation framework to determine whether

IDRISI’s CA–Markov model is appropriate for our

specific application. The first question is this: Can

the user understand the model?
Our understanding required verification to give

insights that we did not get from the software’s doc-

umentation, despite CA–Markov in IDRISI being

better documented than many models. If we did not

test the module via verification, then we would not

have realized that the model simulates a different

quantity of change than what the Markov transition

area matrix dictates. If users trust the documenta-

tion, then they are likely to misinterpret the results,

especially the validation metrics. The validation’s

overall error is several times larger than the hits and

the allocation error is more than twice the size of

the quantity error for all the runs. Validation results

tend to inspire users to modify the model’s parame-

ters to perform additional runs to reduce the error. If

the user wants to reduce the allocation error,

then the software’s documentation would likely

inspire the user to modify the filter. The filter’s mod-

ification, however, influences both the allocation

and quantity, so the filter’s modification could influ-

ence the error in unpredictable ways. If the user

wants to reduce the quantity error, then the soft-

ware’s documentation would likely inspire the user

to modify the Markov matrix. The matrix’s modifica-

tion will not necessarily have the desired effect,

though, because the spatial filter also influences the

simulated quantity. For example, the 20-m resolution

row in Figure 4A shows CA–Markov simulates less

than the reference change for small filters but more

than the reference change for large filters. Some of
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Figure 5. Components of validation for 120 runs.
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our runs show zero quantity error, such as the run in

the lower right corner of Figure 4B where the brown

bar matches the dotted rectangle; but the reason for

the match derives from the confusing deficit. If the

user were to see zero quantity error in the validation,

then the user would likely trust how the model

extrapolates the quantity. Such trust would derive

from a misunderstanding of the module’s counterin-

tuitive behavior, however. We do not know why

CA–Markov fails to follow its Markov transition

area matrix. The software dictates this characteristic

of the module’s behavior while users cannot see the

computer code. Consequently, the answer to our first

question is that users might think they understand

the model, but their actual understanding of the

module is likely to be unsatisfactory.

The second question is this: Can the audience

understand the model? The answer is probably not,

given the answer to the first question. In the vast

literature that has used IDRISI’s CA–Markov mod-

ule, we have neither seen verification nor read a dis-

cussion that CA–Markov fails to follow the

quantities that the Markov transition area matrix

dictates, besides two manuscripts (Camacho Olmedo

et al. 2015; Varga et al. 2019). If the user misinter-

prets the results, then the audience is also likely to

misinterpret the results.
The third question is this: Can the user control

the model? Our experience was not satisfactory.

Users are likely to expect that Markov exclusively

controls the quantity and CA exclusively controls

the allocation. We found, though, that the CA

influences both the allocation and the quantity. If

the user wanted to use one quantity to portray sce-

narios of various allocations of change, then the user

would likely modify the CA’s parameters, and thus

become frustrated or not realize that the CA’s

parameters influence the quantity of change. If the

user cannot specify the quantity independently from

the allocation, then the user cannot control the two

important components necessary to create various

scenarios of simulated change.
The last question is this: Does the model address the

goals of the specific application? The answer to this

question depends on the user’s goals. We began the

CA–Markov modeling to integrate knowledge regard-

ing agricultural land system dynamics using GIS. We

choose the CA–Markov model because authors

Figure 6. Map of the components of validation for one of the 120 runs.
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routinely claimed that the simulation model was help-

ful to provide insights for effective environmental plan-

ning and well-informed policy decisions. After using

the CA–Markov module, however, we found that we

could not communicate helpful insights for landscape

management, due mainly to the fact that the answers

to the first three questions were not satisfactory. If we

could control the quantity of simulated change, then

we might have been able to use the model to express

various scenarios, which could be potentially helpful to

inspire discussions concerning management. We could

not use the software to portray various scenarios, how-

ever, because the spatial filter influences the quantities

in ways that we cannot control and that the software’s

documentation does not describe. Therefore, the model

did not address the goals of our specific application.

Our results expose how CA–Markov behaved for our

application, which is similar to the behavior found by

Camacho Olmedo et al. (2015) and Varga et al. (2019;

Varga et al. 2020).
Given our findings, we wonder why so many

authors continue to use CA–Markov (Guan et al.

2011; Aksoy and Kaptan 2021; Nyamekye et al.

2021) and claim that the model is successful and

useful for sustainable management of environmental

systems. We suspect those authors did not ask them-

selves the four questions. The results from the evalu-

ation of the CA–Markov module reinforce the

statements of other authors who have expressed con-

cern for the reproducibility and replicability of

model algorithms and geospatial data (Chrisman

1986; Tullis and Kar 2021). We wonder whether the

CA–Markov behaved according to the users’ inter-

pretations in other applications integrated with other

models (Gomes et al. 2019; Gharaibeh et al. 2020).
Future research should focus on the effectiveness

and limitations of our framework. Mas et al. (2014)

found our framework helpful to formulate their dis-

cussion, but we have not yet solicited feedback from

modelers concerning whether or how they would

modify their actions based on their answers to our

questions. These four questions apply to any model,

so a next step is to apply the questions to models

other than IDRISI’s CA–Markov model.

Conclusions

Not satisfactory is the answer to all four questions

that our framework posed to evaluate a CA–Markov

simulation module for a case study. This article

combined sensitivity analysis with verification to

find that the module’s behavior did not match the
description in its documentation. We could neither

understand nor control the model because the CA–

Markov module simulates a quantity of change dif-
ferent from what the Markov transition area matrix

dictates. If the purpose of the model is to allow the
ability to portray various scenarios of the quantity of

change, then we would have had difficulty because
we could not control the quantity of simulated

change. If the purpose of the model is to simulate
change accurately, then validation is important, but

the module’s confusing behavior is likely to cause
users to misinterpret the validation metrics.

CA–Markov remains popular despite its chal-

lenges. Clark Labs introduced the CA–Markov mod-
ule decades ago as an experimental module. CA–

Markov’s most recent documentation encourages
users to switch to the newer Land Change Modeler
(LCM), which does not have the spatial filter that

influences how the CA–Markov module loses con-
trol of the simulated quantity. LCM has more

detailed documentation and a more sophisticated
implementation of the Markov matrix. LCM does

not generate the deficits in the quantity of simulated
change that CA–Markov sometimes does. The next

steps should be to evaluate LCM and other models
concerning the quality of the documentation, verifi-
cation, and reaction to our four questions. We

encourage users to ask themselves our four questions
to determine the appropriateness of any model.
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