

Accelerated soil nitrogen cycling in response to a whole ecosystem acid rain mitigation experiment

Richard E. Marinos^{a,b*}, Peter M. Groffman^{c,d}, Charles T. Driscoll^e and Emily S. Bernhardt^{a,f}

^aNicholas School of the Environment, Duke University, Durham, NC, USA

^bDepartment of Geology, The University at Buffalo, Buffalo, NY, USA, rmarinos@buffalo.edu

^cCary Institute of Ecosystem Studies, Millbrook, NY, USA

^dCity University of New York Advanced Science Research Center at the Graduate Center, New York, NY, USA, peter.groffman@asrc.cuny.edu

^eDepartment of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, USA, ctdrisco@syr.edu

^fDepartment of Biology, Duke University, Durham, NC, USA, emily.bernhardt@duke.edu

*Corresponding author: Richard Marinos, rmarinos@buffalo.edu, 126 Cooke Hall, Buffalo, NY 14260

1 **Abstract**

2 Acid deposition has declined substantially over the last thirty years in the
3 developed world. In forested watersheds previously impacted by acid deposition, evidence
4 suggests that soils are slowly beginning to recover their alkalinity and base cation fertility.
5 Research in these recovering ecosystems suggests that these changes in soil chemistry may
6 result in decreased ecosystem retention and greater hydrologic export of nitrogen (N),
7 although the drivers behind this enhanced export remain poorly understood. A whole-
8 watershed acid rain mitigation experiment at Hubbard Brook Experimental Forest (New
9 Hampshire, USA) offers a unique opportunity to examine how forest N cycling might
10 change as soil recovery progresses further over the coming decades. In this experiment,
11 researchers added 1168 kg ha⁻¹ of wollastonite (CaSiO₃) to an 11.8 ha watershed in 1999,
12 leading to sustained increases in soil pH and increasing Ca fertility. By 2008, the
13 experimental watershed began to export significant quantities of nitrogen, becoming a net
14 nitrogen source for the first time since measurements began in 1963. We sought to
15 understand whether shifts in soil N cycling could explain this watershed phenomenon.
16 Across repeated soil sampling campaigns in 2015 and 2016, we found that soil inorganic
17 nitrogen pools in the treated watershed were between 1.8 and 2.6 times higher ($p < 0.001$)
18 than in a nearby reference watershed. Gross N mineralization rates and immobilization
19 rates were ~40% higher in the litter layer (Oie horizon) of the treated watershed as well (p
20 < 0.001). We conclude that an accelerated N cycle in this litter layer, with faster turnover
21 between organic and inorganic N pools, likely resulted in faster replenishment of inorganic
22 N pools that were susceptible to hydrologic loss, resulting in higher N export. Nitrogen

23 cycling rates were uncorrelated with soil acid-base properties, suggesting that direct
24 geochemical controls are not the primary driver of the altered N cycle.

25 **Key Words**

26 nitrogen cycle, acid rain, nitrogen mineralization, temperate hardwood forest, calcium

27 **1. *Introduction***

28 Soil acidity modifies the bioavailability of organic matter and determines both the
29 structure and activity of soil microbial communities, thus playing a central role in mediating
30 coupled soil carbon (C) and nitrogen (N) dynamics (Schmidt et al. 2011, Coughlan et al. 2000,
31 Rousk et al. 2009, Illmer et al. 2003). Despite the importance of acidity as a master driver of soil
32 biogeochemical cycling, the impacts of rapid changes (i.e. over decades to centuries) in soil
33 acidity are seldom considered in long-term projections of ecosystem dynamics. This is a critical
34 knowledge gap, because while soil acidity is generally stable over millennial timescales in the
35 absence of human activities (Slessarev et al. 2016), anthropogenic acid deposition (hereafter
36 referred to as ‘acid rain’) has caused severe soil acidification over the past century (Likens et al.
37 1996). Over the last few decades, clean air regulations in the developed world have resulted in
38 substantial reductions in soil acidity in previously-impacted areas (Kirk et al. 2010, Lawrence et
39 al. 2012, Lawrence et al. 2015). These rapid decreases in soil acidity have been linked to declines
40 in soil organic matter (Oulehle et al. 2011, Lawrence et al. 2015) and increased hydrologic
41 export of dissolved organic carbon (Monteith et al. 2007, Erlandsson et al. 2011). Importantly,
42 decreases in soil acidity have also been linked to increases in watershed inorganic N export,
43 despite the fact that decreases in soil acidity are substantially driven by decreases in nitric acid
44 deposition (Lawrence et al. 2020). Although there are many mechanisms by which changing soil
45 acidity may alter soil C and N cycling, process-based biogeochemical models (e.g. DayCent,
46 CLM-CN, Biome-BGC) generally do not explicitly include any links between soil acidity and C
47 and N process rates (Thornton 2005, Parton et al. 1998; Oleson et al. 2013). Understanding long-
48 term trajectories of ecosystem recovery from acid rain, and their implications for global C and N

49 stocks, will require a more thorough understanding of how rapid anthropogenic changes in soil
50 acidity affect ecosystem C and N storage, cycling, and loss.

51 There are a variety of mechanisms through which historical soil acidification, and current
52 trends of deacidification, are likely to impact ecosystem biogeochemistry. Several dominant tree
53 species have proven very sensitive to soil acidity, and their declines with soil acidification may
54 be reversed as ecosystems recover. In eastern North America, the depletion of soil calcium (Ca)
55 throughout acid rain impacted regions has been linked to declines in sugar maple (*Acer*
56 *saccharum*) and red spruce (*Picea rubra*) (Joslin et al. 1992, Sullivan et al. 2013). It has been
57 proposed that the decline in sugar maple may lead to substantial changes in soil biogeochemical
58 processes, since sugar maple litter is of higher quality than the majority of other tree species
59 throughout their range (Lovett et al. 2002, Hobbie et al. 2007). Furthermore, increased litter
60 calcium content has been shown to be directly correlated with higher rates of litter
61 decomposition (Grossman et al. 2020), although in other cases calcium addition been associated
62 with higher microbial carbon-use efficiency and reduced litter turnover (Shabtai et al. 2023).

63 In addition to changes in the quality of litter inputs to the soil, ecosystem acidification has
64 direct effects on belowground biogeochemical cycling. Acidification may result in greater
65 stabilization of soil organic matter (SOM), reducing C and N mineralization, and deacidification
66 may conversely destabilize this SOM (Bailey et al. 2019). This increased stabilization in acid
67 soils results from reduced organic matter solubility, enhanced association between protonated
68 organic molecules and mineral surfaces, and increased complexation with aluminum (Al)
69 (Clarholm and Skyllberg 2013, SanClements et al. 2018, Hall and Thompson 2022). Conversely,
70 acidification may reduce stabilization of SOM by calcium, which has recently been shown to be
71 a mechanism of stabilization even in naturally acidic soils (Rowley et al. 2018, Rowley et al.

72 2023). Whether SOM is stabilized or destabilized as a result of changes to soil acidity is likely to
73 depend on how these mechanisms of SOM stabilization are influenced by the initial soil pH and
74 the magnitude of pH change.

75 In addition to stabilizing SOM, high soil acidity has also been shown to inhibit soil
76 microbial activity (Illmer et al. 2003, Jones et al. 2019, Niemi and Vepsalainen 2005) and to alter
77 the abundance and composition of microbial guilds responsible for key pathways in soil N
78 cycling (Simek and Cooper 2002, Liu et al. 2010, Stempfhuber et al. 2015). A recent global
79 meta-analysis demonstrates that decreased soil pH limits gross nitrogen mineralization, both
80 directly and indirectly via impacting microbial biomass (Elrys et al. 2021). Nitrification is also
81 known to be inhibited by high soil acidity (Mueller et al. 2012, Li et al. 2018, but see Venterera
82 et al. 2004), and nitrification is a key pathway by which N is mobilized and lost from ecosystems
83 (Likens et al. 1969). Finally, soil acidification can decrease soil faunal activity and the associated
84 decomposition of SOM (Reich et al. 2005, Geissen and Brummer 1999). Though there are
85 multiple pathways through which soil acidity can affect above- and belowground C and N
86 cycling (Rousk et al. 2009), most of them are consistent with acidification resulting in a reduced
87 potential C and N turnover in soil. Thus, as ecosystems recover from acid rain, C and N cycling
88 may accelerate, though the extent of this acceleration remains an open question.

89 In 1999, a watershed acid mitigation experiment, performed at Hubbard Brook
90 Experimental Forest (HBEF), induced profound changes in watershed C and N cycling, changes
91 that might foreshadow processes that will occur as forest ecosystems gradually recover from acid
92 rain over the coming decades (Johnson et al. 2014, Rosi-Marshall et al. 2016). HBEF
93 experienced substantial acid deposition since the Industrial Revolution, but this deposition has
94 largely abated due to the success of air pollution regulation, such that, by the time of this study,

95 annual sulfuric acid deposition was 89% lower and nitric acid deposition was 68% lower than
96 their respective peaks in the mid-1970s (Likens 2013, Hubbard Brook Watershed Ecosystem
97 Record 2021). Nonetheless, HBEF experiences important continuing legacies of over a hundred
98 years of historical acid deposition, including depressed soil pH and cationic nutrient fertility. In
99 this 1999 experiment, calcium silicate (CaSiO_3) was applied via helicopter to an 11.8 ha
100 watershed to elevate soil Ca by 1168 kg ha^{-1} and increase soil pH (full details of the experiment
101 in Johnson et al. 2014).

102 In the decade following the treatment, sugar maple biomass and litterfall increased
103 (Battles et al. 2014), as did total leaf and leaf litter N content (Lovett et al. 2016, Juice et al.
104 2006). These increases in aboveground biomass C and N were accompanied by much larger,
105 contemporaneous decline in shallow soil C and N stocks of 35% and 31%, respectively.
106 (Johnson et al. 2014). While these substantial shifts in aboveground and belowground C and N
107 pools occurred within the first several years of treatment, soil solution N fluxes and whole
108 watershed N exports did not increase substantially until much later. From 1999 to 2007,
109 watershed N export in the Ca-enriched watershed roughly followed the declining trend that was
110 likewise observed in the reference watershed, and which tracked declines in atmospheric N
111 deposition (Likens 2013). Watershed N export began to increase abruptly beginning in 2008,
112 such that, by 2013, watershed N export was thirty times higher than the reference watershed
113 (Rosi-Marshall et al. 2016). Such a dramatic increase in watershed N exports must be the result
114 of altered soil N cycling rates associated with the loss of SOM pools, yet early in the experiment
115 (2000-2002), Groffman et al. (2006) measured no significant treatment effects on gross or net N
116 cycling in the Ca-enriched watershed. Routine summer measurements of net N mineralization
117 and nitrification, which continued into the period of high watershed N export, have similarly

118 shown no response to watershed treatment (Groffman 2021). Thus, the sources of this increased
119 N export remain unresolved.

120 Here, we addressed three hypotheses that may reconcile the observations of significant
121 watershed N loss in the absence of any measurable changes in net soil N cycling rates (Rosi-
122 Marshall et al. 2016, Groffman 2021) and may offer an explanation for the long lag between the
123 CaSiO₃ treatment and the watershed N export response. First, we hypothesized that although the
124 treatment enhanced rates of microbial N mineralization, this effect was counterbalanced by
125 enhanced biotic demand for N. If both enhanced mineralization and immobilization result from
126 this acid mitigation experiment, this would result in an accelerated N cycle without any change
127 in net process rates. A faster N cycle could lead to higher watershed N exports if hydrologic
128 flushing regularly leaches N from this high-turnover pool. There are two hypotheses that may
129 explain the decade long lag between watershed treatment and enhanced nitrogen export. The first
130 is that gradual increases in litter quality (Juice et al. 2006, Lovett et al. 2016) are resulting in
131 faster N turnover in organic soil horizons. The second is that documented losses of soil organic
132 matter throughout the soil profile are the source of this excess N, and that the delayed delivery of
133 surface-applied CaSiO₃ to deeper horizons explains the lag. We examined each of these
134 hypotheses by measuring both gross and net nitrogen mineralization and nitrification rates
135 throughout the soil profile during two sampling campaigns. These sampling campaigns occurred
136 during early spring and summer, time periods that capture the extremes of biotic demand for
137 inorganic N, relative to supply (Pardo et al. 2005, Judd et al. 2007).

138

2. Methods

139 **2.1 Site description**

140 Hubbard Brook Experimental Forest (White Mountains NF, New Hampshire, USA) is
141 primarily a mixed hardwood forest composed of American beech (*Fagus grandifolia*), sugar
142 maple (*Acer saccharum*), and yellow birch (*Betula allegheniensis*), with some conifers at higher
143 elevations. Soils are well-drained podzols formed on unsorted glacial till parent material, with a
144 mean depth to bedrock of ~2 m (Johnson et al. 2014). The topography is steep, with the study
145 area having a mean slope of 17° and an elevation between 400 and 800 m (Groffman et al. 2006).
146 The landscape microtopography at HBEF is characterized by pit-and-mound features caused by
147 tree wind throws. These depressional pits have been shown elsewhere to play an important role
148 in seedling recruitment, greenhouse gas fluxes, pedogenesis, and hydrologic routing (Schaetzl et
149 al. 1988, Veneman et al. 1984, Phillips et al. 2017, Kooch et al. 2015, Valtera and Schaetzl
150 2017).

151 The study was conducted in two small watersheds within HBEF in a paired watershed
152 experimental design. In October 1999, one watershed (Ca-enriched watershed) was treated with
153 powdered, pelletized wollastonite (CaSiO_3) with the goal of replacing soil Ca lost due to
154 anthropogenic acid deposition. The other watershed, located immediately to the west of the long-
155 term biogeochemical reference watershed at HBEF, was maintained as a control (reference
156 watershed). In the Ca-enriched watershed, base saturation of the soil increased from 10% pre-
157 treatment to 19% post-treatment in mineral soil horizons, and the treatment had a complex but
158 overall positive effect on soil pH, which is explored more fully by Johnson et al. (2014).

159 **2.2 Soil collection**

160 Soil collection sites were established at six sites within the hardwood vegetation zones of
161 each watershed. In the Ca-enriched watershed, sites were selected immediately downslope of
162 lysimeters which were installed in random locations throughout the watershed as part of a long-
163 term monitoring program (Cho et al. 2010). In the reference watershed, sites were selected
164 randomly using ArcGIS. Because of the potential importance of pit and mound microtopography
165 in driving biogeochemical processes, we explicitly sampled across this gradient, establishing at
166 each site two plots that spanned the range of pit-and-mound microtopography. One plot was
167 established in a depressional area believed to be a relict pit from an old tree throw, and the other
168 was established on an adjacent convex area thought to be a relict mound. Fresh pit and mounds
169 (those with still-visible root masses) were not sampled. Thus, each watershed contained a total of
170 twelve sampling plots, six in depressional landforms and six in convex landforms.

171 Soils were sampled on two occasions within each plot, during the peak growing season in
172 early August 2015 (summer) and after snowmelt but before leaf-out in late March 2016 (spring).
173 The former sampling time corresponds to the time period of lowest N flux from watersheds at
174 HBEF, and the latter corresponds to the period of high N flux, a seasonal pattern that has been
175 attributed to the relative demand of vegetation for N (Likens 2013). On both occasions, sampling
176 occurred 2 - 3 days after a significant rainstorm, and soils were at or near field capacity. Soils
177 were collected, bulked by horizon (O₁, O₂, and 0-10 cm mineral soil), and homogenized using
178 the methods that Groffman (2021) employed for long-term soil monitoring at HBEF. Soils used
179 for microbial process rate measurements were stored at 4°C until analysis, which occurred within
180 ten days of sample collection. A subsample of each soil was air-dried and stored for later
181 analysis of soil pH and exchangeable cations.

182 **2.3 Laboratory analysis**

183 The water content of both field-moist and air-dry soils was determined by gravimetric
184 moisture loss after drying at 60 °C for 48 h in a drying oven. Soil organic matter (SOM) content
185 was determined by mass loss on ignition at 550 °C for 4h in a muffle furnace. Soil pH was
186 measured potentiometrically in a 2:1 water : soil slurry using a Mettler-Toledo DL-18 probe.
187 Exchangeable base cations were extracted from 5g of air-dry soil using 50 ml of 1M ammonium
188 acetate buffered to pH 7. These slurries were rotated at 60 rpm on an end-over shaker for 24h,
189 then vacuum filtered through a Gelman A/E glass fiber filter (1.0 µm nominal pore size). All
190 samples were analyzed for exchangeable Ca on a Perkin Elmer 3100 Flame AA spectrometer,
191 and the spring 2016 samples were further analyzed for K, Mg, and Na. For spring 2016 samples,
192 exchangeable acidity and aluminum (Al) were extracted from 10g of field moist soil (5g for Oie
193 horizon soil) using 50 ml of 2 M potassium chloride, shaken at 120 rpm for 1 h on a shaker table,
194 and gravity filtered through a pre-rinsed Whatman 42 filter (2.5 µm nominal pore size).
195 Exchangeable acidity and exchangeable Al were determined titrimetrically following the method
196 in Abreu et al. (2003), using a Mettler-Toledo DL-18 autotitrator. Cation exchange capacity and
197 base saturation were calculated by summation (Robertson et al. 1999).

198 Soil ammonium (NH_4^+) and nitrate (NO_3^-) pool sizes were determined by extraction of 10
199 g of field moist soil (5 g for Oie horizon soil) using 50 ml of 2 M potassium chloride, shaken at
200 120 rpm for 1 h on a shaker table and gravity filtered through a pre-rinsed Whatman 42 filter.
201 These extracts were analyzed colorometrically on a Lachat QuikChem flow injection analyzer.
202 To measure potential C mineralization, net N mineralization, and net nitrification, we performed
203 short-term laboratory soil incubations. Field moist soil (10 g for Oa and mineral horizon soils, 5
204 g for Oie horizon soil) was incubated in the dark for 10 d at 20 °C in a 976 ml glass jar fitted with

205 a butyl rubber septum. After the incubation, headspace gas was sampled with a 1 ml gas syringe.
206 This gas sample was immediately analyzed for CO₂ concentration using a Li-Cor LI-6200 IRGA
207 in a flow injection configuration. C mineralization potential on a basis of per gram of dry soil per
208 day was calculated from accumulation of headspace CO₂ over the course of the incubation. After
209 headspace gas analysis, the samples were analyzed for NH₄⁺ and NO₃⁻ following the same
210 procedure outlined above. Net N mineralization was calculated as the net increase of NH₄⁺-N and
211 NO₃⁻-N over the course of the incubation, and net nitrification as the net increase of NO₃⁻-N
212 only, each expressed on a per gram of dry soil per day basis. Microbial biomass was measured
213 by the chloroform fumigation-incubation method (Jenkinson and Powlson 1976), with CO₂
214 production measured in the same manner as in the C mineralization assays.

215 For samples from the spring 2016 sampling date, we used a laboratory isotopic pool
216 dilution approach to measure potential gross N mineralization, nitrification, and N
217 immobilization, slightly modifying the protocol used by Groffman et al. (2006). Four replicate
218 10 g subsamples of each soil (5 g for Oie horizon soil) were weighed into specimen cups and
219 pre-incubated for 12h. Two of these subsamples were then amended with 45 µg of 99 atom %
220 ¹⁵N as ¹⁵NH₄Cl for measurement of gross N mineralization, and two subsamples were amended
221 with 45 µg ¹⁵N as K¹⁵NO₃ for measurement of gross nitrification. The amendments were
222 dissolved in 1 ml of water that was sprayed slowly onto the soil through a 28 ga. needle while
223 constantly tumbling the sample to homogenize the application. In order to determine initial pool
224 sizes and isotopic compositions of the soil inorganic N pools, we extracted inorganic N from one
225 of the ¹⁵NH₄⁺-amended samples and one of the ¹⁵NO₃⁻-amended samples within fifteen to thirty
226 minutes after the labeled N amendment, using the KCl extraction procedure described above.
227 The remaining samples were incubated for 3 d at 20 °C in the dark and then extracted following

228 the same protocol. NH_4^+ and NO_3^- concentrations were determined by colorometric analysis on a
229 Lachat QuikChem flow injection analyzer. Samples were prepared for isotopic analysis using a
230 diffusion/acid trap method similar to Sorensen and Jensen (1991). The isotopic composition
231 of the samples was measured by EA-IRMS at the Stable Isotope Facility at UC-Davis. Gross
232 process rates were calculated from initial and final pool sizes and isotopic compositions using the
233 equations in Hart et al. (1994).

234 **2.4 Statistical analysis**

235 All statistical analyses were performed in R v. 4.2.1 (R Core Team, 2022). To test for
236 differences between watersheds for parameters of interest, we performed blocked one-way
237 ANOVA analyses, with microtopographic position included as a blocking factor. The blocking
238 factor was significant for only 3 out of 69 statistical comparisons performed, below the expected
239 5% false discovery rate under the null hypothesis of no difference between blocking factor
240 levels, but the blocking factor was nonetheless retained in all models. We analyzed each season
241 and each soil horizon separately. We also fit linear models to test for correlations between soil
242 geochemical properties (pH, base saturation, exchangeable Ca, exchangeable Al) and soil
243 microbial processes. To examine whole-profile soil inorganic N pools, we scaled soil
244 concentration measurements by the mean soil horizon masses reported for each watershed
245 (Johnson and Hamburg 2016, Johnson et al. 2014). We report statistically significant results at α
246 = 0.10.

247 To contextualize our findings regarding soil N process rates, we prepared a N budget
248 “snapshot” for the leaf litter horizon (Oie) during the spring sampling campaign. To estimate
249 field N process rates at springtime soil temperatures, we scaled our potential rate measurements
250 obtained at 20 °C to expected rates at 5 °C, based on a Q10 of 2.5, a value reported for organic

251 horizon podzols by Katterer et al. (1998). The organic N pool size in the Oie horizon for the Ca-
252 enriched watershed was taken from Johnson et al. (2014), and the pool size in the reference
253 watershed was computed from soil horizon mass and % C data from Johnson and Hamburg
254 (2016), assuming the same C:N ratio as in the Ca-enriched watershed. Leaf litter inputs were
255 calculated using leaf litter mass data from Fahey (2016) and litter chemistry data from Lovett et
256 al. (2016). Root litter inputs were estimated from fine root mass data from Fahey et al. (2016),
257 root turnover rates estimated from Tierney and Fahey (2002) and root N concentration data from
258 Fahey et al. (1994). Microbial biomass N was computed with data from Groffman (2016) and
259 Johnson et al. (2014). N deposition estimates were taken from Rosi-Marshall et al. (2016).

260 We further contextualized our work by examining how soil solution fluxes of inorganic
261 nitrogen have changed since the early period of the Ca enrichment experiment. To determine if
262 altered rates of microbial N processing were the likely driver of enhanced watershed N export,
263 we calculated vertical soil solution fluxes of inorganic nitrogen through the organic and mineral
264 soil horizons using soil solution data from zero tension lysimeter nests sampled monthly in the
265 Ca-enriched (n=13) and reference (n=3) watersheds. These fluxes were calculated by multiplying
266 soil solution inorganic N concentrations by the estimated monthly hydrologic flux, calculated
267 using the PnET-BGC model (Gbondo-Tugbawa et al., 2001).

268 **3. Results**

269 Seventeen years after the initial treatment, soil acid-base status remained strongly
270 impacted by CaSiO_3 treatment in the organic soil horizons, with a more muted response in the
271 mineral soil (Figure 1). Topographic position and season had no significant effect on these soil
272 properties. In the Ca-enriched watershed, soil pH was 0.26 units higher in the Oie horizon ($p <$
273 0.001) and 0.15 units higher in the Oa horizon ($p = 0.006$), compared to the reference watershed.

274 In the mineral soil, we did not detect a significant difference in soil pH. Exchangeable Al was
275 86% lower in the Oie horizon ($p = 0.033$) and 38% lower in the Oa horizon ($p = 0.030$), but was
276 not significantly different in the mineral soil. Exchangeable Ca was 2.2-fold higher in the Oie
277 Horizon ($p < 0.001$), 5.6-fold higher in the Oa horizon ($p < 0.001$), and 5.7-fold higher in the
278 mineral horizon ($p < 0.001$). Base saturation was significantly higher in the Ca-enriched
279 watershed in all horizons; in the Oie horizon, mean base saturation was 89.8% in the Ca-enriched
280 watershed versus 77.8% in the reference watershed ($p = 0.013$), 56.3% versus 20.7% in the Oa
281 horizon ($p < 0.001$) and 18.4% versus 9.0% in the mineral soil ($p < 0.001$).

282 For both sampling dates, soil inorganic N concentrations were generally higher in the Ca-
283 enriched watershed than in the reference watershed (Figure 2). In absolute terms, the greatest
284 differences in inorganic N concentrations between watersheds were observed in the Oie horizon,
285 as this horizon contained, on average, 3.5 times the total inorganic N (TIN) of the Oa horizon
286 and 12.0 times the TIN of the mineral horizon. When N concentrations in each horizon (Figure
287 2) were scaled to the mass of each horizon to estimate whole-profile inorganic N pools on an
288 areal basis, NH_4^+ , NO_3^- , and TIN pools were all significantly higher in the Ca-enriched
289 watershed for both sampling dates (Figure 3). In the Ca-enriched watershed, whole-profile NH_4^+
290 pools were 2.5 times larger than the reference watershed during the summer ($p < 0.001$), and 2.4
291 times larger in the spring ($p < 0.001$); NO_3^- pools were 1.4 times larger during the summer ($p =$
292 0.041) and 4.1 times larger in the spring ($p < 0.001$). Summing these two pools, the TIN pool
293 was 1.8 times larger in the Ca-enriched watershed in the summer ($p < 0.001$) and 2.6 times larger
294 in the spring ($p < 0.001$).

295 Gross N cycling rates were elevated in the Ca-enriched watershed relative to the
296 reference watershed, but there were no differences between watersheds in net N cycling rates.

297 Net N mineralization and nitrification were not significantly different in any soil horizon for
298 either of the sampling dates (Figure S1). In contrast, gross N transformations were significantly
299 higher in the Oie horizon of the Ca-enriched watershed (Figure 4). Mean potential gross N
300 mineralization was a 98.5 (SE: ± 5.1) $\mu\text{g gds}^{-1}$ in the Ca-enriched watershed and 71.8 (SE: ± 3.8)
301 $\mu\text{g gds}^{-1}$ in the reference watershed, a significant ($p < 0.001$) 37.1% difference. Mean NH_4^+
302 immobilization was 70.2 (SE: ± 3.3) $\mu\text{g gds}^{-1}$ in the Ca-enriched watershed and 47.0 (SE: ± 3.0)
303 $\mu\text{g gds}^{-1}$ in the reference watershed, a significant ($p < 0.001$) 49.6% difference. Gross
304 nitrification was not significantly different in the Oie horizon between watersheds, nor was NO_3^-
305 immobilization. The difference in gross N mineralization rates, when multiplied by the greater
306 mass of the Oie horizon in the Ca-enriched watershed, leads to an estimated 67.8% higher gross
307 N mineralization rate and 82.8% higher NH_4^+ immobilization rate in this horizon, on an areal
308 basis (Figure 5). There were no significant treatment effects on gross N transformations in the Oa
309 or mineral soil horizons.

310 In some horizons, N cycling rates were positively correlated with soil C mineralization
311 rates but were uncorrelated with any of the any of the soil acid-base properties we measured.
312 Carbon mineralization and gross N mineralization were positively correlated in the Oie horizon
313 ($r^2 = 0.305, p = 0.026$), weakly positively correlated in the Oa horizon ($r^2 = 0.110, p = 0.087$),
314 and uncorrelated in the mineral horizon (Figure 6a). Carbon mineralization and net N
315 mineralization were strongly positively correlated in the Oa horizon ($r^2 = 0.490, p < 0.001$) but
316 uncorrelated in the Oie and mineral horizons (Figure 6b). Carbon mineralization was not
317 significantly different between watersheds for any horizon or sampling date (Table 1). Total
318 SOM also did not differ between watersheds (Table 1). No gross or net N cycling rates were
319 significantly correlated with pH, exchangeable Ca, base saturation, or exchangeable Al in models

320 that included blocking factors for watershed, topographic position, and (where applicable)
321 season. There were no significant differences in gross or net N mineralization or nitrification
322 rates between microtopographic positions, either within or between watersheds, in either spring
323 or summer (Figure S2).

324 Soil solution N fluxes became substantially elevated in the Ca-enriched watershed during
325 the same time period (post-2008) that the Ca-enriched watershed began exporting much greater
326 quantities of N (Figure 7). The greatest differences in soil solution N fluxes between the Ca-
327 enriched and reference watersheds occurred in the organic (Oie + Oa) soil horizons, where
328 annual N flux was a mean of 2.9 times higher (paired t-test, $p < 0.001$) in the Ca-enriched
329 organic horizon, compared to the reference watershed organic horizon during the post-2008
330 period. This compares to the pre-2008 period, where N flux from the Ca-enriched organic soil
331 horizon was only a mean 1.3 times higher ($p < 0.001$) than from the reference watershed. In the
332 mineral horizons, annual N fluxes were 3.2 times higher in the Ca-enriched watershed in the
333 post-2008 period and 2.0 times higher in the pre-2008 period ($p < 0.001$), although the absolute
334 magnitudes of these fluxes are substantially smaller than those from the organic horizons.

335 **4. Discussion**

336 We found strong evidence of accelerated N cycling in the Ca-enriched watershed. This
337 accelerated N cycling was only found in the leaf litter layer, although inorganic N pools were
338 enriched throughout the soil profile. Both mineralization and immobilization were accelerated,
339 leading to no measurable change in net mineralization rates. Net mineralization and nitrification
340 rates were unaffected by watershed treatment, while inorganic N pools were higher in the
341 treatment watershed in both sampling periods. Our results support the hypothesis that changes to

342 N cycling in the organic soil horizons could be sufficient to fully explain the enhanced watershed
343 N export observed in the treatment watershed (Rosi-Marshall et al. 2016).

344 The faster N turnover and larger soil inorganic N pools in the treated watershed could
345 predispose this watershed to hydrologic exports of nitrogen. Higher rates of mineralization and
346 nitrification have previously been linked to increased ecosystem losses of N (Lovett et al. 2002,
347 Phillips et al. 2013). While both gross N mineralization and gross immobilization were higher in
348 the Ca-enriched watershed in our laboratory assays, under field conditions, leaching of N is an
349 alternative fate of mineralized N, and increased N mineralization can thus drive both increased N
350 immobilization and increased leaching losses. Such a loss mechanism may be particularly
351 relevant during times when vertical water movement through the soil is slow but constant, such
352 as during spring snowmelt. While nitrification is often considered a key step in the mobilization
353 and loss of ecosystem N due to negligible retention of NO_3^- on the soil exchange complex
354 (Likens et al. 1969), ammonium can be quite mobile in acid forest soils, particularly in organic
355 horizons (Matschonat and Matzner 1995, Kothawala and Moore 2009). Enhanced nitrification
356 therefore may not be necessary to explain increased ecosystem N loss. If we extrapolate the
357 enhanced N mineralization rates in the Ca-enriched watershed (Figure 6) to an annual time step,
358 we estimate that gross annual leaf litter N mineralization would be increased by $182.5 \text{ kg ha}^{-1} \text{ y}^{-1}$.
359 Annual N export in the Ca-enriched watershed has increased by less than $8 \text{ kg ha}^{-1} \text{ y}^{-1}$, an
360 increase that could be explained if ~5% of this enhanced litter N mineralization is lost to
361 streamflow. We conclude that enhanced gross mineralization of N in leaf litter represents a
362 plausible mechanism to explain the observed increase in ecosystem N loss. Lysimeter data are
363 consistent with this hypothesis, documenting the greatest differences in soil solution fluxes
364 between the Ca-enriched and reference watersheds coming from the organic soil horizons

365 (Figure 7). This proposed mechanism is also entirely consistent with the finding that N export
366 from the Ca-enriched watershed is considerably elevated during storms (Marinos et al. 2018).

367 Differences in the relationships between C mineralization and both net and gross N
368 mineralization in each soil horizon provides additional, indirect evidence that enhanced N
369 turnover in leaf litter (Oie horizon) may be driving inorganic N losses from this ecosystem. In
370 leaf litter, C mineralization is positively correlated with gross N mineralization but is not
371 correlated with net N mineralization. This discrepancy, together with the high rates of
372 immobilization in this horizon, suggests that microbial demand for N is high in the litter layer.

373 This is consistent with increased microbial demand for N driven by reduced N deposition,
374 observed by others (Groffman et al. 2018). In contrast, in the underlying Oa horizon, C
375 mineralization was strongly positively correlated with net N mineralization. This suggests that
376 more of the N released from decomposition remains in solution, and that inorganic N is present
377 in excess of microbial demand in this horizon. Thus, the transition between the Oie and Oa
378 horizons may mark a transition between N-limited and C-limited microbial metabolisms.

379 Considering the whole soil profile, faster turnover of N in the Oie horizon could plausibly result
380 in greater leaching to lower soil horizons where inorganic N may accumulate in these
381 presumably C-limited lower horizons, becoming susceptible to leaching during event flow. This
382 would account for the fact that we observed higher inorganic N concentrations throughout the
383 soil profile, despite no difference in gross or net N mineralization in these horizons. While we
384 did not find a significant difference in SOM pool sizes between the reference and treatment
385 watersheds, our sample sizes were likely far too small to reliably detect such a difference (Yanai
386 et al. 2013), and the spatially and temporally intensive sampling of Johnson et al. (2014),

387 involving 20 times our sample numbers, should be considered a much more reliable indicator of
388 changes in SOM pool sizes.

389 To examine whether soil acid-base properties drove the increased N mineralization in the
390 Ca-enriched watershed, we looked for correlations between soil pH, Ca and Al with rates of N
391 cycling across both watersheds. There was a wide range in all of these variables both within and
392 between watersheds. For example, in the Oie horizon soils of the Ca-enriched watershed,
393 exchangeable Ca ranged from 93 to 267 $\mu\text{mol}_c \text{ gds}^{-1}$, pH ranged from 4.15 to 4.68, and
394 exchangeable Al ranged from 0 to 2.45 $\mu\text{mol}_c \text{ gds}^{-1}$. Lovett et al. (2016) proposed that Ca
395 limitation of white rot fungi may inhibit leaf litter decomposition, but we found no correlation
396 between exchangeable Ca and gross or net rates of N cycling in any soil horizon. Others have
397 proposed that low soil pH and associated Al toxicity may suppress soil microbial activity (Illmer
398 et al. 2003, Rousk et al. 2009), but we found no relationship between exchangeable Al or soil pH
399 and N cycling rates in any horizon. These results indicate that acid stress was not a strong control
400 on N cycling at the time of sampling. These results suggest that the direct geochemical effects of
401 the treatment are likely not the main cause of enhanced N cycling in the Ca-enriched watershed.

402 We did find evidence that the mechanism driving enhanced N turnover in the Ca-
403 enriched leaf litter has acted at a substantial lag, and this lag may suggest some possible
404 mechanisms of the enhanced N turnover. Whereas Groffman et al. (2006) found no treatment
405 effect on gross N mineralization rates one year after the treatment, here we report a 37% increase
406 in Oie horizon gross N mineralization, seventeen years after the treatment. A mechanism driving
407 this lag may be a gradual shift in forest composition. In the Ca-enriched watershed, sugar maple
408 biomass increased gradually but substantially in the ten years post-treatment, whereas beech
409 biomass decreased (Battles et al. 2014). Sugar maples have been previously shown to support

410 high litter turnover and losses of inorganic N (Lovett et al. 2002, Templer et al. 2005). The
411 simultaneous increase in sugar maple and decreases in beech biomass represents a shift from an
412 ectomycorrhizal-dominated community to an arbuscular mycorrhizal-dominated community, a
413 shift that has been associated with higher C and N turnover and less retentive N cycling (Phillips
414 et al. 2013, Averill and Hawkes 2016). Another possible mechanism to explain the increased leaf
415 litter N cycling may be changes in the leaf litter chemistry of individual species, as leaf N
416 content in sugar maple and yellow birch both increased after treatment (Lovett et al. 2016).
417 These changes were more immediate, however, and so would not account for the observed lag.
418 Alternatively, enhanced N cycling could be driven by the gradual recovery of soil fauna adapted
419 to more alkaline conditions. The Ca treatment initially suppressed soil arthropod abundance
420 (Fisk et al. 2006) but soil arthropods have not been measured since. While earthworms are
421 known to be strongly sensitive to pH and to promote ecosystem C and N loss (Groffman et al.
422 2015), earthworm density in the Ca-enriched watershed is very low (Groffman, personal
423 communication), making this mechanism unlikely. We conclude that the gradual change in forest
424 composition is therefore the most plausible driver of enhanced N losses in the Ca-enriched
425 watershed, although further work is needed to provide evidence for this hypothesis.

426 **5. Conclusions**

427 We have shown that experimental acid mitigation has the potential to unlock soil N
428 stocks and enhance watershed N losses, and we suggest that this experimental mitigation may
429 mimic deacidification that will occur naturally over timescales of decades to centuries. This calls
430 for renewed attention to an old problem - acid rain may be a problem that has largely been solved
431 in the developed world, but its legacy will likely continue to alter the C and N cycles of these
432 forests for many decades to come. This is cause for significant concern, as the benefits of

433 deacidification may be accompanied by a decrease in the terrestrial C sink and an increase in N
434 loading to receiving aquatic ecosystems. In order to anticipate these changes, there is a pressing
435 need for models that predict changes to soil acidity and base cation fertility across different soil
436 parent material geologies and acid deposition gradients, and to predict resultant changes in SOM
437 dynamics.

438 Ecosystem deacidification is of course only a single process that may affect ecosystem N
439 balance in systems that are experiencing multiple simultaneous anthropogenic forcings.

440 Decreased nitrogen deposition may conversely drive more conservative ecosystem N cycling
441 (Groffman et al. 2018), as would be predicted by classic hypotheses regarding ecosystem
442 retention of limiting nutrients (Vitousek and Reiners 1975). Accelerated nitrogen cycling due to
443 deacidification may thus be counterbalanced by more conservative N cycling due to reduced
444 deposition. Others, however, have documented decreasing ecosystem N retention at many sites
445 across United States despite declines in N deposition (Newcomer et al. 2021), and yet others
446 have proposed that European forests may not respond strongly at all to decreasing N deposition
447 (Schmitz et al. 2024). Like the lagged response to deacidification documented here, forest
448 responses to decreased N deposition are likely to be lagged and exhibit hysteretic behavior
449 (Gilliam et al. 2019). Further complicating ecosystem N balance are changes to hydroclimatic
450 regimes that have altered patterns of N export (Bernal et al. 2012, Groffman et al. 2018, Lucas et
451 al. 2106) as well as vegetation composition changes driven by exotic pests (Crowley and Lovett
452 2017). Disentangling the effects of ecosystem deacidification from these important other
453 forcings, and understanding the timescales of lagged effects, will be central to determining the
454 long-term trajectories of ecosystem N balance in acid-impacted forests.

455

456 **Acknowledgements:**

457 This work was funded in part by NSF award # 1637685. This work is a contribution of the Hubbard
458 Brook Ecosystem Study. Hubbard Brook is part of the Long-Term Ecological Research (LTER) network,
459 which is supported by the National Science Foundation. The Hubbard Brook Experimental Forest is
460 operated and maintained by the U.S.D.A. Forest Service, Northern Research Station, Newtown Square,
461 PA.

462 **Data Statement:**

463 All data used in this publication are available via the Environmental Data Initiative at:

464 <https://doi.org/10.6073/pasta/67c4e89f4c195029e3ff6062366143ba>

465 **References**

466 Abreu Jr., C. H., T. Muraoka, and A. F. Lavorante. 2003. Exchangeable aluminum evaluation in acid
467 soils. *Scientia Agricola* 60:543–548.

468 Averill, C., and C. V. Hawkes. 2016. Ectomycorrhizal fungi slow soil carbon cycling. *Ecology Letters*
469 19:937–947.

470 Bailey VL, Pries CH, Lajtha K. 2019. What do we know about soil carbon destabilization? *Environ Res*
471 *Lett* 14:083004.

472 Battles, J. J., T. J. Fahey, C. T. Driscoll, J. D. Blum, and C. E. Johnson. 2014. Restoring Soil Calcium
473 Reverses Forest Decline. *Environmental Science & Technology Letters* 1:15–19.

474 Bernal, S., L. O. Hedin, G. E. Likens, S. Gerber, and D. C. Buso. 2012. Complex response of the forest
475 nitrogen cycle to climate change. *Proceedings of the National Academy of Sciences*:201121448.

476 Bernhardt, E. S., G. E. Likens, R. O. Hall, D. C. Buso, S. G. Fisher, T. M. Burton, J. L. Meyer, W. H.
477 McDowell, M. S. Mayer, W. B. Bowden, S. E. G. Findlay, K. H. Macneale, R. S. Stelzer, and W.
478 H. Lowe. 2005. Can't See the Forest for the Stream? In-stream Processing and Terrestrial
479 Nitrogen Exports. *BioScience* 55:219–230.

480 Cho, Y., C. T. Driscoll, C. E. Johnson, and T. G. Siccama. 2010. Chemical changes in soil and soil
481 solution after calcium silicate addition to a northern hardwood forest. *Biogeochemistry* 100:3–20.

482 Clarholm, M., and U. Skyllberg. 2013. Translocation of metals by trees and fungi regulates pH, soil
483 organic matter turnover and nitrogen availability in acidic forest soils. *Soil Biology and
484 Biochemistry* 63:142–153.

485 Coughlan, A. P., Y. Dalpé, L. Lapointe, and Y. Piché. 2000. Soil pH-induced changes in root
486 colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy
487 and declining maple forests. *Canadian Journal of Forest Research* 30:1543–1554.

488 Crowley, K. F., and G. M. Lovett. 2017. Effects of nitrogen deposition on nitrate leaching from forests of
489 the northeastern United States will change with tree species composition. *Canadian Journal of
490 Forest Research* 47:997–1009.

491 Driscoll, C. T., K. M. Driscoll, H. Fakhraei, and K. Civerolo. 2016. Long-term temporal trends and
492 spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in
493 response to decreases in acidic deposition. *Atmospheric Environment* 146:5–14.

494 Elrys AS, Ali A, Zhang H, Cheng Y, Zhang J, Cai Z-C, Müller C, Chang SX. 2021. Patterns and drivers
495 of global gross nitrogen mineralization in soils. *Global Change Biology* 27:5950–62.

496 Erlandsson, M., N. Cory, J. Fölster, S. Köhler, H. Laudon, G. A. Weyhenmeyer, and K. Bishop. 2011.
497 Increasing Dissolved Organic Carbon Redefines the Extent of Surface Water Acidification and
498 Helps Resolve a Classic Controversy. *BioScience* 61:614–618.

499 Fahey, T. J. 2016. Coarse Litterfall Data at the Hubbard Brook Experimental Forest, 1996 - present.
500 Environmental Data Initiative.

501 Fisk, M. C., W. R. Kessler, A. Goodale, T. J. Fahey, P. M. Groffman, and C. T. Driscoll. 2006.
502 Landscape variation in microarthropod response to calcium addition in a northern hardwood
503 forest ecosystem. *Pedobiologia* 50:69–78.

504 Geissen, V., and G. W. Brümmer. 1999. Decomposition rates and feeding activities of soil fauna in
505 deciduous forest soils in relation to soil chemical parameters following liming and fertilization.
506 *Biology and Fertility of Soils* 29:335–342.

507 Gilliam, F. S., D. A. Burns, C. T. Driscoll, S. D. Frey, G. M. Lovett, and S. A. Watmough. 2019.

508 Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of
509 forest ecosystems. *Environmental Pollution* 244:560–574.

510 Groffman, P. M. 2021. Microbial biomass and activity.
511 <https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=67>.

512 Groffman, P. M., T. J. Fahey, M. C. Fisk, J. B. Yavitt, R. E. Sherman, P. J. Bohlen, and J. C. Maerz.
513 2015. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in
514 northern hardwood forests. *Soil Biology and Biochemistry* 87:51–58.

515 Groffman, P. M., C. T. Driscoll, J. Durán, J. L. Campbell, L. M. Christenson, T. J. Fahey, M. C. Fisk, C.
516 Fuss, G. E. Likens, G. Lovett, L. Rustad, and P. H. Templer. 2018. Nitrogen oligotrophication in
517 northern hardwood forests. *Biogeochemistry* 141:523–539.

518 Groffman, P. M., M. C. Fisk, C. T. Driscoll, G. E. Likens, T. J. Fahey, C. Eagar, and L. H. Pardo. 2006.
519 Calcium Additions and Microbial Nitrogen Cycle Processes in a Northern Hardwood Forest.
520 *Ecosystems* 9:1289–1305.

521 Hall, S. J., and A. Thompson. 2022. What do relationships between extractable metals and soil organic
522 carbon concentrations mean? *Soil Science Society of America Journal* 86:195–208.

523 Hart, S. C., G. E. Nason, D. D. Myrold, and D. A. Perry. 1994. Dynamics of Gross Nitrogen
524 Transformations in an Old-Growth Forest: The Carbon Connection. *Ecology* 75:880–891.

525 Hobbie, S. E., M. Ogdahl, J. Chorover, O. A. Chadwick, J. Oleksyn, R. Zytkowiak, and P. B. Reich.
526 2007. Tree Species Effects on Soil Organic Matter Dynamics: The Role of Soil Cation
527 Composition. *Ecosystems* 10:999–1018.

528 Hubbard Brook Watershed Ecosystem Record (HBWatER). 2021. Hubbard Brook Experimental Forest:
529 Chemistry of Precipitation – Monthly Fluxes, Watershed 1, 1963 - present ver 11. Environmental
530 Data Initiative. <https://doi.org/10.6073/pasta/a446363d4a91dc8d5b10fd21b1d07b0c> (Accessed
531 2023-11-29).

532 Illmer, P., U. Obertegger, and F. Schinner. 2003. Microbiological Properties in Acidic Forest Soils with
533 Special Consideration of KCl Extractable Al. *Water, Air, and Soil Pollution* 148:3–14.

534 Jenkinson, D. S., and D. S. Powlson. 1976. The effects of biocidal treatments on metabolism in soil—V:
535 A method for measuring soil biomass. *Soil Biology and Biochemistry* 8:209–213.

536 Johnson, C. E., C. T. Driscoll, J. D. Blum, T. J. Fahey, and J. J. Battles. 2014. Soil Chemical Dynamics
537 after Calcium Silicate Addition to a Northern Hardwood Forest. *Soil Science Society of America
538 Journal* 78:1458.

539 Johnson, C., and S. Hamburg. 2016. Mass and Chemistry of Organic Horizons and Surface Mineral
540 Soils on Watershed 6 at the Hubbard Brook Experimental Forest, 1976 - present. *Environmental
541 Data Initiative*.

542 Jones DL, Cooledge EC, Hoyle FC, Griffiths RI, Murphy DV. 2019. pH and exchangeable aluminum are
543 major regulators of microbial energy flow and carbon use efficiency in soil microbial
544 communities. *Soil Biology and Biochemistry* 138:107584.

545 Joslin, J. D., J. M. Kelly, and H. V. Miegroet. 1992. Soil Chemistry and Nutrition of North American
546 Spruce-Fir Stands: Evidence for Recent Change. *Journal of Environmental Quality* 21:12–30.

547 Judd, K. E., G. E. Likens, and P. M. Groffman. 2007. High Nitrate Retention during Winter in Soils of the
548 Hubbard Brook Experimental Forest. *Ecosystems* 10:217–225.

549 Juice, S. M., T. J. Fahey, T. G. Siccam, C. T. Driscoll, E. G. Denny, C. Eagar, N. L. Cleavitt, R.
550 Minocha, and A. D. Richardson. 2006. Response of sugar maple to calcium addition to northern
551 hardwood forest. *Ecology* 87:1267–1280.

552 Kätterer, T., M. Reichstein, O. Andrén, and A. Lomander. 1998. Temperature dependence of organic
553 matter decomposition: a critical review using literature data analyzed with different models.
554 *Biology and Fertility of Soils* 27:258–262.

555 Kirk, G. J. D., P. H. Bellamy, and R. M. Lark. 2010. Changes in soil pH across England and Wales in
556 response to decreased acid deposition. *Global Change Biology* 16:3111–3119.

557 Kooch, Y., S. M. Darabi, and S. M. Hosseini. 2015. Effects of Pits and Mounds Following Windthrow
558 Events on Soil Features and Greenhouse Gas Fluxes in a Temperate Forest. *Pedosphere* 25:853–
559 867.

560 Kothawala, D. N., and T. R. Moore. 2009. Adsorption of dissolved nitrogen by forest mineral soils.
561 *Canadian Journal of Forest Research* 39:2381–2390.

562 Lawrence, G. B., P. W. Hazlett, I. J. Fernandez, R. Ouimet, S. W. Bailey, W. C. Shortle, K. T. Smith, and
563 M. R. Antidormi. 2015. Declining Acidic Deposition Begins Reversal of Forest-Soil
564 Acidification in the Northeastern U.S. and Eastern Canada. *Environmental Science & Technology*
565 49:13103–13111.

566 Lawrence, G. B., W. C. Shortle, M. B. David, K. T. Smith, R. A. F. Warby, and A. G. Lapen. 2012.
567 Early indications of soil recovery from acidic deposition in U.S. red spruce forests. *Soil Science
568 Society of America Journal* 76:14071417.

569 Lawrence GB, Scanga SE, Sabo RD. 2020. Recovery of Soils From Acidic Deposition May Exacerbate
570 Nitrogen Export From Forested Watersheds. *Journal of Geophysical Research: Biogeosciences*
571 125:e2019JG005036.

572 Lucas, R. W., R. A. Sponseller, M. J. Gundale, J. Stendahl, J. Fridman, P. Höglberg, and H. Laudon. 2016.
573 Long-term declines in stream and river inorganic nitrogen (N) export correspond to forest change.
574 *Ecological Applications* 26:545–556.

575 Li Z, Zeng Z, Tian D, Wang J, Fu Z, Zhang F, Zhang R, Chen W, Luo Y, Niu S. 2020. Global patterns
576 and controlling factors of soil nitrification rate. *Global Change Biology* 26:4147–57.

577 Li, Y., S. J. Chapman, G. W. Nicol, and H. Yao. 2018. Nitrification and nitrifiers in acidic soils. *Soil
578 Biology and Biochemistry* 116:290–301.

579 Likens, G. E. 2013. *Biogeochemistry of a Forested Ecosystem*. 3rd edition. Springer Science & Business.

580 Likens, G. E., F. H. Bormann, and N. M. Johnson. 1969. Nitrification: importance to nutrient losses from
581 a cutover forested ecosystem. *Science (New York, N.Y.)* 163:1205–1206.

582 Likens, G. E., C. T. Driscoll, and D. C. Buso. 1996. Long-Term Effects of Acid Rain: Response and
583 Recovery of a Forest Ecosystem. *Science* 272:244–246.

584 Liu, B., P. T. Mørkved, Å. Frostegård, and L. R. Bakken. 2010. Denitrification gene pools, transcription
585 and kinetics of NO, N₂O and N₂ production as affected by soil pH. *FEMS Microbiology Ecology*
586 72:407–417.

587 Lovett, G. M., M. A. Arthur, and K. F. Crowley. 2016. Effects of Calcium on the Rate and Extent of
588 Litter Decomposition in a Northern Hardwood Forest. *Ecosystems* 19:87–97.

589 Lovett, G. M., K. C. Weathers, and M. A. Arthur. 2002. Control of Nitrogen Loss from Forested
590 Watersheds by Soil Carbon:Nitrogen Ratio and Tree Species Composition. *Ecosystems* 5:712–
591 718.

592 Matschonat, G., and E. Matzner. 1996. Soil chemical properties affecting NH₄⁺ sorption in forest soils.
593 *Zeitschrift für Pflanzenernährung und Bodenkunde* 159:505–511.

594 Monteith, D. T., J. L. Stoddard, C. D. Evans, H. A. de Wit, M. Forsius, T. Högåsen, A. Wilander, B. L.
595 Skjelkvåle, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopácek, and J. Vesely. 2007. Dissolved
596 organic carbon trends resulting from changes in atmospheric deposition chemistry. *Nature*
597 450:537–540.

598 Mueller, K. E., D. M. Eissenstat, S. E. Hobbie, J. Oleksyn, A. M. Jagodzinski, P. B. Reich, O. A.
599 Chadwick, and J. Chorover. 2012. Tree species effects on coupled cycles of carbon, nitrogen, and
600 acidity in mineral soils at a common garden experiment. *Biogeochemistry* 111:601–614.

601 Newcomer, M. E., N. J. Bouskill, H. Wainwright, T. Maavara, B. Arora, E. R. Siirila-Woodburn, D.
602 Dwivedi, K. H. Williams, C. Steefel, and S. S. Hubbard. 2021. Hysteresis Patterns of Watershed
603 Nitrogen Retention and Loss Over the Past 50 years in United States Hydrological Basins. *Global*
604 *Biogeochemical Cycles* 35:e2020GB006777.

605 Niemi, R. M., and M. Vepsäläinen. 2005a. Stability of the fluorogenic enzyme substrates and pH optima
606 of enzyme activities in different Finnish soils. *Journal of Microbiological Methods* 60:195–205.

607 Niemi, R. M., and M. Vepsäläinen. 2005b. Stability of the fluorogenic enzyme substrates and pH optima
608 of enzyme activities in different Finnish soils. *Journal of Microbiological Methods* 60:195–205.

609 Oleson, K., M. Lawrence, B. Bonan, B. Drewianiak, M. Huang, D. Koven, S. Levis, F. Li, J. Riley, M.
610 Subin, S. Swenson, E. Thornton, A. Bozbiyik, R. Fisher, L. Heald, E. Kluzek, J.-F. Lamarque, J.
611 Lawrence, R. Leung, W. Lipscomb, P. Muszala, M. Ricciuto, J. Sacks, Y. Sun, J. Tang, and Z.-L.
612 Yang. 2013. Technical description of version 4.5 of the Community Land Model (CLM).

613 Oulehle, F., C. D. Evans, J. Hofmeister, R. Krejci, K. Tahovska, T. Persson, P. Cudlin, and J. Hruska.
614 2011. Major changes in forest carbon and nitrogen cycling caused by declining sulphur
615 deposition. *Global Change Biology* 17:3115–3129.

616 Pardo, L. H., C. Kendall, J. Pett-Ridge, and C. C. Y. Chang. 2004. Evaluating the source of streamwater
617 nitrate using $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ in nitrate in two watersheds in New Hampshire, USA. *Hydrological
618 Processes* 18:2699–2712.

619 Parton, J., M. Hartman, D. Ojima, and S. Schimel. 1998. DAYCENT and its land surface submodel:
620 Description and testing. *Global and Planetary Change*:35–48.

621 Phillips, J. D., P. Šamonil, Ł. Pawlik, J. Trochta, and P. Daněk. 2017. Domination of hillslope denudation
622 by tree uprooting in an old-growth forest. *Geomorphology* 276:27–36.

623 Phillips, R. P., E. Brzostek, and M. G. Midgley. 2013. The mycorrhizal-associated nutrient economy: a
624 new framework for predicting carbon-nutrient couplings in temperate forests. *The New
625 Phytologist* 199:41–51.

626 R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria.

627 Reich, P. B., J. Oleksyn, J. Modrzynski, P. Mrozinski, S. E. Hobbie, D. M. Eissenstat, J. Chorover, O. A.
628 Chadwick, C. M. Hale, and M. G. Tjoelker. 2005. Linking litter calcium, earthworms and soil
629 properties: a common garden test with 14 tree species. *Ecology Letters* 8:811–818.

630 Rosi-Marshall, E. J., E. S. Bernhardt, D. C. Buso, C. T. Driscoll, and G. E. Likens. 2016. Acid rain
631 mitigation experiment shifts a forested watershed from a net sink to a net source of nitrogen.
632 *Proceedings of the National Academy of Sciences* 113:7580–7583.

633 Rousk, J., P. C. Brookes, and E. Bååth. 2009. Contrasting Soil pH Effects on Fungal and Bacterial
634 Growth Suggest Functional Redundancy in Carbon Mineralization. *Applied and Environmental
635 Microbiology* 75:1589–1596.

636 Rowley, M. C., S. Grand, and É. P. Verrecchia. 2018. Calcium-mediated stabilisation of soil organic
637 carbon. *Biogeochemistry* 137:27–49.

638 Rowley, M. C., P. S. Nico, S. E. Bone, M. A. Marcus, E. F. Pegoraro, C. Castanha, K. Kang, A.
639 Bhattacharyya, M. S. Torn, and J. Peña. 2023. Association between soil organic carbon and
640 calcium in acidic grassland soils from Point Reyes National Seashore, CA. *Biogeochemistry*
641 165:91–111.

642 Schaetzl, R. J., S. F. Burns, D. L. Johnson, and T. W. Small. 1988. Tree uprooting: review of impacts on
643 forest ecology. *Vegetatio* 79:165–176.

644 Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I.
645 Kögel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E.
646 Trumbore. 2011. Persistence of soil organic matter as an ecosystem property. *Nature* 478:49–56.

647 Schmitz, A., T. G. M. Sanders, A. Bolte, F. Bussotti, T. Dirnböck, J. Peñuelas, M. Pollastrini, A.-K.
648 Prescher, J. Sardans, A. Verstraeten, and W. de Vries. 2024. Chapter 13 - Responses of forest
649 ecosystems in Europe to decreasing nitrogen deposition. Pages 227–245 in E. Du and W. de
650 Vries, editors. *Atmospheric Nitrogen Deposition to Global Forests*. Academic Press.

651 Shabtai, I. A., R. C. Wilhelm, S. A. Schweizer, C. Höschen, D. H. Buckley, and J. Lehmann. 2023.
652 Calcium promotes persistent soil organic matter by altering microbial transformation of plant
653 litter. *Nature Communications* 14:6609.

654 Simek, M., and J. E. Cooper. 2002. The influence of soil pH on denitrification: progress towards
655 the understanding of this interaction over the last 50 years. *European Journal of Soil Science*
656 53:345–354.

657 Slessarev, E. W., Y. Lin, N. L. Bingham, J. E. Johnson, Y. Dai, J. P. Schimel, and O. A. Chadwick. 2016.
658 Water balance creates a threshold in soil pH at the global scale. *Nature* 540:567–569.

659 Sørensen, P., and E. S. Jensen. 1991. Sequential diffusion of ammonium and nitrate from soil extracts to a
660 polytetrafluoroethylene trap for ^{15}N determination. *Analytica Chimica Acta* 252:201–203.

661 Stempfhuber, B., M. Engel, D. Fischer, G. Nesovic-Prit, T. Wubet, I. Schöning, C. Gubry-Rangin, S.
662 Kublik, B. Schloter-Hai, T. Rattei, G. Welzl, G. W. Nicol, M. Schrumpf, F. Buscot, J. I. Prosser,
663 and M. Schloter. 2015. pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.
664 *Microbial Ecology* 69:879–883.

665 Sullivan, T. J., G. B. Lawrence, S. W. Bailey, T. C. McDonnell, C. M. Beier, K. C. Weathers, G. T.
666 McPherson, and D. A. Bishop. 2013. Effects of acidic deposition and soil acidification on sugar
667 maple trees in the Adirondack Mountains, New York. *Environmental Science & Technology*
668 47:12687–12694.

669 Templer, P. H., G. M. Lovett, K. C. Weathers, S. E. Findlay, and T. E. Dawson. 2005. Influence of Tree
670 Species on Forest Nitrogen Retention in the Catskill Mountains, New York, USA. *Ecosystems*
671 8:1–16.

672 Thornton, P. E., S. W. Running, and E. R. Hunt. 2005. Biome-BGC: Terrestrial Ecosystem Process
673 Model, Version 4.1.1. ORNL DAAC.

674 Tierney, G. L., and T. J. Fahey. 2002. Fine root turnover in a northern hardwood forest: a direct
675 comparison of the radiocarbon and minirhizotron methods. *Canadian Journal of Forest Research*
676 32:1692–1697.

677 Valter, M., and R. J. Schaetzl. 2017. Pit-mound microrelief in forest soils: Review of implications for
678 water retention and hydrologic modelling. *Forest Ecology and Management* 393:40–51.

679 Veneman, P. L. M., P. V. Jacke, and S. M. Bodine. 1984. Soil formation as affected by pit and mound
680 microrelief in Massachusetts, USA. *Geoderma* 33:89–99.

681 Venterea, R. T., P. M. Groffman, L. V. Verchot, A. H. Magill, and J. D. Aber. 2004. Gross nitrogen
682 process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. *Forest Ecology
683 and Management* 196:129–142.

684 Vitousek, P. M., and W. A. Reiners. 1975. Ecosystem Succession and Nutrient Retention: A Hypothesis.

685 BioScience 25:376–381.

686 Yanai, R. D., M. A. Vadeboncoeur, S. P. Hamburg, M. A. Arthur, C. B. Fuss, P. M. Groffman, T. G.

687 Siccama, and C. T. Driscoll. 2013. From Missing Source to Missing Sink: Long-Term Changes in

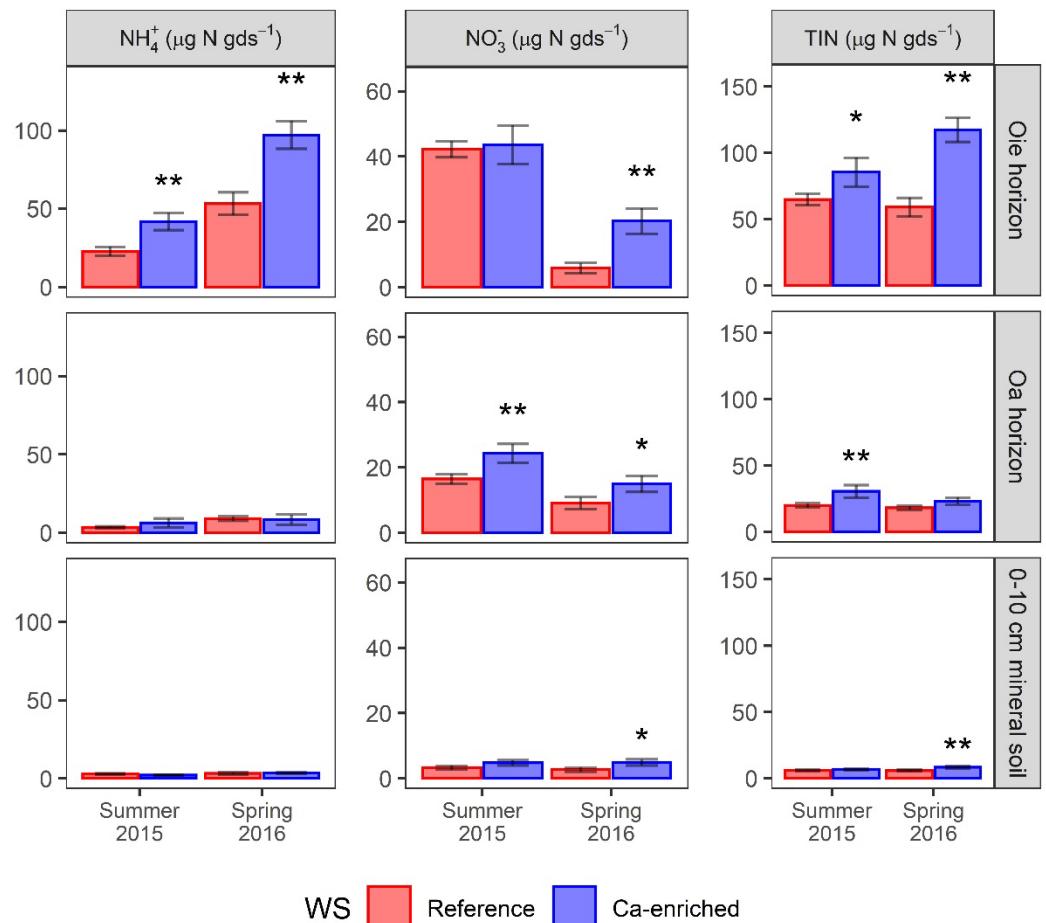
688 the Nitrogen Budget of a Northern Hardwood Forest. *Environmental Science & Technology*

689 47:11440–11448.


690

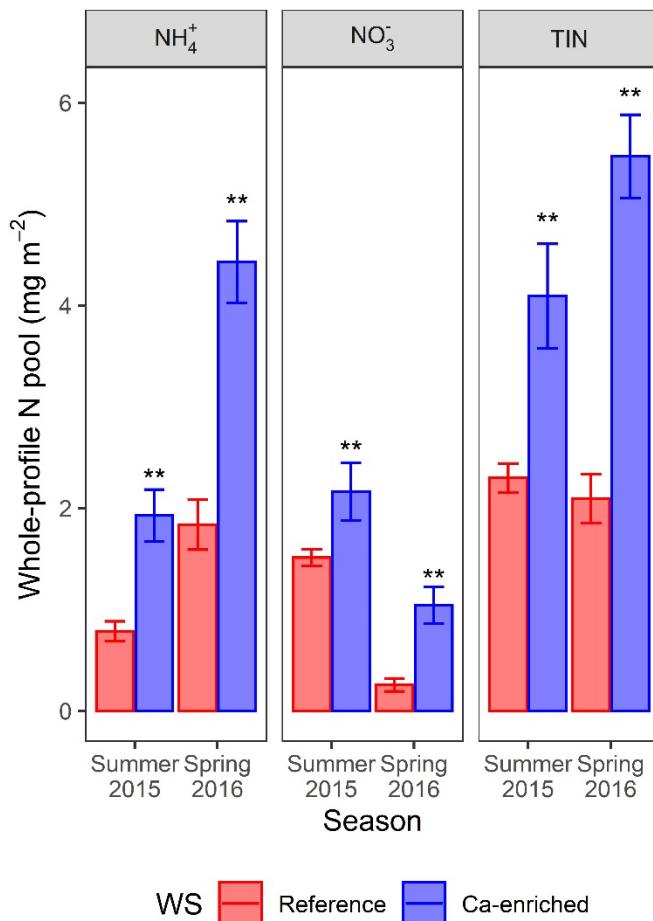
691 **Tables**692 **Table 1: Soil properties related to soil C cycling.** Means and standard errors (in parentheses) are reported.

	Watershed	GWC (%)	SOM (%)	C Mineralization ($\mu\text{g C gds}^{-1} \text{d}^{-1}$)	Microbial Biomass (mg gds $^{-1}$)
<i>Summer 2015</i>					
Oie horizon	Reference	67.0 (2.0)	71.3 (3.9)	617 (85)	13.2 (1.0)
	Ca-enriched	69.4 (1.5)	73.8 (1.7)	657 (40)	14.5 (1.4)
Oa horizon	Reference	54.3 (2.1)	34.2 (3.0)	89.4 (6.6)	3.54 (0.27)
	Ca-enriched	51.2 (2.4)	31.6 (3.5)	93.3 (11.0)	3.59 (0.41)
0-10 cm mineral soil	Reference	34.8 (1.6)	10.9 (0.6)	17.4 (0.98)	0.803 (0.076)
	Ca-enriched	34.9 (0.81)	11.7 (0.5)	16.6 (1.20)	0.801 (0.071)
<i>Spring 2016</i>					
Oie horizon	Reference	66.9 (2.3)	73.8 (4.4)	742.0 (82)	13.4 (0.93)
	Ca-enriched	70.8 (1.8)	77.2 (2.1)	880 (58)	15.8 (1.5)
Oa horizon	Reference	57.5 (2.3)	39.7 (4.2)	99.7 (13)	4.04 (0.26)
	Ca-enriched	59.6 (3.0)	44.0 (5.4)	112.0 (20)	4.51 (0.57)
0-10 cm mineral soil	Reference	34.8 (2.1)	10.6 (0.9)	16.3 (1.7)	0.794 (0.088)
	Ca-enriched	35.2 (1.7)	10.6 (0.5)	14.5 (1.1)	0.839 (0.110)

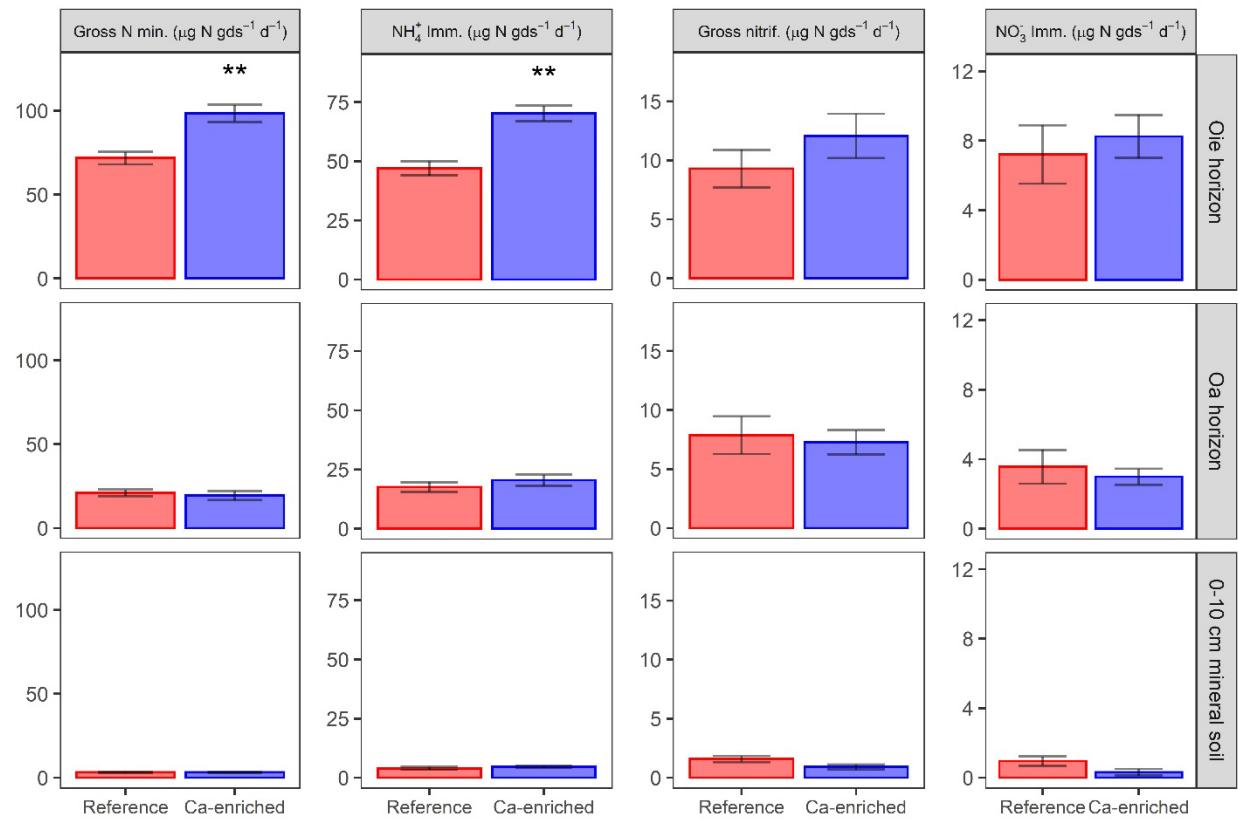

693

694

695 **Figures**

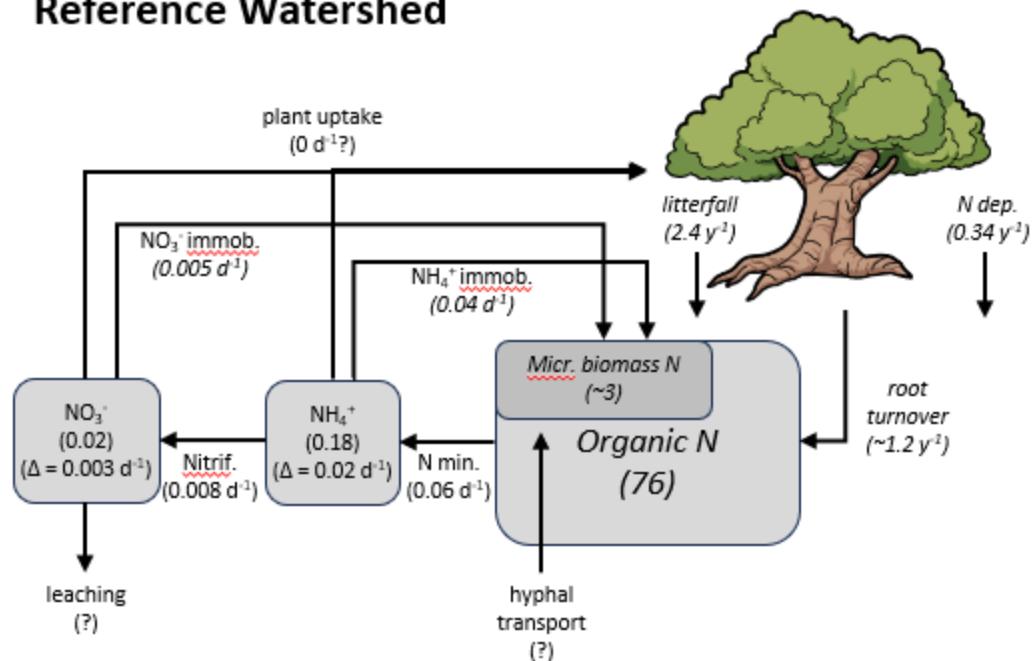

696

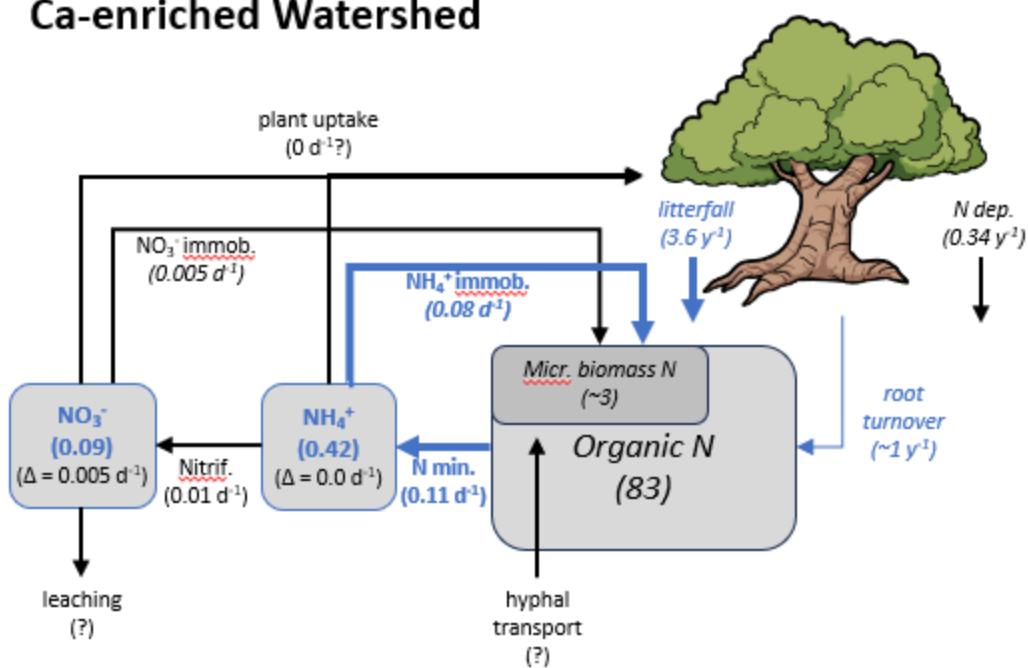
697 **Figure 1:** Soil acid-base properties. Means and standard errors are displayed. Asterisks indicate a
 698 significant difference between the Ca-enriched watershed and the reference watershed (* $p < 0.10$,
 699 ** $p < 0.05$). Soil pH and exchangeable Ca data are aggregated from spring and summer sampling
 700 dates. Exchangeable Al and base saturation are data from the spring sampling date only.


701

702 **Figure 2:** Soil inorganic N concentrations by horizon. Means and standard errors are displayed.
 703 Asterisks indicate a significant difference between the Ca enriched watershed and the reference
 704 watershed (* $p < 0.10$, ** $p < 0.05$).

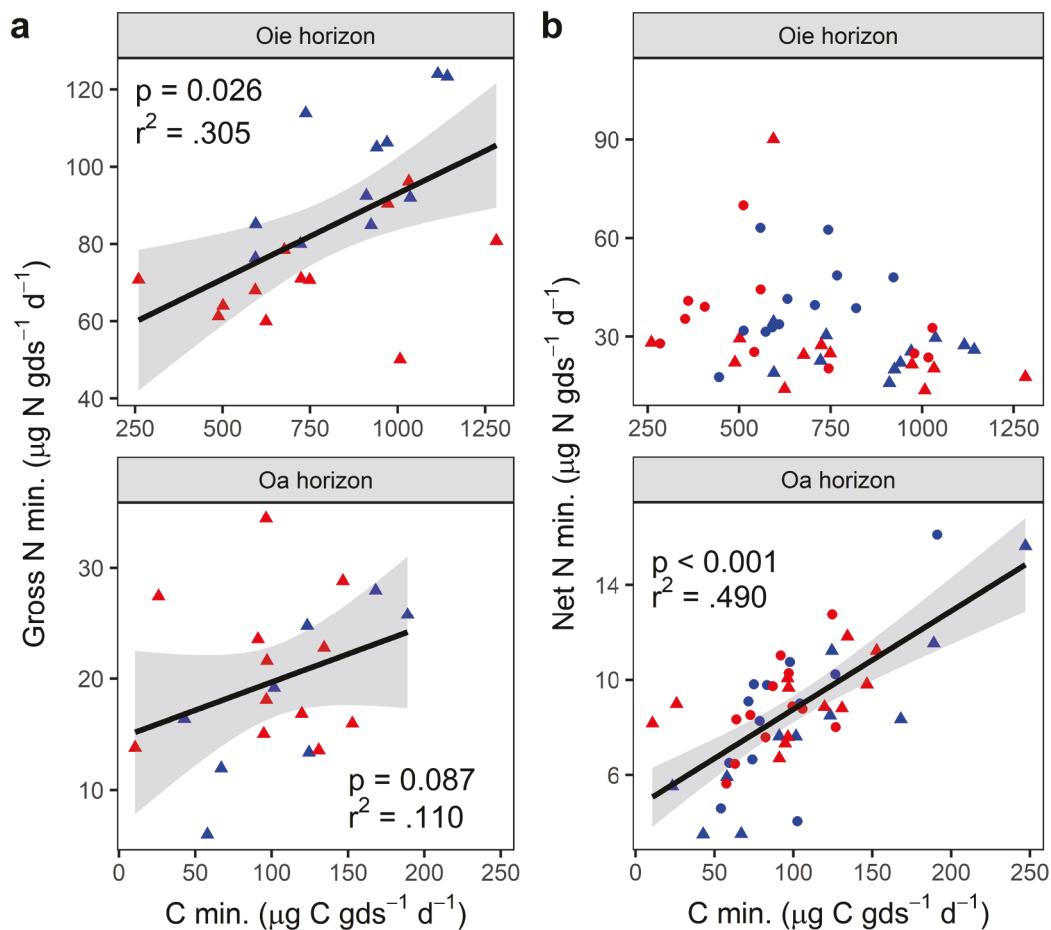
705


706 **Figure 3:** Whole-profile soil inorganic N pools for the forest floor and 0 - 10 cm mineral soil.
 707 Means and standard errors are displayed. Asterisks indicate a significant difference between the
 708 Ca enriched watershed and the reference watershed (p < 0.05).


709

710 **Figure 4:** Gross N cycling rates by horizon for spring 2016 soil samples. Asterisks indicate a
 711 significant difference between the Ca enriched watershed and the reference watershed ($p < 0.05$).

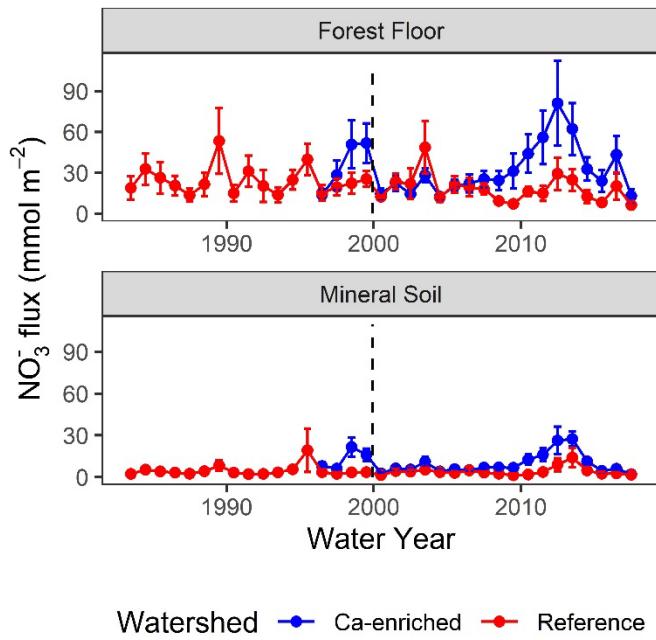
Reference Watershed


Ca-enriched Watershed

712

713 **Figure 5:** A N budget “snapshot” for the Oie horizon in spring 2016, reflecting the differences in
 714 N pools and gross process rates that we measured. All pools are in units of g m^{-2} and fluxes are in

715 units of g m^{-2} per unit time indicated. Italics indicate pools or fluxes taken or computed from the
 716 literature. Blue text indicates a pool or flux that is significantly different between the Ca-enriched
 717 and reference watersheds (as either analyzed here or in the cited literature.)



Season • Summer 2015 ▲ Spring 2016

WS • Reference • Ca-enriched

718

719 **Figure 6:** Correlations between C mineralization and (a) gross and (b) net N mineralization for
 720 forest floor soil samples. The significance of the correlation is reported for a full model that
 721 included blocking factors for watershed, topographic position, and season, but the correlation
 722 coefficient and linear regression displayed here are for the main predictor (C mineralization) only.
 723 Only significant linear relationships are shown.

724

725 **Figure 7:** Soil solution total nitrogen (TN) fluxes for the forest floor (bottom of Oa horizon) and

726 mineral soil. Error bars are ± 1 S.E.M.