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In ecology, multifunctionality metrics measure the simultaneous performance of
multiple ecosystem functions. If species diversity describes the variety of species that
together build the ecosystem, multifunctionality attempts to describe the variety of
functions these species perform. A range of methods have been proposed to quantify
multifunctionality, successively attempting to alleviate problems that have been identi-
fied with the previous methods. This has led to a proliferation of more-or-less closely
related metrics which, however, lack an overarching theoretical framework. Here we
borrow from the comprehensive framework of species diversity to derive a new metric
of multifunctionality. Analogously to the effective number of species used to quantify
species diversity, the metric we propose is influenced both by the number of functions
as well as, crucially, the evenness of performance levels across functions. In addition,
the effective multifunctionality also considers the average level at which the functions
are performed. The result is a measure of the cumulative performance of the system
were all functions provided equally. The framework allows for the inclusion of the cor-
relation structure among functions, thus allowing it to account for non-independence
between functions. We show that the average metric is a special case of the newly pro-
posed metric when all functions are uncorrelated and performed at equal levels. We
hope that by providing a new metric of multifunctionality anchored in the rigorous
framework of species diversity based on effective numbers, we will overcome the con-
siderable skepticism that the larger community of ecologists has built against indices of
multifunctionality. We thereby hope to help popularize this important concept which,
like biological diversity, describes a fundamental property of ecosystems and thus lies
at the heart of ecology.
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Introduction

The past decade has witnessed the growth of the concept of ecosystem multifunctionality,
defined typically as as a measure of the simultaneous performance of multiple functions.
Having existed as a concept in the ecosystem service and land management literature for
some time (Holting et al 2019) it has arisen, largely independently, in the biodiversity
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ecosystem function literature. From there, the concept has
spread to community ecology writ large (Angelini et al. 2015),
invasion biology (Ramus et al. 2017), land management
(Nelson et al. 2009, Brandt et al. 2014, Binder et al. 2018)
and more. The concept of multifunctionality is broad and can
even be applied outside of community and ecosystem ecology
— or even outside of ecology altogether. Its adoption as a unify-
ing concept, however, has been slow — and for good reason.

Despite the popularity that the concept gained since it was
first explicitly proposed in community ecology over a decade
ago (Hector and Bagchi 2007, Gamfeldt et al. 2008), there is
still no consensus on how multifunctionality should be quanti-
fied. A range of methods have been proposed where each sub-
sequent method attempted to alleviate problems the authors
had identified with the previous method, leading to a prolif-
eration of metrics which cannot easily be compared. This state
of affairs can lead to inconsistent interpretations of the results
(Byrnes et al. 2014a, Gamfeldt and Roger 2017). We do note
that this is a difficult problem. Throwing many different ecolo-
gists against this problem in a stimulating working group over
multiple years (we are thankful for NCEAS for providing this
venue) has likely resulted in more ink impregnated on fore-
heads hitting whiteboards than should be typical, to say noth-
ing of others who have attempted to cut this Gordian knot
before and since (Hector and Bagchi 2007, Brandt et al. 2014,
Dooley et al. 2015, Rodriguez-Loinaz et al. 2015, Stiirck
and Verburg 2017, Manning et al. 2018, Meyer et al. 2018,
Holting et al. 2019). In part, the problem is due to a lack of
an underpinning body of theory describing how and where
higher levels of multifunctionality should arise. Regardless,
this plurality of measurements has hampered a general under-
standing of multifunctionality and possibly its adoption out-
side of the subfield of Biodiversity and ecosystem function.

Species diversity, for a long time, suffered the same
problems that multifunctionality suffers today: there are
an uncountable number of metrics to estimate alpha diver-
sity, reaching from the simple count of observed species
without regard to their abundance (Richness), wide array
of metrics incorporating the relative abundance (Shannon
entropy, Simpson index or the Berger—Parker dominance
index to name some of the most common ones), to met-
rics based on the histograms of the abundance distribution
(e.g. Fisher’s alpha) (Magurran and McGill 2010). Yet, start-
ing with MacArthur (1965), then Hill (1973), followed by
Jost (2006), and most recently Chao et al. (2014a, 2019), a
common framework for species diversity has been developed
based on information theory. This framework, the effective
number of species, encompasses the vast majority of previous
metrics and is able to handle a wide variety of different issues
in diversity estimation. We propose it can do the same for
multifunctionality.

The current state of multifunctional affairs

The definition of multifunctionality, the simultaneous per-
formance of multiple functions (sensu Byrnes et al. 2016),
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presents a challenge in creating a metric. How do we define a
metric that captures both the level of performance of a broad
suite of functions as well as the distribution of differences in
performance among functions? Researchers have sought to
capture this question in four ways, after standardizing func-
tions to similar levels in order to prevent apples-to-oranges
comparisons.

First, many have opted for simplicity and taking the aver-
age of all functions (Maestre et al. 2012). This approach is,
at first glance, appealing, particularly as it provides a met-
ric that can be put on a y-axis while a predictor is on the
x-axis. However, it sacrifices crucial information about the
system. An arithmetic mean tells us what level of functioning
we would expect were we to sample any one function at ran-
dom. Consider two plots — one where all functions are similar
and performing at half their value and one where half of the
functions are at their maximum while half are absent. The
averaging approach says that they are identical. Geometric
averaging (Hensel and Silliman 2013) appears to get around
this problem to some degree, as the geometric mean is less
than the arithmetic mean by a function of the variance of the
observations (the two means are the same when all observa-
tions are identical). However, given its formulation, one criti-
cally low function can dominate the measurement — e.g. if
even one function is 0, the geometric mean will be 0.

Second, we have metrics of the Multivariate diversity
interactions framework (Dooley et al. 2015). This elegant
framework allows us to tease apart the importance of cor-
relations between functions and the contribution of differ-
ent drivers to simultaneous change in those functions. It does
not, however, provide a holistic metric of multifunctional-
ity per se, much like the overlap approach before it (Hector
and Bagchi 2007). This approach from Hector and Bagchi
is a generalization of Serenson—Dice overlap (Dice 1945,
Serensen 1948). It provides key information on redundancy
versus unique contributions of species. While it gives us rich
information about a system, it lacks holistic interpretability.

Last, we have the threshold approach (Gamfeldt et al. 2008).
This approach defines the ‘presence’ of a function if it meets a
given threshold of performance, and then sums up the number
of functions performing at or above that threshold. There are
clear issues with the arbitrariness of thresholds in the absence
of relevant theory or management goals. To remedy this, the
multiple threshold approach (Byrnes et al. 2014a) seeks to bal-
ance the goals of measuring the simultaneous performance of
multiple ecosystem functions with the arbitrariness of choos-
ing a threshold of relevance for those functions. The results,
however, can be difficult to interpret. Looking at multiple rela-
tionships between diversity and threshold-based multifunc-
tionality does not provide a metric per se. While there are key
metrics that can be extracted from looking at change in slope
over different thresholds, the meaning of these quantities in
the context of multifunctionality are not obvious. The values
can vary dramatically depending on the exact threshold chosen
and on the method used to standardize the functions — even
for simulated communities where all functions perform identi-

cally (Gamfeldt and Roger 2017, Supporting information). In

A ‘0 “90£00091

:sdny woiy papeoy

b//:50NY) SUORIPUO)) pue SWID L 34} 938 “[Z20Z/11/91] U0 AIeIqrT SUUQ ASJIA “UOISOET SHASUIBSSEIN 3O AWSIOAUN Aq ZOPGOMIO/T 1 11°01/10p/WOd"ofimv”

10)/W09" K[ IM"

pi

2Sud0I'T suowwo)) aaneal) ajqesrjdde ay) £q pauraA0s ale sa[onIe Y fasn Jo sa[ni 10j A1e1qry auluQ L3I\ Uo (suonip



the absence of suitable null-models, and even if the approach
yields rich information about multifunctionality sensu stricto,
it is unwieldy for most if not all who choose to use it, and we
have noticed that many of those who do, often report a single
threshold in their main text and leave further exploration to
Supporting information anyway. Related, more recent, efforts
have sought to use dimensionality-reducing techniques which
have yielded metrics that, while useful, similarly lack easily
interpretable meaning (Meyer et al. 2018).

Hill numbers and effective diversity

Over the last 70 years, ecologists studying how to measure
species diversity have shown that the vast majority of previous
diversity metrics can be organized into a common framework
(Macarthur 1965, Hill 1973, Jost 2006, Chao et al. 2014a,
2019). This is true for indices such as Shannon entropy, all
Simpson measures, all Renyi entropies, all HCDT or “Tsallis’
entropies and species richness (Jost 2006) and more. All can
be expressed as generalized entropies that can be converted to
an effective number of species of ‘order’ ¢ which specifies the
weighting of proportional abundances. The general formula
for the diversity of order ¢ for S species is the following:

S 1/(1_’1)
D= (Z -IP?] (1)

Here, p, is the relative abundance of the ith species and g is
the weight given to the species’ relative abundances. Species
richness, the effective number of species based on Shannon
entropy, the effective number of species based on the Simpson
index, and the Berger—Parker dominance index are all effec-
tive numbers of species of order =0, 1, 2 and oo, respec-
tively. (Note that the formula is undefined for 4=1, but its
limit ¢ — 1 is exp(—=2p, log p).) The effective number of
species of order ¢ is also often referred to as Hill numbers.

We propose leveraging this framework for a more mean-
ingful and less ad hoc metric of multifunctionality composed
of two parts: 1) the effective ‘number’ of functions that are
performed and 2) the ‘arithmetic mean performance’ of the
functions that are measured. Our proposed multifunctional-
ity index is then the product of both terms. This approach
draws on ideas already swirling in the multifunctionality lit-
erature (Brandt et al. 2014, Rodriguez-Loinaz et al. 2015,
Stiirck and Verburg 2017, Holting et al. 2019). With this
approach, we aim to provide a unifying framework for the
measurement of multifunctionality.

Multifunctionality as the product of
effective number of functions and average
level of functions

To define the effective number of functions, we begin with a
set of measurements on % functions (Table 1) that have been
standardized to a common scale (i.e. between 0 and 1 where 0

means no function and 1 means maximum level of function).
Let F, i€ 1, 2, ...K show the level of function for function
i (Table 1). The relative proportion a function contributes to
the whole is defined as

E

; )
F

We can now substitute the relative proportion into the for-
mula for the effective number of types given in Eq. 1

P =

K 1/(1*q)
IN = [Z wpgj 6

where 7NV is the effective number of functions for some order
g (Table 1). The effective number of functions here translates
to the equivalent number of functions were all functions pro-
vided at the same level. Effective number of functions tells
us nothing about total level of functioning. Average function
can be low or high (see below and Fig. 1). Rather, 7V tells us
how many functions we would see in an equivalent system
where all functions were performing at the same level. This
calculation requires a decision on how sensitive the function
should be to differences in the level at which functions are
provided, which is done by setting g (for lower values of ¢,
differences in performance are less influential than for high
values of ¢).

Adapting from Jost (2000), if =0, this is the total number
of functions K, which is unimportant as it is just the number
of functions measured. In essence, all functions have equal
weight regardless of performance. For ¢=1, the approxima-
tion of this function is equivalent to results from Shannon
diversity for species shown earlier — which we note has been
used as a multifunctionality metric previously (Stiirck and
Verburg 2017). For ¢4 > 1, functions performing at higher
levels are given greater weight. At g=2, we get results that
are equivalent to the number of functions calculated from
Simpson’s diversity (inverse Simpson index). If one of our
goals is to up-weight high performing functions, g=2 is a
reasonable choice, while =1 is sufficient as it accommodates
information about unequal levels of functioning proportional
to the relative functional performance. Lower values of g
would upweight low-performing functions — which might be
desirable in certain contexts when low levels of functions are
sufficient. The ability to modulate the sensitivity of the metric
to high or low performing functions thus provides a strong
tool for both ecologists and managers. In the absence of a jus-
tification for a particular value of ¢, exploring the robustness
of results to different choices of g could prove fruitful as it has
in biodiversity research. Further exploration of how g relates
to management goals or ecological theory of multifunctional-
ity would be a fruitful avenue for future research.

Effective number of functions does not accommodate
knowledge about the absolute level of functioning in a system
— a true metric of muldifunctionality. As long as the distribu-
tion of p, is the same, a system with high average function and

Page 3 of 8

A ‘0 “90£00091

:sdny woiy papeoy

b//:50NY) SUORIPUO)) pue SWID L 34} 938 “[Z20Z/11/91] U0 AIeIqrT SUUQ ASJIA “UOISOET SHASUIBSSEIN 3O AWSIOAUN Aq ZOPGOMIO/T 1 11°01/10p/WOd"ofimv”

10)/W09" K[ IM"

pi

2SuAOIT suowwo)) aAneal) ajqesrjdde ay) £q pautaA0S ale sajonIe YO fasn Jo sa[ni 10§ A1eiqi auluQ L3[IAN UO (¢



Table 1. Definitions of variables used to calculate and define the effective multifunctionality of an ecosystem.

Variable Description
Variables that define M., Effective multifunctionality of order g. The cumulative performance of the system were it
elements of effective composed of functions all performing at equal levels.
multifunctionality
M Standardized effective multifunctionality of order g. Expresses effective multifunctioning as a
fraction of the maximum attainable value when all functions are performing at their maximum
(i.e. all functions are 1). It is obtained by dividing M, by k to provide a metric comparable
across systems, although care is required when comparing different sets of functions.
IN Effective number of functions of order q. Describes the equivalent number of functions were
all functions provided at the same level.
N, Correlation-corrected effective number of functions of order g. Quantifies the effective
number of functions were all functions independent and provided at the same level.
Variables used to calculate K The number of functions measured.
effective multifunctionality

F, Level of function J, standardized by dividing by its maximum observed or theoretical value.

P Proportion of summed functions provided by function i.

q Order of diversity (default=1). Smaller values increase weight of lower performing functions,
so that °N is the number of functions provided in any amount. Larger values express the
degree to which high-performing functions are upweighted.

A The arithmetic mean of the k measured functions.

D A dissimilarity matrix describing the independence of functions from each other. Based on a

priori mechanistic information (e.g. physiological or evolutionary constraints) or empirical
estimates of the among-functions correlation matrix, R (D=0.5(1 — R)). Empirical estimates
of R can be obtained from the data set being analyzed or additional data.

T Threshold dissimilarity between two functions for them to be considered independent in the
calculation of 9N,. The dissimilarity matrix is truncated, so that any values above t are
converted to 1. The average weighted pairwise distance among functions, d_,. is the

mean

recommended default, following Chao et al. (2019). If t=1, no truncation occurs; if t=0.5,
all negatively correlated functions are considered independent. If t=0, all functions are
treated as completely independent and we recover the value of 9N uncorrected for
correlations among functions.

low average function will look the same. Indeed, for some
values of g (e.g. g=1), under some scenarios if one function
goes up, the effective number of functions can actually drop.
To achieve the translation to a metric of multifunctionality,
we need to take into account the level at which the functions

Order (q)
4

3
2
1

Effective number of functions
N

0.00 0.25 0.50 0.75 1.00
Average level of functioning

Figure 1. Relationship between effective number of functions, 7NV
and average level of functions, 4, for 4 functions at g=1, 2, 3 and 4.
Filled areas show the full range of possible values of effective number
of functions, 7V, under different values of average level of function,
A. Note, areas with a higher order (¢9) do overlap completely with
lower orders, save for the additional edge that is visible.
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are performed: the arithmetic mean of the function values
standardized to a common scale, which we define as A (Table
1). As we are using standardized values as before, A will range
from 0 to 1.

We can then calculate effective multifunctionality of order
¢ (Table 1) as the product of both terms. We remind readers
that A is an expected value — it provides information on the
expected level of one function sampled at random from the
cluster of functions. Scaling A by 7V gives a metric of multi-
function summed across the suite of functions — the cumula-
tive performance of the system were it composed of functions
all performing at equal levels

"M, = "NA (4)

This metric, where M, is effective multifunctionality for
order g, will have a maximum value of K, the total number
of functions measured in the system, as maximum perfor-
mance is all functions performing at a standardized level of
1. Alternatively, we can standardize by the total number of
functions to calculate the fraction of performance achieved
by the whole system, of standardized effective multifunction-
ality, 7M (Table 1), which could facilitate future comparisons
among studies.

‘M ="NA/K )
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Given that we have scaled by K] this metric measures the level
of individual functions in an equivalent system where all
functions have the same level of performance. However, care
has to be taken when comparing multifunctionality values
across systems that measure different sets of functions and
the value of such comparisons is a topic that eludes consensus
even among authors of this article.

Why must we consider the level of function and effec-
tive number of functions together in one metric? First,
when A is less than one, multiple values of 7V are possible
depending on the distribution of performance of functions.
Second, the average functioning and the effective number
of functions are not independent of each other. The upper
limit of 7V is K by definition. 7V is K when all functions
are performing at the same level, i.e. E[A]=F,, F,, F,...F.
This can be achieved for any value of 4, low or high. Thus,
7N has no information about the level of function achieved.
The lower limit of 7V (as long as ¢ is not 0) occurs at the
maximum level of unevenness of Facross all functions. This
lower limit will vary by different levels of A. For example,
9N will always be K when A is 1. Similarly, if all functions
but one have a value of 0, then 7V will be 1, as p, for the
non-zero function will be 1. If more than 1 function exceeds
0, then the lower limit is set by a combination of 4 and
the number of dominant functions, i.e. the functions per-
forming at F,=1 (Fig. 1). See Supporting information for
derivation.

Most importantly, a combined metric satisfies our defini-
tion of muldfunctionality. High numbers imply both a high
level of function and high functional evenness (i.c. p; is close
to 1/K for all functions). Low values imply that, even if a sin-
gle function is being optimized, the assemblage of functions
as a whole is not performing at a high level. The relationship
can also be easily decomposed into its constituent parts for a
more detailed examination of its behavior.

Last, from a convenience standpoint, having a single met-
ric allows us to begin to examine it as any other response
variable. In the Biodiversity and Ecosystem Functioning
world, we might look at additive partitioning in addition to
complementary overlap approaches. In global change biol-
ogy, we can look at the stability, resistance and resilience of
this metric in ecosystems confronting human stressors. This
metric can be used just as any other univariate metric in any
field, leading to easy adoption of the multifunctionality con-
cept across many fields of endeavor. The options are open.

A note on standardization

As pointed out in discussions of multifunctionality, how
functions are standardized matters (Gamfeldt and Roger
2017, Manning et al. 2018). First is the choice of direction
— what implies positive function? When this approach is
applied to ecosystem services, the choice of direction is hope-
fully a straightforward choice — although consider tradeoffs
between nutrient cycling rates and storage as a tricky context.
Further, not all functions are equally important, particularly

in the case of contributions to services. Fortunately, choos-
ing an ‘optimal’ level of function to link to 1 can alleviate
this (e.g. if 25% of function is sufficiently high for the pro-
vision of a service, 25% or higher can be considered a ‘1’).
Functions can also be upweighted or downweighted in the
calculation of 7N so long as ) p,= 1. Choices for standardiza-
tion are often best made in the context of a specific system or
application and must be transparently justified.

Correlated functions and multifunctionality

A great deal of debate in the multifunctionality literature
has sprung from the issue of how to deal with correlations
between functions (Bradford et al. 2014a, b, Byrnes et al.
2014b, Manning et al. 2018). As with species diversity,
the rationale is that not all functions are equally different
and that a metric of true multifunctionality should identify
‘variables that represent independent aspects of ecosystem
functioning’ (Manning et al. 2018). As an illustration, con-
sider a scenario where we measure a set of functions, sev-
eral of which result from a shared mechanism so that they
are inextricably linked (e.g. growth rate and final biomass).
If we want to study the circumstances under which over-
all multifunctionality is maximized, the results will be dis-
proportionately driven by circumstances maximizing this
mechanism influencing the set of correlated functions; thus
a naive application of a multifunctionality measure would
implicitly upweight the importance of this function cluster
over uncorrelated functions.

In the Ecosystem service literature, this has led to the con-
cept of Ecosystem service bundles (Raudsepp-Hearne et al.
2010), where cluster analysis is used to identify groups (or
bundles) of ecosystem services that tend to occur together.
Following the same logic, Manning et al. (2018) proposed
performing a cluster analysis of ecosystem functions and
building a dendrogram representing the distance matrix
between functions. The performance of single functions is
then averaged within clusters and multifunctionality is cal-
culated among clusters and not individual functions. This
is conceptually very similar to metrics of phylogenetic and
functional species diversity that construct phylogenetic trees
or dendrograms based on functional similarities and measure
species diversity taking into account the dendrogram struc-
ture (e.g. Faith’s PD, Allen’s H, Petchey and Gaston’s FD,
Rao’s Quadratic entropy etc.). The problem is that, as dis-
cussed by Chao et al. (2014a), dendrograms are very sensitive
to the type of clustering method used and the shape of a den-
drogram can vary substantially between different methods
(Poos et al. 2009). For the method proposed by Manning et al
2018, it is also unclear at what depth the dendrogram should
be cut (i.e. what clusters are considered as independent).
Fortunately, extensions of the Hill numbers framework to
account for species similarity, for example in terms of traits or
genetic relatedness (Chao et al. 2014a, 2019), provide a solu-
tion to the challenge of evaluating multifunctionality across
correlated functions.
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To account for correlation among functions in the effec-
tive multifunctionality framework, we need to incorporate
several concepts from Chao et al. (2019). First, how similar
are functions? For this, we need a distance matrix of some
sort (Table 1). If this is based on a priori mechanistic infor-
mation about the underlying processes driving functions
(e.g. physiological or evolutionary constraints), so much the
better. We often do not have such a matrix. Other options
include a matrix derived from principal components or other
methods of constructing distance matrices (Manning et al.
2018). In the absence of such information, a practical choice
could be to look at the correlation matrix among functions,
R. Defining D=(1 — R)/2 would create a distance matrix
where a d,; value of 0 means two functions are inextricably
linked (perfectly correlated) while 1 means they trade-off
completely (r,=—1). This is one choice. We note that some
functions could be correlated for non-biological reasons, and
as such a biologically-based distance matrix might be wiser.
We suggest that determining the proper way to create a dis-
tance matrix between functions for the estimation of effective
diversity is an exciting area of research.

With a distance matrix in hand, we need to ask ourselves,
how distinct must two functions be before we consider them
completely different? This incorporates the threshold T (Table
1) proposed in Chao et al. (2019). Using this threshold, the
distance matrix is truncated such that 4 ](‘c) mm(dl], 7). If,
for example, T < min(d), all functions are equally distinct
and we recover the resullts ignoring correlations. If t=1 or
the maximum distance in the matrix, we fully incorporate
information from the distance matrix with no truncation. If
©=0.5, all negatively correlated functions are as distinct as
uncorrelated functions. Chao et al. (2019) recommend using
the average weighted pairwise distance between any two
functions as T

Dy = Z, IZ]_ D (6)

as setting T to &, yields results that are consistent with com-
prehensive evaluations of all possible values of 7.

We can then use our truncated distance matrix, (1,')
to define the effective number of underlying functions, N,
as follows when we are interested in the effective number
of underlying ‘functions’. This equation takes advantage of
d, ('c)/'c signifying the portion of one function that is distinct

from another.
)

g
K K di,
1IN, = zizlpl. ZFI l—jT(T) 2 7)

In essence, the inner part of the equation is the proportion of
function 7 multiplied by the summed portion of all functions
that contribute to the same underlying function. For g=1,
we need to use the limit, as before, so
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"N, =exp —Zv](lpl. log Zkl 1—7\/ % (T> 2, (8)
i= =

This effective number of functions can then be used to cal-
culate multifunctionality as above. The average, A, does not
need to be modified, because correlations do not systemati-
cally bias estimates of the mean (although uncertainty in that
mean could be biased downwards by correlations). The cor-
relations only need to be accounted for in the estimate of 7/V.

Discussion

With the framework above in hand, we are hopeful for a
proliferation of literature investigating both new and old
ideas in multifunctionality. With its ties to theoretically
grounded methods of measuring species diversity and its
flexibility to encompass some of the real sticking points in
the field, we hope that Ecology will embrace this frame-
work moving forward. It produces more intuitive metrics
— effective number of functions performing at equal levels,
effective system-wide multifunction — number of functions
scaled by total level of performance, and standardized ver-
sions of both — as well as offering a solution to account for
correlated functions. To aid in this advance, see Supporting
information where we present a worked example in R
(<www.r-project.org>). Over the last decade and a half of
its development, the multifunctionality literature has grown
more slowly than it should, in no small part due to the ad
hoc nature of the metrics we have developed. We hope that
period is at an end.

Further, the metrics presented here are the foundation
of a much larger framework that has seen deep exploration
in the species diversity world. By embracing this frame-
work for Multifunctionality research, we open up new vistas
for ecology. Some are small — what the consequences and
best choices for T are, how we calculate distance matrices,
at what scale to evaluate correlation between functions,
should we incorporate changes in correlation and distance
matrices as an ecological response in and of themselves, how
we standardize functional measurements and many more.
Other new areas of inquiry are quite large. Can we use this
framework to begin to address the problem of unmeasured
functions as we deal with unmeasured species (Chao et al.
2014b)? Can we use it to think about turnover in multi-
functionality across space and time as we do with beta diver-
sity (Chao and Ricotta 2019) or think about partitioning
landscape multifunctionality into different components
(Jost 2007)? Particularly as we think about global change’s
impacts on ecosystem services, and not just functions, at
multiple scales, this framework lays out fruitful avenues for
future exploration.

What does our approach mean for previous metrics? In
short, existing approaches have addressed specific aspects of
measuring multifunctionality, but are limited in their scope.
Here we provide a metric that addresses the generalized
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measurement of multifunctionality that meets its defini-
tion — the ‘simultaneous performance of multiple functions’
(Byrnes et al. 2016) — in a way not fully encompassed by
previous metrics. The averaging metric comes closest to what
is presented here, as it is a special case where g=0. In the
Supporting information we provide an example using data
from Dufly et al. (2003) and the muldfunc package (ver.
0.9.4) in R, now including metrics in this paper, that shows
some concordance between the two. The threshold approach
seeks to remedy some of the drawbacks of using ¢=0, and
can be useful for managers that have specific targets of func-
tional performance they need to meet. However, it is too
sensitive to a number of decisions, as well as complicated to
interpret (Gamfeldt and Roger 2017). Other metrics in the
literature are often targeted at questions related to multifunc-
tionality, but do not directly address a univariate measure of
simultaneous function (e.g. the approach of Dooley et al.
(2015) secks to look at a multivariate response and quantify
tradeoffs rather than provide a single univariate measure).
Rather, we have sought to provide a metric that builds on
past work while providing a robust foundation for the future
of multifunctionality research.

Ultimately, we feel that the proliferation of univariate
multifunctionality metrics without strong theoretical under-
pinning has caused a great deal of confusion about how to
measure multifunctionality. We hope that this piece will
provide the field of multifunctionality with a way out of its
current state of division and confusion. Further, we hope it
provides food for additional theory that addresses the causes
and consequences of ecosystem multifunctionality, something
that is currently sorely lacking but highly relevant to policy
and management (e.g. the efforts of the Intergovernmental
science-policy platform on Biodiversity and ecosystem ser-
vices). We have been heartened by the idea leaving the cradle
of the field of biodiversity and ecosystem function, and feel
that it has the promise to provide a holistic unifying con-
cept for anyone interested in capturing a snapshot of system
dynamics in a single meaningful metric with direct ties to the
beautifully developing field of diversity partitioning. Much
is to be done on honing the particulars of this approach, but
we feel it offers a strong theory-driven unified approach that
will enable the field of multifunctionality research to move
forward swiftly.
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