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An optimal regulation of fluxes 

dictates microbial growth in and out of 

steady state
Griffin Chure*, Jonas Cremer*

Department of Biology, Stanford University, Stanford, United States

Abstract Effective coordination of cellular processes is critical to ensure the competitive growth 

of microbial organisms. Pivotal to this coordination is the appropriate partitioning of cellular 

resources between protein synthesis via translation and the metabolism needed to sustain it. Here, 

we extend a low- dimensional allocation model to describe the dynamic regulation of this resource 

partitioning. At the core of this regulation is the optimal coordination of metabolic and translational 

fluxes, mechanistically achieved via the perception of charged- and uncharged- tRNA turnover. An 

extensive comparison with ≈ 60 data sets from Escherichia coli establishes this regulatory mecha-

nism’s biological veracity and demonstrates that a remarkably wide range of growth phenomena in 

and out of steady state can be predicted with quantitative accuracy. This predictive power, achieved 

with only a few biological parameters, cements the preeminent importance of optimal flux regula-

tion across conditions and establishes low- dimensional allocation models as an ideal physiological 

framework to interrogate the dynamics of growth, competition, and adaptation in complex and ever- 

changing environments.

Editor's evaluation
This valuable study provides a synthesis of sector models for cellular resource partitioning in 

microbes and shows how a simple flux balance model can quantitatively explain growth phenomena 

from numerous published experimental data sets. The evidence is convincing, and the study should 

be of interest to the microbial physiology community.

Introduction
Growth and reproduction is central to life. This is particularly true of microbial organisms where the 

ability to quickly accumulate biomass is critical for competition in ecologically diverse habitats. Under-

standing which cellular processes are key in defining growth has thus become a fundamental goal in 

the field of microbiology. Pioneering physiological and metabolic studies throughout the 20th century 

laid the groundwork needed to answer this question (Monod, 1935; Monod, 1937; Monod, 1941; 

Monod, 1947; Monod, 1966; Campbell, 1957; Schaechter et al., 1958; Kjeldgaard et al., 1958; 

Cooper and Helmstetter, 1968; Donachie et al., 1976; Jun et al., 2018), with the extensive charac-

terization of cellular composition across growth conditions at both the elemental (Heldal et al., 1985; 

Loferer- Krößbacher et al., 1998; Lawford and Rousseau, 1996) and molecular (Schaechter et al., 

1958; Kjeldgaard et al., 1958; Watson, 1976; Britten and Mcclure, 1962) levels showing that the dry 

mass of microbial cells is primarily composed of proteins and RNA. Seminal studies further revealed 

that the cellular RNA content is strongly correlated with the growth rate (Schaechter et al., 1958; 

Kjeldgaard et al., 1958; Gausing, 1977), an observation which has held for many microbial species 

(Karpinets et al., 2006). As the majority of RNAs are ribosomal, these observations suggested that 
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protein synthesis via ribosomes is a major determinant of biomass accumulation in nutrient replete 

conditions (Koch, 1988; Hernandez and Bremer, 1993; Magasanik et  al., 1959). Given that the 

cellular processes involved in biosynthesis, particularly those of protein synthesis, are well conserved 

between species and domains (Doris et al., 2015; Davidovich et al., 2009; Bruell et al., 2008), these 

findings have inspired hope that fundamental principles of microbial growth can be found despite the 

enormous diversity of microbial species and the variety of habitats they occupy.

The past decade has seen a flurry of experimental studies further establishing the importance of 

protein synthesis in defining growth. Approaches include modern ‘-omics’ techniques with molecular- 

level resolution (Taniguchi et al., 2010; Bennett et al., 2009; Schmidt et al., 2016; Valgepea et al., 

2013; Peebo et  al., 2015; Li et  al., 2014; Balakrishnan et  al., 2021b; Mori et  al., 2021; Belli-

veau et al., 2021; Metzl- Raz et al., 2017; Paulo et al., 2015; Paulo et al., 2016; Xia et al., 2021; 

Jahn et al., 2018), measurements of many core physiological processes and their coordination (Dai 

et al., 2016; Basan et al., 2015; You et al., 2013; Wu et al., 2022; Di Bartolomeo et al., 2020; 

Li et al., 2018; Jahn et al., 2018; Zavřel et al., 2019; Parker et al., 2020), and the perturbation 

of major cellular processes like translation (Scott et al., 2010; Hui et al., 2015; Dai et al., 2016; 

Towbin et al., 2017). Together, these studies advanced a more thorough description of how cells 

allocate their ribosomes to the synthesis of different proteins depending on their metabolic state and 

the environmental conditions they encounter, called ribosomal allocation. Tied to the experimental 

studies, different theoretical ribosomal allocation models have further been formulated to dissect 

how ribosomal allocation influences growth (Molenaar et al., 2009; Karr et al., 2012; Scott et al., 

2014; Weiße et al., 2015; Maitra and Dill, 2015; Giordano et al., 2016; Mori et al., 2017; Erickson 

et al., 2017; Towbin et al., 2017; Mori et al., 2017; Korem Kohanim et al., 2018; Macklin et al., 

2020; Hu et al., 2020; Dourado and Lercher, 2020; Roy et al., 2021; Mori et al., 2021; Serbanescu 

et al., 2020; Balakrishnan et al., 2021a; Balakrishnan et al., 2021b). For example, high- dimensional 

models have been formulated which simulate hundreds to thousands of biological reactions (Karr 

et al., 2012; Macklin et al., 2020) providing a detailed view of the emergence of distinct internal 

physiological states and the underlying processes which sustain them. Alternatively, other theoretical 

considerations follow coarse- grained approaches of moderate dimensionality which group different 

classes metabolic reactions together and mathematizicing their dynamics (Roy et al., 2021; Hu et al., 

2020). Distinct from these is an array of extremely low- dimensional models, pioneered by Molenaar 

et al., 2009, which have been developed to describe growth phenomena in varied conditions and 

physiological limits that rely on only a few parameters (Molenaar et al., 2009; Scott et al., 2014; 

Bosdriesz et al., 2015; Giordano et al., 2016; Towbin et al., 2017; Korem Kohanim et al., 2018; 

Erickson et al., 2017; Mairet et al., 2021; Balakrishnan et al., 2021a) (a more detailed overview of 

the different modeling approaches is provided in Appendix 1 - Allocation models to study microbial 

growth).

In this work, we build on low- dimensional allocation models (Scott et al., 2014; Giordano et al., 

2016; Bosdriesz et al., 2015; Dourado and Lercher, 2020; Hu et al., 2020) and the results from 

dozens of experimental studies to synthesize a self- consistent and quantitatively predictive description 

of resource allocation and growth. At the core of our model is the dynamic reallocation of resources 

between the translational and metabolic machinery, which is sensitive to the metabolic state of the 

cell. We demonstrate how ‘optimal allocation’—meaning an allocation towards ribosomes which 

contextually maximizes the steady- state growth rate—emerges when the flux of amino acids through 

translation to generate new proteins and the flux of uncharged- tRNA through metabolism to provide 

charged- tRNA required for translation are mutually maximized, given the environmental conditions 

and corresponding physiological constraints. This regulatory scheme, which we term flux- parity regu-

lation, can be mechanistically achieved by a global regulator (e.g., guanosine tetraphosphate, ppGpp, 

in bacteria) capable of simultaneously measuring the turnover of charged- and uncharged- tRNA pools 

and routing protein synthesis. The explanatory power of the flux- parity regulation circuit is confirmed 

by extensive comparison of model predictions with ≈ 60 data sets from Escherichia coli, spanning more 

than half a century of studies using varied methodologies. This comparison demonstrates that a simple 

argument of flux- sensitive regulation is sufficient to predict bacterial growth phenomena in and out of 

steady state and across diverse physiological perturbations. The accuracy of the predictions, coupled 

with the minimalism of the model, establishes the optimal regulation and cements the centrality of 

protein synthesis in defining microbial growth. The mechanistic nature of the theory—predicated on 
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a minimal set of biologically meaningful parameters—provides a low- dimensional framework that can 

be used to explore complex phenomena at the intersection of physiology, ecology, and evolution 

without requiring extensive characterization of the myriad biochemical processes which drive them.

A simple allocation model describes translation-limited growth
We begin by formulating a simplified model of growth which follows the flow of mass from nutrients 

in the environment to biomass by building upon and extending the general logic of low- dimensional 

resource allocation models (Molenaar et al., 2009; Scott et al., 2010; Scott et al., 2014; Dai et al., 

2016; Giordano et al., 2016). Specifically, we focus on the accumulation of protein biomass, as protein 

constitutes the majority of microbial dry mass (Churchward et al., 1982; Feijó Delgado et al., 2013) 

and peptide bond formation commonly accounts for ≈80% of the cellular energy budget (Stouth-

amer, 1973; Belliveau et al., 2021). Furthermore, low- dimensional allocation models utilize a simpli-

fied representation of the proteome where proteins can be categorized into only a few functional 

classes (Molenaar et al., 2009; Scott et al., 2014; Hui et al., 2015; Maitra and Dill, 2015; Dourado 

and Lercher, 2020). In this work, we consider proteins to be either ribosomal (i.e., a structural compo-

nent of the ribosome, excluding ternary complex members like EF- Tu), metabolic (i.e., enzymes cata-

lyzing synthesis of charged- tRNA molecules from environmental nutrients), or being involved in all 

other biological processes (e.g., lipid synthesis, DNA replication, energy generation, and chemotaxis) 

Molenaar et al., 2009; Scott et al., 2010; Scott et al., 2014; Hui et al., 2015; Figure 1—figure 

supplement 1; in Appendix 1 What makes the fraction of ‘other’ proteins?, we outline in more detail 

how individual protein species are partitioned between the ‘metabolic’ and ‘other’ sectors depending 

on their functional annotations. Simple allocation models further do not distinguish between different 

cells but only consider the overall turnover of nutrients and biomass. To this end, we explicitly consider 

a well- mixed batch culture growth as reference scenario where the nutrients are considered to be in 

abundance. This low- dimensional view of living matter may at first seem like an unfair approximation, 

ignoring the decades of work interrogating the multitudinous biochemical and biophysical processes 

of cell- homeostasis and growth (Macklin et al., 2020; Karr et al., 2012; Hui et al., 2015; Grigaitis 

et al., 2021; Noree et al., 2019). However, at least in nutrient replete conditions, many of these 

processes appear not to impose a fundamental limit on the rate of growth in the manner that protein 

synthesis does (Belliveau et al., 2021). In Appendix 1 The major simplifications of low- dimensional 

allocation models and why they might work we discuss this along with other simplifications in more 

detail.

To understand protein synthesis and biomass growth within the low- dimensional allocation 

framework, consider the flux diagram (Figure 1A, Molenaar et al., 2009; Giordano et al., 2016; 

Belliveau et  al., 2021; Balakrishnan et  al., 2021b; Scott et  al., 2014) showing the masses of 

the three protein classes, precursors which are required for protein synthesis (including charged- 

tRNA molecules, free amino acids, cofactors, etc.), nutrients which are required for the synthesis 

of precursors, and the corresponding fluxes through the key biochemical processes (arrows). This 

diagram emphasizes that growth is autocatalytic in that the synthesis of ribosomes is undertaken 

by ribosomes which imposes a strict speed limit on growth (Dill et  al., 2011; Belliveau et  al., 

2021; Kafri et al., 2016). While this may imply that the rate of growth monotonically increases 

with increasing ribosome abundance, it is important to remember that metabolic proteins are 

needed to supply the ribosomes with the precursors needed to form peptide bonds. Herein lies 

the crux of ribosomal allocation models: the abundance of ribosomes is constrained by the need 

to synthesize other proteins and growth is a result of how new protein synthesis is partitioned 

between ribosomal, metabolic, and other proteins. How is this partitioning determined, and how 

does it affect growth?

To answer these questions, we must understand how these different fluxes interact at a quantitative 

level and thus must mathematize the biology underlying the boxes and arrows in Figure 1A. Taking 

inspiration from previous models of allocation (Molenaar et al., 2009; Scott et al., 2010; Scott et al., 

2014; Giordano et al., 2016; Dourado and Lercher, 2020), we enumerate a minimal set of coupled 

differential equations which captures the flow of mass through metabolism and translation (Figure 1B, 

with the dimensions and value ranges of the parameters listed in Figure 1C and Supplementary 

file 1). While we present a step- by- step introduction of this model in ‘Methods,’ we here focus on a 

summary of the underlying biological intuition and implications of the approach.
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Figure 1. A simple model of ribosomal allocation and hypothetical regulatory strategies. (A) The flow of mass through the self- replicating system. 

Biomolecules and biosynthetic processes are shown as gray and white boxes, respectively. Nutrients in the environment passed through cellular 

metabolism to produce ‘precursor’ molecules which are then consumed through the process of translation to produce new protein biomass, either 

as metabolic proteins (purple arrow), ribosomal proteins (gold arrow), or ‘other’ proteins (gray arrow). (B) Annotated equations of the model with key 

Figure 1 continued on next page
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We begin by codifying the assertion that protein synthesis is key in determining growth. The 

synthesis of new total protein mass  M   depends on the total proteinaceous mass of ribosomes  MRb  

present in the system and their corresponding average translation rate  γ  (Figure 1Bi). As ribosomes 

rely on precursors to work, it is reasonable to assert that this translation rate must be dependent on 

the concentration of precursors  cpc  such that  γ ≡ γ(cpc)  (Scott et al., 2014; Giordano et al., 2016), for 

which a simple Michaelis–Menten relation is biochemically well motivated (Figure 1Bii). With changing 

precursor concentrations, the translation rate  γ  varies between a maximum value  γmax , representing 

rapid synthesis, and a minimum value  γmin , representing the slowest achievable translation rate. In our 

model, this minimum rate  γmin  is zero and corresponds to the condition where there are no available 

precursors to support translation. The standing precursor concentration  cpc  is set by a combination 

of processes (Figure 1Biii), namely the production of new precursors through metabolism (synthesis), 

their degradation through translation (consumption), and their dilution as the total cell volume grows. 

The synthesis is driven by the abundance of metabolic proteins  MMb  in the system and the speed by 

which they convert nutrients into novel precursors. As the metabolic networks at play are complex, 

low- dimensional allocation models describe the process of metabolism using an average metabolic 

rate  ν  in lieu of mathematicizing the network’s individual components. As such, the metabolic rate is 

difficult to directly measure but generally depends on the quality and concentration of nutrients in the 

environment (see below, Figure 1—figure supplement 2 and ‘Methods’). In the following, we focus 

on a growth regime in which nutrient concentrations are saturating. In such a scenario, metabolism 

operates at a nutrient- specific maximal metabolic rate  ν ≡ νmax . Finally, the relative magnitude of the 

ribosomal, metabolic, and ‘other’ protein masses is dictated by  φRb ,  φMb , and  φO , three allocation 

parameters which range between zero and one to describe the fraction of ribosomes being utilized in 

synthesizing the corresponding protein pools. Importantly, as ribosomes only translate one protein at 

a time, the allocation parameters follow the constraint  φRb + φMb + φO = 1  (Figure 1Biv). For readers 

familiar with allocation models, we emphasize that we here use  φX  to denote allocation parameters 

rather than mass fractions,  MX/M  ; both quantities are only equivalent in the steady- state regime. 

Together, the introduced equations provide a full mathematicization of the mass flow diagram shown 

in Figure 1A.

For constant allocation parameters ( φ
∗

Rb,φ∗

Mb ), a steady- state regime emerges from this system of 

differential equation. Particularly, the precursor concentration is stationary in time ( cpc = c∗pc ), meaning 

the rate of synthesis is exactly equal to the rate of consumption and dilution. Furthermore, the trans-

lation rate  γ(c∗pc)  is constant during steady- state growth and the mass abundances of ribosomes and 

metabolic proteins are equivalent to the corresponding allocation parameters, e.g.  
MRb
M ≡ φ∗

Rb . As a 

consequence, biomass is increasing exponentially  
dM
dt = λM  , with the growth rate  λ = γ(c∗pc)ϕ∗

Rb . The 

emergence of a steady state and analytical solutions describing steady growth are further discussed in 

Figure 1—figure supplement 2 and Figure 1—figure supplement 3. Notably, dilution is important 

parameters highlighted in blue. An interactive figure where these equations can be numerically integrated is provided on paper website (cremerlab.

github.io/flux_parity). (C) Key model parameters, their units, typical values in E. coli, and their appropriate references. This is also provided as 

Supplementary file 1. The steady- state values of (D) the growth rate  λ  and (E) the relative translation rate  γ(c∗pc)/γmax , are plotted as functions of the 

allocation towards ribosomes for different metabolic rates (colored lines). (F) Analytical solutions for candidate scenarios for regulation of ribosomal 

allocation with fixed allocation, allocation to prioritize translation rate, and allocation to optimal growth rate highlighted in gray, green, and blue 

respectively. (G) A list of collated data sets of E. coli ribosomal allocation and translation speed measurements spanning 55 years of research. Details 

regarding these sources and method of data collation is provided in Supplementary file 2. A comparison of the observations with predicted growth- 

rate dependence of ribosomal allocation (H) and translation speeds (I) for the three allocation strategies. An interactive version of the panels allowing 

the free adjustment of parameters is available on the associated paper website (cremerlab.github.io/flux_parity).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Collated measurements of ribosomal mass fractions in E. coli.

Source data 2. Collated measurements of translation speeds per ribosome in E. coli.

Figure supplement 1. Coarse- grained description of biomass and the proteome.

Figure supplement 2. Precursor synthesis and growth when nutrients are not saturating.

Figure supplement 3. Modeling predictions of steady growth behavior.

Figure supplement 4. Three different allocation scenarios.

Figure 1 continued
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to obtain a steady state as has been highlighted previously by Giordano et al., 2016 and Dourado 

and Lercher, 2020 but is often neglected (Appendix Precursors concentrations and the importance 

of dilution by cell growth).

Figure 1D and E show how the steady- state growth rate  λ  and translation rate  γ(c∗pc)  are depen-

dent on the allocation towards ribosomes  φ
∗

Rb . The figures also show the dependence on the meta-

bolic rate  νmax  which we here assert to be a proxy for the ‘quality’ of the nutrients in the environment 

(with increasing  νmax , less metabolic proteins are required to obtain the same synthesis of precursors). 

The non- monotonic dependence of the steady- state growth rate on the ribosome allocation and 

the metabolic rate poses a critical question: What biological mechanisms determine the allocation 

towards ribosomes in a particular environment and what criteria must be met for the allocation to 

ensure efficient growth?

Different strategies for regulation of allocation predicts different 
phenomenological behavior
While cells might employ many different ways to regulate allocation, we here consider three specific 

allocation scenarios to illustrate the importance of allocation on growth. These candidate scenarios 

either strictly maintain the total ribosomal content (scenario I), maintain a high rate of translation 

(scenario II), or optimize the steady- state growth rate (scenario III). We derive analytical solutions for 

these scenarios (as has been previously performed for scenario III; Giordano et al., 2016; Dourado 

and Lercher, 2020; Figure 1F and ‘Methods’), and ultimately compare these predictions to observa-

tions with E. coli to show this organisms’ optimal allocation of resources.

The simplest and perhaps most näive regulatory scenario is one in which the allocation towards ribo-

somes is completely fixed and independent of the environmental conditions. This strategy (scenario I 

in Figure 1F, gray) represents a locked- in physiological state where a specific constant fraction of all 

proteins is ribosomal. This imposes a strict speed limit for growth when all ribosomes are translating 

close to their maximal rate,  γ(c∗pc) ≈ γmax . If the fixed allocation is low (e.g.,  φ
(I)
Rb = 0.2 ), then this speed 

limit could be reached at moderate metabolic rates.

A more complex regulatory scenario is one in which the allocation towards ribosomes is adjusted to 

prioritize the translation rate. This strategy (scenario II in Figure 1F, green) requires that the ribosomal 

allocation is adjusted such that a constant internal concentration of precursors  c
∗

pc  is maintained across 

environmental conditions, irrespective of the metabolic rate. In the case where this standing precursor 

concentration is large ( c
∗

pc ≫ Kcpc
M  ), all ribosomes will be translating close to their maximal rate.

The third and final regulatory scenario is one in which the allocation towards ribosomes is adjusted 

such that the steady- state growth rate is maximized. The analytical solution which describes this 

scenario (scenario III in Figure 1F) resembles previous analytical solutions by Giordano et al., 2016; 

Dourado and Lercher, 2020. More illustratively, the strategy can be thought of as one in which the 

allocation towards ribosomes is tuned across conditions such that the observed growth rate rests at 

the peak of the curves in Figure 1D. Notably, this does not imply that the translation rate is constantly 

high across conditions (as in scenario II). Rather, the translation rate is also adjusted and approaches 

its maximal value  γmax  only in very rich conditions (high metabolic rates). All allocation scenarios and 

their consequence on growth are discussed in further detail in Figure 1—figure supplement 4 and 

the corresponding interactive figure on the paper website (cremerlab.github.io/flux_parity).

E. coli regulates its ribosome content to optimize growth
Thus far, our modeling of microbial growth has remained ‘organism agnostic’ without pinning param-

eters to the specifics of any one microbe’s physiology. To probe the predictive power of this simple 

allocation model and test the plausibility of the three different strategies for regulation of ribosomal 

allocation, we performed a systematic and comprehensive survey of data from a vast array quantita-

tive studies of the well- characterized bacterium E. coli. This analysis, consisting of 26 studies spanning 

55 years of research (listed in Supplementary file 2 and as Figure 1—source data 1 and Figure 1—

source data 2) using varied experimental methods, goes well beyond previous attempts to compare 

allocation models to data (Scott et al., 2010; Hui et al., 2015; Erickson et al., 2017; Giordano et al., 

2016; Bosdriesz et al., 2015; Hu et al., 2020; Dourado and Lercher, 2020; Serbanescu et al., 2020; 

Hu et al., 2020; Roy et al., 2021; Maitra and Dill, 2015; Weiße et al., 2015).
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These data, shown in Figure 1H and I (markers), present a highly consistent view of E. coli physi-

ology where the allocation towards ribosomes (equivalent to ribosomal mass fraction in steady- state 

balanced growth) and the translation rate demonstrate a strong dependence on the steady- state 

growth rate in different carbon sources. The pronounced correlation between the allocation towards 

ribosomes and the steady- state growth rate immediately rules out scenario I, where allocation is 

constant, as a plausible regulatory strategy used by E. coli, regardless of its precise value. Similarly, 

the presence of a dependence of the translation speed on the growth rate rules out scenario II, where 

the translation rate is prioritized across growth rates and maintained at a constant value. The observed 

phenomenology for both the ribosomal allocation and the translation speed is only consistent with the 

logic of regulatory scenario III where the allocation towards ribosomes is tuned to optimize growth 

rate.

This logic is quantitatively confirmed when we compute the predicted dependencies of these quan-

tities on the steady- state growth rate for the three scenarios diagrammed in Figure 1F based on liter-

ature values for key parameters (outlined in Supplementary file 1). Deviations from the prediction for 

scenario III are only evident for the ribosomal content at very slow steady growth ( λ ≤ 0.5  hr-1), which 

are hardly observed in any ecologically relevant conditions and can be attributed to additional biolog-

ical and experimental factors, including protein degradation (Calabrese et al., 2021) and cultures 

which have not yet reached steady state, factors we discuss in Appendix 1 – Additional considerations 

relevant at slow growth. The inactivation of ribosomes is another such explanation, though a growth 

rate- independent inactive fraction is not sufficient to explain the observations, Appendix 1 —Inactive 

ribosomes.

Importantly, the agreement between theory and observations works with a minimal number of 

parameters and does not require the inclusion of fitting parameters. All fixed model parameters 

such as the maximum translation rate  γmax  and the Michaelis–Menten constant for translation  K
cpc
M   

have distinct biological meaning and can be either directly measured or inferred from data (Supple-

mentary file 1). Furthermore, we discuss the necessity of other parameters such as the ‘other 

protein sector’  φO  (Appendix 1— What makes the fraction of 'other' proteins?), its degeneracy with 

the maximum metabolic rate  νmax , and inclusion of ribosome inactivation and minimal ribosome 

content (Appendix 1— Inactive ribosomes). We, furthermore, provide an interactive figure on the 

paper website (cremerlab.github.io/flux_parity) where the parametric sensitivity of these regulatory 

scenarios and the agreement/disagreement with data can be directly explored. Notably there is no 

combination of parameter values that would allow scenario I or II to adequately describe both the 

ribosomal allocation and the translation speed as a function of growth rate. These findings are in 

line with a recent higher- dimensional modeling study (Hu et al., 2020), which, based on the optimi-

zation of a reaction network with >200 components, rationalized the variation in translation speed 

with growth as a manifestation of efficient protein synthesis. Together, these results confirm that 

scenario III can accurately describe observations over a very broad range of conditions, in strong 

support of the popular but often questioned presumption that E. coli optimally tunes its ribosomal 

content to promote fast growth (Giordano et al., 2016; Bosdriesz et  al., 2015; Towbin et  al., 

2017).

In Appendix 1 – Application of the model to Saccharomyces cerevisiae, we present a similar 

analysis for yeast, which, in line with previous studies (Metzl- Raz et al., 2017; Xia et al., 2021; 

Paulo et al., 2015; Paulo et al., 2016; Kostinski and Reuveni, 2021), suggests that this eukaryote 

likely follows a similar optimal allocation strategy, although data for ribosomal content and the 

translation rate is scarce. The strong correlation between ribosome content and growth rate has 

further been reported for other microbial organisms in line with an optimal allocation (Karpinets 

et  al., 2006; Jahn et  al., 2018; Zavřel et  al., 2019; Jahn et  al., 2021), though the absence 

of translation rate measurements precludes confirmation. An interesting exception is the meth-

anogenic archaeon Methanococcus maripaludis, which appears to maintain constant allocation, 

in agreement with scenario I (Müller et al., 2021). The presented analysis thus suggests that E. 

coli and possibly many other microbes closely follow an optimal ribosome allocation behavior to 

support efficient growth. Moreover, the good agreement between experiments and data estab-

lishes that a simple low- dimensional allocation model can describe growth with notable quantita-

tive accuracy. However, this begs the question: how do cells coordinate their complex machinery 

to ensure optimal allocation?



 Research article Microbiology and Infectious Disease | Physics of Living Systems

Chure and Cremer. eLife 2023;12:e84878. DOI: https://doi.org/10.7554/eLife.84878  8 of 52

Optimal allocation results from a mutual maximization of translational 
and metabolic flux
To optimize the steady- state growth rate, cells must have some means of coordinating the flow of 

mass through metabolism and protein synthesis. In the ribosomal allocation model, this reduces to 

a regulatory mechanism in which the allocation parameters ( φRb  and  φMb ) are dynamically adjusted 

such that the metabolic flux to provide new precursors ( ν(cnt)φMb ) and translational flux to make new 

proteins ( γ(c∗pc)φRb , equivalent to the steady- state growth rate  λ ) are not only equal, but are mutually 

maximized. Such regulation therefore requires a mechanism by which both the metabolic and transla-

tional flux can be simultaneously sensed.

Thus far, we have referred to the end product of metabolism as ambiguous ‘precursors’ which 

are used by ribosomes to create new proteins. In reality, these precursors are tRNAs charged with 

their cognate amino acids. One can think of metabolism as a two- step process where (i) an amino 

Figure 2. The regulation of ribosome allocation via a flux- sensing mechanism. (A) A circuit diagram of interactions between metabolic and translational 

fluxes with flux- parity regulatory connections highlighted in red. The fluxes are connected via a positive feedback loop through the generation of mutual 

starting materials (uncharged- or charged- tRNAs, respectively). The rates of each flux exhibit semi- autoregulatory behavior in that flux through each 

process reduces the standing pool of tRNAs. (B) The governing dynamics of the flux- parity regulatory circuit with key parameters highlighted in blue 

and flux- parity regulatory components highlighted in red. (C) Parameters, dimensions, values, and references for each component of the flux- parity 

regulatory circuit. (D) The steady- state meabolic (purple) and translational (gold) fluxes plotted as a function of the ribosomal allocation under the 

simple allocation model. Vertical red line indicates the steady- state solution of the flux- parity model under physiological parameter regimes. (E) The 

difference in allocation towards ribosomes in steady state between the flux- parity model and optimal allocation ( φ
∗(flux−parity)
Rb − φ

(III)
Rb  ) plotted as a 

function of the maximal metabolic rate,  νmax .

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Flux- parity directs allocation parameters towards an optimum.
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acid is synthesized from environmental nutrients and (ii) an amino acid is attached to the appropriate 

uncharged- tRNA. As we assume that nutrients are in excess in the environment, we make the approx-

imation that nutrients in the environment are saturating such that  cnt ≫ Kcnt
M   and the metabolic rate 

 ν  now depends solely on the concentration of uncharged- tRNAs  ν(tRNAu) . This enforces some level 

of regulation of metabolism; if the uncharged tRNA concentration is too low, the rate of metabolism 

slows and does not add to the already large pool of charged tRNA. But when charged- tRNA is avail-

able, translation occurs at a rate  γ(tRNAc) , forming new protein biomass and converting a charged- 

tRNA back to an uncharged state. This process is shown by gray arrows in Figure 2A.

To describe the state- dependent adjustment of the allocation parameters ( φRb  and  φMb ), we further 

include in this feedback loop a regulatory system we term a ‘flux- parity regulator’ (Figure 2A, red), 

which controls the allocation parameters in response to relative changes in the concentrations of 

the two tRNA species. Together, the arrows in Figure  2 represent a more fine- grained view of a 

proteinaceous self replicating system, yet maintains much of the structural minimalism of the simple 

ribosomal allocation model without requiring explicit consideration of different types of amino acids 

(Bosdriesz et al., 2015), inclusion of their myriad synthesis pathways (Hu et al., 2020), or reliance on 

observed phenomenology (Wu et al., 2022).

The boxes and arrows of Figure 2A can be mathematized to arrive at a handful of ordinary differen-

tial equations (Figure 2B) structurally similar to those in Figure 1B. At the center of this model is the 

ansatz that the ribosomal allocation  φRb  is dependent on the ratio of charged- and uncharged- tRNA 

pools and has the form

 
φRb

(

tRNAc

tRNAu

)

= (1 − φO)
tRNAc
tRNAu

tRNAc
tRNAu +τ ,

  
(1)

where the ratio  
tRNAc

tRNAu   represents the ‘charging balance’ of the tRNA and  τ   is a dimensionless sensi-

tivity parameter which defines the charging balance at which the allocation towards ribosomes is 

half- maximal. Additionally, we make the assertion that the synthesis rate of new uncharged- tRNA via 

transcription  κ  is coregulated with ribosomal proteins (Skjold et al., 1973; Dong et al., 1996) and 

has a similar form of

 
κ

(

tRNAc

tRNAu

)

= κmax
tRNAc
tRNAu

tRNAc
tRNAu +τ ,

  
(2)

where  κmax  represents the maximal rate of tRNA transcription relative to the total biomass.

Numerical integration of this system of equations reveals that the flux- parity regulation is capable 

of optimizing the allocation towards ribosomes,  φRb , such that the metabolic and translation fluxes are 

mutually maximized (Figure 2D), thus achieving optimal allocation. Importantly, the optimal behavior 

inherent to this regulatory mechanism can be attained across a wide range of parameter values for 

the charging sensitivity  τ   and the transcription rate  κmax , the two key parameters of flux- parity regu-

lation (Figure 2C). Moreover, the emergent optimal behavior of this regulatory scheme occurs across 

conditions without the need for any fine- tuning between the flux- parity parameters and other param-

eters. For example, the control of allocation via flux- parity regulation matches the optimal allocation 

(scenario III above) when varying the metabolic rate  νmax  (Figure 2E and Appendix 1 – Parameter 

dependence of the flux- parity model).

The theoretical analysis presented in Figure 2 suggests that a flux- parity regulatory mechanism 

may be a simple way to ensure optimal ribosomal allocation that is robust to variation in the key 

model parameters. To test if such a scheme may be implemented in E. coli, we compared the behavior 

of the steady- state flux- parity regulatory circuit within physiological parameter regimes to steady- 

state measurements of ribosomal allocation and the translation rate as a function of the growth rate 

(Figure 3A and B). Remarkably, the predicted steady- state behavior of the flux- parity regulatory circuit 

describes the observed data with the same quantitative accuracy as the optimal behavior defined by 

scenario III, as indicated by the overlapping red and blue lines, respectively.

While the flux- parity regulation scheme appears to accurately describe the behavior of E. coli, how 

are metabolic and translational fluxes sensed at a mechanistic level? Many bacteria, including E. coli, 

utilize the small molecule guanosine tetraphosphate (ppGpp) as a molecular indicator of amino acid 

limitation and has been experimentally shown to regulate ribosomal, metabolic, and tRNA genes 

through many routes, including directly binding RNA polymerase (Magnusson et al., 2005; Anderson 
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Figure 3. The predictive power of flux- parity regulation in steady state. Measurements of the (A) ribosomal allocation and the (B) translation rate are 

plotted alongside the steady- state behavior of the flux- parity regulatory circuit (red dashed line) and the optimal behavior of scenario III (solid blue 

line). Points and markers are the same as those shown in Figure 1G. (C) Measurements of intracellular ppGpp concentrations relative to a reference 

condition ( λ0 ≈ 1  hr-1) are plotted as a function of growth rate alongside the prediction emergent from the flux- parity regulatory circuit (red dashed 

line). (D–F) Inhibition of ribosome activity via antibiotic modeled repression of translational flux. Plots show comparison with data for different media 

(red shades) with the flux- parity model predictions (dashed lines). (G–I) Inhibition of metabolic and translational fluxes through excess gene expression. 

(H) shows data where β-galactosidase is expressed at different levels. Different shades of red correspond to different growth media. Right- hand panel 

shows collapse of the growth rates of overexpression of β-galactosidase (squares), β-lactamase (inverted triangles), and EF- Tu (diamonds) relative to the 

wild- type growth rate in different media conditions. The same set of model parameters listed in Supplementary file 2 has been used to generate the 

predictions.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Collated measurements of relative ppGpp concentrations.

Source data 2. Collated measurements of excess protein mass fractions.

Figure supplement 1. Comparison of predictive capacity of flux- parity allocation between ppGpp scaling ansatzes.
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et al., 2021; Potrykus and Cashel, 2008; Potrykus et al., 2011; Imholz et al., 2020) and plays an 

important role in other cellular processes, including cell size control (Büke et al., 2022). Mechanis-

tically, ppGpp levels are enzymatically controlled depending on the metabolic state of the cell, with 

synthesis being triggered upon binding of an uncharged- tRNA into an actively translating ribosome. 

While many molecular details of this regulation remain unclear (Magnusson et al., 2005; Anderson 

et al., 2021; Potrykus and Cashel, 2008; Wu et al., 2022), the behavior of ppGpp meets all of the 

criteria of a flux- parity regulator. Rather than explicitly mathematicizing the biochemical dynamics of 

ppGpp synthesis and degradation, as has been undertaken previously (Bosdriesz et al., 2015; Gior-

dano et al., 2016; Wu et al., 2022), we model the concentration of ppGpp being inversely propor-

tional to the charging balance,

 [ppGpp] ∝ tRNAu

tRNAc ,  (3)

encompassing the fact that processes beyond allocation use ppGpp as an effector molecule. This 

ratio, mathematically equivalent to the odds of a ribosome binding an uncharged- tRNA relative to 

binding a charged- tRNA, is one example of a biochemically motivated ansatz that can be considered 

(‘Methods’) and provides a relative measure of the metabolic and translational fluxes.

With this approach, the amount of ppGpp present at low growth rates, and therefore low ribo-

somal allocation, should be significantly larger than at fast growth rates where ribosomal allocation 

is larger and charged- tRNA are in abundant supply. While our model cannot make predictions of the 

absolute ppGpp concentration, we can compute the relative ppGpp concentration to a reference 

state [ppGpp]0 as

 
[ppGpp]
[ppGpp]0

=
(

tRNAu/tRNAc)

(

tRNAu
0/tRNAc

0
) .

  
(4)

To test this, we compiled and rescaled ppGpp measurements of E. coli across a range of growth rates 

from various literature sources (Figure 3C and Figure 3—source data 1). The quantitative agreement 

between the scaling predicted by Equation 4 and the experimental measurements strongly suggests 

that ppGpp assumes the role of a flux sensor and enforces optimal allocation through the discussed 

flux- parity mechanism.

The flux-parity allocation model predicts E. coli growth behavior in and 
out of steady state
We find that the flux- parity allocation model is extremely versatile and allows us to quantitatively 

describe aspects of microbial growth in and out of steady state and under various physiological 

stresses and external perturbations with the same core set of parameters. Here, we demonstrate 

this versatility by comparing predictions to data for four particular examples using the same self- 

consistent set of parameters we have used thus far (Supplementary file 1). First, we examine the 

influence of translation- targeting antibiotics like chloramphenicol (Figure 3D) on steady- state growth 

in different growth media (Scott et al., 2010; Dai et al., 2016). By incorporating a mathematical 

description of ribosome inactivation via binding to chloramphenicol (described in ‘Methods’), we find 

that the flux- parity allocation model quantitatively predicts the change in steady- state growth and 

ribosomal content with increasing chloramphenicol concentration (Figure 3E, red shades). Further-

more, the effect on the translation speed is qualitatively captured (Figure 3F, red shades). The ability 

of the flux- parity allocation model to describe these effects without readjustment of the model and its 

core parameters is notable and provides a mechanistic rationale for previously established phenome-

nological relations (Scott et al., 2010; Dai et al., 2016).

As a second perturbation, we consider the burden of excess protein synthesis by examining the 

expression of synthetic genes (Figure 3G). A decrease in growth rate results when cells are forced 

to synthesize different amounts of the lactose cleaving enzyme  β - galactosidase in different media 

lacking lactose (Figure 3H, red shades). The flux- parity allocation model (dashed lines) quantitatively 

predicts the change in growth rate with the measured fraction of  β - galactosidase without further 

fitting (‘Methods’). The trends for different media (red shades) quantitatively collapse onto a single 

line (Figure 3I and Figure 3—source data 2) when comparing changes in relative growth rates, a rela-

tion which is also captured by the model (dashed black line) and is independent of the overexpressed 

protein (symbols). This collapse, whose functional form is derived in ‘Methods,’ demonstrates that 
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the flux- parity allocation model is able to describe excess protein synthesis in general, rather than at 

molecule- or media- specific level.

As the flux- parity regulatory circuit responds to changes in the metabolic and translational fluxes, it 

can be used to explore behavior in changing conditions. Consider a configuration where the starting 

conditions of a culture are tuned such that the ribosomal allocation  φRb , the tRNA charging balance 

 tRNAc/tRNAu , and the ribosome content  MRb/M   are set to be above or below the appropriate level 

for steady- state growth in the environment (Figure 4A). As the culture grows, the observed ribosomal 

content  MRb/M   is steadily adjusted until the steady- state level is met where it directly matches the 

optimal allocation (Figure 4B). This adaptation of the ribosomal content is controlled by dynamic 

adjustment of the allocation parameters via the flux- parity regulatory circuit (Figure 4C). To further 

test the flux- parity allocation model, we examine how accurately this system can predict growth 

behavior under nutritional shifts (Figure 4D–F) and the entry to starvation (Figure 4G–I).

We first consider a nutrient shift where externally supplied low- quality nutrients are instantaneously 

exchanged with rich nutrients. Figure 4E shows three examples of such nutritional upshifts (markers), 

all of which are well described by the flux- parity allocation theory (dashed lines). The precise values 

of the growth rates before, during, and after the shift will depend on the specific carbon sources 

involved. However, by relating the growth rates before and immediately after the shift to the total shift 

magnitude (as shown in Korem Kohanim et al., 2018), one can collapse a large collection of data onto 

a single curve (Figure 4F, markers). The collapse emerges naturally from the model (dashed line) when 

decomposing the metabolic sector into needed and non- needed components (‘Methods’), demon-

strating that the flux- parity allocation model is able to quantitatively describe nutritional upshifts at a 

fundamental level.

Finally, we consider the growth dynamics during the onset of starvation, another non- steady- state 

phenomenon (Figure 4G–I). Figure 4H shows the growth of batch cultures where glucose is provided 

as the sole carbon source in different limiting concentrations (Bren et al., 2013) (markers). The cessa-

tion of growth coincides with a rapid, ppGpp- mediated increase in expression of metabolic proteins 

(Magnusson et  al., 2005; Dennis et  al., 2004). Bren et  al., 2013 demonstrated that expression 

from a glucose- specific metabolic promoter (PtsG) rapidly, yet temporarily, increases with the peak 

occurring at the moment where growth abruptly stops (Figure 4I, solid gray lines). The flux- parity allo-

cation model again predicts this behavior (Figure 4I, red lines) without additional fitting (‘Methods’), 

cementing the ability of the model to describe growth far from steady state.

Discussion
Microbial growth results from the orchestration of an astoundingly diverse set of biochemical reac-

tions mediated by thousands of protein species. Despite this enormous complexity, experimental 

and theoretical studies alike have shown that many growth phenotypes can be captured by relatively 

simple correlations and models which incorporate only a handful of parameters (Schaechter et al., 

1958; Molenaar et al., 2009; Scott et al., 2010; Scott et al., 2014; Erickson et al., 2017; Korem 

Kohanim et al., 2018; Bosdriesz et al., 2015; Giordano et al., 2016; Dai et al., 2016). Through 

re- examination of these works, we relax commonly invoked approximations and assumptions, include 

a generalized description of global regulation, and integrate an extensive comparison with data to 

establish a self- consistent, low- dimensional model of protein synthesis that is capable of quantitatively 

describing complex growth behaviors in and out of steady state.

Growth emerges as in previous allocation models (Molenaar et  al., 2009; Scott et  al., 2010; 

Giordano et al., 2016) as a consequence of protein synthesis and the allocation of ribosome activity 

towards (i) making new ribosomes, (ii) making the metabolic proteins which sustain the precursors 

ribosomes require to translate, and (iii) making other proteins cells require to operate. An optimal 

allocation which yields the fastest growth in a given condition is reached when the synthesis of precur-

sors (metabolic flux) and the consumption of precursors (translational flux) are mutually maximized, 

a process we term flux- parity regulation. We analyze how such regulation can be mechanistically 

achieved by the relative sensing of charged- and uncharged- tRNA via the abundance of a global regu-

lator (such as ppGpp) which diametrically affects the expression of ribosomal and metabolic genes. 

Through extensive comparison with 61 data sets from 46 studies, we show that the flux- parity model 

predicts the fundamental growth behavior of E. coli with quantitative accuracy. Beyond describing 

the growth- rate dependent ribosomal content and translation speed for steady growth across various 
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carbon sources, the flux- parity model quantitatively captures phenomena out of steady state (including 

nutrient upshifts and response to starvation) and under externally applied physiological perturbations 

(such as antibiotic stress or expression of synthetic genes). Notably, the broad agreement across data 

sets is obtained using a single core parameter set which does not require any adjustment from one 
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Figure 4. The predictive power of flux- parity regulation out of steady state. (A) Hypothetical initial configurations of model parameters and variables 

before begining numerical integration. (B) The equilibration of the ribosomal protein content ( MRb/M  ). (C) Dynamic adjustment of the ribosomal 

allocation parameter in response to the new environment. Green and purple colored lines correspond to the initial conditions of the culture from well 

above to well below the steady- state values, respectively. Dashed red line indicates the steady- state solution. (D, E) Nutrient upshifts with increased 

metabolic flux. (E) The instantaneous growth rate  λi  for shifts from succinate to gluconate (bright red), xylose (dark red), or arabinose (black) (Erickson 

et al., 2017). (F) Collapse of instantaneous growth rate measurements immediately after the shift (relative to the preshift- growth rate) as a function 

of the total shift magnitude. (G–I) Exhaustion of nutrients in the environment yields a decrease in the metabolic flux, promoting expression of more 

metabolic proteins. (H) Growth curve measurements in media with different starting concentrations of glucose (0.22 mM, 0.44 mM, and 1.1 mM glucose 

from light to dark, respectively) overlaid with flux- parity predictions. (I) The change in total metabolic protein synthesis in the flux- parity model (dashed 

lines) overlaid with the change in expression of a fluorescent reporter from a PtsG promoter (solid lines).

The online version of this article includes the following source data for figure 4:

Source data 1. Collated measurements of relative nutrient upshift magnitudes.
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scenario to the next. As such, the flux- parity model predicts the microbial ‘growth laws,’ providing 

a mechanistic explanation for previous phenomenological models formulated to understand them 

(Scott et al., 2010; Scott et al., 2014; Molenaar et al., 2009). The finding that these predictions 

hold so well despite the overwhelmingly complex nature of the cell further highlights that biological 

systems are not irreducibly complex but can be distilled to a small number of fundamental compo-

nents sufficient to capture the core behavior of the system.

As proteins commonly account for the majority of biomass in microbial organisms and the core 

processes of protein synthesis are universally conserved among them, it is likely that protein synthesis 

is a fundamental growth constraint across many organisms. Accordingly, flux- parity regulation may be 

a very general scheme which ensures the efficient coordination of metabolic and translational fluxes 

across many microbial organisms. And as our modeling approach is organism agnostic, it should be 

transferable to a variety of microbes growing in nutrient- replete conditions. Indeed, other organisms 

including S. cerevisiae exhibit a strict interdependence between growth rate and ribosome content 

(Karpinets et al., 2006; Metzl- Raz et al., 2017), as is predicted by the flux- parity model. However, 

more quantitative data on ribosomal content, translation speeds, upshift dynamics, and more need to 

be acquired to fully examine the commonality of flux- parity regulation in the microbial world.

A common interpretation of previous allocation models is that cells maximize their growth rate in 

whatever conditions they encounter (Bosdriesz et al., 2015; Towbin et al., 2017). Rather, we believe 

flux- parity regulation only ensures optimal coordination between metabolic and translational fluxes. It 

does not imply that the growth rate itself is maximized or directly sensed. In particular, the flux- parity 

model does not assume that the pool of metabolic proteins is tailored to maximize the metabolic 

flux and thus growth in the encountered conditions. This is in agreement with an expanding body 

of evidence which shows that microbes frequently synthesize metabolic and other proteins which 

are not directly needed in the encountered condition and thus impede growth. E. coli, for example, 

synthesizes a plethora of different transport proteins when exposed to poor growth conditions even 

if the corresponding substrates are not available, collectively occupying a significant portion of the 

proteome (Belliveau et al., 2021; Schmidt et al., 2016; Hui et al., 2015; Balakrishnan et al., 2021a). 

Accordingly, it has been observed that cells stop synthesizing these proteins when evolving over many 

generations in the absence of those sugars (Leiby and Marx, 2014; Favate et al., 2021).

But why, then, do we observe an optimal allocation between metabolic and ribosomal proteins 

when the pool of metabolic proteins itself shows this apparent non- optimal behavior? We posit here 

that both behaviors emerge from the adaptation to fluctuating conditions: in contrast to the well- 

defined static conditions of laboratory experiments, the continuous ebb and flow of nutrients in 

natural environments precludes any sense of stability. Accordingly, the machinery of the cell should be 

predominantly adapted to best cope with the fluctuating conditions microbial organisms encounter 

in their natural habitats (Koch, 1971). A complex regulation of metabolic proteins is thus expected, 

including, for example, the diverse expression of nutrient transporters which promote growth in antic-

ipated conditions, rather than synthesizing only those specific to nutrients that are present in the 

moment (Balakrishnan et al., 2021a).

However, in those fluctuating conditions, flux- parity regulation promotes rapid growth. To illustrate 

this point, we consider again a nutrient upshift in which there is an instantaneous improvement in the 

nutrient conditions. We compare the predicted response via flux- parity (Figure 5A, red box) with that 

predicted by a simpler step- wise regulation where the allocation solely depends on the environmental 

condition (and not the internal fluxes) and immediately adjusts to the new steady value at the moment 

of the shift (Figure 5A, blue box). The dynamic reallocation by flux- parity facilitates a sharp increase 

in the allocation towards ribosomes (Figure 5B), resulting in a rapid increase in instantaneous growth 

rate compared to the step- wise reallocation mechanism (Figure 5C), suggesting that flux- parity is 

advantageous in fluctuating environments. As its regulation solely depends on the internal state of 

the cell (particularly, the relative abundance of charged- to uncharged- tRNA), it holds independently 

of the encountered conditions. This stands in contrast to the regulation of metabolic proteins, where 

both the external and internal states dictate what genes are expressed. As a result, optimal coordina-

tion between metabolic and translational fluxes occurs ubiquitously across conditions and not only in 

those that occur in natural habitats and drive adaptation. These broader conditions include steady- 

state growth within the laboratory, with the ‘growth laws’ observed under those conditions emerging 

as a serendipitous consequence.
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In summary, we view the process of cellular decision making as having two major components 

(Figure 5D): (i) determining what metabolic genes should be expressed given the environmental and 

physiological state and (ii) determining how ribosomes should be allocated given the metabolic and 

translational fluxes. Flux- parity regulation can explain the latter but many details of the former remain 

enigmatic. Additional studies are thus required to understand how the regulation of metabolic genes 

depends on encountered conditions and how it is shaped by adaptation to specific habitats. However, 

the ability of this theory to predict complex phenotypes across scales suggests that it can also act as a 

basis to answer these questions, and thereby galvanize an integrative understanding of microbial life 

connecting physiology, ecology, and evolution.

Methods
Formulating the allocation model
Here we present a step- by- step derivation of the low- dimensional allocation model we use to describe 

bacterial growth. We provide additional biological motivation for its construction and highlight the 

different assumptions and simplifications invoked. To maintain consistency with the literature, we 

stepwise reallocation
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Figure 5. Flux- parity allocation as a strategy to adapt to fluctuating conditions. (A) Ribosome reallocation strategies upon a nutrient upshift. After a 

nutrient upshift, cells either dynamically reallocate their ribosomes given flux- parity regulation (top, red) or they undergo stepwise reallocation from one 

steady- state value to the next (bottom, blue). (B) The allocation dynamics for both strategies in response to a nutrient upshift. (C) The instantaneous 

growth rate for both strategies over the course of the shift. Dashed red and solid blue lines correspond to model predictions for optimal allocation and 

flux- parity regulation, respectively. (D) Cellular decision making in fluctuating environments. Upon sensing features of the environment, cells undergo a 

two- component decision making protocol defining what metabolic genes should be expressed (top) and how the allocation towards ribosomes should 

be adjusted to maintain flux- parity. The combination of these processes yield an increase of biomass at a given characteristic growth rate.
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largely follow the notational scheme introduced by Scott et al., 2014 and define each symbol as it is 

introduced.

Synthesis of proteins
The rate of protein synthesis is determined by two quantities: the total number of ribo-

somes  NRb  and the speed  vtl  at which they are translating. The latter depends on the concen-

tration of precursors needed for peptide bond formation, such as tRNAs, free amino acids, 

and energy sources like ATP and GTP. Taking the speed  vtl  as a function of the concen-

tration of the collective precursor pool  cpc , the increase in protein biomass  M   follows as 

 
dM
dt = vtl(cpc)NRb.  (5)

There exists a maximal speed at which ribosomes can operate,  v
max
tl  , that is reached under 

optimal conditions when precursors are highly abundant, in E. coli approximately 20 amino 

acids (AA)/second (s) (Forchhammer and Lindahl, 1971). Conversely, the translation speed 

falls when precursor concentrations  cpc  get sufficiently small. Simple biochemical consider-

ations support a Michaelis–Menten relation (Ehrenberg and Kurland, 1984; Klumpp et  al., 

2013; Belliveau et  al., 2021) as good approximation of this behavior with the specific form 

 
vtl(cpc) = vmax

tl

(

cpc

cpc+Kcpc
M

)

,
  

(6)

where  K
cpc
M   is a Michaelis–Menten constant with the maximum speed  v

max
tl   only observed for  cpc ≫ Kcpc

M  . The 

number of ribosomes  NRb  can be approximated given knowledge of the total mass of ribosomal proteins 

 MRb  and the proteinaceous mass of a single ribosome  mRb  via  NRb ≈ MRb/mRb  (more details in Appendix 1 

Estimating the number of ribosomes within the cell). The increase in protein biomass (Equation 5) is thus 

 
dM
dt = vtl(cpc) MRb

mRb
≡ γ(cpc)MRb.  (7)

The translation rate γ(cpc) ≡ vtl(cpc)/mRb  describes the rate at which ribosomes generate new protein.

The maximal translation rate  γmax ≡ vmax
tl /mRb  imposes a firm upper limit (Dill et al., 2011; Belliveau 

et al., 2021; Kafri et al., 2016) of how rapidly biomass can accumulate, unrealistically assuming the 

system would consist of only ribosomes translating at maximum rate. Notably, however, this upper 

limit is not much faster than the fastest growth observed, highlighting the importance of protein 

synthesis in defining the timescale of growth. For example, the maximal translation rate for E. coli is 

≈ 10 hr-1 and thus only ≈4 times higher than the growth rates in rich LB media ( λ ≈ 2.5  hr-1). Including 

the synthesis of rRNA, another major component of the cellular dry mass, lowers this theoretical limit 

only marginally (Kostinski and Reuveni, 2020), further supporting our sole consideration of protein 

synthesis in defining growth. The difference between measured growth rates and the theoretical 

limits can be mostly attributed to the synthesis of metabolic proteins which generate the precursors 

required for protein synthesis, which we consider next.

Synthesis of precursors
Microbial cells are generally capable of synthesizing precursors from nutrients available in the envi-

ronment, such as sugars or organic acids. This synthesis is undertaken by a diverse array of metabolic 

proteins ranging from those which transport nutrients across the cell membrane, to the enzymes 

involved in energy generation (such as those of fermentation or respiration), and the enzymes 

providing the building blocks for protein synthesis (such as those involved in the synthesis of amino 

acids). While these enzymes vary in their abundance and kinetics, we group them all into single set 

of metabolic proteins with a mass  MMb  which cooperate to synthesize the collective pool of precur-

sors from nutrients required for protein synthesis. We make the approximation that these metabolic 

proteins generate precursors at an effective metabolic rate  ν . In general, this rate depends on the 

concentration of nutrients  cnt  in the environment. This relation is canonically described by a Monod 

(Michaelis–Menten) relation
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ν(cnt) = ν

max
(

cnt
cnt+Kcnt

M

)

,
  

(8)

where  νmax  is the maximum metabolic rate describing how fast the metabolic proteins can synthe-

size precursors, and  K
cnt
M   is the Monod constant describing the concentration below which 

nutrient utilization slows (Monod, 1949). Novel precursors are thus supplied with a total rate 

of  ν(cnt)MMb  and consumed via protein synthesis at a rate  γ(cpc)MRb . Translation relies on precur-

sors and, as introduced above, the translation rate  γ(cpc)MRb  thus depends on the concentration 

of precursors in the cell,  cpc . As we do not explicitly model cell division, we here approximate 

this cellular concentration as the relative mass abundance of precursors to total protein biomass. 

This approximation is justified by the observation that cellular mass density and total protein 

content is approximately constant across a wide range of conditions (Belliveau et  al., 2021; 

Martínez- Salas et  al., 1981; Kubitschek et  al., 1983). The dynamics of precursor concentra-

tion follows from the balance of synthesis, consumption, and dilution as the total biomass grows: 

 

dcpc
dt =

production via metabolism
︷ ︸︸ ︷

ν(cnt)MMb
M

−

γ(cpc)MRb
M

︸ ︷︷ ︸

consumption via protein synthesis

−

dilution via growth
︷ ︸︸ ︷

cpcγ(cpc)MRb
M

.

  

(9)

While the dilution term is often assumed to be negligible, this term is critical to describe growth and 

derive analytical expressions. Furthermore, we note that the precursor concentration is defined such 

that the consumption of one precursor yields the addition of one amino acid to the biomass  M  . As we 

measure proteins in units of amino acids, there is thus no conversion factor needed when describing 

the consumption of precursors by protein synthesis.

Simplification of saturating nutrients
The introduced dynamics simplifies when the nutrient concentration in the environment  cnt  well 

exceeds the Monod constant  K
cnt
M   as  ν(cnt)  simplifies to  νmax . Steady growth for which biomass increases 

exponentially readily emerges. This is the scenario we focus on in in the first half of this work. It should 

be noted, however, that biologically such a scenario can only be realized temporarily as the nutrient 

supply required by the exponentially growing biomass can only be sustained by the environment for 

a limited amount of time. In general, the nutrient levels vary.

Consumption of nutrients in batch culture growth
The synthesis of novel precursors relies on the availability of nutrients which changes depending 

on the environment. In Figure 1—figure supplement 2, we consider specifically a ‘batch culture’ 

scenario in which nutrients are provided only at the beginning of growth and are never replenished. 

Therefore, growth of the culture continues until all of the nutrients have been consumed. The concen-

tration of nutrients in the environment is thus given as

 
dcnt
dt = −

ν(cnt)MMb
Y ,   (10)

where  Y   is the yield coefficient which describes how many nutrient molecules are needed to produce 

one unit of precursors.

Ribosomal allocation of protein synthesis
As final step of the model definition, we must describe how cells direct their protein synthesis towards 

making ribosomes, metabolic proteins, or all other proteins that make up the cell (colored arrows 

in Figure  1A). We do so by introducing three allocation parameters  φRb ,  φMb , and  φO  (such that 

 φRb + φMb + φO = 1 ) which define how novel protein synthesis is partitioned among these categories: 

 
dMRb

dt = φRb
dM
dt ; dMMb

dt = φMb
dM
dt ; dMO

dt = φO
dM
dt .  (11)
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These equations are summarized in Figure 1B and Figure 1, Figure 1—figure supplement 2 and 

define the accumulation of biomass, from nutrient uptake to protein synthesis.

Approximating concentration via relative abundance
In addition to maintaining the total macromolecular densities, cells also maintain an approximately constant 

protein density (Bremer and Dennis, 2008). This observation allows for a major simplification when formu-

lating the allocation model, namely the approximation of concentrations as relative mass abundances. 

The rate  γ  at which ribosomes can synthesize protein is dependent on the abundance of precursors, 

 cpc , in the cell. To compute the concentration and/or density in typical units (e.g. µM, or mass/volume), 

we would require some measure of the total cellular volume,  Vcell , such that the concentration follows 

 cpc = Mpc
Vcell

,  (12)

with  Mpc  denoting the total mass of the precursor pool. By making the experimentally supported 

assertion that the protein density  ρ  is constant, we can say that

 ρ = M
Vcell

= Constant,  (13)

where  M   is the total protein biomass. Thus, the total cellular volume  Vcell  can be computed as

 Vcell = M
ρ

.  (14)

Plugging this result into Equation 12, we arrive at the approximation 

 cpc = ρ
Mpc
M ≈

Mpc
M .  (15)

In this work, we neglect  ρ  as a multiplicative constant and treat  cpc  as being dimensionless. We direct 

the reader to Scott et al., 2010 and Milo, 2013 for a further discussion of the conversion between 

concentration and relative abundance.

Derivation of analytical expressions
In the first section of this work, we present several analytical relations pertinent to steady- state growth. 

These relations follow from the simple allocation model and describe (i) how the growth rate depends 

on model parameters (Figure 1C) and (ii) how ribosome content depends on other model parameters 

for the three different regulation scenarios we discuss (Figure 1F). Here, we introduce a step- by- step 

derivation of these expressions.

Deriving the steady-state growth rate
We begin with deriving an expression for the steady- state growth rate  λ  which is similar to previous 

approaches taken by Giordano et  al., 2016 and Dourado and Lercher, 2020. As discussed in 

Figure 1—figure supplement 2, steady- state conditions are satisfied when two conditions are met. 

First, the dynamics of the precursor concentration is constant (i.e.,  
dcpc
dt = 0 ) and the composition of the 

proteome matches the allocation parameters (i.e.,  
M∗

Rb
M∗ = φ∗

Rb  and  
M∗

Mb
M∗ = φ∗

Mb ). Furthermore, we assume 

that in steady- state growth, the concentration of nutrients in the environment is saturating ( cnt ≫ Kcnt
M  ), 

meaning that  ν(cnt) ≈ νmax . With these conditions satisfied, we can rewrite Equation 9 as

 
dcpc
dt = νmaxφMb − γ(c∗pc)φRb − cpcγ(c∗pc)φRb = 0,   (16)

where  c
∗

pc  is the steady- state precursor concentration.

Noting that in steady- state conditions the total biomass increases expo-

nentially at a rate  λ ≡ γ(cpc)ϕ∗

Rb , Equation 16 can be simplified to 

 
dcpc
dt = νmaxϕ

∗

Mb − λ(1 + cpc) = 0.  (17)
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We can therefore solve for the steady- state precursor concentration  c
∗

pc  to yield

 c∗pc = νmaxϕ
∗

Mb
λ

− 1.  (18)

Assuming a Michaelis–Menten form for the translation rate  γ(c∗pc) , we can now define it as a function 

of the growth rate  λ  as

 

γ(c∗pc) = γmax

1+ K
cpc
M

cpc

= γmax

1+ K
cpc
M λ

νmaxϕ∗

Mb−λ

.
  

(19)

Knowing that the growth rate  λ ≡ γ(cpc∗ )ϕ∗

Rb , and  φ
∗

Mb = 1 − φ∗

Rb − φ∗

O , we say that

 

λ = γmaxφ
∗

Rb

1+ K
cpc
M λ

νmax(1−ϕ∗

Rb−ϕ∗

O )−λ

.
  

(20)

This can be algebraically manipulated to yield a quadratic equation of the form

 λ2 (1 − Kcpc
M
)

+ λ
(

νmax(1 − ϕ∗

Rb − ϕ∗

O) + γmaxϕ
∗

Rb
)

− γmaxϕ
∗

Rbνmax(1 − ϕ∗

Rb − ϕ∗

Mb) = 0,  (21)

which has one positive root of

 
λ =

νmax(1−φ∗

Rb−φ∗

O)+γmaxφ
∗

Rb−

√

(νmax(1−φ∗

Rb−φ∗

O)+γmaxφ
∗

Rb)2
−4(1−Kcpc

M )γmaxφ
∗

Rbνmax(1−φ∗

Rb−φ∗

O)

2
(

1−Kcpc
M

) .
  

(22)

For notational simplicity, we can define the maximum metabolic output and the maximum transla-

tional output as  N = νmax(1 − φRb − φO)  and  Γ = γmaxφRb , respectively, and substitute them into Equa-

tion 22 to generate

 
λ =

N+Γ−
√

(N+Γ)2
−4

(

1−Kcpc
M

)

NΓ

2
(

1−Kcpc
M

) ,
  

(23)

Defining  φRb  for scenarios II and III
In Figure 1F, we provide a description of three plausible regulatory scenarios microbes may employ 

to regulate their ribosomal content. Scenario I assumes just a constant, arbitrary allocation parameter 

 φRb ∈ [0, 1 − φO] . Here, we provide a short derivation for the more complicated relations describing 

ribosomal content under scenarios II and III.

Scenario II: Constant translation rate
The second regulatory scenario assumes that the ribosomal content is adjusted 

to maintain a specific standing concentration of precursors, which we denote as 

 c
∗

pc . Noting that the growth rate  λ ≡ γ(c∗pc)ϕ∗

Rb , we can restate Equation 18 in the form 

 
c∗pc = νmax(1−φ∗

O−φ∗

Rb)(c∗pc+Kcpc
M )

c∗pcγmaxφ
∗

Rb
.
  

(24)

Some algebraic rearrangement allows us to solve for  φ
∗

Rb , yielding

 
φRb =

(1−φ∗

O)νmax

(

c∗pc+Kcpc
M

)

νmax

(

c∗pc+Kcpc
M

)

+γmaxc∗pc

(

c∗pc+1
) .

  
(25)

This expression is equivalent to that shown for scenario II in Figure 1F. In evaluating this scenario, we 

considered the regime in which precursors were in abundance, meaning  c
∗

pc ≫ K
c∗pc
M  . Under this regime, 

Equation 25 simplifies further to
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φ∗

Rb ≈
(1−φ∗

O)νmax

γmax

(

c∗pc+1
)

+νmax
.
  

(26)

This represents a strategy where the cell adjusts  φ
∗

Rb  to maintain a translation rate very close to  γmax .

Scenario III: Optimal allocation
In this work, we define the optimal allocation of ribosomes  φ

∗

Rb  to be that which maximizes the growth 

rate in a given environment and at a given metabolic state. To determine the optimal  φ
∗

Rb , we can 

differentiate Equation 22 with respect to  φ
∗

Rb  to yield the cumbersome expression

 

∂λ

∂ϕ∗

Rb
= 1

2
(

1 + Kcpc
M
)×

  
(27)

 



γmax − νmax −
2γmaxνmax

(

1 − Kcpc
M
) (

2φ∗

Rb + φ∗

O − 1
)

+ (γmax − νmax)
(

γmaxφ
∗

Rb + νmax
(

1 − φ∗

O − φ∗

Rb
))

√

(

γmaxφ∗

Rb + νmax
(

1 − φ∗

O − φ∗

Rb
))2

− 4
(

1 − Kcpc
M
)

γmaxνmaxφ∗

Rb
(

1 − φ∗

O − φ∗

Rb
)

.
 

 (28)

Setting this expression equal to zero and solving for  φRb  results in

 
φRb =

(1−φ∗

O)
(

γmaxνmax

(

1−2Kcpc
M

)

+ν2
max+

√

Kcpc
M γmaxνmax(γmax−νmax)

)

(γmax+νmax)2
−4Kcpc

M γmaxνmax   
(29)

which is the optimal allocation towards ribosomes as presented in Figure 1F.

Implementing flux-parity regulation via ppGpp
Here we expand upon and derive the equations defining the flux- parity allocation model shown sche-

matically in Figure 2A and explore its dependence on parameter values.

Formulation of model
To include ppGpp signaling into the ribosomal allocation model, we must perform two tasks. First, we 

must explicitly model the dynamics of both charged- and uncharged- tRNAs. Secondly, we must tie the 

relative abundances of these tRNAs to the allocation parameters such that when charged- tRNAs are 

limiting and uncharged- tRNAs in abundance, the system reacts by adjusting the allocation parameters 

towards ribosomal proteins and away from metabolic proteins ( φRb  and  φMb ).

We consider there to be two pools of tRNAs: those charged with an amino acid (denoted as 

 tRNAc ) and those that are uncharged ( tRNAu ). Rather than keeping track of the copy numbers of these 

tRNAs, we instead model their concentration as relative mass abundances (relative to the total protein 

biomass  M  ), treating each tRNA to have an effective mass of one amino acid as each tRNA can in 

principle be charged. Much as for consideration of precursors in the simpler model we can model the 

concentration dynamics of these pools of tRNAs by considering three processes: the generation of the 

tRNAs, the consumption of the tRNAs, and the effect of dilution as the biomass grows.

We begin first with modeling the dynamics of the charged- tRNA pool,  tRNAc . Here, we consider 

that charged- tRNAs are synthesized from one free amino acid and one uncharged- tRNA and 

further assume that the pool of free amino acids is abundant enough such that the tRNA pool is 

the rate limiting component. Making this assumption allows us to state that the conversion of one 

uncharged- tRNA to one charged- tRNA via the metabolic machinery proceeds at a rate  ν(tRNAu) , 
itself dependent on the uncharged- tRNAu  concentration. Likewise, we consider that the conversion 

of one charged- tRNA to an uncharged- tRNA is only possible via protein synthesis, which proceeds 

at a rate  γ(tRNAc)  that is dependent on the charged- tRNA  concentration. Finally, we must also 

consider how the mere fact of growing biomass effectively dilutes the charged- tRNA concentration. 

Together, these processes can be combined to enumerate the dynamics of the charged- tRNA pool as 
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dtRNAc

dt =

generation via metabolism
︷ ︸︸ ︷

ν(tRNAu)MMb
M

−

γ(tRNAc)MRb
M

︸ ︷︷ ︸

consumption via protein synthesis

−

reduction via dilution
︷ ︸︸ ︷

tRNAc
γ(tRNAc)MRb

M
.

  

(30)

The dynamics for the pool of uncharged- tRNAs can be constructed in a similar manner, 

with the caveat that the generation of new uncharged- tRNAs occurs from both protein 

synthesis (converting one charged- tRNA into one uncharged- tRNAu ) and from transcrip-

tion of the individual tRNA genes. We consider the latter to occur at a rate  κ , which has dimen-

sions of concentration per unit time. Using the same logic of mapping the productive and 

consumptive processes, we can enumerate the dynamics of the uncharged- tRNA pool as 

 

dtRNAu

dt =
production via transcription

︷︸︸︷

κ + γ(tRNAc)MRb
M

︸ ︷︷ ︸

occurance via protein synthesis

−

consumption via metabolism
︷ ︸︸ ︷

ν(tRNAu)MMb
M

−

tRNAγ(tRNAc)MRb
M

︸ ︷︷ ︸

reduction via dilution

.

 
 (31)

These expressions comprehensively define the dynamics of the tRNA pool, from generation via tran-

scription to their recycling between charged and uncharged states through metabolic and translational 

fluxes, respectively. As in the main text, we posit that the dynamics of the ribosomal  MRb , metabolic 

 MMb , and ‘other’  MO  protein masses follow via the allocation parameters  φRb ,  φMb , and  φO  respectively. 

However, in this treatment of the model, we consider these parameters, with the exception of  φO , to be 

dynamic and depending on the intracellular concentration of ppGpp. Mathematically, we state this as 

 
dMRb

dt = φRb(ppGpp) dM
dt ; dMMb

dt = [1 − φO − φRb(ppGpp)] dM
dt ; dMO

dt = φO
dM
dt .  (32)

We are now tasked with (i) enumerating the dynamics of ppGpp and (ii) assigning a specific functional 

form to  φRb(ppGpp) . The biochemistry of ppGpp synthesis, degradation, and binding to the transcrip-

tion machinery has been studied in E. coli among other prokaryotes, revealing the enzyme(s) important 

for this process, In E. coli RelA and SpoT. Many molecular details revealing how those enzymes control 

ppGpp levels in response to the abundance of tRNA levels are known but important details also remain 

puzzling (Magnusson et al., 2005; Anderson et al., 2021). Thus, while previous works have consider 

the dynamics of these specific proteins in more detail (Bosdriesz et al., 2015; Giordano et al., 2016), 

we here take a more coarse- grained view. Specifically, we first make the ansatz that the dynamics of 

ppGpp synthesis and degradation are sufficiently fast compared to the timescale of protein synthesis 

such that it can be treated as being in steady- state instantaneously. Secondly, we take the concentra-

tion of ppGpp to be inversely proportional to the relative abundance of charged- to uncharged- tRNAs, 

 
ppGpp ∝

1
tRNAc
tRNAu

.
  (33)

This is a well- motivated starting point as in E. coli, ppGpp is primarily synthesized via RelA when an 

uncharged- tRNA enters the A- site of a translating ribosome, forming a stalled complex. As binding of 

a charged- tRNA or an uncharged- tRNA is a competitive process, the probability of one or the other 

being bound is dependent on their relative concentrations, rather than the absolute concentrations 

of either species. However, other processes which affect ppGpp levels, including the synthesis and 

degradation by SpoT in relation to ribosome activity, are less well understood (Srivatsan and Wang, 

2008). Accordingly, we consider our approach to describe ppGpp as inversely proportional to the 

relative abundance of charged- to uncharged- tRNAs as a motivated ansatz rather than a fully estab-

lished biochemical relation. And we furthermore show below that this ansatz works much better for 

describing the experimental observations as a few different ones we probed.

Given the relation between ppGpp and tRNA charging ratio, Equation 33, we can now define the 

allocation towards ribosomes to be a function of the tRNA charging ratio, 
 
φRb

(

tRNAc

tRNAu

)

 
. To assign a 

specific functional form to this relation, we assume that the expression of ribosomal genes is in first 
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order described by a simple binding kinetics of ppGpp to the transcriptional machinery and the allo-

cation towards ribosomes follows a form similar to that of a Michaelis–Menten relation,

 
φRb

(

tRNAc

tRNAu

)

= (1 − φO)
tRNAc
tRNAu

tRNAc
tRNAu +τ .

  
(34)

Here, the parameter  τ   represents the value of the charged- to uncharged- tRNA ratio where  φRb  is 

at its half- maximal value. The maximal value itself depends on the magnitude of  φO , the allocation 

towards other proteins, which we are considering to be independent of ppGpp;  φ
(max)
Rb = 1 − φO .

The transcription of tRNA genes towards novel tRNA synthesis has also been shown to be regu-

lated with ppGpp, appearing to closely match the regulatory behavior of ribosomal proteins (Jinks- 

Robertson et al., 1983). We therefore model that the tRNA synthesis rate  κ  (introduced in Equation 

31) is similarly modulated by the charged- to uncharged- tRNA ratio,

 
κ

(

tRNAc

tRNAu

)

= κmax
tRNAc
tRNAu

tRNAc
tRNAu +τ .

  
(35)

Here,  κmax  is the rate of tRNA transcription when all tRNA genes are fully saturated with RNA 

polymerase in rich growth conditions where gene dosage is high. Finally, we must establish functional 

forms for the tRNA dependencies on the metabolic and translation rate. Simple biochemical assump-

tions permit a formulation of a Michaelis–Menten function for each rate. Noting that the translation 

rate  γ  is defined as  γ ≡
vtl

mRb  , where  vtl  is the translation speed and  mRb  is the proteinaceous mass of a 

single ribosome, we take  γ(tRNAc)  to be of the form

 
γ(tRNAc) = v(max)

tl
mRb

tRNAc

tRNAc+K(tRNAc )
M

,
  

(36)

where  v
(max)
tl   is the maximum translation speed and  K

(tRNAc)
M   is the Michaelis–Menten constant. A 

similar argument can be made for the dependence of the metabolic rate  ν  on the uncharged- tRNA 

concentration,

 
ν(tRNAu) = νmax

tRNAu

tRNAu+K(tRNAu )
M

,
  

(37)

with  K
(tRNAu)
M   being another Michaelis–Menten constant. Together, Equations 30–37 mathematically 

describe a model for ppGpp- dependent regulation of translational and metabolic fluxes.

In principle, an analytical solution for this system of ODEs can be found, though it precludes eval-

uation by hand and is computationally intensive. While we do not solve this system of ODEs analyt-

ically here, we can numerically integrate them to sufficiently approximate the steady- state behavior. 

Depending on the choice of parameter values, such an approach can yield an allocation scenario 

nearly indistinguishable from that of the optimal allocation scenario (scenario III) of the simple model 

(Figure 1H and I).

Optimal allocation emerges from flux-parity regulation
While the previous section lays out the mathematics of the flux- parity model, we now discuss how 

this regulation scheme can lead to an optimal allocation. Towards this goal, we first discuss in more 

detail what we mean when we say ’flux- parity.’ As described in the main text, we define flux- parity as 

a balance and mutual maximization of (i) the flux of uncharged- tRNAs through metabolism (termed 

the metabolic flux JMb ) and (ii) the flux of charged- tRNAs through protein synthesis (termed the trans-

lational flux JTl ). To demonstrate this point, assume that we can decouple the dependence of the 

allocation parameter  φRb  from the ratio of charged- to uncharged- tRNAs. Mathematically speaking, 

we can define the metabolic flux as the collective action of metabolic proteins,

 
JMb = ν(tRNAu)φMb = νmaxtRNA

(

1−φO−φRb
)

tRNAu+KtRNAu
M

.
  

(38)

Similarly, we can state that the translational flux is the collective action of ribosomal proteins,

 
JTl = γmaxtRNAcφRb

tRNAc+KtRNAc
M   

(39)
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So long as these fluxes are equivalent, a steady- state is satisfied. However, this steady- state is not 

necessarily the optimal value. This is illustrated in Figure 2, Figure 2—figure supplement 1. For 

example, if we consider that  φRb  is too large for the given condition (Figure 2—figure supplement 

1, left), a specific steady- state is realized (black point). If  φRb  is further increased, the value of both 

the metabolic and translational fluxes (dashed lines) must decrease to reach a new steady state and 

growth rate thus declines. However, if  φRb  is decreased, the value of both fluxes increase and growth- 

rate thus also increases as well. At optimum allocation (where growth is locally maximized, Figure 2—

figure supplement 1, middle), any perturbation to  φRb  will necessarily result in a decrease in the 

fluxes, indicating that at the optimal allocation the fluxes are mutually maximized.

As the concentrations of both tRNA species (Equations 30 and 31) are dependent on the allo-

cation towards ribosomes  φRb  in inverse ways, the ratio of their concentrations acts as an effective 

sensor of the magnitude of either flux. A large charged- to uncharged- tRNA ratio indicates that there 

is an abundance of charged- tRNAs, suggesting that the translational flux is too low. Conversely, a 

small charged- to uncharged- tRNA ratio indicates a translational flux that is too large, diminishing the 

metabolic flux. By tying the allocation towards ribosomes  φRb  to this ratio, an allocation can emerge 

that optimizes the fluxes and thus growth.

Assessing different assumptions of  φRb  dependence on ppGpp
In Equation 33, we made the assumption that the concentration of ppGpp was inversely proportional 

to the charging balance of the tRNA pools. We put this forward as an ansatz with the motivation that 

the degree of tRNA charging should be related to the amount of ppGpp synthesized. However, there 

are other ansatzes that could be made relating the amount of ppGpp to the individual concentrations 

of the tRNAs, or other ratiometric definitions.

To test how sensitive our findings are to the particular ansatz used, we considered other ways in 

which the ppGpp concentration could be related to the tRNA pools. There is strong biochemical 

evidence that a primary route of ppGpp synthsesis is via the enzyme RelA, which becomes active 

when associated to a ‘stalled’ ribosome—one that is bound to an uncharged tRNA—though some 

details remain enigmatic. In manner similar to other works (Giordano et al., 2016; Wu et al., 2022; 

Bosdriesz et al., 2015), we can assert that the amount of ppGpp is proportional to the abundance of 

stalled ribosomes. Mathematically, we can define the ppGpp concentration as being proportional to 

the probability of a ribosome binding an uncharged tRNA. Assuming that the tRNA concentration (of 

both charged and uncharged forms) is sufficiently high that all ribosomes are complexed with a tRNA, 

this equates to

 [ppGpp] ∝ P(uncharged)
bound ≈

tRNAu

tRNAc+tRNAu ,  (40)

where  tRNAc  and  tRNAu  represent the absolute concentrations of charged and uncharged species, 

respectively. If the ppGpp concentration is inversely proportional to the allocation towards ribosomes, 

we can similarly make the argument that the ribosomal allocation  φRb  will be proportional to the prob-

ability of a ribosome being bound to a charged- tRNA,

 φRb = (1 − φO)P(charged)
bound = (1 − φO) tRNAc

tRNAu+tRNAc .  (41)

This equation mechanistically operates in a similar way as Equation 34—the allocation towards ribo-

somes depends on the relative amounts of charged- and uncharged- tRNAs. In the extreme limit where 

the total concentration of tRNA is fixed (for which there is conflicting evidence; Dong et al., 1996; 

Skjold et al., 1973; Bremer and Dennis, 2008; Bosdriesz et al., 2015; Giordano et al., 2016), Equa-

tion 41 and Equation 34 are mathematically equivalent. However, the predicted scaling dependence 

of ppGpp takes a different form.

In the main text, we noted that the concentration of ppGpp relative to a reference growth rate 

 
[ppGpp]
[ppGpp]0   is equivalent to the inverse ratio of the charging balances. Under the ansatz that the ppGpp 

concentration is depending on the uncharged- tRNA binding probability, this relation takes the form

 

[ppGpp]
[ppGpp]0

= P(uncharged)
bound

P(uncharged)
bound0

=
1+ tRNAc

0
tRNA0

1+ tRNAc
tRNAu

,
  

(42)
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where the subscript 0 denotes the reference state value. This distinction, coupled with experi-

mental measurements of the relative ppGpp concentrations, allows us to test the validity of the two 

assumed forms for  φRb .

Figure 3—figure supplement 1 shows the predictive capacity of these two ansatzes with the simple 

binding (Equation 41) and ratiometric (Equation 33) predictions shown in solid- blue and dashed- red 

lines, respectively. While both of these assumptions are capable of predicting the scaling of the ribo-

some content and translation speed with quantitative equivalence, there is a distinct difference in the 

predicted behavior of the relative ppGpp concentrations. The simple binding ansatz predicts a signifi-

cantly shallower dependence on the growth rate than is observed in the data and in the ratiometric 

prediction. Thus, it appears that relating [ppGpp] to the ratio of uncharged- to charged- tRNA concen-

trations accurately captures the behavior of E. coli, though there remain gaps in our understanding of 

this relationship at a biochemical level.

Incorporating effects of ribosome-targeting antibiotics
To extend the flux- parity allocation model and incorporate the effects of antibiotic treatment, we must 

consider the mechanism of action of the antibiotic, specifically chloramphenicol. Chloramphenicol is a 

bacteriostatic antibiotic with tightly, but reversibly, binds to the ribosome. Once bound, the ribosome 

is unable to resume translation until chloramphenicol dissociates. Thus, we can model the effect of this 

drug by enumerating the probability that chloramphenicol is bound to a ribosome  Pbound  at a given 

concentration  ccm . Mathematically, this can be stated as

 
Pbound = ccm

ccm+Kcm
D

,
  (43)

where  K
cm
D   is an effective dissociation constant of chloramphenicol to a unit of ribosomal mass 

accounting for kinetics transport and ribosome binding. We can then say that the probability of a 

ribosome being active is equal to the probability of a ribosome being unbound,

 
Pactive = 1 − Pbound = 1 −

ccm
ccm+Kcm

D
.
  (44)

As only active ribosomes will contribute to the accumulation of biomass, we must rewrite the dynamics as 

 
dM
dt = γ(tRNAc)Mactive

Rb = γ(tRNAc)PactiveMRb.  (45)

To make the predictions shown in Figure 3E and F, we assumed that the chloramphenicol concentra-

tion in the growth medium is equal to the intracellular concentration and take  K
cm
D ≈ 0.5  nM.

Incorporating effects of excess protein stress
We consider that the excess protein synthesis can be modeled as the introduction of a new protein 

class, which we consider to have a total mass of  MX . Following the allocation parameters of the flux- 

parity model as defined in Equation 32, we can introduce a new allocation parameter  φX  such that 

 
dMX

dt = φX
dM
dt ; φO + φMb + φRb + φX = 1.  (46)

In Figure 3 I, we show that a collection of data can be collapsed onto a single line that relates the 

relative change in growth rate as a function of the excess protein that is synthesized. While we cannot 

fully solve the flux- parity model analytically, we can derive an analytical expression of this relation. 

Specifically, we note that the steady- state growth rate in the absence of excess expression  λ  follows 

the simple relation

 
λ = γ(tRNAc)ϕRb

(

tRNAc

tRNAu

)

= γmax(1 − ϕO) tRNAc

tRNAc+KtRNAc
M

tRNAc
tRNAu

tRNAc
tRNAu +τ .

  
(47)

This can be easily extended to compute the growth rate under excess protein synthesis  λX  as

 
λx = γ(tRNAc)ϕRb

(

tRNAc

tRNAu

)

= γmax(1 − ϕO − ϕX) tRNAc

tRNAc+KtRNAc
M

tRNAc
tRNAu

tRNAc
tRNAu +τ .

  (48)
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We can take the ratio of these growth rates to yield an expression for the collapse function

 

λX
λ

=
γmax(1−ϕO−ϕX) tRNAc

tRNAc+KtRNAc
M

tRNAc
tRNAu

tRNAc
tRNAu +τ

γmax(1−ϕO) tRNAc

tRNAc+KtRNAc
M

tRNAc
tRNAu

tRNAc
tRNAu +τ

.
  

(49)

If we assume that the excess protein synthesis affects only  φX , leaving all other parameters untouched, 

Equation 49 reduces to the concise form

 
λX
λ

= 1−ϕO−ϕX
1−ϕO

,
  (50)

which is the linear relation plotted in Figure 3I.

Aside from the collapse, we also show how the flux- parity model quantitatively predicts the growth 

rate as a function of excess protein for three different media (Figure 3H). In this case, we require some 

knowledge of what the metabolic rate  νmax  is for those specific conditions. As the metabolic rate is an 

efficient rate incorporating the action of different metabolic reactions and serving as a proxy of the 

nutrient quality, it is not possible to make an a priori estimate of its value. To nevertheless estimate 

 νmax  for each condition, we determined its value by using the simple allocation model as encoded in 

‘Derivation of analytical expressions,’ assuming the growth rate  λ  and the ribosomal content describes 

the allocation towards ribosomes  φRb . Under the simple allocation model, we note that an expression 

for the metabolic rate can be solved from the steady- state precursor concentration  c
∗

pc  (Equation 18) 

to yield

 
νmax = λ

(

cpc+1
)

1−ϕO−ϕRb
.
  (51)

The steady- state precursor concentration  c
∗

pc  can be solved from the definition of the steady- state growth 

rate and has the form

 
c∗pc = Kcpc

D λ

ϕRbγmax

(

1− λ
ϕRb

) .
  

(52)

Combining Equations 51 and 52 yields an expression for the maximal metabolic rate  νmax ,

 
νmax = λ

1−ϕO−ϕRb

(

Kcpc
D λ

ϕRbγmax

(

1− λ
ϕRb

) + 1
)

.
  

(53)

Thus, given knowledge of the steady- state growth rate  λ  and the allocation towards ribosomes  φRb  

(which are both measured quantities), the value of  νmax  can be derived.

Incorporating effects of nutrient upshifts
To model the dynamics of growth in fluctuating conditions, we asserted that a nutritional upshift is 

equivalent to an instantaneous change in the metabolic rate such that  ν
preshift
max < ν

postshift
max  . However, this 

is not completely sufficient to capture the phenomenology that is observed. It is becoming exceed-

ingly clear that bacterial cells are non- optimal in what genes they express, with many proteins that 

are synthesized are ultimately useless in the specific condition (Balakrishnan et al., 2021a). This can 

have very important effects on the growth rate as any amount of conditionally useless protein that 

is synthesized consumes resources that could otherwise be partitioned to the proteins that need 

to be synthesized. To incorporate this effect, we introduce another protein class with an allocation 

parameter  φ . As the degree of conditionally useless expression is significantly more pronounced in 

slow rather than fast conditions (Balakrishnan et al., 2021a; Belliveau et al., 2021; Schmidt et al., 

2016), we further asserted that the magnitude of this sector also changed in response to the nutri-

tional upshift such that  φ
preshift > φpostshift

 . The precise value of this sector is less important than the 

difference in the pre- and post- shift condition and can be considered as an additional rescaling factor 

as described in Appendix 1 Neglecting the other proteins. Thus, for all nutritional shifts in this work, 

we considered that  φ
postshift = 0  and the value of  φ

preshift
  to be linearly proportional to the difference in 

the growth rates between the pre- and post- shift conditions.
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Incorporating effects of nutrient depletion
Up to this point, we have explored the flux- parity model under the assumption that the nutrients in the 

environment were saturating, such that  ν(cnt) ≈ νmax . However, a dependence on the environmental 

nutrient concentration  cnt  can be easily included in the definition of the metabolic rate  ν  as

 
ν(tRNA, cnt) = νmax

(

tRNAu

tRNAu+KtRNAu
M

)(

cnt
cnt+Kcnt

M

)

,
  

(54)

where  K
cnt
M   is the Michaelis–Menten constant. We can then model the dynamics of the nutrient concen-

tration  cnt  in a batch- culture system as

 
dcnt
dt = −

ν(tRNA,cnt)MMb
Y ,   (55)

where  Y   is the yield coefficient.

Data sets
This work leverages a large collection of data, primarily from E. coli, to evaluate the accuracy of our 

model in describing biological phenomena. These data come from a range of studies spanning around 

50 years of measurements from different groups and different geographical locations. Collecting and 

curating this large data set required the manual transcribing of data from papers as well as various 

standardization steps to ensure that measurements were truly comparable between studies, as is 

outlined in Supplementary file 2.

For proper referencing and attribution, we list the data sources here as follows: Albertson and 

Nyström, 1994; Baracchini and Bremer, 1988; Basan et al., 2015; Bentley et al., 1990; Bremer and 

Dennis, 2008; Bren et al., 2013; Brunschede et al., 1977; Büke et al., 2022; Buckstein et al., 2008; 

Coffman et al., 1971; Dai et al., 2016; Dalbow and Young, 1975 ; Dong et al., 1995; Erickson et al., 

2017; Forchhammer and Lindahl, 1971; Gausing, 1972; Hernandez and Bremer, 1990; Hernandez 

and Bremer, 1993; Imholz et al., 2020; Kepes and Beguin, 1966; Korem Kohanim et al., 2018; 

Lacroute and Stent, 1968; Lazzarini et al., 1971; Li et al., 2014; Li et al., 2018;; Mori et al., 2017; 

Morris and Hansen, 1973; Oldewurtel et al., 2021; Panlilio et al., 2020; Pedersen, 1984; Ryals 

et al., 1982; Sarubbi et al., 1988; Schmidt et al., 2016; Schleif, 1967; Schleif et al., 1973; Scott 

et al., 2010; Si et al., 2017; Skjold et al., 1973Sloan and Urban, 1976; Sokawa et al., 1975; Wu 

et al., 2022; You et al., 2013; Young and Bremer, 1976; Zhu and Dai, 2019; Bonven and Gulløv, 

1979; Lacroute, 1973; Metzl- Raz et al., 2017; Paulo et al., 2015; Paulo et al., 2016; Riba et al., 

2019; Siwiak and Zielenkiewicz, 2010; Waldron and Lacroute, 1975; Xia et al., 2021; Rohatgi, 2021. 
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Chure G, Cremer J 2023 Collated measurements 
of E. coli ribosomal mass 
fractions

https:// github. com/ 
cremerlab/ flux_ parity/ 
blob/ master/ data/ 
main_ figure_ data/ 
ecoli_ ribosomal_ 
mass_ fractions. csv

GitHub,  ecoli_ ribosomal_ 
mass_ fractions. csv

Chure G, Cremer J 2023 Collated measurements of 
E. coli translation rates

https:// github. com/ 
cremerlab/ flux_ 
parity/ blob/ master/ 
data/ main_ figure_ 
data/ ecoli_ peptide_ 
elongation_ rates. csv

GitHub,  ecoli_ peptide_ 
elongation_ rates. csv

Chure G, Cremer J 2023 Collated measurements 
of relative E. coli ppGpp 
concentrations

https:// github. com/ 
cremerlab/ flux_ 
parity/ blob/ master/ 
data/ main_ figure_ 
data/ ecoli_ relative_ 
ppGpp. csv

GitHub,  ecoli_ relative_ 
ppGpp. csv

Chure G, Cremer J 2023 Collated measurements 
of E. coli useless protein 
overexpression

https:// github. 
com/ cremerlab/ 
flux_ parity/ blob/ 
master/ data/ main_ 
figure_ data/ Fig5B_ 
overexpression_ 
growth_ rates. csv

GitHub,  Fig5B_ 
overexpression_ growth_ 
rates. csv

Chure G, Cremer J 2023 Collated measurements of 
nutrient upshift dynamics 
in E. coli

https:// github. com/ 
cremerlab/ flux_ 
parity/ blob/ master/ 
data/ main_ figure_ 
data/ Fig5C_ shift_ 
magnitudes. csv

GitHub,  Fig5C_ shift_ 
magnitudes. csv

Chure G, Cremer J 2023 All data is available via 
the paper is registered in 
Zenodo

https:// doi. org/ 10. 
5281/ zenodo. 5893799

Zenodo, 10.5281/
zenodo.5893799
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Appendix 1 

Allocation models to study microbial growth
Over the past several decades, theoretical studies have introduced a huge variety of mathematical 
models to better understand how microbes grow. These range from simple phenomenological 
relations, first introduced by Verhulst, 1845 and Monod, 1942 to describe exponential growth and 
nutrient consumption, to more recent high- dimensional models which explicitly consider hundreds of 
cellular processes involved in biomass synthesis and growth. Here, we summarize different modeling 
approaches which integrate considerations of protein synthesis and metabolism to rationalize 
bacterial growth and quickly compare the construction and results to the model presented in the 
main text.

As outlined in the main text, the idea that protein synthesis constitutes a major limitation 

of microbial growth has a storied history. With an ever- improving characterization of both 

the composition and the major biochemical processes undertaken by microbes, it has become 

increasingly clear that the auto- catalytic nature of protein synthesis (i.e., ‘ribosomes making 

ribosomes’) and the corresponding allocation of ribosomal activity towards different proteins are of 

paramount importance. Therefore, it is imperative to consider protein synthesis and this allocation 

when modeling cell growth (Hernandez and Bremer, 1993; Koch, 1988). Over the years, very 

different approaches have been introduced to model protein synthesis and growth. To provide an 

overview, we roughly distinguish between higher- dimensional, coarse- grained, and low- dimensional 

approaches in the coming sections.

Higher- dimensional models build on the genetic annotations and reaction networks in E. coli 

to specifically account for hundreds (or even thousands) of molecular reactions. An important 

class of these are holistic cell- growth models which include thousands of reactions involved in 

protein synthesis (Karr et al., 2012; Macklin et al., 2020). These studies can describe a number of 

observations, including the concentration of different metabolites, as well as the relation between 

gene expression and the abundances of thousands of proteins. However, as it is difficult to estimate 

the many parameters involved, these models are typically constrained to only a few reference growth 

conditions like growth on glucose, often with moderate uncertainty. Moreover, the integration of 

hundreds of different reactions often counteracts the development of a more intuitive understanding 

of microbial growth and necessitates computationally costly analyses.

A second class of models are coarse grained models which substantially simplify cellular life, 

often by focusing on a subset of biochemical processes in a less detailed manner, yet still requiring 

dozens to hundreds of parameters. One example is the framework introduced by Weiße et al., 2015 

to analyze the relation between gene expression (transcription), protein synthesis (translation), and 

growth across varied conditions. Compared to the aforementioned holistic growth models, this is a 

lower- dimensional approach with only a few different types of reactions. A more recent example of 

different scope is the work by Hu et al., 2020. The authors formulated a modeling framework which 

focuses on protein synthesis and explicitly considers 274 reactions driven by equally many enzymes. 

The authors then studied how the allocation of protein synthesis towards the different enzymes 

affects growth. Numerical simulations show that an allocation behavior to reach optimal growth 

does not imply that the speed with which ribosomes translate is fast. Rather, optimal allocation 

and efficient growth is often reached even when translation speeds are substantially lower than the 

maximum in some conditions. We arrive at a similar conclusion and discuss this important point in 

the main- text when we introduce different regulatory ‘scenarios.’

Different in scope to these ‘medium- dimensional’ coarse- grained approaches are those we truly 

call ‘low- dimensional’ which utilize only a few parameters, typically less than 10. In a now seminal 

work, Molenaar et  al., 2009 introduced such a low- dimensional approach to model protein 

synthesis and the growth- rate dependent switch between different metabolic pathways. Central 

to this model is a consideration of how protein synthesis resources are partitioned among four 

different protein classes, including ribosomal and metabolic proteins. Through enumerating coupled 

differential equations that relate the partitioning to growth rate, their model predicts, for example, 

that ribosome content needs to scale linearly with growth rate to ensure efficient growth, though 

comparison with experimental data is absent.



 Research article Microbiology and Infectious Disease | Physics of Living Systems

Chure and Cremer. eLife 2023;12:e84878. DOI: https://doi.org/10.7554/eLife.84878  36 of 52

Another early and significant low- dimensional modeling approach was introduced by Scott et al., 

2014 only a few years later. This work is similar in spirit to that of Molenaar et al., but adds a 

deeper motivation of the low- dimensional allocation approach by building on the authors’ previous 

experimental study (Scott et  al., 2010) which introduced novel phenomenological relations 

describing ribosome content and its dependence on growth rate. In particular, the authors discuss 

how feedback in the regulation of ribosomes and metabolic proteins (end- product inhibition and 

supply- driven activation) can lead to the observed scaling of ribosome content with growth rate. As 

such, the article highlights the important question of global regulation beyond the control of single 

genes. However, the authors rationalize this regulatory scenario as being necessary to ensure a stable 

steady- state regime. This arises in part due to the authors’ assumption that the dilution of metabolic 

precursors is negligible, a process we believe is physiologically critical to consider. Consequentially, 

the regulatory scheme which underlies the coordination of ribosomes and metabolic proteins is 

quite different to what other low- dimensional models have proposed and what we present here (see 

also Section 3 of this supplement).

Following studies by Molenaar et al. and Scott et al., other low- dimensional allocation models 

have been introduced with various extensions and modifications. The models presented by Maitra 

and Dill, 2015 and Giordano et al., 2016, for example, follow a similar low- dimensional description 

as Scott et al. The explicit consideration of precursor dilution allowed them to derive analytical 

solutions describing steady state growth, similar to those we present in this work. Dourado and 

Lercher, 2020 recently extended these results by providing analytical solutions for a generalized 

allocation model with the solution presented for a low- dimensional limit being similar to that of 

Giordano et al., 2016 and what we used as the starting point for our analysis of optimal allocation.

Several studies also extended the allocation framework to more explicitly model the global 

regulation that may be at play. In particular, several studies have investigated how the global regulator 

guanosine tetraphosphate (ppGpp) may tune the allocation of ribosomes to obtain optimal growth 

across conditions, specifically in E. coli (Giordano et  al., 2016; Bosdriesz et  al., 2015). These 

models often take a quite fine- grained view of the kinetics of ppGpp synthesis, its degradation, its 

dependence on stalled ribosomes, and even its mechanism of regulation. In some cases, particular 

details of the kinetics of transcriptional initiation of ribosomal RNA genes is explicitly considered 

(Bosdriesz et al., 2015). A commonality between these models is (once again) an enumeration of a 

handful of coupled ordinary differential equations, though their precise functional forms are unique. 

These theoretical analyses suggested that the ppGpp- mediated regulation feedback can robustly 

tune ribosome content with encountered conditions to support optimal growth in steady conditions. 

However, the evaluation of these models and particularly the chosen approaches to relate tRNA 

charging levels (for which there is contradictory data; Skjold et  al., 1973; Bremer and Dennis, 

2008) to ppGpp concentrations remain limited as only a cursory and largely qualitative comparison 

with data is presented. In this work, we provide an unprecedented quantitative comparison between 

available experimental data and our own low- dimensional very coarse- grained approach to model 

tRNA charging and ppGpp regulation. The excellent match between theory and observation 

(Figure 3C) confirms the important role of tRNA charging and ppGpp in mediating allocation and 

growth as highlighted by Giordano et al. and Bosdriez et al.

Notably, however, we choose a different ansatz in relating tRNA charging levels to ppGpp which 

we find crucial to describe the diverse growth phenomena in changing conditions (see Section 8). 

Recently, Wu et  al., 2022 also presented a phenomenologically guided modeling approach to 

further understand the relation between ribosome content and growth rate, with a focus on the 

possible role of ppGpp in regulating ribosome activity in addition to expression. We think the derived 

picture is substantially different from that present in our work. Particularly, the authors contend that 

a condition- dependent translation rate is at odds with the principle of optimal allocation and cannot 

be understood without explicit consideration of an inactive ribosome pool. Following our analysis, 

including a condition- dependent translation rate strongly supports the observed relation between 

ribosome content and growth rate, strengthening a picture of optimal allocation without requiring 

an inactive pool of ribosomes for the majority of growth conditions. We discuss the topic of inactive 

ribosomes further in Appendix 1 - Inactive ribosomes.

Low- dimensional allocation models have further been used to study growth beyond exponential 

growth in steady conditions. Particularly, Erickson et al., 2017 formulated an allocation model to 
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analyze growth when the abundance of the major growth supporting carbon source rapidly changes 

(up- and downshifts). Their approach utilizes (and enforces) linear phenomenological relations 

describing ribosomal and metabolic protein content observed during steady- state growth. As such, 

the study can describe certain transitions quite well, particularly the up- and downshift from growth 

on gluconate/glucose to growth on succinate. Korem Kohanim et al., 2018 used a low- dimensional 

modeling approach to analyze the rapid increase in growth when conditions improve (nutritional 

upshift). The modeling approach particularly allowed them to explain the rapid increase of growth 

rates, with the increase depending on observed steady- state growth rates before and after the shift. 

Mori et al., 2017 also utilized phenomenological relations and a low- dimensional allocation model 

to explore the possible benefits of maintaining a reserve of inactive ribosomes. Balakrishnan et al., 

2021a further extended the allocation modeling approach to analyze the physiological origin of long 

lag times which frequently emerge during diauxic growth on different carbon sources. These works 

illustrate that there are many approaches one can take toward rationalizing growth out of steady 

state, each with different assumptions and behaviors in various limits.

Our approach and the extensive comparison between data and theory we present confirm the 

overall logic presented by these studies: growth transitions are largely determined by the way cells 

coordinate translation and gene expression during the shift. However, our approach is different 

in scope as the core of our model is the tRNA- dependent control of allocation as fundamental 

regulation scheme, rather than relying on linear phenomenological relations to describe the 

‘regulatory function.’ This allows us to rationalize the emergence of many growth behaviors without 

assuming specific relations between growth rate and physiological quantities as a starting point. 

Furthermore, we also caution against the common assumption in these models that the offset in the 

approximately linear relation between steady growth rate and ribosome content represents inactive 

ribosomes which changes the overall perception of how cells operate to efficiently grow in steady 

conditions and when environments change (see discussion in Appendix 1 - Inactive ribosomes)

More recently, low- dimensional allocation models have further been extended to investigate 

additional aspects of cell physiology beyond biomass accumulation and growth. For example, 

Roy et  al., 2021 explicitly considered the relationship between protein and RNA synthesis and 

the interesting question how different autocatalytic cycles like those involved in protein and RNA 

synthesis have to be coupled to promote growth. We discuss in Appendix more specifically the role 

of RNA synthesis and why we refrained from modeling it explicitly. Additional studies have also 

extended the allocation framework to explicitly consider cell- size control and proteins involved in 

division (Serbanescu et al., 2020; Bertaux et al., 2020); however, a consistent description of growth 

and cell size is still missing and part of ongoing research efforts.

The major simplifications of low-dimensional allocation models and why 
they might work
Cells are highly complex entities containing thousands of molecular players which interact in myriad 
ways varying over space and time. The allocation models boldly simplifies this reality. Some of the 
most important simplifications are:

1. All cells as being treated as identical and encountering the same condition, including the nutri-

ents which they consume to build new cellular material.

2. Cells are not treated individually but the overall biomass is considered. As such, the approach 

ignores considerations of cell division and variations in cell physiology throughout the cell cycle.

3. Rather than considering the abundance of thousands of unique protein species within a cell, allo-

cation models take a coarse- grained view of the composition of the proteome where proteins 

are pooled together. We pool specifically proteins being either ribosomal (i.e., synthesizing 

new protein from precursors such as charged- tRNA), metabolic (i.e., synthesizing precursors 

from nutrients), or being involved in other biological processes required for cellular growth and 

survival Figure 1—figure supplement 1.

Here we summarize our view of why some of the low- dimensional allocation models can develop 
such a predictive power despite all these major simplifications.

As mentioned, the low- dimensional allocation framework is completely ignorant to (i) the spatial 

arrangement of processes across the cell and (ii) neglects the existence of cells as a whole. Instead, 
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the description only considers the change of total protein biomass of the system (i.e., culture) 

over time. Despite this objectively major simplification, the model quantitatively predicts growth 

phenotypes across a broad range of conditions, as we presented in the main text. Remarkably, this 

is accomplished with one core set of parameters (such as the maximal speed of translation) which 

remains fixed across conditions. This is a surprising result given that cell size and the spatiotemporal 

arrangement of cellular components are known to be highly dependent on conditions, which also 

should affect major model parameters (such as the maximal speed of translation). The finding that 

the model can nevertheless capture observations across conditions thus suggests to us that many 

cellular processes, including those involved in cell size control, are highly coordinated by the cell 

such that translation and metabolism work efficiently and can be captured by simple rate equations; 

it is the complexity of the cellular machinery which allows us to formulate a simple but predictive 

model of growth.

To further illustrate this point, we consider specifically the density of macromolecules within the 

cell which strongly informs the rates of myriad biochemical reactions. A density that is too large, 

for example, will strongly hamper diffusion and thus slow many reaction rates, while a low density 

generally reduces binding rates (Delarue et al., 2018; van den Berg et al., 2017). Cells are thus 

expected to maintain macro- molecular density ranges within narrow ranges to operate efficiently 

(van den Berg et al., 2017). Experimental studies support this idea. For example, mass densities 

in E. coli appear stay within narrow ranges across growth conditions (Oldewurtel et  al., 2021). 

Complex biophysical processes appear to also be in place to control the spatial arrangement of 

macromolecules, such as the strong mutual- exclusivity of DNA and ribosomes within the cytoplasm 

(Gray et al., 2019). If it were not for these processes, macromolecular densities and thus major 

cellular processes (like translation) would vary tremendously with growth conditions and a model 

based on simple rate equations would have very limited predictive power.

Precursors concentrations and the importance of dilution by cell 
growth
In the main text, we consider that the translation rate  γ  is dependent on the concentration of 
precursors  cpc . The tug- of- war between the metabolic processes (synthesizing precursors) and protein 
synthetic processes (consuming precursors) is what determines this value. With the protein density 
of cells being approximately constant , we consider the precursors concentration as the mass of 
precursors per total protein mass,  cpc . We describe the dynamics of this precursor concentration  cpc  as 

 

dcpc
dt = ν(cnt) MMb

M − γ(cpc) MRb
M − cpcγ(cpc) MRb

M
︸ ︷︷ ︸

dilution

,

  

(A1)

where  M  ,  MMb , and  MRb  denote the masses of the total protein, metabolic protein, and 
ribosomal protein pools, respectively. The latter term in the above equation denotes the 
decrease in the precursor concentration due to the increase in biomass; that is, this term 
considers the decrease in precursor concentration due to dilution upon a growing cell 
volume. Through a change- of- variables from  mpc  to  cpc , it mathematically follows that 

 

dcpc
dt = d

dt

(
Mpc
M

)

= 1
M

dMpc
dt − cpc

1
M

dM
dt

� �� �

dilution

.

  

(A2)

1In many previous allocation models (outlined in Section 1), it is assumed that the effect of dilution 
is negligible compared to the magnitude of metabolism and protein synthesis (Towbin et al., 2017; 
Scott et  al., 2014; Bosdriesz et  al., 2015). It is important to note, however, that the effect of 
dilution is not negligible when one considers the difference between the metabolic and translational 
processes as has been emphesized by Giordano et al., 2016 and Dourado and Lercher, 2020. 
To illustrate this further, consider Equation A1 which in steady state equates to zero. Upon some 
rearrangement we have

 ν(cnt)φMb − γ(cpc)φRb = cpcγ(cpc)φRb.  (A3)
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At steady state,  
M∗

Rb
M∗ = φ∗

Rb  and  
M∗

Mb
M∗ = φ∗

Mb.  When the effect of dilution is neglected (i.e., setting 

the right- hand side of Equation A3 equal to 0), it is required that steady state is only reached when 

the two fluxes are equal. Thus, if there is any perturbation to the precursor concentration, such as a 

sudden influx (Appendix 1—figure 1A) or efflux (Appendix 1—figure 1B) of precursors, the system 

has no recourse to re- establish a steady state (dashed lines in Appendix 1—figure 1). In the case 

where the effect of dilution is not neglected, the system relaxes back to the stable steady state (solid 

lines in Appendix 1—figure 1) as the influence of dilution increases or decreases in response to the 

change in precursor concentration.

Appendix 1—figure 1. Neglecting effect of precursor dilution results in an unstable steady state. Integrated 

dynamics of the model equations including (solid lines) and neglecting (dashed lines) the dilution of the precursors 

with increasing biomass. At time  t = 4  hr (gray vertical line), the precursor concentration is instantaneous increased 

(A) or decreased (B) by a factor of 2 and the system is allowed to respond. Neglecting the effect of dilution results 

in a monotonic increase in the precursor concentration, whereas including dilution allows a rapid return to the 

steady- state concentration.

To obtain biologically relevant analytical solutions, we thus explicitly include the dilution factor. 

Notably, keeping the dilution term around is also what allows analytical solutions to be derived 

(Giordano et al., 2016; Dourado and Lercher, 2020). In many previous studies (Towbin et al., 2017; 

Scott et al., 2014), it was necessary to include end- product inhibition as a regulatory element of the 

metabolic flux, one which we do not need to consider here. In mathematical terms, no additional 

parameters need to be included to define a dependence of the metabolic rate on the precursor 

concentration As such, the emergence of a steady state is less of a mystery: it does not require the 

integration of complex regulation schemes but readily emerges in steady environmental conditions 

and when the allocation of protein synthesis is constant.

Additional considerations relevant at slow growth
While the optimal allocation model (scenario III) can describe the observed relation between 
ribosome abundance and growth rates remarkably well for fast growth, predictions and observations 
disagree when growth rates fall below  λ < 0.5  hr-1 (Figure 1H and I). The observed values are higher 
than what is predicted by the regulation scenarios II (constant translation) and III (optimal allocation) 
which might be attributed to a range of additional aspects, including (i) the active degradation of 
proteins, (ii) a comparison with data which has not yet reached steady- state, and (iii) an increase 
in the fraction of inactive ribosomes at slower growth. Here we discuss these additional aspects 
and conclude that additional experiments are needed before extending our modeling approach to 
additionally capture very slow growth conditions.

Active protein degradation
The active degradation of proteins is an additional factor which might require a higher content of 
ribosomes than what is predicted by the model at slow growth. In formulating the allocation model, 
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we considered only protein synthesis but not degradation. Mathematically, we modeled the change 
in protein mass to depend solely on translation,

 
dM
dt = γ(cpc)MRb,  (A4)

but did not include a degradation term, for example,

 

dM
dt = γ(cpc)MRb

︸ ︷︷ ︸

synthesis

− kdegM
︸ ︷︷ ︸

degradation  
(A5)

This simplification is well justified when growth is fast since observed degradation half- lives are then 
very long compared to the timescale of growth. For E. coli, for example, measured degradation rates 

 kdeg  remain below 0.02 hr-1, substantially lower than observed growth rates (Pine, 1973). However, 
the timescales become comparable when growth is slow and an explicit consideration of protein 
degradation is needed. Furthermore, protein degradation rates appear to increase at very slow 
growth ( kdegr ≈ 0.03  hr-1 for E. coli). For a more detailed discussion of peptide degradation and its 
possible affect on the ribosome content at slow growth we refer to a recent study from Calabrese 
et al., 2021.

Observations not in steady state
Another aspect which might explain the derivation between available data and predictions is related 
to the specifics of the experimental culturing protocols: slow- growing cultures may take such a long 
time to reach steady state that the experimental measurements may not reflect the steady- state 
physiology, making an assessment of the model accuracy difficult in this regime. The experimental 
studies which we use to test our model (listed in Supplementary file 2) provide a description of the 
culturing conditions used, though the specifics of the procedure (such as culturing lengths) are given 
in broad terms. Most studies relied on a procedure more or less as follows:

1. A seeding culture is grown to exponential phase in a rich growth medium (such as LB,  λ ≈ 2  hr-1).

2. The seeding culture is diluted into the experimental medium (termed the preculture) which is 

allowed to grow ‘overnight’ (which we take to be between 12 and 18 hr) to mid- exponential 

phase.

3. The preculture is then modestly diluted into the experimental medium and allowed to grow for 

one or two doublings (≈ 1.5 generations) before measurements are made.

While this is a robust protocol to ensure that a fast- growing cultures reach steady state, step 2 
requires particular care when slow growth conditions are explored. As the seed culture is typically 
grown in rich media, the inoculum of cells will have a significantly large allocation towards ribosomes, 
such as  φRb ≈ 0.2  for a culture grown in LB. As the degradation of ribosomes is slow, this ‘bolus of 
ribosomes’ only decreases via dilution as the culture grows. For example, a poor growth medium 
which can support a growth rate of  λ ≈ 0.2  would require more than 20 hr to reach steady state 
within typical measurement errors of 0.1% (Appendix 1—figure 2A and B). Notably, this calculation 
reflects a best- case scenario where there is no growth arrest upon transfer from from the seeding 
culture to the preculture medium. In reality, long phases of growth arrest with lag- times on the order 
of hours is common (Madar et al., 2013). In conclusion, precultures have to maintained for a very 
long time, of the order of a day, when aiming for a steady- state culture in very poor conditions, 
substantially longer than what the overnight cultures commonly mentioned in the protocols would 
support.
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Appendix 1—figure 2. Effects of culturing time on observed ribosomal content at slow growth. (A) Predicted 

dynamics of equilibration to steady- state from a seeding culture with high ribosome content ( φRb ≈ 0.25 ,  λ ≈ 2.0  

hr-1,  νmax ≈ 11  hr-1) into a poor growth medium with a low steady- state ribosome content ( φRb ≈ 0.03 ,  λ ≈ 0.2  

hr-1,  νmax ≈ 0.03  hr-1). (B) The difference between the measurable ribosomal content and the steady- state value 

in the poor growth medium. Red brackets in (A) and (B) correspond to claimed culturing duration commonly seen 

in the literature. Culturing time of ‘overnight’ is taken to approximately mean 12 hr. (C) The effect of insufficient 

culturing time on the measurable ribosome content. Red dashed lines show model predictions assuming a seeding 

culture with same parameters as in (A) and (B) into different media with a range of metabolic rates. Dark to light 

colors correspond to short (8 hr) and long (48 hr) culturing conditions, respectively. Data and markers are the same 

as those shown in Figure 1.

To see how a too short preculture time could alter the predictions of our model we numerically 

integrated the flux- parity model (described in ‘Methods’) assuming a seed culture grown in LB with 

a large initial ribosome content (Appendix  1—figure 2C). From this analysis, it is plausible that 

some of the discrepancy between the model predictions and experimental measurements could 

be explained by harvesting cells before they have reached steady state. More detailed information 

would be needed (such as precise preculturing duration) to concretely assess the magnitude of this 

effect in the dataset we have assembled.
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Inactive ribosomes
Several studies have reported that microbes commonly maintain a pool of inactive ribosomes (Metzl- 
Raz et al., 2017; Dai et al., 2016; Li et al., 2018; Müller et al., 2021; Bremer and Dennis, 2008). 
In slow growth conditions, an inactive ribosome pool may promote quicker recovery once conditions 
improve, a phenomenon sometimes called a ‘spare ribosome capacity’ (Li et al., 2018; Korem Kohanim 
et al., 2018; Mori et al., 2017). In our model, we do not consider an inactive pool of ribosomes; rather, 
we assume that all ribosomes are active. However, in reality, it is likely that only 80–90% are active at 
any instant, as has been reported and assumed by many others (Forchhammer and Lindahl, 1971; 
Dennis and Bremer, 1974). In our rendering of the allocation models, this can be accommodated in 
our description of the total biomass synthesis dynamics  

dM
dt   by adding an active fraction prefactor fa as 

 
dM
dt = faMRbγ(tRNAc),  (A6)

which results in a translation of the model prediction curves by a small factor well within the 
variability of the measurements, as shown in Appendix 1—figure 3. Given that our quantitative 
conclusions are not substantively changed by inclusion of this parameter, we have opted to omit 
it for notational simplicity. This simplification that all ribosomes are active all the time might thus 
explain the derivation between the observed ribosomal content in cells and the model predictions 
when growth is very slow. However, direct evidence which supports the maintenance of an inactive 
ribosome fraction is sparse and many open questions remain. Here we summarize our perspective.

To thrive in fluctuating conditions, cells have to be capable of dynamically regulating the activity 

of ribosomes. For example, consider a strong downshift scenario where cells transition abruptly from 

very fast growth (supported by a high precursor flux) to very slow growth (supported by a much lower 

precursor flux). During the shift, a substantial fraction of the ribosomes needs to be immediately 

inactivated to avoid exhaustion of the remaining precursor pool leading to cessation of protein 

synthesis. Molecular studies have supported this hypothesis as proteins which trigger ribosome 

inactivation (termed ‘hibernation factors’) are synthesized relatively quickly to the downshift. E. 

coli, for example, uses ribosome modulation factor (RMF) among others which dimerizes ribosomes 

forming an inactive 100  s complex (Prossliner et  al., 2018). Transcriptomic analysis has further 

show that RMF is heavily expressed during a downshift or during entry into starvation, confirming 

that cells can quickly change the fraction of active ribosomes. However, while we believe in the 

important role of ribosome inactivation during downshifts, we also believe that the role of ribosome 

inactivation during steady- state growth remains much less clear. Given our current experimental 

knowledge, we challenge the idea that cells actively maintain a large fraction of inactive ribosomes 

during slow growth to be prepared for a quick growth recovery once growth conditions resume. This 

view of ‘spare capacity’ is based on the reported large fraction of inactive ribosomes during growth 

in poor growth conditions (growth rate  λ ≤ 0.5  hr-1). We see two problems with the derivation of 

this picture. First, while anticipatory behavior sounds plausible given the reported high fraction of 

inactive ribosomes, we should keep in mind that the fraction of inactive ribosomes is not based on 

direct experimental measurements. Instead, the fraction is commonly estimated by the difference 

between observed growth and measured translation rates (Dai et al., 2016), which assumes that 

measured translation rates correctly reflect the average translation rate of all active ribosomes. More 

direct measurements of active fractions are possible in principle, such as by ribosome or polysome 

profiling, but very hard to perform in practice with quantitative accuracy. Secondly, this view assumes 

that cultures have reached a steady state when the fraction of inactive ribosomes is estimated. As 

is discussed in Section 3, the time required for cultures to reach steady state is particularly long for 

poor growth conditions; for growth rates  λ < 0.5  hr-1, the times cultures need to spend in pre- culture 

states extend substantially beyond the 15–20 hr periods commonly used for overnight precultures. 

There is thus the possibility that reported inactive ribosomes in slow growth conditions are high 

because cultures are still adjusting to the encountered growth conditions, rather than being high 

because cells actively maintain a high fraction of inactive ribosomes during slow growth in steady 

conditions.

In conclusion, a quite involved combination of aspects might be at play at slow growth and we 

thus did not expand our model to better cover slow growth observations and explicitly include active 

protein digestion and inactive ribosomes. Further studies at both the experimental and theoretical 

level are needed to fully assess the role of inactive ribosomes in steady- state growth.
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Appendix 1—figure 3. Influence of a growth rate independent inactive fraction of ribosomes on model 

predictions. Data for the ribosomal mass fraction (left) and translation rate (right) observed in steady- state growth 

are shown using symbols as defined in Figure 1G. Red lines indicate the model predictions assuming an active 

ribosome fraction of 75% (dotted line), 80% (dashed- dotted line), 85% (dashed line), and 100% (solid line).

What makes the fraction of ‘other’ proteins?
In the specification of the simple ribosomal allocation model, we asserted that the entire proteome 
could be categorized into just three sectors: one for metabolic proteins, one for ribosomal proteins, 
and one for all ‘other’ proteins. In this section, we demonstrate that the precise value of  φO , the 
allocation parameter describing the synthesis of other proteins, is largely independent in predicting 
growth dynamics and we explore the experimental evidence which establishes and quantify this 
sector in E. coli.

Defining the other proteins
In this work, we assign one sector of the proteome to be composed of ribosomal proteins. This sector 
is well defined and specifically contains the ≈ 50 proteins that make up the 50S and 30S subunits 
of the ribosome. It is more difficult, however, to determine what proteins are ‘metabolic’ and which 
should be classified as ‘others.’ The past decade has seen a flurry of studies leveraging modern 
proteomic methods to measure the abundances and relative concentrations of the thousands of 
protein species which constitute bacterial cells (Schmidt et al., 2016; Peebo et al., 2015; Li et al., 
2014; Valgepea et al., 2013; Mori et al., 2021). Schmidt et al., 2016, for example, measured the 
absolute abundances of 2041 individual proteins in E. coli across 22 growth conditions. This data set, 
coupled with the mountain of functional annotation available for E. coli (Parker et al., 2020), allows 
us to explore how different biological processes scale with the steady- state growth rate.

One method to do so is through Clusters of Orthologous Groups (COGs)(Galperin et al., 2021), 

which groups genes by their annotated functions into distinct ‘classes’ of proteins. Appendix 1—

figure 4A shows the protein sector mass fraction for all proteins involved in ribosomal structure 

and biogenesis (gold; COG class J), general metabolism (purple; COG classes P, H, F, E, G, C), and 

all other processes (black; COG classes X, O, U, W, Z, N, M, T, V, Y, D, B, L, K, A, R, S). Exploring 

how the mass fractions of these very general annotations scale with growth rate reveals a strong 

anticorrelation between ribosomal and metabolic genes, with an approximate constant fraction of 

‘other” proteins. One approach is to rely on this annotation to determine the magnitude of the 

allocation towards other proteins and take  φO ≈ 0.3 .
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Appendix 1—figure 4. Different classification strategies of ‘other’ proteins. (A) Classification of proteins in mass 

spectrometry data (Schmidt et al., 2016) by their COG classification. ’Metabolism’ includes all transport and 

metabolic processes (COG letters: P,H,F,E,G,C Maitra and Dill, 2015). (B) Classification of ‘other’ proteins by their 

growth rate dependence. Other proteins are defined as those with a Pearson correlation coefficient between –0.5 

and +0.5. (C) The composition of each correlation- defined sector for one condition are shown as doughnut plots. 

Colors correspond to the COG classifications shown in (A) and circled numbers correspond to labeled points in (B).

An alternative approach is to determine how the abundance of each individual protein changes 

with the steady- state growth rate. For each protein in the data of Schmidt et al., we computed the 

Pearson correlation coefficient between the proteome mass fraction of each individual protein and 

the growth rate with Pearson’s  r  values of –1.0 and 1.0 showing perfect anticorrelation and correlation, 

respectively. With a measure of the correlation, we made the somewhat arbitrary decision that any 

protein with a Pearson’s  r  between  −0.5 < r < 0.5  to be classified as ‘constant,’ having weak or no 

correlation with the growth rate at all. Appendix 1—figure 4B shows the results of this classification. 

Here, it appears that the constant (black points) sector hovers around a mass fraction of ≈0.5, another 

candidate value for  φO . To see if this classification scheme was reasonable, we examined what COG 

classes were represented in each sector defined by the Pearson correlation. Appendix 1—figure 

4C shows a representative breakdown of each sector by the same COG classification as used in 

(A). Here, it becomes clear that metabolic proteins dominate both the ‘constant’ and ‘negatively 

correlated’ classes, whereas the ‘positively correlated’ sector contains predominantly ribosomal 

proteins. This illustrates that there exists a sizeable pool of proteins whose relative abundance is 

largely independent of growth rate, despite their classification as being involved in metabolism.

This exploration highlights a subtle yet important point in the classification of the proteome 

into sectors. While in the main text we specify proteins as being involved in metabolism or protein 

synthesis, we really mean that they can be classified as having a dependence on the growth rate, 

whether it be positive or negative. Hui and colleagues (Hui et  al., 2015) recently explored in 

great depth how the E. coli proteome can be broken into six or seven sectors which have different 

correlations with the growth rate under different types of limitation. In this work, they arrived at 

an estimation that approximately one- half of the proteome is growth rate independent ( φO = 0.55 ) 

under the many conditions they examined. This value agrees with the simple growth- correlation 

classification presented above and we thus taken here  φO = 0.55  for E. coli. However, as we describe 

in the following section, the predictions made by our model is largely independent on the precise 

value of this parameter.

Neglecting the other proteins
In Equation 7 of the main text, we define the mass dynamics of the protein sectors ( MRb ,  MMb , and  MO ) as 

 
dMRb

M = φRb
dM
dt ; dMMb

dt = φMb
dM
dt ; dMO

dt = φO
dM
dt ,  (A7)

where  φRb ,  φMb , and  φO  denote allocation parameters for ribosomal, metabolic, and ‘other’ proteins, 
respectively. We further introduce the constraint that these three classes make up the entire 
composition of the proteome, meaning that
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 φO + φRb + φMb = 1.  (A8)

As the majority of the predictions of this work are dependent on the allocation towards ribosomes, 
we can alternatively define the metabolic allocation factor given Equation A8 as

 φMb = 1 − φRb − φO.  (A9)

Thus, so long as the values of  φRb  and  φO  are known, the value of  φMb  follows and thus the maximal 
metabolic output  N  can be defined as

 N = νmaxφMb = νmax
(

1 − φRb − φO
)

,  (A10)

where  νmax  is the maximum metabolic rate for that particular condition and composition of the 
metabolic sector. However, suppose we didn’t know the value of  φO  and only knew  φRb . In this 
case, we could further reduce the dimensionality of the proteome by stating that all of the proteins 
are either ribosomal or are not ribosomal. In this case, the allocation parameters for this scenario 
become

 φ
†
Mb + φRb = 1 ; φ

†
Mb = 1 − φRb,  (A11)

where the new metabolic allocation parameter includes an unknown ‘other’ allocation such that

 φ
†
Mb = φMb + φO.  (A12)

It then follows that the maximal metabolic output given this allocation  N†  is calculated as

 N† = ν
†
maxφ

†
Mb = ν

†
max

(

1 − φRb
)

.  (A13)

This structuring implies that the metabolic outputs are different whether one knows  φO  or not. 
However, these two scenarios can be made equivalent by a simple rescaling of the metabolic rate 

 νmax . Setting Equation A10 and Equation A13 to be equivalent and solving for the metabolic rate 

 νmax  where  φO  is known yields

 
νmax = ν†

max
(

1−φRb
)

(

1−φO−φRb
) .

  
(A14)

Thus, one can achieve quantitatively identical predictions between the scenario where  φO  is known 
and that where  φO  is unknown by a simple rescaling of the metabolic rate,  νmax . While this serves as 
a contrived example, it reveals that our estimation of  φO  having a constant allocation  φO = 0.55 , as 
has been inferred from mass spectrometry studies (Hui et al., 2015) (see previous paragraph), to 
be largely inconsequential for the predictions made in this work. However, there are some scenarios 
where the precise value of  φO  does become important (such as in the case of excess protein stress).

Inactive ribosomes are not needed to describe the linear relation 
between ribosome content and growth rate
In their simplest form, allocation considerations assume cells optimally control ribosome content 
such that protein synthesis by ribosomes occurs with a fixed translation speed or rate ( γ0 ). To have 
all ribosomes working with a constant rate, the allocation parameter  φRb  controlling the fraction 
of ribosomes in the cell must then scale linearly with the growth rate,  ϕR = γ0λ . This relation does 
not have an offset: at the extreme limit where metabolic proteins are hardly supporting any growth 
( λ → 0 ), this linear scaling implies that the ribosome content drops to zero ( φRb → 0 ). However, this 
notion appears to disagree with experimental observations. When a linear regression is performed 
on the ribosomal content data (solid line in Appendix 1—figure 5) as has been done in other studies 

(Scott et al., 2010), one yields an “offset”,  φ
(min)
Rb  , yielding a linear relation of
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Appendix 1—figure 5. Linear regression on data and optimal allocation model in fast- growth regime yields 

comparable offsets. Data in right- hand panel corresponds to the same measurements used in the main text 

but restricted to only those data where the growth rate is  λ ≥ 0.5  hr-1. A simple linear regression (using the 

SciPy python library) was performed on this data (solid black line) to yield a slope of  ≈ 0.1  hr-1 and an intercept 

of  φ
(min)
Rb ≈ 0.05 , in line with parameter estimates from previous work (Li et al., 2014). Restricting the model 

predictions to growth rates  λ ≥  0.5 hr-1 yields a linear relation (dashed blue line) with a slope of  ≈ 0.1  hr-1 and an 

intercept of  φ
(min)
Rb ≈  0.02.

 ϕ∗

Rb = ϕ
(∗,min)
Rb + γ0λ.  (A15)

Previous phenomenological studies have thus rationalized this offset as a growth- rate- independent 
abundance of inactive ribosomes which are not involved in translation (Scott et  al., 2010; Mori 
et al., 2017). However, later measurements have confirmed that the translation rate is decidedly not 
constant and in fact increases with the growth rate, asymptotically approaching a maximal value (Dai 
et al., 2016). In Dai et al., 2016, the authors use this observation to hypothesize that most of the 
ribosomes remains active as long as growth rates are not slow ( λ ≥ 0.5  hr-1). Consistent with this idea, 
our rendering of the optimal allocation model (scenario III in the main text) explains why this offset 
emerges from a linear regression without the introduction of any inactive ribosomes.

The strong correlation between the ribosomal content and bulk growth rate has long been hailed 

as a linear relation; however, there is no a priori rationale behind stating it must be linear. In fact, our 

optimal allocation model results in a nonlinear, yet still monotonically positive, correlation between 

the ribosomal content and the growth rate. While nonlinear, it is approximately linear in the regime 

of fast growth,  λ ≥ 0.5  hr-1. Extending this approximately linear behavior yields a slope and an offset 

(dashed line in Appendix 1—figure 5) which is comparable to the empirically observed offset.

The fundamental reason for this observation is that a close- to- maximal translation rate requires 

very high precursor concentrations which are very resource demanding to sustain. In our model, 

this is described by a translation rate which is only met when the precursor concentrations  cpc  are 

substantially higher than the Michaelis–Menten constant  K
cpc
M  . These dependence can be further 

explored via the interactive versions of the manuscript figures at our paper website (cremerlab. 

github.io/flux_parity).

Application of the model to Saccharomyces cerevisiae
In the main text, we evaluated the model predictions by direct comparison with observations 
for E. coli, as appropriate data for this model organism is highly abundant. However, the model 
predictions should be applicable more broadly to any microbial organism whose growth rate is 
primarily dependent on the synthesis of protein biomass. The budding yeast S. cerevisiae is one 
such microbe where our approach may be applied and used to quantitatively explore aspects of 
eukaryotic microbial physiology, and we here provide a parameterization of our model.
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We first surveyed the literature to identify and assign a priori values to the major model 

parameters, which are listed in Supplementary file 3. Of particular note is the substantial difference 

between E. coli and S. cerevisiae in the proteinaceous mass of a single ribosome ( mRb = 7459  AA 

and  mRb = 11984  AA, respectively) and the reported maximum translation speed ( vtl,max ≈ 20  AA/s 

and  vtl,max ≈ 10  AA/s, respectively) which lead to a substantial difference in the maximum translation 

rates ( γmax = vtl,max/mRb ). We further note that the fraction of the proteome occupied by the ‘other’ 

protein class has not received sufficient characterization in yeast. However, this is not of relevance 

when comparing model predictions and data during steady- state growth as a variation of  φ0  merely 

leads to a rescaling of the maximum metabolic rate  νmax  which we vary anyway to scan growth rates 

(see Section 5).

To evaluate the applicability of our model, we further explored the S. cerevisiae literature for 

basic physiological measurements including ribosomal content and translation speeds across growth 

conditions. To our surprise, we found that these fundamental physiological quantities have been 

scarcely measured, despite S. cerevisiae being a heavily characterized model organism. This is true 

particularly for the translation speed, for which there are only four or five reported measurements. 

Nevertheless, we assembled a collated data set from 10 independent studies that we were able to 

find and appropriately vet and compared their values to the model predictions (Supplementary file 

4).

Specifically, we evaluated the regulatory scenarios II and III in which the translation rate is either 

held constant at  ≈ 90%  of its maximum value or the allocation towards ribosomes is tuned such that 

growth rate is optimized (Appendix 1—figure 6). While the paucity of the data precludes us from 

making any concrete assessments, it is plausible that S. cerevisiae also follows an scheme of optimal 

regulation of ribosomal allocation (scenario III, blue line). More study is needed, particularly of the 

growth rate dependence of translation speed, to evaluate the applicability of this approach to yeast.

Appendix 1—figure 6. Comparison of model predictions to data from Saccharomyces cerevisiae. (A) List 

of literature sources reporting measurement of ribosomal content and/or translation speed measurements. 

Experimental data for (B) ribosomal content and (C) translation speed are shown as function of growth rate. Green 

and blue lines correspond to model predictions for scenarios II and III, respectively, using the model parameters 

defined in Supplementary file 3. For scenario II, a constant translation rate of 90% of  vtl,max  was used.

Parameter dependence of the flux-parity model
In the main text, we present a solution of the flux- parity model which nearly identically matches 
the solution for scenario III in which optimal allocation was ensured by hand (Figure 2, Figure 3A- 
C). Here, we discuss the parametric sensitivity of this matching and comment on our rationale for 
choosing specific values.

In ‘Methods,’ we defined the equations of the flux- parity model. In comparison with the simplistic 

model where the allocation towards ribosomes is a parameter, we have introduced two Michaelis–

Menten parameters ( K
tRNAu

M   and  K
tRNAc

M  ), one ppGpp- specific sensitivity parameter ( τ  ) and a maximal 

uncharged- tRNA synthesis rate ( κmax ). While we can use in vivo and in vitro studies for estimates of 

these parameters, it is useful to explore how sensitive the model predictions are to precise values.
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We first explore how different combinations of parameter values for the Michaelis–Menten 

constants impact the predictions. We chose to evaluate the steady- state conditions of the flux- parity 

model for pairwise combinations of a range of  KM  values spanning three orders of magnitude from 

 ≈ 10−5  (≈20 µM) to  ≈ 10−2  (≈20 mM), which covers typical physiological ranges of Michaelis–Menten 

constants. With the steady- state solutions in hand, we the computed the absolute difference in 

the steady- state allocation towards ribosomes  φRb  from that predicted by the optimal allocation 

(scenario III) of the simple allocation model where allocation parameters are set by hand [Fig 7(A)]. 

Mathematically, this is defined as

 
∆φRb =

∣

∣

∣
φ

flux-parity
Rb − φ

(III)
Rb

∣

∣

∣
.
  

(A16)

We found that the precise value of either Michaelis–Menten parameter was less important than 
their relative values. In fact, we found that a near identical match to the optimal allocation emerged 

when the parameters were of approximately equal value,  K
tRNAu

M ≈ KtRNAc

M  . This makes sense from a 
theoretical perspective as both metabolism and translation are feeding into each other’s precursor 
pools. If one  KM  was significantly larger than another, the sensitivity of the ppGpp system to the 
charged- to uncharged- tRNA ratio would also need to be significantly adjusted to accommodate 

the drastically different kinetics. At particularly large values ( K
tRNAc

M ≈ KtRNAu

M ≈ 10−3
 ), this one- to- one 

ratio breaks down with an optimal solution emerging when  K
tRNAu

M > KtRNAc

M  . However, this difference 

is small and maintaining a  K
tRNAu

M ≈ KtRNAc

M   deviates from the optimal allocation by  ≤ 1% .

Like the Michaelis–Menten constants, there is also a strong interdependent relationship between 

the value of the uncharged- tRNA synthesis rate  κmax  and the ppGpp sensitivity parameter  τ  , which 

sets the charged- to uncharged- tRNA ratio at which  φRb  is half- maximal. We also did a wide pairwise 

parameter value scan over the range  τ ∈ [10−5, 10]  and  κmax ∈ [10−5, 1]  hr-1, which spans reasonable 

physiological values [Appendix 1—figure 7(B)]. We again see a region of parameter space where 

the precise values are largely unimportant, so long as the magnitude of  τ   is approximately three 

times larger than  κmax . At particularly low values of  κmax  ( ≤ 10−4
  hr-1), this dependence again breaks 

down with  τ ≈ 1.5  yielding approximately optimal results.

Appendix 1—figure 7. Sensitivity analysis of the flux- parity model for key parameters. To demonstrate the 

sensitivity of the flux- parity model to yield approximately identical predictions to optimal allocation, parameter 

values spanning several orders of magnitude were compared for the (A) Michaelis–Menten constants and (B) the 

tRNA synthesis rate  κ  and ppGpp sensitivity parameter  τ  . Both (A) and (B) were evaluated at a single metabolic 

Appendix 1—figure 7 continued on next page
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rate  νmax = 4.5  hr-1. The absolute difference from the flux- parity determined allocation and the optimal allocation 

was computed and is shown on a logarithmic color scale from near- identical (purple) to significantly different (light 

green). All parameter values except for those being explored were kept the same as listed in Supplementary file 

1

The inverse relationship between these two parameters also makes sense from a biological 

perspective. There is only one way by which charged- tRNAs can be synthesized (via metabolism), 

but two ways in which uncharged- tRNAs can be synthesized (via translation or via transcription). 

Thus, if the transcription rate of uncharged- tRNAs is very large compared to the synthesis rate 

by translation, it becomes difficult for the charged- to uncharged- tRNA ratio to become  ≥ 1 . To 

appropriately adjust the allocation towards ribosomes  φRb ,  τ   must be at a lower value to remain 

responsive to changes in the charged- to uncharged- tRNA ratio.

This sensitivity analysis demonstrates a large amount of parametric degeneracy in the flux- parity 

allocation model. Thus, there is a large parameter space of physiologically feasible values where 

flux- parity can operate to effect an optimal allocation strategy. This degeneracy suggests that an 

optimal allocation strategy could more easily evolve once the basic regulation strategies are in 

place as it does not rely on the simultaneous fine- tuning of every parameter describing the different 

processes. Given this degeneracy, one can also reduce the dimensionality of the model even further 

by asserting that the  KM ’s must be approximately equal,

 K∗

M = KtRNAu

M ≈ KtRNAc

M   (A17)

and that the magnitude of  κmax  must be one- third that of the sensitivity parameter  τ  ,

 κmax ≈
τ

3
1
hr .  (A18)

While this reduces the flux- parity model to only four critical parameters ( τ  ,  K
∗

M ,  γmax , and  νmax ), we 
chose to keep all parameters independent and assigned their values as described in Supplementary 
file 1.

Flux-parity prediction of total tRNA abundance
A centerpiece of the flux- parity ribosomal allocation model is the separation of the precursor 
pool into species of charged- and uncharged- tRNA, the concentration ratio of which defines the 
ribosomal allocation as well as the total tRNA content (tRNAc+tRNAu). To further test the veracity of 
the flux- parity model, we can compare the predicted steady- state concentrations of total tRNA to 
those reported in the literature. Specifically, the amount of total tRNA relative to the total number of 
ribosomes, the results of which are shown in Appendix 1—figure 8. We believe that the predicted 
abundance of tRNA relative to the predicted ribosome content modestly agrees with quantitative 
measurements, but not to the level of accuracy found in all other comparisons in this work.

Appendix 1—figure 7 continued
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Appendix 1—figure 8. Literature measurements for the number of tRNA molecules per ribosome in steady- state 

growth. Glyphs are shown with connecting lines to more clearly demonstrate the observed trend in each dataset. 

Red dashed- line represents the estimated tRNA abundance per ribosome resulting from the flux- parity allocation 

model.

It is important to note, however, that there is a large amount of uncertainty that is present in 

these types of measurements (quantitative limitations discussed in Reue, 1998). Furthermore, 

there remains quantitative disagreement between studies that directly measure total tRNA content 

(Skjold et  al., 1973; Dong et  al., 1996; Forchhammer and Lindahl, 1971) with the calculated 

abundance (Bremer and Dennis, 2008). In the latter, the tRNA per ribosome ratio was calculated 

following a number of assumptions, namely, a growth- rate independent factor of total RNA that is 

tRNA (see table 1,  fs, ft , and table 2, note  q  in Bremer and Dennis, 2008). As the majority of stable 

RNA is rRNA, the assumption of this constant factor a priori enforces a growth rate- independent 

value for the total number of tRNA per ribosome. Due to the disagreement between these reported 

values, the large degree of measurement uncertainty, and the approximations needed to convert our 

tRNA- concentration and total ribosomal mass based model, we emphasize that further quantitative 

measurements are needed to accurately assess these model predictions.

Estimating the number of ribosomes within the cell
In the main text, we make the assertion that the accumulation of biomass is dependent on two 
factors: (i) the number of ribosomes present in the cell and (ii) the speed at which they make peptide 
bonds. Here we clarify how we estimate the number of ribosomes in the cell.

Ribosomal assembly is an impressively complex process in which ≈ 50 individual proteins and 

three large rRNAs self- assemble into two major subunits with high efficiency (Reuveni et al., 2017). 

In this work, we thus assume that assembly is instantaneous with the total number of ribosomes 

given by the total mass of ribosomal proteins,  MRb/mRb , where  mRb  is the proteinaceous mass of a 

single ribosome. In reality, ribosomes can only begin translation once they are assembled. Therefore, 

a proper accounting of the mass of functional ribosomes is

 
NRb =

⌊

MRb
mRb

⌋

≤
MRb
mRb

,
  

(A19)

where the brackets  ⌊. . . ⌋  denote the floor function (i.e., rounding down to the nearest integer). 

Given number of ribosomes per cell is typically large (between ≈5000 and ≈20, 000 depending on 

the condition Belliveau et al., 2021), the fraction of incomplete ribosomal mass is comparatively 

small, allowing us to make the approximation

 

⌊

MRb
mRb

⌋

≈
MRb
mRb

.
  

(A20)



 Research article Microbiology and Infectious Disease | Physics of Living Systems

Chure and Cremer. eLife 2023;12:e84878. DOI: https://doi.org/10.7554/eLife.84878  51 of 52

If cells could consist exclusively of ribosomes (meaning,  MRb = M  ) which are translating at their 
maximal rate,  γmax = vtl,max/mRb , the total biomass dynamics would become

 
dM
dt = dMRb

dt = γmaxMRb,   (A21)

which can be solved as an exponential relation with a doubling time of

 
tdouble = log 2 1

γmax
= log 2 mRb

vtl,max
.
  (A22)

Notably, this approximation only holds as ribosomes consist of many short ribosomal proteins (each 
≈200–500 amino acids in size) which are quickly translated. With many different ribosomes translating, 
all ribosomal proteins required to form a novel ribosome can be translated very quickly (Reuveni 
et al., 2017). Conversely, if the proteinaceous components of ribosomes was a single protein with 
≈7500 amino acids, then the shortest doubling time would instead be the time it takes to translate 
a protein with mass  mRb  (i.e.,  tdouble = mRb/vtl,max ), and a description with a simple rate equation 
(Equation A19) would substantially overestimate protein synthesis. This is again emphasizing that 
complex cellular processes need to be in place for a simple rate equation formulation to work.

Ribosomes making ribosomes: A consideration of rRNA synthesis
The allocation model presented in the main text considers exclusively protein synthesis as the 
determinant of microbial growth. Yet, as the cell contains a substantial mass of RNA, microbes clearly 
must allocate some fraction of their ribosomes towards the synthesis of RNA polymerases (RNAP) 
such that the required RNA species (rRNA, mRNA, and  tRNAu ) can accumulate to the appropriate 
levels. This question was analyzed in more detail by Roy et al., 2021. The modeling frameowkr 
presented by the authors allows a more detailed investigation of RNA and protein synthesis and how 
these two auto- catalytic cycles are couples. However, in order to maintain a simple, low- dimensional 
modeling framework we decided to not follow such a more detailed approach. This is movitated 
by two observations. First, recent order- of- magnitude work has shown that the abundance of 
RNAP (and the corresponding  σ - factors) is not limiting for growth of E. coli across many conditions 
(Belliveau et al., 2021). Second, we here additionally show that RNA synthesis is not associated 
with a huge protein cost and RNAP synthesis (and correspondingly, RNA synthesis) has thus only a 
minor effect on the growth rate in nutrient replete conditions. We stress that the situation can be 
different in nutrient deplete conditions, for example, when phosphate to support RNA synthesis is 
limiting growth. For such scenarios, a more explicit modeling of RNA synthesis such as the approach 
introduced by Roy et al. is needed.

Ribosomal RNA (rRNA) accounts for the vast majority of RNA in the cell (≈85%; BNID: 106421 

Milo et al., 2010) and we therefore only consider the synthesis of rRNA to estimate the demand for 

RNAP. Ribosomes consist of three large rRNA species which together account for a large fraction of 

the ribosomal mass and are responsible for the catalysis of peptide bonds. It thus follows that rRNA 

accounts for a large fraction of the cellular dry mass. One may therefore expect rRNA synthesis to 

be an important determinant of the time it takes to replicate a ribosome with a strong consequence 

on growth. However, a comparison of transcription and translation speeds shows that the synthesis 

of rRNA is far more rapid. E. coli, for example, harbors three rRNAs species per ribosome (5S, 16S, 

and 23S) with a sum total length of 4566 nucleotides (nt). With a transcription speed of ≈ 40 nt/s a 

single RNAP needs only ≈115 s to synthesize these rRNAs. Given that an RNAP contains ≈4100 AA 

(significantly less than a ribosome,  mRb = 7459  AA), the synthesis of required RNAP does not require 

a large pool of resources compared to what is required to synthesize the ribosomal proteins. In 

the following, we extend this logic and calculate the required allocation of ribosomes towards the 

synthesis of ribosomal proteins and rRNA synthesizing RNAP.

To most clearly introduce the logic of the calculations, we present here only a hypothetical scenario 

in which precursor supply is unlimited and cells do not have to synthesize metabolic proteins but only 

consist of ribosomes, rRNA, and the RNAP required to synthesize rRNA. However, similar calculations 

can be performed when considering the full allocation model and the metabolic proteins required 

to supply precursors. The mass of (ribosomal) proteins  MRb  is proportional to the total number of 

ribosomes and depends on their elongation rate  γmax , which we assume in this hypothetical scenario 

to be always maximal. As we are only considering a cell with ribosomal and RNAP proteins, we can 

state that a certain fraction of the ribosomes  φRb  are synthesizing ribosomal proteins whereas the 

rest  1 − φRb  are generating RNAP. Mathematically, we can enumerate these dynamics as
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dMRb

dt = φRbγmaxMRb,   (A23)

for the ribosomal protein biomass dynamics and

 
dMPo

dt = (1 − φRb)γmaxMRb,  (A24)

for RNAP protein biomass dynamics, where  MPo  is the total mass of all RNAP.

We consider that all RNAP are synthesizing rRNA to support ribosomal biogenesis, with the amount 

of rRNA nucleotides depending on the number of RNAP ( NPo ) and the speed of transcription ( vtr ), 

 
drRNA

dt = vtrNPo ≡ κtrMPo,  (A25)

where we have defined  κtr ≡
vtr

mPo   with  mPo  being the mass of a single RNAP. As ribosomes can 
only work when a sufficient amount of rRNA is present, we next consider the number of 
rRNA nucleotides per ribosomal amino acids,  rnt = rRNA/MRb . The dynamics is then given by 

 
drnt
dt = κtr

MPo
MRb

− rntγmaxφRb.  (A26)

In steady- state growth ( drnt/dt = 0  and 
 
MPo
MRb

= 1−φ∗

Rb
φ∗

Rb  
), one obtains a quadratic equation for the fraction 

 φ
∗

Rb  with the solution:

 
φ∗

Rb = κtr
(2rntγmax)

(

−1 ±

√

1 + 4rntγmax
κtr

)

  
(A27)

For a ribosome to function, rRNA nucleotides and amino acids need to be present at a specific 
ratio,  rnt = rRNA/mRb . Taking this ratio and the known rates of transcription and translation, we can 
estimate the fraction  φRb  for E. coli yielding  φRb ≈ 0.90 . This indicates that only  ≈ 10%  of the total 
ribosome pool are needed for RNAP synthesis. It then follows that the upper bound of the growth 
rate considering the requirements of rRNA synthesis,  λ = γ(ϕRb,tot − ϕRb→RNAP) , is different from the 
exclusively proteinaceous growth rate  γφRb  by only 10%.
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