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An optimal regulation of fluxes
dictates microbial growth in and out of
steady state

Griffin Chure*, Jonas Cremer*

Department of Biology, Stanford University, Stanford, United States

Abstract Effective coordination of cellular processes is critical to ensure the competitive growth
of microbial organisms. Pivotal to this coordination is the appropriate partitioning of cellular
resources between protein synthesis via translation and the metabolism needed to sustain it. Here,
we extend a low-dimensional allocation model to describe the dynamic regulation of this resource
partitioning. At the core of this regulation is the optimal coordination of metabolic and translational
fluxes, mechanistically achieved via the perception of charged- and uncharged-tRNA turnover. An
extensive comparison with = 60 data sets from Escherichia coli establishes this regulatory mecha-
nism’s biological veracity and demonstrates that a remarkably wide range of growth phenomena in
and out of steady state can be predicted with quantitative accuracy. This predictive power, achieved
with only a few biological parameters, cements the preeminent importance of optimal flux regula-
tion across conditions and establishes low-dimensional allocation models as an ideal physiological
framework to interrogate the dynamics of growth, competition, and adaptation in complex and ever-
changing environments.

Editor's evaluation

This valuable study provides a synthesis of sector models for cellular resource partitioning in
microbes and shows how a simple flux balance model can quantitatively explain growth phenomena
from numerous published experimental data sets. The evidence is convincing, and the study should
be of interest to the microbial physiology community.

Introduction

Growth and reproduction is central to life. This is particularly true of microbial organisms where the
ability to quickly accumulate biomass is critical for competition in ecologically diverse habitats. Under-
standing which cellular processes are key in defining growth has thus become a fundamental goal in
the field of microbiology. Pioneering physiological and metabolic studies throughout the 20th century
laid the groundwork needed to answer this question (Monod, 1935; Monod, 1937, Monod, 1941,
Monod, 1947, Monod, 1966, Campbell, 1957; Schaechter et al., 1958, Kjeldgaard et al., 1958;
Cooper and Helmstetter, 1968; Donachie et al., 1976; Jun et al., 2018), with the extensive charac-
terization of cellular composition across growth conditions at both the elemental (Heldal et al., 1985;
Loferer-KréBbacher et al., 1998; Lawford and Rousseau, 1996) and molecular (Schaechter et al.,
1958; Kjeldgaard et al., 1958; Watson, 1976; Britten and Mcclure, 1962) levels showing that the dry
mass of microbial cells is primarily composed of proteins and RNA. Seminal studies further revealed
that the cellular RNA content is strongly correlated with the growth rate (Schaechter et al., 1958;
Kjeldgaard et al., 1958; Gausing, 1977), an observation which has held for many microbial species
(Karpinets et al., 2006). As the majority of RNAs are ribosomal, these observations suggested that
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protein synthesis via ribosomes is a major determinant of biomass accumulation in nutrient replete
conditions (Koch, 1988; Hernandez and Bremer, 1993; Magasanik et al., 1959). Given that the
cellular processes involved in biosynthesis, particularly those of protein synthesis, are well conserved
between species and domains (Doris et al., 2015; Davidovich et al., 2009; Bruell et al., 2008), these
findings have inspired hope that fundamental principles of microbial growth can be found despite the
enormous diversity of microbial species and the variety of habitats they occupy.

The past decade has seen a flurry of experimental studies further establishing the importance of
protein synthesis in defining growth. Approaches include modern ‘-omics’ techniques with molecular-
level resolution (Taniguchi et al., 2010, Bennett et al., 2009; Schmidt et al., 2016; Valgepea et al.,
2013; Peebo et al., 2015; Li et al., 2014, Balakrishnan et al., 2021b; Mori et al., 2021; Belli-
veau et al.,, 2021; Metzl-Raz et al., 2017; Paulo et al., 2015; Paulo et al., 2016; Xia et al., 2021;
Jahn et al., 2018), measurements of many core physiological processes and their coordination (Dai
et al.,, 2016; Basan et al., 2015; You et al., 2013; Wu et al., 2022; Di Bartolomeo et al., 2020;
Li et al., 2018; Jahn et al., 2018; Zaviel et al., 2019, Parker et al., 2020), and the perturbation
of major cellular processes like translation (Scott et al., 2010; Hui et al., 2015; Dai et al., 2016;
Towbin et al., 2017). Together, these studies advanced a more thorough description of how cells
allocate their ribosomes to the synthesis of different proteins depending on their metabolic state and
the environmental conditions they encounter, called ribosomal allocation. Tied to the experimental
studies, different theoretical ribosomal allocation models have further been formulated to dissect
how ribosomal allocation influences growth (Molenaar et al., 2009, Karr et al., 2012; Scott et al.,
2014; WeiB3e et al., 2015; Maitra and Dill, 2015; Giordano et al., 2016; Mori et al., 2017; Erickson
et al., 2017; Towbin et al., 2017; Mori et al., 2017; Korem Kohanim et al., 2018, Macklin et al.,
2020; Hu et al., 2020; Dourado and Lercher, 2020; Roy et al., 2021; Mori et al., 2021; Serbanescu
et al., 2020; Balakrishnan et al., 2021a; Balakrishnan et al., 2021b). For example, high-dimensional
models have been formulated which simulate hundreds to thousands of biological reactions (Karr
et al., 2012; Macklin et al., 2020) providing a detailed view of the emergence of distinct internal
physiological states and the underlying processes which sustain them. Alternatively, other theoretical
considerations follow coarse-grained approaches of moderate dimensionality which group different
classes metabolic reactions together and mathematizicing their dynamics (Roy et al., 2021; Hu et al.,
2020). Distinct from these is an array of extremely low-dimensional models, pioneered by Molenaar
et al., 2009, which have been developed to describe growth phenomena in varied conditions and
physiological limits that rely on only a few parameters (Molenaar et al., 2009, Scott et al., 2014;
Bosdriesz et al., 2015; Giordano et al., 2016, Towbin et al., 2017, Korem Kohanim et al., 2018,
Erickson et al., 2017; Mairet et al., 2021; Balakrishnan et al., 2021a) (a more detailed overview of
the different modeling approaches is provided in Appendix 1 - Allocation models to study microbial
growth).

In this work, we build on low-dimensional allocation models (Scott et al., 2014; Giordano et al.,
2016; Bosdriesz et al., 2015; Dourado and Lercher, 2020; Hu et al., 2020) and the results from
dozens of experimental studies to synthesize a self-consistent and quantitatively predictive description
of resource allocation and growth. At the core of our model is the dynamic reallocation of resources
between the translational and metabolic machinery, which is sensitive to the metabolic state of the
cell. We demonstrate how ‘optimal allocation’—meaning an allocation towards ribosomes which
contextually maximizes the steady-state growth rate—emerges when the flux of amino acids through
translation to generate new proteins and the flux of uncharged-tRNA through metabolism to provide
charged-tRNA required for translation are mutually maximized, given the environmental conditions
and corresponding physiological constraints. This regulatory scheme, which we term flux-parity regu-
lation, can be mechanistically achieved by a global regulator (e.g., guanosine tetraphosphate, ppGpp,
in bacteria) capable of simultaneously measuring the turnover of charged- and uncharged-tRNA pools
and routing protein synthesis. The explanatory power of the flux-parity regulation circuit is confirmed
by extensive comparison of model predictions with ~ 60 data sets from Escherichia coli, spanning more
than half a century of studies using varied methodologies. This comparison demonstrates that a simple
argument of flux-sensitive regulation is sufficient to predict bacterial growth phenomena in and out of
steady state and across diverse physiological perturbations. The accuracy of the predictions, coupled
with the minimalism of the model, establishes the optimal regulation and cements the centrality of
protein synthesis in defining microbial growth. The mechanistic nature of the theory—predicated on
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a minimal set of biologically meaningful parameters—provides a low-dimensional framework that can
be used to explore complex phenomena at the intersection of physiology, ecology, and evolution
without requiring extensive characterization of the myriad biochemical processes which drive them.

A simple allocation model describes translation-limited growth

We begin by formulating a simplified model of growth which follows the flow of mass from nutrients
in the environment to biomass by building upon and extending the general logic of low-dimensional
resource allocation models (Molenaar et al., 2009, Scott et al., 2010; Scott et al., 2014; Dai et al.,
2016; Giordano et al., 2016). Specifically, we focus on the accumulation of protein biomass, as protein
constitutes the majority of microbial dry mass (Churchward et al., 1982; Feijé Delgado et al., 2013)
and peptide bond formation commonly accounts for x80% of the cellular energy budget (Stouth-
amer, 1973; Belliveau et al., 2021). Furthermore, low-dimensional allocation models utilize a simpli-
fied representation of the proteome where proteins can be categorized into only a few functional
classes (Molenaar et al., 2009; Scott et al., 2014; Hui et al., 2015; Maitra and Dill, 2015; Dourado
and Lercher, 2020). In this work, we consider proteins to be either ribosomal (i.e., a structural compo-
nent of the ribosome, excluding ternary complex members like EF-Tu), metabolic (i.e., enzymes cata-
lyzing synthesis of charged-tRNA molecules from environmental nutrients), or being involved in all
other biological processes (e.g., lipid synthesis, DNA replication, energy generation, and chemotaxis)
Molenaar et al., 2009, Scott et al., 2010; Scott et al., 2014; Hui et al., 2015, Figure 1—figure
supplement 1; in Appendix 1 What makes the fraction of ‘other’ proteins?, we outline in more detail
how individual protein species are partitioned between the ‘metabolic’ and ‘other’ sectors depending
on their functional annotations. Simple allocation models further do not distinguish between different
cells but only consider the overall turnover of nutrients and biomass. To this end, we explicitly consider
a well-mixed batch culture growth as reference scenario where the nutrients are considered to be in
abundance. This low-dimensional view of living matter may at first seem like an unfair approximation,
ignoring the decades of work interrogating the multitudinous biochemical and biophysical processes
of cell-homeostasis and growth (Macklin et al., 2020; Karr et al., 2012; Hui et al., 2015; Grigaitis
et al., 2021; Noree et al., 2019). However, at least in nutrient replete conditions, many of these
processes appear not to impose a fundamental limit on the rate of growth in the manner that protein
synthesis does (Belliveau et al., 2021). In Appendix 1 The major simplifications of low-dimensional
allocation models and why they might work we discuss this along with other simplifications in more
detail.

To understand protein synthesis and biomass growth within the low-dimensional allocation
framework, consider the flux diagram (Figure 1A, Molenaar et al., 2009; Giordano et al., 2016;
Belliveau et al., 2021; Balakrishnan et al., 2021b; Scott et al., 2014) showing the masses of
the three protein classes, precursors which are required for protein synthesis (including charged-
tRNA molecules, free amino acids, cofactors, etc.), nutrients which are required for the synthesis
of precursors, and the corresponding fluxes through the key biochemical processes (arrows). This
diagram emphasizes that growth is autocatalytic in that the synthesis of ribosomes is undertaken
by ribosomes which imposes a strict speed limit on growth (Dill et al., 2011; Belliveau et al.,
2021; Kafri et al., 2016). While this may imply that the rate of growth monotonically increases
with increasing ribosome abundance, it is important to remember that metabolic proteins are
needed to supply the ribosomes with the precursors needed to form peptide bonds. Herein lies
the crux of ribosomal allocation models: the abundance of ribosomes is constrained by the need
to synthesize other proteins and growth is a result of how new protein synthesis is partitioned
between ribosomal, metabolic, and other proteins. How is this partitioning determined, and how
does it affect growth?

To answer these questions, we must understand how these different fluxes interact at a quantitative
level and thus must mathematize the biology underlying the boxes and arrows in Figure 1A. Taking
inspiration from previous models of allocation (Molenaar et al., 2009, Scott et al., 2010; Scott et al.,
2014; Giordano et al., 2016, Dourado and Lercher, 2020), we enumerate a minimal set of coupled
differential equations which captures the flow of mass through metabolism and translation (Figure 1B,
with the dimensions and value ranges of the parameters listed in Figure 1C and Supplementary
file 1). While we present a step-by-step introduction of this model in ‘Methods,” we here focus on a
summary of the underlying biological intuition and implications of the approach.

Chure and Cremer. eLife 2023;12:e84878. DOI: https://doi.org/10.7554/eLife.84878 3 of 52



e Llfe Research article

Microbiology and Infectious Disease | Physics of Living Systems

10 15
growth rate
A hr 1]

(A) (B) (© biomassdynamics (i) translation rate
metabolic proteins total protein biomass maximal translation rate
200N ERIIRORO | (Coc) = Tme——FE
CLu Vepe) = Ime e KT
. = y(CpC)MRb PCc M
nutrients precursors dt ! ; : [
metabolism translation - [Michaelis-Menten constant|
:
X® (i precursor dynamics
Z\,r\vg O ~ e allocation, oo m ‘ oSl | [total metabolic protein mass |
Yo @8 b NV T BB d inie sedMe oV
Y _ 3 it - M M v
[rate, Vmax ] lconcentrationgyc| [rate. 760 ] synthesis consumption dilution
. . @) allocation
rlbosoéngl PrOtzlg [allocation towards metabolic proteins |
dMgy dM Muip
— = drp—— — = OMp——
dt | dt dt dt
[allocation towards ribosomes |
T
. . —, — Po—| alloth tei
(C) Model parameters, dimensions, and values dt dt | ARomerprotens
i i . coli f . .
[parameter | [ dimensions | [E colivalue | [ reference | (D) steady-state behavior (E) steady-state behavior
®Rb dimensionless 0.05-0.25 Scott etal, 2010 20 10
Scott et al., 2010 )
¢Mb dimensionless 0.05 - 0.25 & 0.8
Belliveau et al., 2021 =45 =
¢O dimensionless 0.55 Huietal., 2015 .-E ] .§
@ £ E046
Ymax time'! 9.65 hrt Scott et al., 2010 = _E 1.0 '\T‘i é
bl O -
s = 3044
Vmax time? 0.01hrt-20hr! Scottetal, 2014 2 E
o
0.5 °
et 00.2
concentration i
80mM This study
KCPC (mass abundance m &
M equivalent) (0.03) Roeetal., 1998 0.0 0.0
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0. . .
allocation towards ribosomes allocation towards ribosomes
PRb Prb
(F) Hypothetical strategies for ribosomal allocation (G) Measurements from Escherichia coli
_ io II: allocati ioritizes translati " © Basanetal, 2015 ® Youetal,2013
scenario Il: allocation prioritizes translation rate %® Bremer & Dennis, 2008 A Albertson & Nystrom, 1994
) & B Brunschedeetal., 1977 O Coffmanetal, 1971
5_ g vma1= 90)(Ge + Kui®) @ Daietal, 2016 # Dalbow & Young, 1975
rp = Constant Vinax(Che - Kt ) - Ymax el + 1) @ Ericksonetal, 2017 O Dennis & Bremer, 1974
V¥ Forchhammer & Lindahl, 1971 > Gausing, 1972
¢ Lietal, 2014 V Hernandez & Bremer, 1993
> Lietal, 2018 O Kepes & Beguin, 1966
) = \ * Morietal., 2017 O Lacroute & Stent, 1968
(1-90) (“rmaxlfmax(l — 2Ky ) + V20 + A/ Kip YmaxVimax (Ymax — Vmax)) ® Schmidtetal., 2016 # Morris & Hansen, 1973
Ak A Scottetal, 2010 3 Pedersen, 1984
(vmax + Vmax)? = 4K4 Amaxt/max < Wuetal, 2022 ¥V Schleifetal, 1973
@ Young & Bremer, 1976 <1 Schleif, 1967
V Sietal, 2017 @ Zhu &Dai, 2019
(H) 040 steady-state behavior (1 . steady-state behavior
18
0.25
c
2 Sl
80.20 g
&= -2
z3 ¥
3 ®015 <5
x £ < 512
p —- s
: 53
c
00.1 o 10
8 =}
el
= 8
6
0.0 0.5 20

10 15
growth rate
A [hr 1]

Figure 1. A simple model of ribosomal allocation and hypothetical regulatory strategies. (A) The flow of mass through the self-replicating system.
Biomolecules and biosynthetic processes are shown as gray and white boxes, respectively. Nutrients in the environment passed through cellular
metabolism to produce ‘precursor’ molecules which are then consumed through the process of translation to produce new protein biomass, either
as metabolic proteins (purple arrow), ribosomal proteins (gold arrow), or ‘other’ proteins (gray arrow). (B) Annotated equations of the model with key

Figure 1 continued on next page

Chure and Cremer. eLife 2023;12:e84878. DOI: https://doi.org/10.7554/eLife.84878

4 of 52



e Llfe Research article

Figure 1 continued

Microbiology and Infectious Disease | Physics of Living Systems

parameters highlighted in blue. An interactive figure where these equations can be numerically integrated is provided on paper website (cremerlab.
github.io/flux_parity). (C) Key model parameters, their units, typical values in E. coli, and their appropriate references. This is also provided as
Supplementary file 1. The steady-state values of (D) the growth rate A and (E) the relative translation rate ’y(c;c)/’ymax, are plotted as functions of the
allocation towards ribosomes for different metabolic rates (colored lines). (F) Analytical solutions for candidate scenarios for regulation of ribosomal
allocation with fixed allocation, allocation to prioritize translation rate, and allocation to optimal growth rate highlighted in gray, green, and blue
respectively. (G) A list of collated data sets of E. coli ribosomal allocation and translation speed measurements spanning 55 years of research. Details
regarding these sources and method of data collation is provided in Supplementary file 2. A comparison of the observations with predicted growth-
rate dependence of ribosomal allocation (H) and translation speeds (1) for the three allocation strategies. An interactive version of the panels allowing
the free adjustment of parameters is available on the associated paper website (cremerlab.github.io/flux_parity).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Collated measurements of ribosomal mass fractions in E. coli.

Source data 2. Collated measurements of translation speeds per ribosome in E. coli.

Figure supplement 1. Coarse-grained description of biomass and the proteome.

Figure supplement 2. Precursor synthesis and growth when nutrients are not saturating.

Figure supplement 3. Modeling predictions of steady growth behavior.

Figure supplement 4. Three different allocation scenarios.

We begin by codifying the assertion that protein synthesis is key in determining growth. The
synthesis of new total protein mass M depends on the total proteinaceous mass of ribosomes Mg,
present in the system and their corresponding average translation rate v (Figure 1Bi). As ribosomes
rely on precursors to work, it is reasonable to assert that this translation rate must be dependent on
the concentration of precursors cpc such that v = v(¢pe) (Scott et al., 2014; Giordano et al., 2016), for
which a simple Michaelis—-Menten relation is biochemically well motivated (Figure 1Bii). With changing
precursor concentrations, the translation rate v varies between a maximum value Ymax, representing
rapid synthesis, and a minimum value 7y, representing the slowest achievable translation rate. In our
model, this minimum rate 7y, is zero and corresponds to the condition where there are no available
precursors to support translation. The standing precursor concentration ¢y is set by a combination
of processes (Figure 1Biii), namely the production of new precursors through metabolism (synthesis),
their degradation through translation (consumption), and their dilution as the total cell volume grows.
The synthesis is driven by the abundance of metabolic proteins My, in the system and the speed by
which they convert nutrients into novel precursors. As the metabolic networks at play are complex,
low-dimensional allocation models describe the process of metabolism using an average metabolic
rate v in lieu of mathematicizing the network’s individual components. As such, the metabolic rate is
difficult to directly measure but generally depends on the quality and concentration of nutrients in the
environment (see below, Figure 1—figure supplement 2 and 'Methods’). In the following, we focus
on a growth regime in which nutrient concentrations are saturating. In such a scenario, metabolism
operates at a nutrient-specific maximal metabolic rate v = vpax. Finally, the relative magnitude of the
ribosomal, metabolic, and ‘other’ protein masses is dictated by ¢gp, dup, and ¢, three allocation
parameters which range between zero and one to describe the fraction of ribosomes being utilized in
synthesizing the corresponding protein pools. Importantly, as ribosomes only translate one protein at
a time, the allocation parameters follow the constraint ¢gj, + ¢y + ¢po = 1 (Figure 1Biv). For readers
familiar with allocation models, we emphasize that we here use ¢y to denote allocation parameters
rather than mass fractions, Mx/M; both quantities are only equivalent in the steady-state regime.
Together, the introduced equations provide a full mathematicization of the mass flow diagram shown
in Figure 1A.

For constant allocation parameters (¢, ¢1y), @ steady-state regime emerges from this system of
differential equation. Particularly, the precursor concentration is stationary in time (cpc = c}), meaning
the rate of synthesis is exactly equal to the rate of consumption and dilution. Furthermore, the trans-
lation rate ~(cjc) is constant during steady-state growth and the mass abundances of ribosomes and
metabolic proteins are equivalent to the corresponding allocation parameters, e.g. % = ¢pp- As a
consequence, biomass is increasing exponentially ‘%” = AM, with the growth rate A = y(cpc)pg,- The
emergence of a steady state and analytical solutions describing steady growth are further discussed in
Figure 1—figure supplement 2 and Figure 1—figure supplement 3. Notably, dilution is important
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to obtain a steady state as has been highlighted previously by Giordano et al., 2016 and Dourado
and Lercher, 2020 but is often neglected (Appendix Precursors concentrations and the importance
of dilution by cell growth).

Figure 1D and E show how the steady-state growth rate A and translation rate ~(c,.) are depen-
dent on the allocation towards ribosomes ¢y,,. The figures also show the dependence on the meta-
bolic rate vmax which we here assert to be a proxy for the ‘quality’ of the nutrients in the environment
(with increasing vmax, less metabolic proteins are required to obtain the same synthesis of precursors).
The non-monotonic dependence of the steady-state growth rate on the ribosome allocation and
the metabolic rate poses a critical question: What biological mechanisms determine the allocation
towards ribosomes in a particular environment and what criteria must be met for the allocation to
ensure efficient growth?

Different strategies for regulation of allocation predicts different
phenomenological behavior

While cells might employ many different ways to regulate allocation, we here consider three specific
allocation scenarios to illustrate the importance of allocation on growth. These candidate scenarios
either strictly maintain the total ribosomal content (scenario 1), maintain a high rate of translation
(scenario Il), or optimize the steady-state growth rate (scenario Ill). We derive analytical solutions for
these scenarios (as has been previously performed for scenario lll; Giordano et al., 2016; Dourado
and Lercher, 2020; Figure 1F and ‘Methods’), and ultimately compare these predictions to observa-
tions with E. coli to show this organisms’ optimal allocation of resources.

The simplest and perhaps most néive regulatory scenario is one in which the allocation towards ribo-
somes is completely fixed and independent of the environmental conditions. This strategy (scenario |
in Figure 1F, gray) represents a locked-in physiological state where a specific constant fraction of all
proteins is ribosomal. This imposes a strict speed limit for growth when all ribosomes are translating
close to their maximal rate, y(cjc) & Yimax. If the fixed allocation is low (e.g., qﬁgz = 0.2), then this speed
limit could be reached at moderate metabolic rates.

A more complex regulatory scenario is one in which the allocation towards ribosomes is adjusted to
prioritize the translation rate. This strategy (scenario Il in Figure 1F, green) requires that the ribosomal
allocation is adjusted such that a constant internal concentration of precursors c;. is maintained across
environmental conditions, irrespective of the metabolic rate. In the case where this standing precursor
concentration is large (. > Kjj), all ribosomes will be translating close to their maximal rate.

The third and final regulatory scenario is one in which the allocation towards ribosomes is adjusted
such that the steady-state growth rate is maximized. The analytical solution which describes this
scenario (scenario Ill in Figure 1F) resembles previous analytical solutions by Giordano et al., 2016;
Dourado and Lercher, 2020. More illustratively, the strategy can be thought of as one in which the
allocation towards ribosomes is tuned across conditions such that the observed growth rate rests at
the peak of the curves in Figure 1D. Notably, this does not imply that the translation rate is constantly
high across conditions (as in scenario Il). Rather, the translation rate is also adjusted and approaches
its maximal value “max only in very rich conditions (high metabolic rates). All allocation scenarios and
their consequence on growth are discussed in further detail in Figure 1—figure supplement 4 and
the corresponding interactive figure on the paper website (cremerlab.github.io/flux_parity).

E. coli regulates its ribosome content to optimize growth

Thus far, our modeling of microbial growth has remained ‘organism agnostic’ without pinning param-
eters to the specifics of any one microbe’s physiology. To probe the predictive power of this simple
allocation model and test the plausibility of the three different strategies for regulation of ribosomal
allocation, we performed a systematic and comprehensive survey of data from a vast array quantita-
tive studies of the well-characterized bacterium E. coli. This analysis, consisting of 26 studies spanning
55 years of research (listed in Supplementary file 2 and as Figure 1—source data 1 and Figure 1—
source data 2) using varied experimental methods, goes well beyond previous attempts to compare
allocation models to data (Scott et al., 2010; Hui et al., 2015; Erickson et al., 2017; Giordano et al.,
2016; Bosdriesz et al., 2015; Hu et al., 2020; Dourado and Lercher, 2020, Serbanescu et al., 2020;
Hu et al., 2020; Roy et al., 2021, Maitra and Dill, 2015; WeiBe et al., 2015).
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These data, shown in Figure TH and | (markers), present a highly consistent view of E. coli physi-
ology where the allocation towards ribosomes (equivalent to ribosomal mass fraction in steady-state
balanced growth) and the translation rate demonstrate a strong dependence on the steady-state
growth rate in different carbon sources. The pronounced correlation between the allocation towards
ribosomes and the steady-state growth rate immediately rules out scenario I, where allocation is
constant, as a plausible regulatory strategy used by E. coli, regardless of its precise value. Similarly,
the presence of a dependence of the translation speed on the growth rate rules out scenario Il, where
the translation rate is prioritized across growth rates and maintained at a constant value. The observed
phenomenology for both the ribosomal allocation and the translation speed is only consistent with the
logic of regulatory scenario Ill where the allocation towards ribosomes is tuned to optimize growth
rate.

This logic is quantitatively confirmed when we compute the predicted dependencies of these quan-
tities on the steady-state growth rate for the three scenarios diagrammed in Figure 1F based on liter-
ature values for key parameters (outlined in Supplementary file 1). Deviations from the prediction for
scenario lll are only evident for the ribosomal content at very slow steady growth (A < 0.5 hr'"), which
are hardly observed in any ecologically relevant conditions and can be attributed to additional biolog-
ical and experimental factors, including protein degradation (Calabrese et al., 2021) and cultures
which have not yet reached steady state, factors we discuss in Appendix 1 — Additional considerations
relevant at slow growth. The inactivation of ribosomes is another such explanation, though a growth
rate-independent inactive fraction is not sufficient to explain the observations, Appendix 1 —lInactive
ribosomes.

Importantly, the agreement between theory and observations works with a minimal number of
parameters and does not require the inclusion of fitting parameters. All fixed model parameters
such as the maximum translation rate ymax and the Michaelis-Menten constant for translation K}
have distinct biological meaning and can be either directly measured or inferred from data (Supple-
mentary file 1). Furthermore, we discuss the necessity of other parameters such as the ‘other
protein sector’ ¢ (Appendix 1— What makes the fraction of 'other' proteins?), its degeneracy with
the maximum metabolic rate v, and inclusion of ribosome inactivation and minimal ribosome
content (Appendix 1— Inactive ribosomes). We, furthermore, provide an interactive figure on the
paper website (cremerlab.github.io/flux_parity) where the parametric sensitivity of these regulatory
scenarios and the agreement/disagreement with data can be directly explored. Notably there is no
combination of parameter values that would allow scenario | or Il to adequately describe both the
ribosomal allocation and the translation speed as a function of growth rate. These findings are in
line with a recent higher-dimensional modeling study (Hu et al., 2020), which, based on the optimi-
zation of a reaction network with >200 components, rationalized the variation in translation speed
with growth as a manifestation of efficient protein synthesis. Together, these results confirm that
scenario lll can accurately describe observations over a very broad range of conditions, in strong
support of the popular but often questioned presumption that E. coli optimally tunes its ribosomal
content to promote fast growth (Giordano et al., 2016, Bosdriesz et al., 2015; Towbin et al.,
2017).

In Appendix 1 - Application of the model to Saccharomyces cerevisiae, we present a similar
analysis for yeast, which, in line with previous studies (Metzl-Raz et al., 2017, Xia et al., 2021,
Paulo et al., 2015; Paulo et al., 2016; Kostinski and Reuveni, 2021), suggests that this eukaryote
likely follows a similar optimal allocation strategy, although data for ribosomal content and the
translation rate is scarce. The strong correlation between ribosome content and growth rate has
further been reported for other microbial organisms in line with an optimal allocation (Karpinets
et al., 2006; Jahn et al., 2018; Zaviel et al., 2019; Jahn et al., 2021), though the absence
of translation rate measurements precludes confirmation. An interesting exception is the meth-
anogenic archaeon Methanococcus maripaludis, which appears to maintain constant allocation,
in agreement with scenario | (Miiller et al., 2021). The presented analysis thus suggests that E.
coli and possibly many other microbes closely follow an optimal ribosome allocation behavior to
support efficient growth. Moreover, the good agreement between experiments and data estab-
lishes that a simple low-dimensional allocation model can describe growth with notable quantita-
tive accuracy. However, this begs the question: how do cells coordinate their complex machinery
to ensure optimal allocation?
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Optimal allocation results from a mutual maximization of translational

and metabolic flux
To optimize the steady-state growth rate, cells must have some means of coordinating the flow of
mass through metabolism and protein synthesis. In the ribosomal allocation model, this reduces to
a regulatory mechanism in which the allocation parameters (¢g, and ¢y) are dynamically adjusted
such that the metabolic flux to provide new precursors (v(ca)dup) and translational flux to make new
proteins (y(cpe)drp, €quivalent to the steady-state growth rate \) are not only equal, but are mutually
maximized. Such regulation therefore requires a mechanism by which both the metabolic and transla-
tional flux can be simultaneously sensed.

Thus far, we have referred to the end product of metabolism as ambiguous ‘precursors’ which
are used by ribosomes to create new proteins. In reality, these precursors are tRNAs charged with
their cognate amino acids. One can think of metabolism as a two-step process where (i) an amino
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Figure 2. The regulation of ribosome allocation via a flux-sensing mechanism. (A) A circuit diagram of interactions between metabolic and translational
fluxes with flux-parity regulatory connections highlighted in red. The fluxes are connected via a positive feedback loop through the generation of mutual
starting materials (uncharged- or charged-tRNAs, respectively). The rates of each flux exhibit semi-autoregulatory behavior in that flux through each
process reduces the standing pool of tRNAs. (B) The governing dynamics of the flux-parity regulatory circuit with key parameters highlighted in blue
and flux-parity regulatory components highlighted in red. (C) Parameters, dimensions, values, and references for each component of the flux-parity
regulatory circuit. (D) The steady-state meabolic (purple) and translational (gold) fluxes plotted as a function of the ribosomal allocation under the
simple allocation model. Vertical red line indicates the steady-state solution of the flux-parity model under physiological parameter regimes. (E) The

difference in allocation towards ribosomes in steady state between the flux-parity model and optimal allocation ((;3;;17 wxr—parity) _ d’g;l,l)) plotted as a

function of the maximal metabolic rate, Vimnax.
The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Flux-parity directs allocation parameters towards an optimum.
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acid is synthesized from environmental nutrients and (ii) an amino acid is attached to the appropriate
uncharged-tRNA. As we assume that nutrients are in excess in the environment, we make the approx-
imation that nutrients in the environment are saturating such that ¢, > Kjy and the metabolic rate
v now depends solely on the concentration of uncharged-tRNAs v(tRNA"). This enforces some level
of regulation of metabolism; if the uncharged tRNA concentration is too low, the rate of metabolism
slows and does not add to the already large pool of charged tRNA. But when charged-tRNA is avail-
able, translation occurs at a rate y(tRNA), forming new protein biomass and converting a charged-
tRNA back to an uncharged state. This process is shown by gray arrows in Figure 2A.

To describe the state-dependent adjustment of the allocation parameters (¢g, and ¢u), we further
include in this feedback loop a regulatory system we term a ‘flux-parity regulator’ (Figure 2A, red),
which controls the allocation parameters in response to relative changes in the concentrations of
the two tRNA species. Together, the arrows in Figure 2 represent a more fine-grained view of a
proteinaceous self replicating system, yet maintains much of the structural minimalism of the simple
ribosomal allocation model without requiring explicit consideration of different types of amino acids
(Bosdriesz et al., 2015), inclusion of their myriad synthesis pathways (Hu et al., 2020), or reliance on
observed phenomenology (Wu et al., 2022).

The boxes and arrows of Figure 2A can be mathematized to arrive at a handful of ordinary differen-
tial equations (Figure 2B) structurally similar to those in Figure 1B. At the center of this model is the
ansatz that the ribosomal allocation ¢g), is dependent on the ratio of charged- and uncharged-tRNA
pools and has the form

tRNA® e
or (RNA) = (1 = 6o) a2, Q)
RNAT T

where the ratio fgﬁﬁi represents the ‘charging balance’ of the tRNA and 7 is a dimensionless sensi-
tivity parameter which defines the charging balance at which the allocation towards ribosomes is
half-maximal. Additionally, we make the assertion that the synthesis rate of new uncharged-tRNA via
transcription & is coregulated with ribosomal proteins (Skjold et al., 1973; Dong et al., 1996) and
has a similar form of

RNAC

tRNAC | _ U
K (tRNA") = Kmax maat = » (2)
RNAT T

where kmax represents the maximal rate of tRNA transcription relative to the total biomass.

Numerical integration of this system of equations reveals that the flux-parity regulation is capable
of optimizing the allocation towards ribosomes, ¢gjp, such that the metabolic and translation fluxes are
mutually maximized (Figure 2D), thus achieving optimal allocation. Importantly, the optimal behavior
inherent to this regulatory mechanism can be attained across a wide range of parameter values for
the charging sensitivity 7 and the transcription rate Kmax, the two key parameters of flux-parity regu-
lation (Figure 2C). Moreover, the emergent optimal behavior of this regulatory scheme occurs across
conditions without the need for any fine-tuning between the flux-parity parameters and other param-
eters. For example, the control of allocation via flux-parity regulation matches the optimal allocation
(scenario Il above) when varying the metabolic rate vuax (Figure 2E and Appendix 1 — Parameter
dependence of the flux-parity model).

The theoretical analysis presented in Figure 2 suggests that a flux-parity regulatory mechanism
may be a simple way to ensure optimal ribosomal allocation that is robust to variation in the key
model parameters. To test if such a scheme may be implemented in E. coli, we compared the behavior
of the steady-state flux-parity regulatory circuit within physiological parameter regimes to steady-
state measurements of ribosomal allocation and the translation rate as a function of the growth rate
(Figure 3A and B). Remarkably, the predicted steady-state behavior of the flux-parity regulatory circuit
describes the observed data with the same quantitative accuracy as the optimal behavior defined by
scenario lll, as indicated by the overlapping red and blue lines, respectively.

While the flux-parity regulation scheme appears to accurately describe the behavior of E. coli, how
are metabolic and translational fluxes sensed at a mechanistic level? Many bacteria, including E. coli,
utilize the small molecule guanosine tetraphosphate (ppGpp) as a molecular indicator of amino acid
limitation and has been experimentally shown to regulate ribosomal, metabolic, and tRNA genes
through many routes, including directly binding RNA polymerase (Magnusson et al., 2005; Anderson
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Figure 3. The predictive power of flux-parity regulation in steady state. Measurements of the (A) ribosomal allocation and the (B) translation rate are
plotted alongside the steady-state behavior of the flux-parity regulatory circuit (red dashed line) and the optimal behavior of scenario Il (solid blue
line). Points and markers are the same as those shown in Figure 1G. (C) Measurements of intracellular ppGpp concentrations relative to a reference
condition (Ag & 1 hr') are plotted as a function of growth rate alongside the prediction emergent from the flux-parity regulatory circuit (red dashed
line). (D=F) Inhibition of ribosome activity via antibiotic modeled repression of translational flux. Plots show comparison with data for different media
(red shades) with the flux-parity model predictions (dashed lines). (G-I) Inhibition of metabolic and translational fluxes through excess gene expression.
(H) shows data where B-galactosidase is expressed at different levels. Different shades of red correspond to different growth media. Right-hand panel
shows collapse of the growth rates of overexpression of 3-galactosidase (squares), B-lactamase (inverted triangles), and EF-Tu (diamonds) relative to the
wild-type growth rate in different media conditions. The same set of model parameters listed in Supplementary file 2 has been used to generate the

predictions.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Collated measurements of relative ppGpp concentrations.

Source data 2. Collated measurements of excess protein mass fractions.

Figure supplement 1. Comparison of predictive capacity of flux-parity allocation between ppGpp scaling ansatzes.
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et al., 2021, Potrykus and Cashel, 2008; Potrykus et al., 2011; Imholz et al., 2020) and plays an
important role in other cellular processes, including cell size control (Biike et al., 2022). Mechanis-
tically, ppGpp levels are enzymatically controlled depending on the metabolic state of the cell, with
synthesis being triggered upon binding of an uncharged-tRNA into an actively translating ribosome.
While many molecular details of this regulation remain unclear (Magnusson et al., 2005; Anderson
et al., 2021; Potrykus and Cashel, 2008; Wu et al., 2022), the behavior of ppGpp meets all of the
criteria of a flux-parity regulator. Rather than explicitly mathematicizing the biochemical dynamics of
ppGpp synthesis and degradation, as has been undertaken previously (Bosdriesz et al., 2015; Gior-
dano et al., 2016, Wu et al., 2022), we model the concentration of ppGpp being inversely propor-
tional to the charging balance,

[ppGpp] o RNAT, 3)

encompassing the fact that processes beyond allocation use ppGpp as an effector molecule. This
ratio, mathematically equivalent to the odds of a ribosome binding an uncharged-tRNA relative to
binding a charged-tRNA, is one example of a biochemically motivated ansatz that can be considered
('Methods’) and provides a relative measure of the metabolic and translational fluxes.

With this approach, the amount of ppGpp present at low growth rates, and therefore low ribo-
somal allocation, should be significantly larger than at fast growth rates where ribosomal allocation
is larger and charged-tRNA are in abundant supply. While our model cannot make predictions of the
absolute ppGpp concentration, we can compute the relative ppGpp concentration to a reference
state [ppGpp), as

[ppGpp] _ (tRNA“/(RNA)
[(PPGPPlo  (tRNAU/RNAG) * @

To test this, we compiled and rescaled ppGpp measurements of E. coli across a range of growth rates
from various literature sources (Figure 3C and Figure 3—source data 1). The quantitative agreement
between the scaling predicted by Equation 4 and the experimental measurements strongly suggests
that ppGpp assumes the role of a flux sensor and enforces optimal allocation through the discussed
flux-parity mechanism.

The flux-parity allocation model predicts E. coli growth behavior in and
out of steady state

We find that the flux-parity allocation model is extremely versatile and allows us to quantitatively
describe aspects of microbial growth in and out of steady state and under various physiological
stresses and external perturbations with the same core set of parameters. Here, we demonstrate
this versatility by comparing predictions to data for four particular examples using the same self-
consistent set of parameters we have used thus far (Supplementary file 1). First, we examine the
influence of translation-targeting antibiotics like chloramphenicol (Figure 3D) on steady-state growth
in different growth media (Scott et al., 2010; Dai et al., 2016). By incorporating a mathematical
description of ribosome inactivation via binding to chloramphenicol (described in ‘Methods’), we find
that the flux-parity allocation model quantitatively predicts the change in steady-state growth and
ribosomal content with increasing chloramphenicol concentration (Figure 3E, red shades). Further-
more, the effect on the translation speed is qualitatively captured (Figure 3F, red shades). The ability
of the flux-parity allocation model to describe these effects without readjustment of the model and its
core parameters is notable and provides a mechanistic rationale for previously established phenome-
nological relations (Scott et al., 2010; Dai et al., 2016).

As a second perturbation, we consider the burden of excess protein synthesis by examining the
expression of synthetic genes (Figure 3G). A decrease in growth rate results when cells are forced
to synthesize different amounts of the lactose cleaving enzyme (-galactosidase in different media
lacking lactose (Figure 3H, red shades). The flux-parity allocation model (dashed lines) quantitatively
predicts the change in growth rate with the measured fraction of 3-galactosidase without further
fitting (‘Methods’). The trends for different media (red shades) quantitatively collapse onto a single
line (Figure 3I and Figure 3—source data 2) when comparing changes in relative growth rates, a rela-
tion which is also captured by the model (dashed black line) and is independent of the overexpressed
protein (symbols). This collapse, whose functional form is derived in ‘Methods,” demonstrates that
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the flux-parity allocation model is able to describe excess protein synthesis in general, rather than at
molecule- or media-specific level.

As the flux-parity regulatory circuit responds to changes in the metabolic and translational fluxes, it
can be used to explore behavior in changing conditions. Consider a configuration where the starting
conditions of a culture are tuned such that the ribosomal allocation ¢y, the tRNA charging balance
tRNAC/tRNA", and the ribosome content Mg,/M are set to be above or below the appropriate level
for steady-state growth in the environment (Figure 4A). As the culture grows, the observed ribosomal
content Mg,/M is steadily adjusted until the steady-state level is met where it directly matches the
optimal allocation (Figure 4B). This adaptation of the ribosomal content is controlled by dynamic
adjustment of the allocation parameters via the flux-parity regulatory circuit (Figure 4C). To further
test the flux-parity allocation model, we examine how accurately this system can predict growth
behavior under nutritional shifts (Figure 4D-F) and the entry to starvation (Figure 4G-I).

We first consider a nutrient shift where externally supplied low-quality nutrients are instantaneously
exchanged with rich nutrients. Figure 4E shows three examples of such nutritional upshifts (markers),
all of which are well described by the flux-parity allocation theory (dashed lines). The precise values
of the growth rates before, during, and after the shift will depend on the specific carbon sources
involved. However, by relating the growth rates before and immediately after the shift to the total shift
magnitude (as shown in Korem Kohanim et al., 2018), one can collapse a large collection of data onto
a single curve (Figure 4F, markers). The collapse emerges naturally from the model (dashed line) when
decomposing the metabolic sector into needed and non-needed components (‘Methods’), demon-
strating that the flux-parity allocation model is able to quantitatively describe nutritional upshifts at a
fundamental level.

Finally, we consider the growth dynamics during the onset of starvation, another non-steady-state
phenomenon (Figure 4G-I). Figure 4H shows the growth of batch cultures where glucose is provided
as the sole carbon source in different limiting concentrations (Bren et al., 2013) (markers). The cessa-
tion of growth coincides with a rapid, ppGpp-mediated increase in expression of metabolic proteins
(Magnusson et al., 2005; Dennis et al., 2004). Bren et al., 2013 demonstrated that expression
from a glucose-specific metabolic promoter (PtsG) rapidly, yet temporarily, increases with the peak
occurring at the moment where growth abruptly stops (Figure 41, solid gray lines). The flux-parity allo-
cation model again predicts this behavior (Figure 4, red lines) without additional fitting (‘Methods’),
cementing the ability of the model to describe growth far from steady state.

Discussion

Microbial growth results from the orchestration of an astoundingly diverse set of biochemical reac-
tions mediated by thousands of protein species. Despite this enormous complexity, experimental
and theoretical studies alike have shown that many growth phenotypes can be captured by relatively
simple correlations and models which incorporate only a handful of parameters (Schaechter et al.,
1958; Molenaar et al., 2009; Scott et al., 2010; Scott et al., 2014; Erickson et al., 2017; Korem
Kohanim et al., 2018; Bosdriesz et al., 2015; Giordano et al., 2016; Dai et al., 2016). Through
re-examination of these works, we relax commonly invoked approximations and assumptions, include
a generalized description of global regulation, and integrate an extensive comparison with data to
establish a self-consistent, low-dimensional model of protein synthesis that is capable of quantitatively
describing complex growth behaviors in and out of steady state.

Growth emerges as in previous allocation models (Molenaar et al., 2009; Scott et al., 2010;
Giordano et al., 2016) as a consequence of protein synthesis and the allocation of ribosome activity
towards (i) making new ribosomes, (ii) making the metabolic proteins which sustain the precursors
ribosomes require to translate, and (iii) making other proteins cells require to operate. An optimal
allocation which yields the fastest growth in a given condition is reached when the synthesis of precur-
sors (metabolic flux) and the consumption of precursors (translational flux) are mutually maximized,
a process we term flux-parity regulation. We analyze how such regulation can be mechanistically
achieved by the relative sensing of charged- and uncharged-tRNA via the abundance of a global regu-
lator (such as ppGpp) which diametrically affects the expression of ribosomal and metabolic genes.
Through extensive comparison with 61 data sets from 46 studies, we show that the flux-parity model
predicts the fundamental growth behavior of E. coli with quantitative accuracy. Beyond describing
the growth-rate dependent ribosomal content and translation speed for steady growth across various
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Figure 4. The predictive power of flux-parity regulation out of steady state. (A) Hypothetical initial configurations of model parameters and variables
before begining numerical integration. (B) The equilibration of the ribosomal protein content (Mg,/M). (C) Dynamic adjustment of the ribosomal
allocation parameter in response to the new environment. Green and purple colored lines correspond to the initial conditions of the culture from well
above to well below the steady-state values, respectively. Dashed red line indicates the steady-state solution. (D, E) Nutrient upshifts with increased
metabolic flux. (E) The instantaneous growth rate A; for shifts from succinate to gluconate (bright red), xylose (dark red), or arabinose (black) (Erickson
et al., 2017). (F) Collapse of instantaneous growth rate measurements immediately after the shift (relative to the preshift-growth rate) as a function

of the total shift magnitude. (G-l) Exhaustion of nutrients in the environment yields a decrease in the metabolic flux, promoting expression of more
metabolic proteins. (H) Growth curve measurements in media with different starting concentrations of glucose (0.22 mM, 0.44 mM, and 1.1 mM glucose
from light to dark, respectively) overlaid with flux-parity predictions. (I) The change in total metabolic protein synthesis in the flux-parity model (dashed
lines) overlaid with the change in expression of a fluorescent reporter from a PtsG promoter (solid lines).

The online version of this article inclu

des the following source data for figure 4:

Source data 1. Collated measurements of relative nutrient upshift magnitudes.

carbon sources, the flux-parity model quantitatively captures phenomena out of steady state (including
nutrient upshifts and response to starvation) and under externally applied physiological perturbations
(such as antibiotic stress or expression of synthetic genes). Notably, the broad agreement across data
sets is obtained using a single core parameter set which does not require any adjustment from one
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scenario to the next. As such, the flux-parity model predicts the microbial ‘growth laws,” providing
a mechanistic explanation for previous phenomenological models formulated to understand them
(Scott et al., 2010; Scott et al., 2014; Molenaar et al., 2009). The finding that these predictions
hold so well despite the overwhelmingly complex nature of the cell further highlights that biological
systems are not irreducibly complex but can be distilled to a small number of fundamental compo-
nents sufficient to capture the core behavior of the system.

As proteins commonly account for the majority of biomass in microbial organisms and the core
processes of protein synthesis are universally conserved among them, it is likely that protein synthesis
is a fundamental growth constraint across many organisms. Accordingly, flux-parity regulation may be
a very general scheme which ensures the efficient coordination of metabolic and translational fluxes
across many microbial organisms. And as our modeling approach is organism agnostic, it should be
transferable to a variety of microbes growing in nutrient-replete conditions. Indeed, other organisms
including S. cerevisiae exhibit a strict interdependence between growth rate and ribosome content
(Karpinets et al., 2006; Metzl-Raz et al., 2017), as is predicted by the flux-parity model. However,
more quantitative data on ribosomal content, translation speeds, upshift dynamics, and more need to
be acquired to fully examine the commonality of flux-parity regulation in the microbial world.

A common interpretation of previous allocation models is that cells maximize their growth rate in
whatever conditions they encounter (Bosdriesz et al., 2015; Towbin et al., 2017). Rather, we believe
flux-parity regulation only ensures optimal coordination between metabolic and translational fluxes. It
does not imply that the growth rate itself is maximized or directly sensed. In particular, the flux-parity
model does not assume that the pool of metabolic proteins is tailored to maximize the metabolic
flux and thus growth in the encountered conditions. This is in agreement with an expanding body
of evidence which shows that microbes frequently synthesize metabolic and other proteins which
are not directly needed in the encountered condition and thus impede growth. E. coli, for example,
synthesizes a plethora of different transport proteins when exposed to poor growth conditions even
if the corresponding substrates are not available, collectively occupying a significant portion of the
proteome (Belliveau et al., 2021; Schmidt et al., 2016; Hui et al., 2015, Balakrishnan et al., 2021a).
Accordingly, it has been observed that cells stop synthesizing these proteins when evolving over many
generations in the absence of those sugars (Leiby and Marx, 2014; Favate et al., 2021).

But why, then, do we observe an optimal allocation between metabolic and ribosomal proteins
when the pool of metabolic proteins itself shows this apparent non-optimal behavior? We posit here
that both behaviors emerge from the adaptation to fluctuating conditions: in contrast to the well-
defined static conditions of laboratory experiments, the continuous ebb and flow of nutrients in
natural environments precludes any sense of stability. Accordingly, the machinery of the cell should be
predominantly adapted to best cope with the fluctuating conditions microbial organisms encounter
in their natural habitats (Koch, 1971). A complex regulation of metabolic proteins is thus expected,
including, for example, the diverse expression of nutrient transporters which promote growth in antic-
ipated conditions, rather than synthesizing only those specific to nutrients that are present in the
moment (Balakrishnan et al., 2021a).

However, in those fluctuating conditions, flux-parity regulation promotes rapid growth. To illustrate
this point, we consider again a nutrient upshift in which there is an instantaneous improvement in the
nutrient conditions. We compare the predicted response via flux-parity (Figure 5A, red box) with that
predicted by a simpler step-wise regulation where the allocation solely depends on the environmental
condition (and not the internal fluxes) and immediately adjusts to the new steady value at the moment
of the shift (Figure 5A, blue box). The dynamic reallocation by flux-parity facilitates a sharp increase
in the allocation towards ribosomes (Figure 5B), resulting in a rapid increase in instantaneous growth
rate compared to the step-wise reallocation mechanism (Figure 5C), suggesting that flux-parity is
advantageous in fluctuating environments. As its regulation solely depends on the internal state of
the cell (particularly, the relative abundance of charged- to uncharged-tRNA), it holds independently
of the encountered conditions. This stands in contrast to the regulation of metabolic proteins, where
both the external and internal states dictate what genes are expressed. As a result, optimal coordina-
tion between metabolic and translational fluxes occurs ubiquitously across conditions and not only in
those that occur in natural habitats and drive adaptation. These broader conditions include steady-
state growth within the laboratory, with the ‘growth laws’ observed under those conditions emerging
as a serendipitous consequence.
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Figure 5. Flux-parity allocation as a strategy to adapt to fluctuating conditions. (A) Ribosome reallocation strategies upon a nutrient upshift. After a
nutrient upshift, cells either dynamically reallocate their ribosomes given flux-parity regulation (top, red) or they undergo stepwise reallocation from one
steady-state value to the next (bottom, blue). (B) The allocation dynamics for both strategies in response to a nutrient upshift. (C) The instantaneous
growth rate for both strategies over the course of the shift. Dashed red and solid blue lines correspond to model predictions for optimal allocation and
flux-parity regulation, respectively. (D) Cellular decision making in fluctuating environments. Upon sensing features of the environment, cells undergo a
two-component decision making protocol defining what metabolic genes should be expressed (top) and how the allocation towards ribosomes should
be adjusted to maintain flux-parity. The combination of these processes yield an increase of biomass at a given characteristic growth rate.

In summary, we view the process of cellular decision making as having two major components
(Figure 5D): (i) determining what metabolic genes should be expressed given the environmental and
physiological state and (ii) determining how ribosomes should be allocated given the metabolic and
translational fluxes. Flux-parity regulation can explain the latter but many details of the former remain
enigmatic. Additional studies are thus required to understand how the regulation of metabolic genes
depends on encountered conditions and how it is shaped by adaptation to specific habitats. However,
the ability of this theory to predict complex phenotypes across scales suggests that it can also act as a
basis to answer these questions, and thereby galvanize an integrative understanding of microbial life
connecting physiology, ecology, and evolution.

Methods

Formulating the allocation model

Here we present a step-by-step derivation of the low-dimensional allocation model we use to describe
bacterial growth. We provide additional biological motivation for its construction and highlight the
different assumptions and simplifications invoked. To maintain consistency with the literature, we

Chure and Cremer. eLife 2023;12:e84878. DOI: https://doi.org/10.7554/eLife.84878

15 of 52



e Llfe Research article

Microbiology and Infectious Disease | Physics of Living Systems

largely follow the notational scheme introduced by Scott et al., 2014 and define each symbol as it is
introduced.

Synthesis of proteins

The rate of protein synthesis is determined by two quantities: the total number of ribo-
somes Ng, and the speed v; at which they are translating. The latter depends on the concen-
tration of precursors needed for peptide bond formation, such as tRNAs, free amino acids,
and energy sources like ATP and GTP. Taking the speed v; as a function of the concen-
tration of the collective precursor pool cpe, the increase in protein biomass M follows as

I = yy(cpe)Nio- (5)

There exists a maximal speed at which ribosomes can operate, Vjj*, that is reached under
optimal conditions when precursors are highly abundant, in E. coli approximately 20 amino
acids (AA)/second (s) (Forchhammer and Lindahl, 1971). Conversely, the translation speed
falls when precursor concentrations cpc get sufficiently small. Simple biochemical consider-
ations support a Michaelis-Menten relation (Ehrenberg and Kurland, 1984; Klumpp et al.,
2013; Belliveau et al., 2021) as good approximation of this behavior with the specific form

where K7 isaMichaelis-Menten constantwith the maximum speed}}* only observedfor cpc > Kjy. The
number of ribosomes Ng;, can be approximated given knowledge of the total mass of ribosomal proteins
Mgy, and the proteinaceous mass of a single ribosome mpgy, via Ngj, & Mgp,/mpg;, (more detailsin Appendix 1
Estimating the number of ribosomes within the cell). The increase in protein biomass (Equation 5) is thus

%/I = th(CPC)A,,{*g = (cpe)MRp. (7)
The translation ratey(cpc) = vy(cpe)/mpy describes the rate at which ribosomes generate new protein.
The maximal translation rate ymax = V| /mgp, imposes a firm upper limit (Dill et al., 2011; Belliveau
et al., 2021; Kafri et al., 2016) of how rapidly biomass can accumulate, unrealistically assuming the
system would consist of only ribosomes translating at maximum rate. Notably, however, this upper
limit is not much faster than the fastest growth observed, highlighting the importance of protein
synthesis in defining the timescale of growth. For example, the maximal translation rate for E. coli is
~ 10 hr' and thus only ~4 times higher than the growth rates in rich LB media (A ~ 2.5 hr™"). Including
the synthesis of rRNA, another major component of the cellular dry mass, lowers this theoretical limit
only marginally (Kostinski and Reuveni, 2020), further supporting our sole consideration of protein
synthesis in defining growth. The difference between measured growth rates and the theoretical
limits can be mostly attributed to the synthesis of metabolic proteins which generate the precursors
required for protein synthesis, which we consider next.

Synthesis of precursors

Microbial cells are generally capable of synthesizing precursors from nutrients available in the envi-
ronment, such as sugars or organic acids. This synthesis is undertaken by a diverse array of metabolic
proteins ranging from those which transport nutrients across the cell membrane, to the enzymes
involved in energy generation (such as those of fermentation or respiration), and the enzymes
providing the building blocks for protein synthesis (such as those involved in the synthesis of amino
acids). While these enzymes vary in their abundance and kinetics, we group them all into single set
of metabolic proteins with a mass M, which cooperate to synthesize the collective pool of precur-
sors from nutrients required for protein synthesis. We make the approximation that these metabolic
proteins generate precursors at an effective metabolic rate v. In general, this rate depends on the
concentration of nutrients ¢, in the environment. This relation is canonically described by a Monod
(Michaelis—Menten) relation
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view) = V" (ke ) (®)

where vpax is the maximum metabolic rate describing how fast the metabolic proteins can synthe-
size precursors, and Kji is the Monod constant describing the concentration below which
nutrient utilization slows (Monod, 1949). Novel precursors are thus supplied with a total rate
of v(cn)My, and consumed via protein synthesis at a rate (cpc)Mgp. Translation relies on precur-
sors and, as introduced above, the translation rate ~(cpc)Mg, thus depends on the concentration
of precursors in the cell, cpe. As we do not explicitly model cell division, we here approximate
this cellular concentration as the relative mass abundance of precursors to total protein biomass.
This approximation is justified by the observation that cellular mass density and total protein
content is approximately constant across a wide range of conditions (Belliveau et al., 2021,
Martinez-Salas et al., 1981; Kubitschek et al., 1983). The dynamics of precursor concentra-
tion follows from the balance of synthesis, consumption, and dilution as the total biomass grows:

production via metabolism dilution via growth
—_—— —_—~
depe v(cn)Mpygp o Y(cpe)MRp . cpey(cpc)MRp 9
= M M M ' ©)

——
consumption via protein synthesis

While the dilution term is often assumed to be negligible, this term is critical to describe growth and
derive analytical expressions. Furthermore, we note that the precursor concentration is defined such
that the consumption of one precursor yields the addition of one amino acid to the biomass M. As we
measure proteins in units of amino acids, there is thus no conversion factor needed when describing
the consumption of precursors by protein synthesis.

Simplification of saturating nutrients

The introduced dynamics simplifies when the nutrient concentration in the environment ¢, well
exceeds the Monod constant K} as v(cr) simplifies to vmax. Steady growth for which biomass increases
exponentially readily emerges. This is the scenario we focus on in in the first half of this work. It should
be noted, however, that biologically such a scenario can only be realized temporarily as the nutrient
supply required by the exponentially growing biomass can only be sustained by the environment for
a limited amount of time. In general, the nutrient levels vary.

Consumption of nutrients in batch culture growth

The synthesis of novel precursors relies on the availability of nutrients which changes depending
on the environment. In Figure 1—figure supplement 2, we consider specifically a ‘batch culture’
scenario in which nutrients are provided only at the beginning of growth and are never replenished.
Therefore, growth of the culture continues until all of the nutrients have been consumed. The concen-
tration of nutrients in the environment is thus given as

G = e, (10

where Y is the yield coefficient which describes how many nutrient molecules are needed to produce
one unit of precursors.

Ribosomal allocation of protein synthesis

As final step of the model definition, we must describe how cells direct their protein synthesis towards
making ribosomes, metabolic proteins, or all other proteins that make up the cell (colored arrows
in Figure 1A). We do so by introducing three allocation parameters ¢gp, épp, and ¢o (such that
drp + dmp + Po = 1) which define how novel protein synthesis is partitioned among these categories:

Mgy _ 4 dM.dMys _ ,  dM.dMp _ , dM
L = Pro g Tt = P g gt = Po g - (1)
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These equations are summarized in Figure 1B and Figure 1, Figure 1—figure supplement 2 and
define the accumulation of biomass, from nutrient uptake to protein synthesis.

Approximating concentration via relative abundance

Inadditiontomaintainingthe totalmacromoleculardensities, cellsalsomaintainanapproximatelyconstant
proteindensity (Bremerand Dennis, 2008). This observation allowsforamajorsimplificationwhenformu-
lating the allocation model, namely the approximation of concentrations as relative mass abundances.
The rate v at which ribosomes can synthesize protein is dependent on the abundance of precursors,
¢pe, in the cell. To compute the concentration and/or density in typical units (e.g. uM, or mass/volume),
we would require some measure of the total cellular volume, V., such that the concentration follows

M,
Cpc = W‘:ICI’ (12)

with Mp. denoting the total mass of the precursor pool. By making the experimentally supported
assertion that the protein density p is constant, we can say that

_ M
P= Ve

= Constant, (13)
where M is the total protein biomass. Thus, the total cellular volume V,,; can be computed as
M
Veeltl = e (14)

Plugging  this  result into  Equation 12, we arrive at the  approximation

o MP"NMPC
Cpe = P30 N 1

(15)

In this work, we neglect p as a multiplicative constant and treat c,¢ as being dimensionless. We direct
the reader to Scott et al., 2010 and Milo, 2013 for a further discussion of the conversion between
concentration and relative abundance.

Derivation of analytical expressions

In the first section of this work, we present several analytical relations pertinent to steady-state growth.
These relations follow from the simple allocation model and describe (i) how the growth rate depends
on model parameters (Figure 1C) and (ii) how ribosome content depends on other model parameters
for the three different regulation scenarios we discuss (Figure 1F). Here, we introduce a step-by-step
derivation of these expressions.

Deriving the steady-state growth rate

We begin with deriving an expression for the steady-state growth rate A which is similar to previous
approaches taken by Giordano et al., 2016 and Dourado and Lercher, 2020. As discussed in
Figure 1—figure supplement 2, steady-state conditions are satisfied when two conditions are met.

First, the dynamics of the precursor concentration is constant (i.e., d;’t"' = 0) and the composition of the

proteome matches the allocation parameters (i.e., 1;‘4,1’1” = ¢pp and % = ¢yp)- Furthermore, we assume
that in steady-state growth, the concentration of nutrients in the environment is saturating (cas >> Kj¥),
meaning that v(cu) & Vmax. With these conditions satisfied, we can rewrite Equation 9 as

Y — Umaxdmp — VCh)brp — cpev(Ch)bro = O, (16)

where ¢ is the steady-state precursor concentration.
Noting that in  steady-state  conditions the total biomass increases  expo-
nentially —at a rate A =9(cpe)Pr,  Equation 16 can be  simplified to

dgﬁe = Unax®yyp, — M1+ ¢pe) = 0. 17)
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We can therefore solve for the steady-state precursor concentration ¢, to yield

Che = Lesin . (18)

Assuming a Michaelis—-Menten form for the translation rate y(c,.), we can now define it as a function
of the growth rate A as

kN Ymax Ymax
'Y(Cpc) = e — Tpc .
14 Ky (19)
pe Vmax by, — A

Knowing that the growth rate A\ = y(cpe+ )Prp,, and ¢y, = 1 — ¢pp, — 95, we say that

- Ymax Py
A= KA (20)

o . s S
This can be algebraically manipulated to yield a quadratic equation of the form
)\2 (1 — KICJI() + A (Vmax(l - Qs;éb - Q%) + ’Ymaxﬁﬁg” - ’Ymax¢1§bl’max(1 - ¢1>§17 - ¢1T/1b) =0, (21)

which has one positive root of

Vinax(1 _¢;b _¢Z)+’Ymax¢;b - \/(Vmux(l _¢;b _¢B)+’)’max¢;b)2 —4(1 _KEC )’Ymax¢;b7/mwc(l _45;1, _¢8)

A= 2(1—1<‘A'5")

(22)

For notational simplicity, we can define the maximum metabolic output and the maximum transla-
tional output as N = vimax(1 — gy — o) and I' = Ymaxprp, respectively, and substitute them into Equa-
tion 22 to generate

N+T— \/(N+F)L4 (1 46,5") NT

) : @)

A=

Defining ¢g, for scenarios Il and llI
In Figure 1F, we provide a description of three plausible regulatory scenarios microbes may employ
to regulate their ribosomal content. Scenario | assumes just a constant, arbitrary allocation parameter
orp € [0,1 — ¢pl. Here, we provide a short derivation for the more complicated relations describing
ribosomal content under scenarios Il and Il

Scenario II: Constant translation rate

The second regulatory scenario assumes that the ribosomal content is adjusted
to maintain a specific standing concentration of precursors, which we denote as
cpe- Noting that the growth rate A =~(cj)pg, We can restate Equation 18 in the form

o _ V(1= 85— b +KD)

Cpc - C;[-’Ymax(i);b (24)
Some algebraic rearrangement allows us to solve for ¢y, yielding
(1_¢2)’/max C*,-+K[p(.
bRy = (et ) (25)

Vinax (c;‘c+l<';§” ) +YmaxC; (c;r+ 1 )

This expression is equivalent to that shown for scenario Il in Figure 1F. In evaluating this scenario, we
considered the regime in which precursors were in abundance, meaning cj. > K;,”[. Under this regime,

Equation 25 simplifies further to
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(1=05)Vmax

Drp .
Vmax ( Cpet1 ) +Vmax

(26)

This represents a strategy where the cell adjusts ¢y, to maintain a translation rate very close to Ymax.

Scenario lll: Optimal allocation

In this work, we define the optimal allocation of ribosomes ¢y, to be that which maximizes the growth
rate in a given environment and at a given metabolic state. To determine the optimal ¢k,, we can
differentiate Equation 22 with respect to ¢, to yield the cumbersome expression

8)*\ = : x (27)
8¢Rb 2 (1 + KCA;C)

2ymaxvmax (1= Kyy') (205 + 6 — 1) + Ymar — Vimax) (Ymax®p, + Vmax (1 — 68 — djep)|

\/ (mas iy + vimar (1= 6% = B,))" = 4 (1= Kyy) Ymaxtmaxdi, (1 = 8 — ;)
(28)

Ymax — Vmax —

Setting this expression equal to zero and solving for ¢gj, results in

) (wm Viar (12K )+ K %mum(vm—umm) 29)

(Yax+Vmax)* — 4K Vmax Vinax

PRy =
which is the optimal allocation towards ribosomes as presented in Figure 1F.

Implementing flux-parity regulation via ppGpp
Here we expand upon and derive the equations defining the flux-parity allocation model shown sche-
matically in Figure 2A and explore its dependence on parameter values.

Formulation of model

To include ppGpp signaling into the ribosomal allocation model, we must perform two tasks. First, we
must explicitly model the dynamics of both charged- and uncharged-tRNAs. Secondly, we must tie the
relative abundances of these tRNAs to the allocation parameters such that when charged-tRNAs are
limiting and uncharged-tRNAs in abundance, the system reacts by adjusting the allocation parameters
towards ribosomal proteins and away from metabolic proteins (¢gp and ).

We consider there to be two pools of tRNAs: those charged with an amino acid (denoted as
tRNA®) and those that are uncharged (rRNA"). Rather than keeping track of the copy numbers of these
tRNAs, we instead model their concentration as relative mass abundances (relative to the total protein
biomass M), treating each tRNA to have an effective mass of one amino acid as each tRNA can in
principle be charged. Much as for consideration of precursors in the simpler model we can model the
concentration dynamics of these pools of tRNAs by considering three processes: the generation of the
tRNAs, the consumption of the tRNAs, and the effect of dilution as the biomass grows.

We begin first with modeling the dynamics of the charged-tRNA pool, tRNA°. Here, we consider
that charged-tRNAs are synthesized from one free amino acid and one uncharged-tRNA and
further assume that the pool of free amino acids is abundant enough such that the tRNA pool is
the rate limiting component. Making this assumption allows us to state that the conversion of one
uncharged-tRNA to one charged-tRNA via the metabolic machinery proceeds at a rate v(tfRNA"),
itself dependent on the uncharged-tRNA" concentration. Likewise, we consider that the conversion
of one charged-tRNA to an uncharged-tRNA is only possible via protein synthesis, which proceeds
at a rate y(fRNA®) that is dependent on the charged-tfRNA concentration. Finally, we must also
consider how the mere fact of growing biomass effectively dilutes the charged-tRNA concentration.
Together, these processes can be combined to enumerate the dynamics of the charged-tRNA pool as
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generation via metabolism reduction via dilution
—_—
JIRNAC V(tRNAY)M ~Y(tRNAS)Mgy IRNAC~(tRNA)Mpgp,
i = i - m : (30)
N—_————

consumption via protein synthesis

The dynamics for the pool of uncharged-tRNAs can be constructed in a similar manner,
with the caveat that the generation of new uncharged-tRNAs occurs from both protein
synthesis (converting one charged-tRNA into one uncharged-tRNA") and from transcrip-
tion of the individual tRNA genes. We consider the latter to occur at a rate x, which has dimen-
sions of concentration per unit time. Using the same logic of mapping the productive and
consumptive processes, we can enumerate the dynamics of the uncharged-tRNA pool as

consumption via metabolism

production via transcription c ’_/u— ¢
JRNAY ~(tRNAYMgy V(tRNAYYM tRNAY(tRNA)Mp,,
a = K A - 7 — i .
occurance via protein synthesis reduction via dilution
@31

These expressions comprehensively define the dynamics of the tRNA pool, from generation via tran-
scription to their recycling between charged and uncharged states through metabolic and translational
fluxes, respectively. As in the main text, we posit that the dynamics of the ribosomal Mg, metabolic
My, and ‘other’ M protein masses follow via the allocation parameters ¢gp,, dup, and ¢o respectively.
However, in this treatment of the model, we consider these parameters, with the exception of ¢¢, to be
dynamic and depending on the intracellular concentration of ppGpp. Mathematically, we state this as

M = dp(ppGpp) DL 3 Mt = [1 — 5 — py(ppGpp)| 4L ; Mo = oM. (32)

We are now tasked with (i) enumerating the dynamics of ppGpp and (i) assigning a specific functional
form to ¢, (ppGpp). The biochemistry of ppGpp synthesis, degradation, and binding to the transcrip-
tion machinery has been studied in E. coliamong other prokaryotes, revealing the enzyme(s) important
for this process, In E. coli RelA and SpoT. Many molecular details revealing how those enzymes control
ppGpp levels in response to the abundance of tRNA levels are known but important details also remain
puzzling (Magnusson et al., 2005; Anderson et al., 2021). Thus, while previous works have consider
the dynamics of these specific proteins in more detail (Bosdriesz et al., 2015; Giordano et al., 2016),
we here take a more coarse-grained view. Specifically, we first make the ansatz that the dynamics of
ppGpp synthesis and degradation are sufficiently fast compared to the timescale of protein synthesis
such that it can be treated as being in steady-state instantaneously. Secondly, we take the concentra-
tion of ppGpp to be inversely proportional to the relative abundance of charged- to uncharged-tRNAs,

ppGPp X - (33)

IRNAW

This is a well-motivated starting point as in E. coli, ppGpp is primarily synthesized via RelA when an
uncharged-tRNA enters the A-site of a translating ribosome, forming a stalled complex. As binding of
a charged-tRNA or an uncharged-tRNA is a competitive process, the probability of one or the other
being bound is dependent on their relative concentrations, rather than the absolute concentrations
of either species. However, other processes which affect ppGpp levels, including the synthesis and
degradation by SpoT in relation to ribosome activity, are less well understood (Srivatsan and Wang,
2008). Accordingly, we consider our approach to describe ppGpp as inversely proportional to the
relative abundance of charged- to uncharged-tRNAs as a motivated ansatz rather than a fully estab-
lished biochemical relation. And we furthermore show below that this ansatz works much better for
describing the experimental observations as a few different ones we probed.

Given the relation between ppGpp and tRNA charging ratio, Equation 33, we can now define the
allocation towards ribosomes to be a function of the tRNA charging ratio, ¢g;, (%). To assign a

specific functional form to this relation, we assume that the expression of ribosomal genes is in first
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order described by a simple binding kinetics of ppGpp to the transcriptional machinery and the allo-
cation towards ribosomes follows a form similar to that of a Michaelis—-Menten relation,

RNA®

ors (N4 ) = (1 = p0) i (34)

iRNAT TT

Here, the parameter 7 represents the value of the charged- to uncharged-tRNA ratio where ¢gy, is
at its half-maximal value. The maximal value itself depends on the magnitude of ¢, the allocation
towards other proteins, which we are considering to be independent of ppGpp; %’fx) =1-— ¢o.

The transcription of tRNA genes towards novel tRNA synthesis has also been shown to be regu-
lated with ppGpp, appearing to closely match the regulatory behavior of ribosomal proteins (Jinks-
Robertson et al., 1983). We therefore model that the tRNA synthesis rate & (introduced in Equation
31) is similarly modulated by the charged- to uncharged-tRNA ratio,

IRNA®

o (AT ) = o B (35)
wNAT T

Here, fmax is the rate of tRNA transcription when all tRNA genes are fully saturated with RNA
polymerase in rich growth conditions where gene dosage is high. Finally, we must establish functional
forms for the tRNA dependencies on the metabolic and translation rate. Simple biochemical assump-
tions permit a formulation of a Michaelis—-Menten function for each rate. Noting that the translation
rate v is defined as v = YL, where v, is the translation speed and mpy, is the proteinaceous mass of a

mgp’
single ribosome, we take v(tRNA®) to be of the form

(max)
Vi

tRNA® (36)

cy —
Y(RNA®) = MRp tRNAC_'_K(AfIRNAf)’

where vglm“") is the maximum translation speed and K(Af,RNA) is the Michaelis-Menten constant. A

similar argument can be made for the dependence of the metabolic rate v on the uncharged-tRNA
concentration,

uy _ __tRNA"
I/(ZRNA ) = Vmax [RNA"-FK'(A;RNA’I) } (37)

with K(AZRNAM) being another Michaelis-Menten constant. Together, Equations 30-37 mathematically
describe a model for ppGpp-dependent regulation of translational and metabolic fluxes.

In principle, an analytical solution for this system of ODEs can be found, though it precludes eval-
uation by hand and is computationally intensive. While we do not solve this system of ODEs analyt-
ically here, we can numerically integrate them to sufficiently approximate the steady-state behavior.
Depending on the choice of parameter values, such an approach can yield an allocation scenario
nearly indistinguishable from that of the optimal allocation scenario (scenario Ill) of the simple model
(Figure 1H and ).

Optimal allocation emerges from flux-parity regulation

While the previous section lays out the mathematics of the flux-parity model, we now discuss how
this regulation scheme can lead to an optimal allocation. Towards this goal, we first discuss in more
detail what we mean when we say ‘flux-parity.” As described in the main text, we define flux-parity as
a balance and mutual maximization of (i) the flux of uncharged-tRNAs through metabolism (termed
the metabolic fluxJy;) and (ii) the flux of charged-tRNAs through protein synthesis (termed the trans-
lational fluxJ7;). To demonstrate this point, assume that we can decouple the dependence of the
allocation parameter ¢gy;, from the ratio of charged- to uncharged-tRNAs. Mathematically speaking,
we can define the metabolic flux as the collective action of metabolic proteins,

Vmax!RNA (1 —do _¢Rb)

JMh = V(IRNAM)¢Mh = tRNA“+K’1";NA“ (38)
Similarly, we can state that the translational flux is the collective action of ribosomal proteins,
_ YmaxtRNAC dgy
1 = RNac+kEA (39)
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So long as these fluxes are equivalent, a steady-state is satisfied. However, this steady-state is not
necessarily the optimal value. This is illustrated in Figure 2, Figure 2—figure supplement 1. For
example, if we consider that ¢, is too large for the given condition (Figure 2—figure supplement
1, left), a specific steady-state is realized (black point). If ¢, is further increased, the value of both
the metabolic and translational fluxes (dashed lines) must decrease to reach a new steady state and
growth rate thus declines. However, if ¢g;, is decreased, the value of both fluxes increase and growth-
rate thus also increases as well. At optimum allocation (where growth is locally maximized, Figure 2—
figure supplement 1, middle), any perturbation to ¢g, will necessarily result in a decrease in the
fluxes, indicating that at the optimal allocation the fluxes are mutually maximized.

As the concentrations of both tRNA species (Equations 30 and 31) are dependent on the allo-
cation towards ribosomes ¢gy, in inverse ways, the ratio of their concentrations acts as an effective
sensor of the magnitude of either flux. A large charged- to uncharged-tRNA ratio indicates that there
is an abundance of charged-tRNAs, suggesting that the translational flux is too low. Conversely, a
small charged- to uncharged-tRNA ratio indicates a translational flux that is too large, diminishing the
metabolic flux. By tying the allocation towards ribosomes ¢g;, to this ratio, an allocation can emerge
that optimizes the fluxes and thus growth.

Assessing different assumptions of ¢, dependence on ppGpp

In Equation 33, we made the assumption that the concentration of ppGpp was inversely proportional
to the charging balance of the tRNA pools. We put this forward as an ansatz with the motivation that
the degree of tRNA charging should be related to the amount of ppGpp synthesized. However, there
are other ansatzes that could be made relating the amount of ppGpp to the individual concentrations
of the tRNAs, or other ratiometric definitions.

To test how sensitive our findings are to the particular ansatz used, we considered other ways in
which the ppGpp concentration could be related to the tRNA pools. There is strong biochemical
evidence that a primary route of ppGpp synthsesis is via the enzyme RelA, which becomes active
when associated to a ‘stalled’ ribosome—one that is bound to an uncharged tRNA—though some
details remain enigmatic. In manner similar to other works (Giordano et al., 2016, Wu et al., 2022,
Bosdriesz et al., 2015), we can assert that the amount of ppGpp is proportional to the abundance of
stalled ribosomes. Mathematically, we can define the ppGpp concentration as being proportional to
the probability of a ribosome binding an uncharged tRNA. Assuming that the tRNA concentration (of
both charged and uncharged forms) is sufficiently high that all ribosomes are complexed with a tRNA,
this equates to

(uncharged) __ tRNA"
(PGPl X Pogung -~ ™ [RNAC+RNAT* (40)

where rRNA® and tRNA" represent the absolute concentrations of charged and uncharged species,
respectively. If the ppGpp concentration is inversely proportional to the allocation towards ribosomes,
we can similarly make the argument that the ribosomal allocation ¢g;, will be proportional to the prob-
ability of a ribosome being bound to a charged-tRNA,

h d ¢
bRy = (1 — p)PIED — (1 — ) ot RVA (41)

This equation mechanistically operates in a similar way as Equation 34—the allocation towards ribo-
somes depends on the relative amounts of charged- and uncharged-tRNAs. In the extreme limit where
the total concentration of tRNA is fixed (for which there is conflicting evidence; Dong et al., 1996;
Skjold et al., 1973, Bremer and Dennis, 2008; Bosdriesz et al., 2015, Giordano et al., 2016), Equa-
tion 41 and Equation 34 are mathematically equivalent. However, the predicted scaling dependence
of ppGpp takes a different form.

In the main text, we noted that the concentration of ppGpp relative to a reference growth rate
U[if(%]o is equivalent to the inverse ratio of the charging balances. Under the ansatz that the ppGpp
concentration is depending on the uncharged-tRNA binding probability, this relation takes the form

IRNAG
(uncharged) 0
e (42)
- uncharge - IRNAC >
[PP pP]O Pboundog 1+IRNA“
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where the subscript O denotes the reference state value. This distinction, coupled with experi-
mental measurements of the relative ppGpp concentrations, allows us to test the validity of the two
assumed forms for ¢pgy.

Figure 3—figure supplement 1shows the predictive capacity of these two ansatzes with the simple
binding (Equation 41) and ratiometric (Equation 33) predictions shown in solid-blue and dashed-red
lines, respectively. While both of these assumptions are capable of predicting the scaling of the ribo-
some content and translation speed with quantitative equivalence, there is a distinct difference in the
predicted behavior of the relative ppGpp concentrations. The simple binding ansatz predicts a signifi-
cantly shallower dependence on the growth rate than is observed in the data and in the ratiometric
prediction. Thus, it appears that relating [ppGpp] to the ratio of uncharged- to charged-tRNA concen-
trations accurately captures the behavior of E. coli, though there remain gaps in our understanding of
this relationship at a biochemical level.

Incorporating effects of ribosome-targeting antibiotics

To extend the flux-parity allocation model and incorporate the effects of antibiotic treatment, we must
consider the mechanism of action of the antibiotic, specifically chloramphenicol. Chloramphenicol is a
bacteriostatic antibiotic with tightly, but reversibly, binds to the ribosome. Once bound, the ribosome
is unable to resume translation until chloramphenicol dissociates. Thus, we can model the effect of this
drug by enumerating the probability that chloramphenicol is bound to a ribosome Ppounq at a given
concentration ccn. Mathematically, this can be stated as

_ _c
Poound = W, (43)

where K7)' is an effective dissociation constant of chloramphenicol to a unit of ribosomal mass
accounting for kinetics transport and ribosome binding. We can then say that the probability of a
ribosome being active is equal to the probability of a ribosome being unbound,

Pactive =1 — Poound = 1 — crmtiy;(g"' (44)

As only active ribosomes will contribute to the accumulation of biomass, we must rewrite the dynamics as

D — (IRNAYME® = Y(IRNA®)Pyeiive Mp- (45)

To make the predictions shown in Figure 3E and F, we assumed that the chloramphenicol concentra-
tion in the growth medium is equal to the intracellular concentration and take K3J" = 0.5 nM.

Incorporating effects of excess protein stress

We consider that the excess protein synthesis can be modeled as the introduction of a new protein
class, which we consider to have a total mass of My. Following the allocation parameters of the flux-
parity model as defined in Equation 32, we can introduce a new allocation parameter ¢x such that

%zquddﬂ; b0 + dmp + Grp + ox = 1. (46)

In Figure 3 I, we show that a collection of data can be collapsed onto a single line that relates the
relative change in growth rate as a function of the excess protein that is synthesized. While we cannot
fully solve the flux-parity model analytically, we can derive an analytical expression of this relation.
Specifically, we note that the steady-state growth rate in the absence of excess expression X follows
the simple relation

{RNA®

RNA® RNA® IRNAT
X = YRNA Yoy (1A ) = a1 — 00) e (47)

This can be easily extended to compute the growth rate under excess protein synthesis Ay as

Ax = YRNAYG gy (1A ) = Amar(1 — o — OX) A LK T )
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We can take the ratio of these growth rates to yield an expression for the collapse function

1l
RNAC (RNA®
Ymar(1— o — ) —L8 e R
Ay _ (RNAC+KIf AT T 49
AT RNA® %/A% ' (49)
17 1l
Ymax(1—¢0) - ¢
e RNAC+KIRNAC IRNAT -

If we assume that the excess protein synthesis affects only ¢y, leaving all other parameters untouched,
Equation 49 reduces to the concise form

X =S (50
which is the linear relation plotted in Figure 3lI.

Aside from the collapse, we also show how the flux-parity model quantitatively predicts the growth
rate as a function of excess protein for three different media (Figure 3H). In this case, we require some
knowledge of what the metabolic rate vmax is for those specific conditions. As the metabolic rate is an
efficient rate incorporating the action of different metabolic reactions and serving as a proxy of the
nutrient quality, it is not possible to make an a priori estimate of its value. To nevertheless estimate
Umax for each condition, we determined its value by using the simple allocation model as encoded in
‘Derivation of analytical expressions,” assuming the growth rate A and the ribosomal content describes
the allocation towards ribosomes ¢g,. Under the simple allocation model, we note that an expression
for the metabolic rate can be solved from the steady-state precursor concentration ¢, (Equation 18)
to yield

A(epet+l
Vias = ozl (51)

The steady-state precursor concentration cp. can be solved from the definition of the steady-state growth
rate and has the form

o= KPX
pe ¢Rl7'7max<] _%Rb> ' (52)
Combining Equations 51 and 52 yields an expression for the maximal metabolic rate viax,
-2 KX
Vmax = 7—7-— +1]. 53
max = T—¢o—¢ry <¢Rb7max(l—¢>\m)) ) (53)

Thus, given knowledge of the steady-state growth rate A and the allocation towards ribosomes ¢g;,
(which are both measured quantities), the value of v can be derived.

Incorporating effects of nutrient upshifts

To model the dynamics of growth in fluctuating conditions, we asserted that a nutritional upshift is
equivalent to an instantaneous change in the metabolic rate such that phreshift . postshift 4\ ever, this
is not completely sufficient to capture the phenomenology that is observed. It is becoming exceed-
ingly clear that bacterial cells are non-optimal in what genes they express, with many proteins that
are synthesized are ultimately useless in the specific condition (Balakrishnan et al., 2021a). This can
have very important effects on the growth rate as any amount of conditionally useless protein that
is synthesized consumes resources that could otherwise be partitioned to the proteins that need
to be synthesized. To incorporate this effect, we introduce another protein class with an allocation
parameter ¢. As the degree of conditionally useless expression is significantly more pronounced in
slow rather than fast conditions (Balakrishnan et al., 2021a; Belliveau et al., 2021; Schmidt et al.,
2016), we further asserted that the magnitude of this sector also changed in response to the nutri-
tional upshift such that ¢”" e > ¢Postshift The precise value of this sector is less important than the
difference in the pre- and post-shift condition and can be considered as an additional rescaling factor
as described in Appendix 1 Neglecting the other proteins. Thus, for all nutritional shifts in this work,
we considered that ¢P**" = 0 and the value of ¢""*" to be linearly proportional to the difference in
the growth rates between the pre- and post-shift conditions.
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Incorporating effects of nutrient depletion

Up to this point, we have explored the flux-parity model under the assumption that the nutrients in the
environment were saturating, such that v(cu) = vmax. However, a dependence on the environmental
nutrient concentration ¢, can be easily included in the definition of the metabolic rate v as

V(tRNA, cnt) = Vmax (IRNAISJ-\:?(’SNM> (cnri'}t(;;t) s (54)

where K2 is the Michaelis—-Menten constant. We can then model the dynamics of the nutrient concen-
tration ¢y in a batch-culture system as

doy  _ VURNACOMus (55)
where Y is the yield coefficient.

Data sets

This work leverages a large collection of data, primarily from E. coli, to evaluate the accuracy of our
model in describing biological phenomena. These data come from a range of studies spanning around
50 years of measurements from different groups and different geographical locations. Collecting and
curating this large data set required the manual transcribing of data from papers as well as various
standardization steps to ensure that measurements were truly comparable between studies, as is
outlined in Supplementary file 2.

For proper referencing and attribution, we list the data sources here as follows: Albertson and
Nystrém, 1994, Baracchini and Bremer, 1988, Basan et al., 2015; Bentley et al., 1990; Bremer and
Dennis, 2008; Bren et al., 2013, Brunschede et al., 1977, Biike et al., 2022, Buckstein et al., 2008;
Coffman et al., 1971; Dai et al., 2016; Dalbow and Young, 1975 ; Dong et al., 1995; Erickson et al.,
2017; Forchhammer and Lindahl, 1971; Gausing, 1972; Hernandez and Bremer, 1990; Hernandez
and Bremer, 1993; Imholz et al., 2020, Kepes and Beguin, 1966; Korem Kohanim et al., 2018;
Lacroute and Stent, 1968, Lazzarini et al., 1971, Li et al., 2014, Li et al., 2018;; Mori et al., 2017,
Morris and Hansen, 1973; Oldewurtel et al., 2021; Panlilio et al., 2020, Pedersen, 1984; Ryals
et al., 1982, Sarubbi et al., 1988; Schmidt et al., 2016; Schleif, 1967; Schleif et al., 1973, Scott
et al., 2010; Si et al., 2017, Skjold et al., 1973Sloan and Urban, 1976; Sokawa et al., 1975; Wu
et al., 2022; You et al., 2013; Young and Bremer, 1976, Zhu and Dai, 2019, Bonven and Gullov,
1979; Lacroute, 1973, Metzl-Raz et al., 2017; Paulo et al., 2015; Paulo et al., 2016; Riba et al.,
2019; Siwiak and Zielenkiewicz, 2010; Waldron and Lacroute, 1975; Xia et al., 2021; Rohatgi, 2021.
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e Supplementary file 1. Reference parameter set for E. coli used in this work. (a) Value was estimated
as follows. The maximum tRNA synthesis rate was taken to be that in very rich media. In these
conditions, each E. coli cell has = 5-8 copies of its genome and each genome is assumed to have ~
64 copies of tRNA genes. At a transcription rate of 40 nt/s, each tRNA gene can produce ~ 1 tRNA
per second Belliveau et al., 2021. Together, this yields an estimate for the maximum rate of tRNA
synthesis to be ~ 5x genomes x 64 genes/genome.

¢ Supplementary file 2. E. coli data used in this work and the corresponding sources. (a)
Concentration of ppGpp was computed relative to that of the sample with the closest growth rate
of 1.0 hr™' to remain consistent with Wu et al., 2022. (b) Source data was not available, so data was
determined from figures using WebPlotDigitizer (Rohatgi, 2021). (c) Converted to ribosome content
by assuming 0.86 pg of rRNA per 1 ug RNA and 0.53 pg of ribosomal protein per 1 ug of rRNA.

This yields a conversion factor of Mg, = 0.4558RNA. (d) Original values were calculated assuming

~ 70% of ribosomes were active. We assume all ribosomes are active and recalculated the values
accordingly. (e) Growth rate immediately following the shift was calculated by averaging values
within first 20 min after the shift to be consistent with procedure reported by Korem Kohanim

et al., 2018. (f) Original data curated and standardized by Belliveau et al., 2021.

¢ Supplementary file 3. Reference parameter set for S. cerevisiae used in this work.

e Supplementary file 4. S. cerevisiae data used in this work and the relevant sources. (a) Original
values were calculated assuming ~ 70% of ribosomes were active. We assume all ribosomes are
active and recalculated the values accordingly. (b) Source data was not available, so data was
approximated from Figure using WebPlotDigitizer (Rohatgi, 2021). (c) Calculated given the total
mass of protein per cell in Table 5 and the number of ribosomes in Table 4. A length of 11,984 AA
per ribosome and an average amino acid mass of 110 Da /AA was used to calculate total ribosomal
mass.

e MDAR checklist

Data availability

All data is available via the paper GitHub repository (https://github.com/cremerlab/flux_parity; copy
archived at Chure et al., 2023) and is registered in Zenodo via DOI: https://doi.org/10.5281/zenodo.
5893799.
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier
Chure G, CremerJ 2023 Collated measurements https://github.com/  GitHub, ecoli_ribosomal_
of E. coli ribosomal mass cremerlab/flux_parity/ mass_fractions.csv
fractions blob/master/data/
main_figure_data/
ecoli_ribosomal_
mass_fractions.csv
Chure G, Cremer J 2023 Collated measurements of  https://github.com/  GitHub, ecoli_peptide_
E. colitranslation rates cremerlab/flux_ elongation_rates.csv
parity/blob/master/
data/main_figure_
data/ecoli_peptide_
elongation_rates.csv
Chure G, Cremer J 2023 Collated measurements https://github.com/  GitHub, ecoli_relative_
of relative E. coli ppGpp cremerlab/flux_ ppGpp.csv
concentrations parity/blob/master/
data/main_figure_
data/ecoli_relative_
ppGpp.csv
Chure G, CremerJ 2023 Collated measurements https://github. GitHub, FighB_
of E. coli useless protein com/cremerlab/ overexpression_growth_
overexpression flux_parity/blob/ rates.csv
master/data/main_
figure_data/Fig5B_
overexpression_
growth_rates.csv
Chure G, CremerJ 2023 Collated measurements of https://github.com/  GitHub, Fig5C_shift_
nutrient upshift dynamics  cremerlab/flux_ magnitudes.csv
in E. coli parity/blob/master/
data/main_figure_
data/Fig5C_shift_
magnitudes.csv
Chure G, Cremer J 2023 All data is available via https://doi.org/10. Zenodo, 10.5281/

the paper is registered in

Zenodo

5281/zenodo.5893799

zenodo.5893799
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Appendix 1

Allocation models to study microbial growth

Over the past several decades, theoretical studies have introduced a huge variety of mathematical
models to better understand how microbes grow. These range from simple phenomenological
relations, first introduced by Verhulst, 1845 and Monod, 1942 to describe exponential growth and
nutrient consumption, to more recent high-dimensional models which explicitly consider hundreds of
cellular processes involved in biomass synthesis and growth. Here, we summarize different modeling
approaches which integrate considerations of protein synthesis and metabolism to rationalize
bacterial growth and quickly compare the construction and results to the model presented in the
main text.

As outlined in the main text, the idea that protein synthesis constitutes a major limitation
of microbial growth has a storied history. With an ever-improving characterization of both
the composition and the major biochemical processes undertaken by microbes, it has become
increasingly clear that the auto-catalytic nature of protein synthesis (i.e., ‘ribosomes making
ribosomes’) and the corresponding allocation of ribosomal activity towards different proteins are of
paramount importance. Therefore, it is imperative to consider protein synthesis and this allocation
when modeling cell growth (Hernandez and Bremer, 1993; Koch, 1988). Over the years, very
different approaches have been introduced to model protein synthesis and growth. To provide an
overview, we roughly distinguish between higher-dimensional, coarse-grained, and low-dimensional
approaches in the coming sections.

Higher-dimensional models build on the genetic annotations and reaction networks in E. coli
to specifically account for hundreds (or even thousands) of molecular reactions. An important
class of these are holistic cell-growth models which include thousands of reactions involved in
protein synthesis (Karr et al., 2012; Macklin et al., 2020). These studies can describe a number of
observations, including the concentration of different metabolites, as well as the relation between
gene expression and the abundances of thousands of proteins. However, as it is difficult to estimate
the many parameters involved, these models are typically constrained to only a few reference growth
conditions like growth on glucose, often with moderate uncertainty. Moreover, the integration of
hundreds of different reactions often counteracts the development of a more intuitive understanding
of microbial growth and necessitates computationally costly analyses.

A second class of models are coarse grained models which substantially simplify cellular life,
often by focusing on a subset of biochemical processes in a less detailed manner, yet still requiring
dozens to hundreds of parameters. One example is the framework introduced by WeiBe et al., 2015
to analyze the relation between gene expression (transcription), protein synthesis (translation), and
growth across varied conditions. Compared to the aforementioned holistic growth models, this is a
lower-dimensional approach with only a few different types of reactions. A more recent example of
different scope is the work by Hu et al., 2020. The authors formulated a modeling framework which
focuses on protein synthesis and explicitly considers 274 reactions driven by equally many enzymes.
The authors then studied how the allocation of protein synthesis towards the different enzymes
affects growth. Numerical simulations show that an allocation behavior to reach optimal growth
does not imply that the speed with which ribosomes translate is fast. Rather, optimal allocation
and efficient growth is often reached even when translation speeds are substantially lower than the
maximum in some conditions. We arrive at a similar conclusion and discuss this important point in
the main-text when we introduce different regulatory ‘scenarios.’

Different in scope to these ‘'medium-dimensional’ coarse-grained approaches are those we truly
call ‘low-dimensional’ which utilize only a few parameters, typically less than 10. In a now seminal
work, Molenaar et al., 2009 introduced such a low-dimensional approach to model protein
synthesis and the growth-rate dependent switch between different metabolic pathways. Central
to this model is a consideration of how protein synthesis resources are partitioned among four
different protein classes, including ribosomal and metabolic proteins. Through enumerating coupled
differential equations that relate the partitioning to growth rate, their model predicts, for example,
that ribosome content needs to scale linearly with growth rate to ensure efficient growth, though
comparison with experimental data is absent.
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Another early and significant low-dimensional modeling approach was introduced by Scott et al.,
2014 only a few years later. This work is similar in spirit to that of Molenaar et al., but adds a
deeper motivation of the low-dimensional allocation approach by building on the authors’ previous
experimental study (Scott et al., 2010) which introduced novel phenomenological relations
describing ribosome content and its dependence on growth rate. In particular, the authors discuss
how feedback in the regulation of ribosomes and metabolic proteins (end-product inhibition and
supply-driven activation) can lead to the observed scaling of ribosome content with growth rate. As
such, the article highlights the important question of global regulation beyond the control of single
genes. However, the authors rationalize this regulatory scenario as being necessary to ensure a stable
steady-state regime. This arises in part due to the authors’ assumption that the dilution of metabolic
precursors is negligible, a process we believe is physiologically critical to consider. Consequentially,
the regulatory scheme which underlies the coordination of ribosomes and metabolic proteins is
quite different to what other low-dimensional models have proposed and what we present here (see
also Section 3 of this supplement).

Following studies by Molenaar et al. and Scott et al., other low-dimensional allocation models
have been introduced with various extensions and modifications. The models presented by Maitra
and Dill, 2015 and Giordano et al., 2016, for example, follow a similar low-dimensional description
as Scott et al. The explicit consideration of precursor dilution allowed them to derive analytical
solutions describing steady state growth, similar to those we present in this work. Dourado and
Lercher, 2020 recently extended these results by providing analytical solutions for a generalized
allocation model with the solution presented for a low-dimensional limit being similar to that of
Giordano et al., 2016 and what we used as the starting point for our analysis of optimal allocation.

Several studies also extended the allocation framework to more explicitly model the global
regulation that may be at play. In particular, several studies have investigated how the global regulator
guanosine tetraphosphate (ppGpp) may tune the allocation of ribosomes to obtain optimal growth
across conditions, specifically in E. coli (Giordano et al., 2016; Bosdriesz et al., 2015). These
models often take a quite fine-grained view of the kinetics of ppGpp synthesis, its degradation, its
dependence on stalled ribosomes, and even its mechanism of regulation. In some cases, particular
details of the kinetics of transcriptional initiation of ribosomal RNA genes is explicitly considered
(Bosdriesz et al., 2015). A commonality between these models is (once again) an enumeration of a
handful of coupled ordinary differential equations, though their precise functional forms are unique.
These theoretical analyses suggested that the ppGpp-mediated regulation feedback can robustly
tune ribosome content with encountered conditions to support optimal growth in steady conditions.
However, the evaluation of these models and particularly the chosen approaches to relate tRNA
charging levels (for which there is contradictory data; Skjold et al., 1973; Bremer and Dennis,
2008) to ppGpp concentrations remain limited as only a cursory and largely qualitative comparison
with data is presented. In this work, we provide an unprecedented quantitative comparison between
available experimental data and our own low-dimensional very coarse-grained approach to model
tRNA charging and ppGpp regulation. The excellent match between theory and observation
(Figure 3C) confirms the important role of tRNA charging and ppGpp in mediating allocation and
growth as highlighted by Giordano et al. and Bosdriez et al.

Notably, however, we choose a different ansatz in relating tRNA charging levels to ppGpp which
we find crucial to describe the diverse growth phenomena in changing conditions (see Section 8).
Recently, Wu et al., 2022 also presented a phenomenologically guided modeling approach to
further understand the relation between ribosome content and growth rate, with a focus on the
possible role of ppGpp in regulating ribosome activity in addition to expression. We think the derived
picture is substantially different from that present in our work. Particularly, the authors contend that
a condition-dependent translation rate is at odds with the principle of optimal allocation and cannot
be understood without explicit consideration of an inactive ribosome pool. Following our analysis,
including a condition-dependent translation rate strongly supports the observed relation between
ribosome content and growth rate, strengthening a picture of optimal allocation without requiring
an inactive pool of ribosomes for the majority of growth conditions. We discuss the topic of inactive
ribosomes further in Appendix 1 - Inactive ribosomes.

Low-dimensional allocation models have further been used to study growth beyond exponential
growth in steady conditions. Particularly, Erickson et al., 2017 formulated an allocation model to
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analyze growth when the abundance of the major growth supporting carbon source rapidly changes
(up- and downshifts). Their approach utilizes (and enforces) linear phenomenological relations
describing ribosomal and metabolic protein content observed during steady-state growth. As such,
the study can describe certain transitions quite well, particularly the up- and downshift from growth
on gluconate/glucose to growth on succinate. Korem Kohanim et al., 2018 used a low-dimensional
modeling approach to analyze the rapid increase in growth when conditions improve (nutritional
upshift). The modeling approach particularly allowed them to explain the rapid increase of growth
rates, with the increase depending on observed steady-state growth rates before and after the shift.
Mori et al., 2017 also utilized phenomenological relations and a low-dimensional allocation model
to explore the possible benefits of maintaining a reserve of inactive ribosomes. Balakrishnan et al.,
2021a further extended the allocation modeling approach to analyze the physiological origin of long
lag times which frequently emerge during diauxic growth on different carbon sources. These works
illustrate that there are many approaches one can take toward rationalizing growth out of steady
state, each with different assumptions and behaviors in various limits.

Our approach and the extensive comparison between data and theory we present confirm the
overall logic presented by these studies: growth transitions are largely determined by the way cells
coordinate translation and gene expression during the shift. However, our approach is different
in scope as the core of our model is the tRNA-dependent control of allocation as fundamental
regulation scheme, rather than relying on linear phenomenological relations to describe the
‘regulatory function.’ This allows us to rationalize the emergence of many growth behaviors without
assuming specific relations between growth rate and physiological quantities as a starting point.
Furthermore, we also caution against the common assumption in these models that the offset in the
approximately linear relation between steady growth rate and ribosome content represents inactive
ribosomes which changes the overall perception of how cells operate to efficiently grow in steady
conditions and when environments change (see discussion in Appendix 1 - Inactive ribosomes)

More recently, low-dimensional allocation models have further been extended to investigate
additional aspects of cell physiology beyond biomass accumulation and growth. For example,
Roy et al., 2021 explicitly considered the relationship between protein and RNA synthesis and
the interesting question how different autocatalytic cycles like those involved in protein and RNA
synthesis have to be coupled to promote growth. We discuss in Appendix more specifically the role
of RNA synthesis and why we refrained from modeling it explicitly. Additional studies have also
extended the allocation framework to explicitly consider cell-size control and proteins involved in
division (Serbanescu et al., 2020; Bertaux et al., 2020); however, a consistent description of growth
and cell size is still missing and part of ongoing research efforts.

The major simplifications of low-dimensional allocation models and why
they might work

Cells are highly complex entities containing thousands of molecular players which interact in myriad
ways varying over space and time. The allocation models boldly simplifies this reality. Some of the
most important simplifications are:

1. All cells as being treated as identical and encountering the same condition, including the nutri-
ents which they consume to build new cellular material.

2. Cells are not treated individually but the overall biomass is considered. As such, the approach
ignores considerations of cell division and variations in cell physiology throughout the cell cycle.

3. Rather than considering the abundance of thousands of unique protein species within a cell, allo-
cation models take a coarse-grained view of the composition of the proteome where proteins
are pooled together. We pool specifically proteins being either ribosomal (i.e., synthesizing
new protein from precursors such as charged-tRNA), metabolic (i.e., synthesizing precursors
from nutrients), or being involved in other biological processes required for cellular growth and
survival Figure 1—figure supplement 1.

Here we summarize our view of why some of the low-dimensional allocation models can develop
such a predictive power despite all these major simplifications.

As mentioned, the low-dimensional allocation framework is completely ignorant to (i) the spatial
arrangement of processes across the cell and (ii) neglects the existence of cells as a whole. Instead,
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the description only considers the change of total protein biomass of the system (i.e., culture)
over time. Despite this objectively major simplification, the model quantitatively predicts growth
phenotypes across a broad range of conditions, as we presented in the main text. Remarkably, this
is accomplished with one core set of parameters (such as the maximal speed of translation) which
remains fixed across conditions. This is a surprising result given that cell size and the spatiotemporal
arrangement of cellular components are known to be highly dependent on conditions, which also
should affect major model parameters (such as the maximal speed of translation). The finding that
the model can nevertheless capture observations across conditions thus suggests to us that many
cellular processes, including those involved in cell size control, are highly coordinated by the cell
such that translation and metabolism work efficiently and can be captured by simple rate equations;
it is the complexity of the cellular machinery which allows us to formulate a simple but predictive
model of growth.

To further illustrate this point, we consider specifically the density of macromolecules within the
cell which strongly informs the rates of myriad biochemical reactions. A density that is too large,
for example, will strongly hamper diffusion and thus slow many reaction rates, while a low density
generally reduces binding rates (Delarue et al., 2018; van den Berg et al., 2017). Cells are thus
expected to maintain macro-molecular density ranges within narrow ranges to operate efficiently
(van den Berg et al., 2017). Experimental studies support this idea. For example, mass densities
in E. coli appear stay within narrow ranges across growth conditions (Oldewurtel et al., 2021).
Complex biophysical processes appear to also be in place to control the spatial arrangement of
macromolecules, such as the strong mutual-exclusivity of DNA and ribosomes within the cytoplasm
(Gray et al., 2019). If it were not for these processes, macromolecular densities and thus major
cellular processes (like translation) would vary tremendously with growth conditions and a model
based on simple rate equations would have very limited predictive power.

Precursors concentrations and the importance of dilution by cell
growth

In the main text, we consider that the translation rate v is dependent on the concentration of
precursors cpc. The tug-of-war between the metabolic processes (synthesizing precursors) and protein
synthetic processes (consuming precursors) is what determines this value. With the protein density
of cells being approximately constant , we consider the precursors concentration as the mass of
precursors per total protein mass, ¢pc. We describe the dynamics of this precursor concentration cpc as

de, M M Mgy
& = vlem) T3 — V(epe) Jf — epe(epe) = =

(A1)

dilution

where M, My, and Mg, denote the masses of the total protein, metabolic protein, and
ribosomal protein pools, respectively. The latter term in the above equation denotes the
decrease in the precursor concentration due to the increase in biomass; that is, this term
considers the decrease in precursor concentration due to dilution upon a growing cell
volume. Through a change-of-variables from mpc to c¢pe, it mathematically follows that

dcpc _d (Mpc) _ LdMPC —c id7M
i = di \ M M~ dt PEM dr (A2)
———
dilution

1In many previous allocation models (outlined in Section 1), it is assumed that the effect of dilution
is negligible compared to the magnitude of metabolism and protein synthesis (Towbin et al., 2017,
Scott et al., 2014, Bosdriesz et al., 2015). It is important to note, however, that the effect of
dilution is not negligible when one considers the difference between the metabolic and translational
processes as has been emphesized by Giordano et al., 2016 and Dourado and Lercher, 2020.
To illustrate this further, consider Equation A1 which in steady state equates to zero. Upon some
rearrangement we have

v(cn)Pmb — V(Cpe) PRy = CpeV(Cpe)PRb- (A3)
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At steady state, %—’@’ = ¢g;, and % = ¢yp- When the effect of dilution is neglected (i.e., setting
the right-hand side of Equation A3 equal to 0), it is required that steady state is only reached when
the two fluxes are equal. Thus, if there is any perturbation to the precursor concentration, such as a
sudden influx (Appendix T—figure 1A) or efflux (Appendix 1—figure 1B) of precursors, the system
has no recourse to re-establish a steady state (dashed lines in Appendix 1—figure 1). In the case
where the effect of dilution is not neglected, the system relaxes back to the stable steady state (solid
lines in Appendix 1—figure 1) as the influence of dilution increases or decreases in response to the
change in precursor concentration.
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Appendix 1—figure 1. Neglecting effect of precursor dilution results in an unstable steady state. Integrated
dynamics of the model equations including (solid lines) and neglecting (dashed lines) the dilution of the precursors
with increasing biomass. At time t = 4 hr (gray vertical line), the precursor concentration is instantaneous increased
(A) or decreased (B) by a factor of 2 and the system is allowed to respond. Neglecting the effect of dilution results
in a monotonic increase in the precursor concentration, whereas including dilution allows a rapid return to the
steady-state concentration.

To obtain biologically relevant analytical solutions, we thus explicitly include the dilution factor.
Notably, keeping the dilution term around is also what allows analytical solutions to be derived
(Giordano et al., 2016; Dourado and Lercher, 2020). In many previous studies (Towbin et al., 2017,
Scott et al., 2014), it was necessary to include end-product inhibition as a regulatory element of the
metabolic flux, one which we do not need to consider here. In mathematical terms, no additional
parameters need to be included to define a dependence of the metabolic rate on the precursor
concentration As such, the emergence of a steady state is less of a mystery: it does not require the
integration of complex regulation schemes but readily emerges in steady environmental conditions
and when the allocation of protein synthesis is constant.

Additional considerations relevant at slow growth

While the optimal allocation model (scenario Ill) can describe the observed relation between
ribosome abundance and growth rates remarkably well for fast growth, predictions and observations
disagree when growth rates fall below A < 0.5 hr'" (Figure 1H and I). The observed values are higher
than what is predicted by the regulation scenarios Il (constant translation) and Il (optimal allocation)
which might be attributed to a range of additional aspects, including (i) the active degradation of
proteins, (ii) a comparison with data which has not yet reached steady-state, and (iii) an increase
in the fraction of inactive ribosomes at slower growth. Here we discuss these additional aspects
and conclude that additional experiments are needed before extending our modeling approach to
additionally capture very slow growth conditions.

Active protein degradation
The active degradation of proteins is an additional factor which might require a higher content of
ribosomes than what is predicted by the model at slow growth. In formulating the allocation model,
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we considered only protein synthesis but not degradation. Mathematically, we modeled the change
in protein mass to depend solely on translation,

DI = y(cpe)Mpp, (A4)

but did not include a degradation term, for example,
DL = y(cpe)Mpp — kgegM
—_— =

synthesis  degradation

(AS)

This simplification is well justified when growth is fast since observed degradation half-lives are then
very long compared to the timescale of growth. For E. coli, for example, measured degradation rates
kgeg remain below 0.02 hr', substantially lower than observed growth rates (Pine, 1973). However,
the timescales become comparable when growth is slow and an explicit consideration of protein
degradation is needed. Furthermore, protein degradation rates appear to increase at very slow
growth (kgegr = 0.03 hr' for E. coli). For a more detailed discussion of peptide degradation and its
possible affect on the ribosome content at slow growth we refer to a recent study from Calabrese
et al., 2021.

Observations not in steady state

Another aspect which might explain the derivation between available data and predictions is related
to the specifics of the experimental culturing protocols: slow-growing cultures may take such a long
time to reach steady state that the experimental measurements may not reflect the steady-state
physiology, making an assessment of the model accuracy difficult in this regime. The experimental
studies which we use to test our model (listed in Supplementary file 2) provide a description of the
culturing conditions used, though the specifics of the procedure (such as culturing lengths) are given
in broad terms. Most studies relied on a procedure more or less as follows:

1. Aseeding culture is grown to exponential phase in a rich growth medium (such as LB, A = 2 hr).

2. The seeding culture is diluted into the experimental medium (termed the preculture) which is
allowed to grow ‘overnight’ (which we take to be between 12 and 18 hr) to mid-exponential
phase.

3. The preculture is then modestly diluted into the experimental medium and allowed to grow for
one or two doublings (= 1.5 generations) before measurements are made.

While this is a robust protocol to ensure that a fast-growing cultures reach steady state, step 2
requires particular care when slow growth conditions are explored. As the seed culture is typically
grown in rich media, the inoculum of cells will have a significantly large allocation towards ribosomes,
such as ¢gp ~ 0.2 for a culture grown in LB. As the degradation of ribosomes is slow, this ‘bolus of
ribosomes’ only decreases via dilution as the culture grows. For example, a poor growth medium
which can support a growth rate of A ~ 0.2 would require more than 20 hr to reach steady state
within typical measurement errors of 0.1% (Appendix 1—figure 2A and B). Notably, this calculation
reflects a best-case scenario where there is no growth arrest upon transfer from from the seeding
culture to the preculture medium. In reality, long phases of growth arrest with lag-times on the order
of hours is common (Madar et al., 2013). In conclusion, precultures have to maintained for a very
long time, of the order of a day, when aiming for a steady-state culture in very poor conditions,
substantially longer than what the overnight cultures commonly mentioned in the protocols would
support.
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Appendix 1—figure 2. Effects of culturing time on observed ribosomal content at slow growth. (A) Predicted
dynamics of equilibration to steady-state from a seeding culture with high ribosome content (¢gp = 0.25, A =~ 2.0
hr', Umax == 11 hr') into a poor growth medium with a low steady-state ribosome content (¢gp = 0.03, A ~ 0.2
hr', Umax == 0.03 hr'). (B) The difference between the measurable ribosomal content and the steady-state value

in the poor growth medium. Red brackets in (A) and (B) correspond to claimed culturing duration commonly seen
in the literature. Culturing time of ‘overnight’ is taken to approximately mean 12 hr. (C) The effect of insufficient
culturing time on the measurable ribosome content. Red dashed lines show model predictions assuming a seeding
culture with same parameters as in (A) and (B) into different media with a range of metabolic rates. Dark to light

colors correspond to short (8 hr) and long (48 hr) culturing conditions, respectively. Data and markers are the same
as those shown in Figure 1.

To see how a too short preculture time could alter the predictions of our model we numerically
integrated the flux-parity model (described in ‘Methods’) assuming a seed culture grown in LB with
a large initial ribosome content (Appendix 1—figure 2C). From this analysis, it is plausible that
some of the discrepancy between the model predictions and experimental measurements could
be explained by harvesting cells before they have reached steady state. More detailed information
would be needed (such as precise preculturing duration) to concretely assess the magnitude of this
effect in the dataset we have assembled.
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Inactive ribosomes

Several studies have reported that microbes commonly maintain a pool of inactive ribosomes (Metzl-
Raz et al., 2017; Dai et al., 2016; Li et al., 2018; Miiller et al., 2021; Bremer and Dennis, 2008).
In slow growth conditions, an inactive ribosome pool may promote quicker recovery once conditions
improve, aphenomenonsometimes called a ‘spare ribosome capacity’ (Lietal., 2018; Korem Kohanim
etal., 2018; Mori et al., 2017). In our model, we do not consider an inactive pool of ribosomes; rather,
we assume that all ribosomes are active. However, in reality, it is likely that only 80-90% are active at
any instant, as has been reported and assumed by many others (Forchhammer and Lindahl, 1971,
Dennis and Bremer, 1974). In our rendering of the allocation models, this can be accommodated in
our description of the total biomass synthesis dynamics ‘%’ by adding an active fraction prefactor f, as

DL = f,Mppy(tRNA), (A6)

which results in a translation of the model prediction curves by a small factor well within the
variability of the measurements, as shown in Appendix 1—figure 3. Given that our quantitative
conclusions are not substantively changed by inclusion of this parameter, we have opted to omit
it for notational simplicity. This simplification that all ribosomes are active all the time might thus
explain the derivation between the observed ribosomal content in cells and the model predictions
when growth is very slow. However, direct evidence which supports the maintenance of an inactive
ribosome fraction is sparse and many open questions remain. Here we summarize our perspective.

To thrive in fluctuating conditions, cells have to be capable of dynamically regulating the activity
of ribosomes. For example, consider a strong downshift scenario where cells transition abruptly from
very fast growth (supported by a high precursor flux) to very slow growth (supported by a much lower
precursor flux). During the shift, a substantial fraction of the ribosomes needs to be immediately
inactivated to avoid exhaustion of the remaining precursor pool leading to cessation of protein
synthesis. Molecular studies have supported this hypothesis as proteins which trigger ribosome
inactivation (termed ‘hibernation factors’) are synthesized relatively quickly to the downshift. E.
coli, for example, uses ribosome modulation factor (RMF) among others which dimerizes ribosomes
forming an inactive 100 s complex (Prossliner et al., 2018). Transcriptomic analysis has further
show that RMF is heavily expressed during a downshift or during entry into starvation, confirming
that cells can quickly change the fraction of active ribosomes. However, while we believe in the
important role of ribosome inactivation during downshifts, we also believe that the role of ribosome
inactivation during steady-state growth remains much less clear. Given our current experimental
knowledge, we challenge the idea that cells actively maintain a large fraction of inactive ribosomes
during slow growth to be prepared for a quick growth recovery once growth conditions resume. This
view of ‘spare capacity’ is based on the reported large fraction of inactive ribosomes during growth
in poor growth conditions (growth rate A < 0.5 hr'). We see two problems with the derivation of
this picture. First, while anticipatory behavior sounds plausible given the reported high fraction of
inactive ribosomes, we should keep in mind that the fraction of inactive ribosomes is not based on
direct experimental measurements. Instead, the fraction is commonly estimated by the difference
between observed growth and measured translation rates (Dai et al., 2016), which assumes that
measured translation rates correctly reflect the average translation rate of all active ribosomes. More
direct measurements of active fractions are possible in principle, such as by ribosome or polysome
profiling, but very hard to perform in practice with quantitative accuracy. Secondly, this view assumes
that cultures have reached a steady state when the fraction of inactive ribosomes is estimated. As
is discussed in Section 3, the time required for cultures to reach steady state is particularly long for
poor growth conditions; for growth rates A < 0.5 hr”, the times cultures need to spend in pre-culture
states extend substantially beyond the 15-20 hr periods commonly used for overnight precultures.
There is thus the possibility that reported inactive ribosomes in slow growth conditions are high
because cultures are still adjusting to the encountered growth conditions, rather than being high
because cells actively maintain a high fraction of inactive ribosomes during slow growth in steady
conditions.

In conclusion, a quite involved combination of aspects might be at play at slow growth and we
thus did not expand our model to better cover slow growth observations and explicitly include active
protein digestion and inactive ribosomes. Further studies at both the experimental and theoretical
level are needed to fully assess the role of inactive ribosomes in steady-state growth.
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Appendix 1—figure 3. Influence of a growth rate independent inactive fraction of ribosomes on model
predictions. Data for the ribosomal mass fraction (left) and translation rate (right) observed in steady-state growth
are shown using symbols as defined in Figure 1G. Red lines indicate the model predictions assuming an active
ribosome fraction of 75% (dotted line), 80% (dashed-dotted line), 85% (dashed line), and 100% (solid line).

What makes the fraction of ‘other’ proteins?

In the specification of the simple ribosomal allocation model, we asserted that the entire proteome
could be categorized into just three sectors: one for metabolic proteins, one for ribosomal proteins,
and one for all ‘other’ proteins. In this section, we demonstrate that the precise value of ¢, the
allocation parameter describing the synthesis of other proteins, is largely independent in predicting
growth dynamics and we explore the experimental evidence which establishes and quantify this
sector in E. coli.

Defining the other proteins

In this work, we assign one sector of the proteome to be composed of ribosomal proteins. This sector
is well defined and specifically contains the = 50 proteins that make up the 50S and 30S subunits
of the ribosome. It is more difficult, however, to determine what proteins are ‘'metabolic’ and which
should be classified as ‘others.” The past decade has seen a flurry of studies leveraging modern
proteomic methods to measure the abundances and relative concentrations of the thousands of
protein species which constitute bacterial cells (Schmidt et al., 2016; Peebo et al., 2015; Li et al.,
2014; Valgepea et al., 2013; Mori et al., 2021). Schmidt et al., 2016, for example, measured the
absolute abundances of 2041 individual proteins in E. coli across 22 growth conditions. This data set,
coupled with the mountain of functional annotation available for E. coli (Parker et al., 2020), allows
us to explore how different biological processes scale with the steady-state growth rate.

One method to do so is through Clusters of Orthologous Groups (COGs)(Galperin et al., 2021),
which groups genes by their annotated functions into distinct ‘classes’ of proteins. Appendix 1—
figure 4A shows the protein sector mass fraction for all proteins involved in ribosomal structure
and biogenesis (gold; COG class J), general metabolism (purple; COG classes P, H, F, E, G, C), and
all other processes (black; COG classes X, O, U, W, Z, N, M, T, V, Y, D, B, L, K, A, R, S). Exploring
how the mass fractions of these very general annotations scale with growth rate reveals a strong
anticorrelation between ribosomal and metabolic genes, with an approximate constant fraction of
‘other” proteins. One approach is to rely on this annotation to determine the magnitude of the
allocation towards other proteins and take ¢p ~ 0.3.
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Appendix 1—figure 4. Different classification strategies of ‘other’ proteins. (A) Classification of proteins in mass
spectrometry data (Schmidt et al., 2016) by their COG classification. 'Metabolism’ includes all transport and
metabolic processes (COG letters: P.H,FE,G,C Maitra and Dill, 2015). (B) Classification of ‘other’ proteins by their
growth rate dependence. Other proteins are defined as those with a Pearson correlation coefficient between -0.5
and +0.5. (C) The composition of each correlation-defined sector for one condition are shown as doughnut plots.
Colors correspond to the COG classifications shown in (A) and circled numbers correspond to labeled points in (B).

An alternative approach is to determine how the abundance of each individual protein changes
with the steady-state growth rate. For each protein in the data of Schmidt et al., we computed the
Pearson correlation coefficient between the proteome mass fraction of each individual protein and
the growth rate with Pearson’s r values of 1.0 and 1.0 showing perfect anticorrelation and correlation,
respectively. With a measure of the correlation, we made the somewhat arbitrary decision that any
protein with a Pearson’s r between —0.5 < r < 0.5 to be classified as ‘constant,’ having weak or no
correlation with the growth rate at all. Appendix 1—figure 4B shows the results of this classification.
Here, it appears that the constant (black points) sector hovers around a mass fraction of 0.5, another
candidate value for ¢¢. To see if this classification scheme was reasonable, we examined what COG
classes were represented in each sector defined by the Pearson correlation. Appendix 1—figure
4C shows a representative breakdown of each sector by the same COG classification as used in
(A). Here, it becomes clear that metabolic proteins dominate both the ‘constant’ and ‘negatively
correlated’ classes, whereas the ‘positively correlated’ sector contains predominantly ribosomal
proteins. This illustrates that there exists a sizeable pool of proteins whose relative abundance is
largely independent of growth rate, despite their classification as being involved in metabolism.

This exploration highlights a subtle yet important point in the classification of the proteome
into sectors. While in the main text we specify proteins as being involved in metabolism or protein
synthesis, we really mean that they can be classified as having a dependence on the growth rate,
whether it be positive or negative. Hui and colleagues (Hui et al., 2015) recently explored in
great depth how the E. coli proteome can be broken into six or seven sectors which have different
correlations with the growth rate under different types of limitation. In this work, they arrived at
an estimation that approximately one-half of the proteome is growth rate independent (¢p = 0.55)
under the many conditions they examined. This value agrees with the simple growth-correlation
classification presented above and we thus taken here ¢p = 0.55 for E. coli. However, as we describe
in the following section, the predictions made by our model is largely independent on the precise
value of this parameter.

Neglecting the other proteins

In Equation 7 of the main text, we define the mass dynamics of the protein sectors (Mg, My, and M) as

M dM . dMyy, _ ,  dM . dMo _ ; dM
=R G s TR = bub g s gt = bo g (A7)

where ¢gp, dyp, and ¢ denote allocation parameters for ribosomal, metabolic, and ‘other’ proteins,
respectively. We further introduce the constraint that these three classes make up the entire
composition of the proteome, meaning that
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As the majority of the predictions of this work are dependent on the allocation towards ribosomes,
we can alternatively define the metabolic allocation factor given Equation A8 as

dmp =1 — drp — do- (A9)

Thus, so long as the values of ¢g;, and ¢¢ are known, the value of ¢y, follows and thus the maximal
metabolic output N can be defined as

N = VmaxPmp = Vmax (1 — Orp — ¢0) b (A10)

where vmax is the maximum metabolic rate for that particular condition and composition of the
metabolic sector. However, suppose we didn’t know the value of ¢p and only knew ¢gy. In this
case, we could further reduce the dimensionality of the proteome by stating that all of the proteins
are either ribosomal or are not ribosomal. In this case, the allocation parameters for this scenario
become

by + Prp =15 8l =1 — Ors (A11)
where the new metabolic allocation parameter includes an unknown ‘other’ allocation such that
S, = o + do- (A12)
It then follows that the maximal metabolic output given this allocation N is calculated as
NT = vl = vhar (1= drp) - (A13)

This structuring implies that the metabolic outputs are different whether one knows ¢¢ or not.
However, these two scenarios can be made equivalent by a simple rescaling of the metabolic rate
Umax. Setting Equation A10 and Equation A13 to be equivalent and solving for the metabolic rate
Vmax Where ¢¢ is known yields

to_
Vinax = 7(”3&72’;)). (A14)
Thus, one can achieve quantitatively identical predictions between the scenario where ¢¢ is known
and that where ¢ is unknown by a simple rescaling of the metabolic rate, vuax. While this serves as
a contrived example, it reveals that our estimation of ¢ having a constant allocation ¢o = 0.55, as
has been inferred from mass spectrometry studies (Hui et al., 2015) (see previous paragraph), to
be largely inconsequential for the predictions made in this work. However, there are some scenarios
where the precise value of ¢y does become important (such as in the case of excess protein stress).

Inactive ribosomes are not needed to describe the linear relation

between ribosome content and growth rate

In their simplest form, allocation considerations assume cells optimally control ribosome content
such that protein synthesis by ribosomes occurs with a fixed translation speed or rate (7). To have
all ribosomes working with a constant rate, the allocation parameter ¢g, controlling the fraction
of ribosomes in the cell must then scale linearly with the growth rate, ¢g = yA. This relation does
not have an offset: at the extreme limit where metabolic proteins are hardly supporting any growth
(A — 0), this linear scaling implies that the ribosome content drops to zero (¢g, — 0). However, this
notion appears to disagree with experimental observations. When a linear regression is performed
on the ribosomal content data (solid line in Appendix 1—figure 5) as has been done in other studies
(Scott et al., 2010), one yields an “offset”, q&gzi"), yielding a linear relation of
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Appendix 1—figure 5. Linear regression on data and optimal allocation model in fast-growth regime yields
comparable offsets. Data in right-hand panel corresponds to the same measurements used in the main text

but restricted to only those data where the growth rate is A > 0.5 hr'. A simple linear regression (using the
SciPy python library) was performed on this data (solid black line) to yield a slope of & 0.1 hr' and an intercept
of ngZin) = 0.05, in line with parameter estimates from previous work (Li et al., 2014). Restricting the model
predictions to growth rates A > 0.5 hr” yields a linear relation (dashed blue line) with a slope of & 0.1 hr' and an
intercept of ¢;n;in) ~ 0.02.

Dy = Ba™™ + 0. (A15)

Previous phenomenological studies have thus rationalized this offset as a growth-rate-independent
abundance of inactive ribosomes which are not involved in translation (Scott et al., 2010; Mori
et al., 2017). However, later measurements have confirmed that the translation rate is decidedly not
constant and in fact increases with the growth rate, asymptotically approaching a maximal value (Dai
et al., 2016). In Dai et al., 2016, the authors use this observation to hypothesize that most of the
ribosomes remains active as long as growth rates are not slow (A > 0.5 hr'). Consistent with this idea,
our rendering of the optimal allocation model (scenario Ill in the main text) explains why this offset
emerges from a linear regression without the introduction of any inactive ribosomes.

The strong correlation between the ribosomal content and bulk growth rate has long been hailed
as a linear relation; however, there is no a priori rationale behind stating it must be linear. In fact, our
optimal allocation model results in a nonlinear, yet still monotonically positive, correlation between
the ribosomal content and the growth rate. While nonlinear, it is approximately linear in the regime
of fast growth, A > 0.5 hr'. Extending this approximately linear behavior yields a slope and an offset
(dashed line in Appendix 1—figure 5) which is comparable to the empirically observed offset.

The fundamental reason for this observation is that a close-to-maximal translation rate requires
very high precursor concentrations which are very resource demanding to sustain. In our model,
this is described by a translation rate which is only met when the precursor concentrations ¢y are
substantially higher than the Michaelis-Menten constant K. These dependence can be further
explored via the interactive versions of the manuscript figures at our paper website (cremerlab.
github.io/flux_parity).

Application of the model to Saccharomyces cerevisiae

In the main text, we evaluated the model predictions by direct comparison with observations
for E. coli, as appropriate data for this model organism is highly abundant. However, the model
predictions should be applicable more broadly to any microbial organism whose growth rate is
primarily dependent on the synthesis of protein biomass. The budding yeast S. cerevisiae is one
such microbe where our approach may be applied and used to quantitatively explore aspects of
eukaryotic microbial physiology, and we here provide a parameterization of our model.
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We first surveyed the literature to identify and assign a priori values to the major model
parameters, which are listed in Supplementary file 3. Of particular note is the substantial difference
between E. coli and S. cerevisiae in the proteinaceous mass of a single ribosome (mg;, = 7459 AA
and mpg, = 11984 AA, respectively) and the reported maximum translation speed (v = 20 AA/s
and vy max = 10 AA/s, respectively) which lead to a substantial difference in the maximum translation
rates (Ymax = Vi max/mgp). We further note that the fraction of the proteome occupied by the ‘other’
protein class has not received sufficient characterization in yeast. However, this is not of relevance
when comparing model predictions and data during steady-state growth as a variation of ¢y merely
leads to a rescaling of the maximum metabolic rate vimqx which we vary anyway to scan growth rates
(see Section 5).

To evaluate the applicability of our model, we further explored the S. cerevisiae literature for
basic physiological measurements including ribosomal content and translation speeds across growth
conditions. To our surprise, we found that these fundamental physiological quantities have been
scarcely measured, despite S. cerevisiae being a heavily characterized model organism. This is true
particularly for the translation speed, for which there are only four or five reported measurements.
Nevertheless, we assembled a collated data set from 10 independent studies that we were able to
find and appropriately vet and compared their values to the model predictions (Supplementary file
4).

Specifically, we evaluated the regulatory scenarios Il and Ill in which the translation rate is either
held constant at ~ 90% of its maximum value or the allocation towards ribosomes is tuned such that
growth rate is optimized (Appendix 1—figure 6). While the paucity of the data precludes us from
making any concrete assessments, it is plausible that S. cerevisiae also follows an scheme of optimal
regulation of ribosomal allocation (scenario Ill, blue line). More study is needed, particularly of the
growth rate dependence of translation speed, to evaluate the applicability of this approach to yeast.
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Appendix 1—figure 6. Comparison of model predictions to data from Saccharomyces cerevisiae. (A) List

of literature sources reporting measurement of ribosomal content and/or translation speed measurements.
Experimental data for (B) ribosomal content and (C) translation speed are shown as function of growth rate. Green
and blue lines correspond to model predictions for scenarios Il and Ill, respectively, using the model parameters
defined in Supplementary file 3. For scenario I, a constant translation rate of 90% of vy 4y was used.

Parameter dependence of the flux-parity model

In the main text, we present a solution of the flux-parity model which nearly identically matches
the solution for scenario lll in which optimal allocation was ensured by hand (Figure 2, Figure 3A-
C). Here, we discuss the parametric sensitivity of this matching and comment on our rationale for
choosing specific values.

In ‘Methods,” we defined the equations of the flux-parity model. In comparison with the simplistic
model where the allocation towards ribosomes is a parameter, we have introduced two Michaelis—
Menten parameters (ngNAu and K’ZSNAC), one ppGpp-specific sensitivity parameter (1) and a maximal
uncharged-tRNA synthesis rate (kmax). While we can use in vivo and in vitro studies for estimates of

these parameters, it is useful to explore how sensitive the model predictions are to precise values.
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We first explore how different combinations of parameter values for the Michaelis-Menten
constants impact the predictions. We chose to evaluate the steady-state conditions of the flux-parity
model for pairwise combinations of a range of K values spanning three orders of magnitude from
~ 1073 (=20 uM) to ~ 10~2 (=20 mM), which covers typical physiological ranges of Michaelis—-Menten
constants. With the steady-state solutions in hand, we the computed the absolute difference in
the steady-state allocation towards ribosomes ¢g;, from that predicted by the optimal allocation
(scenario lll) of the simple allocation model where allocation parameters are set by hand [Fig 7(A)].
Mathematically, this is defined as

i
Aoy = |dpy P — D] (A16)

We found that the precise value of either Michaelis-Menten parameter was less important than
their relative values. In fact, we found that a near identical match to the optimal allocation emerged
when the parameters were of approximately equal value, K‘,{;NA“ R~ KﬁI}NAC. This makes sense from a
theoretical perspective as both metabolism and translation are feeding into each other's precursor
pools. If one Ky was significantly larger than another, the sensitivity of the ppGpp system to the
charged- to uncharged-tRNA ratio would also need to be significantly adjusted to accommodate

the drastically different kinetics. At particularly large values (K'AM" ~ KIE¥A" ~ 1073), this one-to-one
ratio breaks down with an optimal solution emerging when Kf{,}NAM > Kf{;NAC. However, this difference
is small and maintaining a K'AM" ~ K8V deviates from the optimal allocation by < 1%.

Like the Michaelis—-Menten constants, there is also a strong interdependent relationship between
the value of the uncharged-tRNA synthesis rate kmax and the ppGpp sensitivity parameter 7, which
sets the charged- to uncharged-tRNA ratio at which ¢gy, is half-maximal. We also did a wide pairwise
parameter value scan over the range 7 € [1073,10] and &max € [107°, 1] hr', which spans reasonable
physiological values [Appendix 1—figure 7(B)]. We again see a region of parameter space where
the precise values are largely unimportant, so long as the magnitude of 7 is approximately three
times larger than Kmax. At particularly low values of kmax (< 10~ hr), this dependence again breaks
down with 7 ~ 1.5 yielding approximately optimal results.
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Appendix 1—figure 7. Sensitivity analysis of the flux-parity model for key parameters. To demonstrate the
sensitivity of the flux-parity model to yield approximately identical predictions to optimal allocation, parameter
values spanning several orders of magnitude were compared for the (A) Michaelis—-Menten constants and (B) the
tRNA synthesis rate x and ppGpp sensitivity parameter 7. Both (A) and (B) were evaluated at a single metabolic
Appendix T—figure 7 continued on next page
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Appendix T—figure 7 continued

rate Umax = 4.5 hr'. The absolute difference from the flux-parity determined allocation and the optimal allocation
was computed and is shown on a logarithmic color scale from near-identical (purple) to significantly different (light
green). All parameter values except for those being explored were kept the same as listed in Supplementary file
1

The inverse relationship between these two parameters also makes sense from a biological
perspective. There is only one way by which charged-tRNAs can be synthesized (via metabolism),
but two ways in which uncharged-tRNAs can be synthesized (via translation or via transcription).
Thus, if the transcription rate of uncharged-tRNAs is very large compared to the synthesis rate
by translation, it becomes difficult for the charged- to uncharged-tRNA ratio to become > 1. To
appropriately adjust the allocation towards ribosomes ¢gp, 7 must be at a lower value to remain
responsive to changes in the charged- to uncharged-tRNA ratio.

This sensitivity analysis demonstrates a large amount of parametric degeneracy in the flux-parity
allocation model. Thus, there is a large parameter space of physiologically feasible values where
flux-parity can operate to effect an optimal allocation strategy. This degeneracy suggests that an
optimal allocation strategy could more easily evolve once the basic regulation strategies are in
place as it does not rely on the simultaneous fine-tuning of every parameter describing the different
processes. Given this degeneracy, one can also reduce the dimensionality of the model even further
by asserting that the Kjs's must be approximately equal,

K}y = KIRNAT  IRNA (A17)
and that the magnitude of Kmax must be one-third that of the sensitivity parameter 7,

While this reduces the flux-parity model to only four critical parameters (7, Kj;, Ymax, and vimax), we
chose to keep all parameters independent and assigned their values as described in Supplementary
file 1.

Flux-parity prediction of total tRNA abundance

A centerpiece of the flux-parity ribosomal allocation model is the separation of the precursor
pool into species of charged- and uncharged-tRNA, the concentration ratio of which defines the
ribosomal allocation as well as the total tRNA content (tRNA°+tRNA"). To further test the veracity of
the flux-parity model, we can compare the predicted steady-state concentrations of total tRNA to
those reported in the literature. Specifically, the amount of total tRNA relative to the total number of
ribosomes, the results of which are shown in Appendix 1—figure 8. We believe that the predicted
abundance of tRNA relative to the predicted ribosome content modestly agrees with quantitative
measurements, but not to the level of accuracy found in all other comparisons in this work.

Chure and Cremer. eLife 2023;12:e84878. DOI: https://doi.org/10.7554/eLife.84878 49 of 52



e Llfe Research article

Microbiology and Infectious Disease | Physics of Living Systems

20 =
-$8 Bremer & Dennis, 2008
\ -©- Dongetal, 1996
Forchhammer & Lindahl, 1971
Skjold et al., 1973

18 * \
g mmm flux-parity prediction
316 * \
£ \
=14
g \
5, % >
=]
E N
S0 A
<
z \ ~ o
g \. N
6
0.5 1.0 1.5 0 25

2.
growth rate [hr1]

Appendix 1—figure 8. Literature measurements for the number of tRNA molecules per ribosome in steady-state
growth. Glyphs are shown with connecting lines to more clearly demonstrate the observed trend in each dataset.

Red dashed-line represents the estimated tRNA abundance per ribosome resulting from the flux-parity allocation
model.

It is important to note, however, that there is a large amount of uncertainty that is present in
these types of measurements (quantitative limitations discussed in Reue, 1998). Furthermore,
there remains quantitative disagreement between studies that directly measure total tRNA content
(Skjold et al., 1973; Dong et al., 1996, Forchhammer and Lindahl, 1971) with the calculated
abundance (Bremer and Dennis, 2008). In the latter, the tRNA per ribosome ratio was calculated
following a number of assumptions, namely, a growth-rate independent factor of total RNA that is
tRNA (see table 1, f;,f;, and table 2, note ¢ in Bremer and Dennis, 2008). As the majority of stable
RNA is rRNA, the assumption of this constant factor a priori enforces a growth rate-independent
value for the total number of tRNA per ribosome. Due to the disagreement between these reported
values, the large degree of measurement uncertainty, and the approximations needed to convert our
tRNA-concentration and total ribosomal mass based model, we emphasize that further quantitative
measurements are needed to accurately assess these model predictions.

Estimating the number of ribosomes within the cell

In the main text, we make the assertion that the accumulation of biomass is dependent on two
factors: (i) the number of ribosomes present in the cell and (i) the speed at which they make peptide
bonds. Here we clarify how we estimate the number of ribosomes in the cell.

Ribosomal assembly is an impressively complex process in which = 50 individual proteins and
three large rRNAs self-assemble into two major subunits with high efficiency (Reuveni et al., 2017).
In this work, we thus assume that assembly is instantaneous with the total number of ribosomes
given by the total mass of ribosomal proteins, Mgy/mg,, where mgy, is the proteinaceous mass of a
single ribosome. In reality, ribosomes can only begin translation once they are assembled. Therefore,
a proper accounting of the mass of functional ribosomes is

Ngp = W—,ﬁ,’;J < Mo, (A19)
where the brackets |... | denote the floor function (i.e., rounding down to the nearest integer).
Given number of ribosomes per cell is typically large (between ~5000 and ~20, 000 depending on
the condition Belliveau et al., 2021), the fraction of incomplete ribosomal mass is comparatively
small, allowing us to make the approximation
| | M (A20)

mRp MRb
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If cells could consist exclusively of ribosomes (meaning, Mg, = M) which are translating at their
maximal rate, Ymax = Vi max/mgp. the total biomass dynamics would become

D= Mt =y, M, (A21)

which can be solved as an exponential relation with a doubling time of

tdouble =108 25— = log 2.1 (A22)
Notably, this approximation only holds as ribosomes consist of many short ribosomal proteins (each
~200-500 amino acids in size) which are quickly translated. With many different ribosomes translating,
all ribosomal proteins required to form a novel ribosome can be translated very quickly (Reuveni
et al., 2017). Conversely, if the proteinaceous components of ribosomes was a single protein with
~7500 amino acids, then the shortest doubling time would instead be the time it takes to translate
a protein with mass mgy, (i.€., tyoupie = MRp/Viimax), @and a description with a simple rate equation
(Equation A19) would substantially overestimate protein synthesis. This is again emphasizing that
complex cellular processes need to be in place for a simple rate equation formulation to work.

Ribosomes making ribosomes: A consideration of rRNA synthesis

The allocation model presented in the main text considers exclusively protein synthesis as the
determinant of microbial growth. Yet, as the cell contains a substantial mass of RNA, microbes clearly
must allocate some fraction of their ribosomes towards the synthesis of RNA polymerases (RNAP)
such that the required RNA species (rRNA, mRNA, and tRNA") can accumulate to the appropriate
levels. This question was analyzed in more detail by Roy et al., 2021. The modeling frameowkr
presented by the authors allows a more detailed investigation of RNA and protein synthesis and how
these two auto-catalytic cycles are couples. However, in order to maintain a simple, low-dimensional
modeling framework we decided to not follow such a more detailed approach. This is movitated
by two observations. First, recent order-of-magnitude work has shown that the abundance of
RNAP (and the corresponding o-factors) is not limiting for growth of E. coli across many conditions
(Belliveau et al., 2021). Second, we here additionally show that RNA synthesis is not associated
with a huge protein cost and RNAP synthesis (and correspondingly, RNA synthesis) has thus only a
minor effect on the growth rate in nutrient replete conditions. We stress that the situation can be
different in nutrient deplete conditions, for example, when phosphate to support RNA synthesis is
limiting growth. For such scenarios, a more explicit modeling of RNA synthesis such as the approach
introduced by Roy et al. is needed.

Ribosomal RNA (rRNA) accounts for the vast majority of RNA in the cell (x85%; BNID: 106421
Milo et al., 2010) and we therefore only consider the synthesis of rRNA to estimate the demand for
RNAP. Ribosomes consist of three large rRNA species which together account for a large fraction of
the ribosomal mass and are responsible for the catalysis of peptide bonds. It thus follows that rRNA
accounts for a large fraction of the cellular dry mass. One may therefore expect rRNA synthesis to
be an important determinant of the time it takes to replicate a ribosome with a strong consequence
on growth. However, a comparison of transcription and translation speeds shows that the synthesis
of rRNA is far more rapid. E. coli, for example, harbors three rRNAs species per ribosome (5S, 16S,
and 23S) with a sum total length of 4566 nucleotides (nt). With a transcription speed of ~ 40 nt/s a
single RNAP needs only =115 s to synthesize these rRNAs. Given that an RNAP contains 4100 AA
(significantly less than a ribosome, mg;, = 7459 AA), the synthesis of required RNAP does not require
a large pool of resources compared to what is required to synthesize the ribosomal proteins. In
the following, we extend this logic and calculate the required allocation of ribosomes towards the
synthesis of ribosomal proteins and rRNA synthesizing RNAP.

To most clearly introduce the logic of the calculations, we present here only a hypothetical scenario
in which precursor supply is unlimited and cells do not have to synthesize metabolic proteins but only
consist of ribosomes, rRNA, and the RNAP required to synthesize rRNA. However, similar calculations
can be performed when considering the full allocation model and the metabolic proteins required
to supply precursors. The mass of (ribosomal) proteins Mg, is proportional to the total number of
ribosomes and depends on their elongation rate max, which we assume in this hypothetical scenario
to be always maximal. As we are only considering a cell with ribosomal and RNAP proteins, we can
state that a certain fraction of the ribosomes ¢g;, are synthesizing ribosomal proteins whereas the
rest 1 — ¢pgp, are generating RNAP. Mathematically, we can enumerate these dynamics as
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W = Gy YmaxMpp- (A23)

for the ribosomal protein biomass dynamics and
@re = (1= drpYImaxMpo. (A24)

for RNAP protein biomass dynamics, where Mp, is the total mass of all RNAP.
We consider that all RNAP are synthesizing rRNA to support ribosomal biogenesis, with the amount
of rRNA nucleotides depending on the number of RNAP (Np,) and the speed of transcription (vy),

LBV = v, Npy = KirMpo. (A25)

where we have defined k= r;::: with mp, being the mass of a single RNAP. As ribosomes can
only work when a sufficient amount of rRNA is present, we next consider the number of
rRNA nucleotides per ribosomal amino acids, ru: = rRNA/Mg,. The dynamics is then given by

dr, Mp,
= Kirgfe = TntYmax®Rb- (A26)

In steady-state growth (dru/dt = 0 and %—:: = I;f’“’), one obtains a quadratic equation for the fraction
Rb
¢rp With the solution:

v A1 Ymax
Oho = ey (11 B ) (a2

For a ribosome to function, rRNA nucleotides and amino acids need to be present at a specific
ratio, rus = rRNA/mgy. Taking this ratio and the known rates of transcription and translation, we can
estimate the fraction ¢g;, for E. coli yielding ¢gp =~ 0.90. This indicates that only ~ 10% of the total
ribosome pool are needed for RNAP synthesis. It then follows that the upper bound of the growth
rate considering the requirements of rRNA synthesis, A = Y(¢grp 1or — PrRo—rNAP), IS different from the
exclusively proteinaceous growth rate y¢g, by only 10%.
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