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THE BIGGER PICTURE Just as humans have critical development phases for facial recognition, deep arti-
ficial neural networks exhibit similar periods. These critical phases determine the network’s ability to ac-
quire and process facial information, and like in humans, impaired face learning can occur when information
is lacking during these critical periods. Fortunately, we found that restoration is possible if the necessary
input is provided within this critical window. Beyond this time frame, the model’s capacity to absorb new
information wanes. Our work not only uncovers the computational foundations of face learning but also of-
fers insights into its behavior and strategies for recovering impaired face learning.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

Face learning has important critical periods during development. However, the computational mechanisms
of critical periods remain unknown. Here, we conducted a series of in silico experiments and showed that,
similar to humans, deep artificial neural networks exhibited critical periods during which a stimulus deficit
could impair the development of face learning. Face learning could only be restored when providing informa-
tion within the critical period, whereas, outside of the critical period, the model could not incorporate new in-
formation anymore. We further provided a full computational account by learning rate and demonstrated an
alternative approach by knowledge distillation and attention transfer to partially recover the model outside of
the critical period. We finally showed that model performance and recovery were associated with identity-se-
lective units and the correspondence with the primate visual systems. Our present study not only reveals
computational mechanisms underlying face learning but also points to strategies to restore impaired face

learning.

INTRODUCTION

A critical period is a time window during development when
some particular experience must be undergone for the com-
plete development of language and sensory systems to occur.’
The critical period hypothesis was originally proposed for the
acquisition of a second language® and visual perception.® In
children born with opacity or deviation of the eyes, the deprived
eye will suffer from lack of a cortical response despite a healthy
retina. The consequences of such sensory deprivation can lead
to lifelong amblyopia (due to ocular dominance plasticity).*
Similarly, it has been hypothesized that there is a critical period
for the development of the fusiform face area (FFA), which has
an intriguing connection (e.g., atypical fixation patterns in
autism) with the difference in face processing by individuals

with autism spectrum disorder (ASD)."'® People with ASD
have an increased tendency to saccade away from the eye re-
gion of faces when information is present in those regions'* and
instead have an increased preference to fixate on the location
of the mouth."® However, it has remained an open question
whether there are critical periods in the development of face
processing,'® what the computational mechanisms of critical
periods are, and what the developmental trajectory of facial
feature selection is.

It has been argued that the neural coding of visual stimuli can
change over development.'® A study using functional MRI to
examine the development of several functionally defined re-
gions, including object, face, and place-selective cortices in
different age groups (children, adolescents, and adults), has
shown that development that occurred through the expansion
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of the FFA and parahippocampal place area (PPA) into the sur-
rounding cortex is correlated with improved recognition memory
for faces and places, respectively.'” Furthermore, microstruc-
tural proliferation in the human cortex is coupled with the devel-
opment of face processing.'® In addition to the developmental
trajectory, critical periods play an important role in the computa-
tional mechanisms of face learning. Our recent study has pro-
vided a neuronal mechanism for face learning: neuronal distance
between face identities increases as a function of exposure, sug-
gesting that faces become more neurally distinct after learning.'®
Notably, the core components of face processing and their neu-
romaturational time course in typical development (TD) may
facilitate our understanding of face processing deficits in autism
as well as development of clinical tools for early diagnosis and
remediation.?°

Given the challenges of creating a critical period in the physical
world, developing computational surrogate models®’ has become
an appealing alternative. Deep neural networks (DNN) such as
VGG-Face® and FaceNet”® have achieved comparable or even
superior face recognition performance compared with human ob-
servers. These DNN-based surrogate models have made it
convenient to conduct experiments with deprived stimuli or
perturbation of network architectures.?*2> For example, the exis-
tence of a “critical period”’ (usually the first few epochs) in the DNN
has been shown experimentally,”’ suggesting that critical periods
are not restricted to biological systems but can emerge naturally in
learning systems, whether biological or artificial, due to funda-
mental constraints arising from learning dynamics and information
processing. It has been shown that the use of unsupervised
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learning.?® More broadly, DNNs provide an
important approach to testing the computa-
tional benefits of fundamental organiza-
tional features of the visual system.?’
DNNs create a highly organized face simi-
larity structure where natural image varia-
tion is organized hierarchically, offering an
important theoretical framework to under-
stand identity coding.?® Furthermore, it has
been shown that brain-like functional
specialization emerges spontaneously in
DNNs and reflects a computational optimization for face recogni-
tion.2° In sum, in silico experiments with DNNs have provided un-
precedented opportunities to understand face coding and
learning, especially when artificial models show correspondence
with brain models.?%-3°

In this study, we hypothesize that, similar to humans and ani-
mals, deep artificial neural networks exhibit critical periods dur-
ing which a stimulus deficit can impair the development of face
learning. We further hypothesize that face learning can only be
restored when providing information within the critical period
but not outside of the critical period. We seek a computational
account for critical periods and explore possible ways to restore
face learning. We hypothesize that the learning rate is a key fac-
tor for critical periods. We finally explore the correspondence
with primate visual systems, which, in turn, may explain the re-
covery mechanism from the critical periods.

RESULTS

A surrogate model for developing face recognition

We first used full-face images to train a DNN based on the
ResNet50 architecture (Figures 1 and 2A). We observed a rapid
increase in performance in early training epochs (Figure 2B),
which reached a plateau after 30 epochs. We next quantified in-
formation utilization in the images using gradient-weighted class
activation mapping (Grad-CAM; methods). The heatmaps re-
flected the regions in the face that contributed to the correct
classification of face identities (Figure 2E). In the full-face model,
we found that the network utilized information from both the
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Figure 2. Face recognition models with different training stimuli

(A) ResNet50 architecture. ResNet50 has 4 stages. It performs the initial convolution and max-pooling using 7 x 7 and 3 x 3 kernels, respectively. Subsequently,
the inputs go through the 4 stages. All stages contain the basic residual blocks. For ResNet50, there are 3, 4, 6, and 3 residual blocks in stages 1, 2, 3, and 4,
respectively. In each residual block, 3 convolution layers (1 x 1,3 x 3,and 1 x 1) are stacked. The 1 x 1 convolution layers are responsible for reducing and then
restoring the dimensions. The 3 x 3 layer is left as a bottleneck with smaller input/output dimensions. The curved arrows are skip connections or “shortcuts.”
Solid connections refer to the identity connection. The dashed connection denotes that the convolution operation in the residual block is performed with stride 2.
As feature maps progress from one stage to another, the channel width is doubled, and the size of the input is reduced to half. Finally, the network has an average
pooling layer followed by a fully connected layer having 50 neurons (number of different identities).

(B) Network learning curve. The validation accuracy of face identity recognition is plotted as a function of the model training epoch. The shaded area denotes the
critical period.

(C, G, and ) Average Grad-CAM intensity for each region of interest (ROI).

(D, H, and J) The proportion of Grad-CAM intensity for each ROI. On each box, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, and the whiskers extend to the most extreme data points the algorithm considers to not be outliers. Asterisks indicate a significant difference using a
two-tailed paired t test. **p < 0.001.

(legend continued on next page)
Patterns 5, 100895, February 9, 2024 3




j.patter.2023.100895

Please cite this article in press as: Wang et al., A critical period for developing face recognition, Patterns (2023), https://doi.org/10.1016/

¢? CellPress

OPEN ACCESS

eyes and mouth (see Figure 2E for an example; see Figure 2F for
group average), although the network utilized more information
from the eye region than the mouth region (Figure 2C; average
Grad-CAM intensity: eyes: 124.47 + 39.97, mouth: 114.10 =
37.51; two-tailed two-sample t test: #(7536) = 11.62, p < 1073%;
Figure 2D; proportion of Grad-CAM intensity: eyes: 0.34 +
0.11, mouth: 0.31 + 0.14; #(7536) = 8.79, p < 10 "7).

To study the impact of facial information, we employed
foveated imaging and created eye-foveated and mouth-
foveated images (Figure 1; methods). As expected, with reduced
information, the models reached a lower performance (Fig-
ure 2B). Interestingly, the eye-foveated model had a better per-
formance compared with the mouth-foveated model, indicating
that the eyes contained more information than the mouth for face
recognition. Notably, we observed a similar “critical period” (the
first 30 epochs; see formal definitions below) compared with the
full-face model, suggesting that the foveated models had a
similar learning process.

We also quantified information utilization in the images in these
models (Figures 2E and 2F). Indeed, the eye-foveated model uti-
lized more information in the eyes than the mouth (Figure 2G;
average Grad-CAM intensity: eyes: 132.08 + 37.71, mouth:
61.59 + 35.62; {(7536) = 83.42, p < 1077, Figure 2H; proportion
of Grad-CAM intensity: eyes: 0.43 + 0.14, mouth: 0.20 = 0.13;
t(7536) = 73.61, p < 10729, whereas the mouth-foveated model
utilized more information in the mouth than the eyes (Figure 2I;
average Grad-CAM intensity: eyes: 71.25 + 37.65, mouth:
133.14 + 40.25; t(7536) = 68.95, p < 10~3% Figure 2J; proportion
of Grad-CAM intensity: eyes: 0.22 + 0.11, mouth: 0.42 + 0.18;
#(7536) = 58.55, p < 10739, This result confirmed that reducing
certain visual inputs into training would lead to reduced utilization
of the corresponding visual information. On the other hand, the
eye-foveated model had a higher average Grad-CAM intensity
in the eyes than the full-face model (Figure 2G vs. Figure 2GC;
two-tailed paired t test: #3768) = 12.03, p < 10739, and the
mouth-foveated model had a higher average Grad-CAM intensity
in the mouth than the full-face model (Figure 2I vs. Figure 2C;
t(3768) = 30.39, p < 107%9), suggesting that the network could
adjust to focus on available information.

Last, we showed that another popular DNN model for face
recognition (i.e., VGG-Face) had a similar learning curve and crit-
ical period and that full-face models outperformed eye-foveated
models and mouth-foveated models (Figures S2A and S2B).
Therefore, we confirmed that our results were not idiosyncratic
to the DNN model used in the present study.

Recovery with full-face images within vs. outside of the
critical period

Above, we have revealed a critical period during DNN training
(i.e., learning face identities) and illustrated the information utili-
zation during this process. We next investigated whether training

Patterns

with restricted stimuli (eye-foveated faces or mouth-foveated
faces) could be recovered with additional visual information.

We first used full-face images to recover impaired models. We
found that providing full-face information to the network within
the critical period led to better performance, and this was the
case for both the eye-foveated model (Figure 3A) and mouth-
foveated model (Figure 3B). However, providing full-face infor-
mation to the network outside of the critical period did not
improve the performance (Figures 3A and 3B), and it could
even deteriorate the accuracy for the mouth-foveated model
(Figure 3B). This result was confirmed with different starting
points of recovery within or outside of the critical period
(Figures S1B and S1C).

Importantly, the change in performance with recovery was
associated with different utilization of facial information. For the
eye-foveated model, recovering within the critical period led to
an increased utilization of mouth information compared with
recovering outside the critical period (see Figure 3C for an
example and Figure 3D for group average; Figure 3E; average
Grad-CAM intensity: within: 90.03 + 37.21, outside: 67.27 +
32.00; t(3768) = 53.68, p < 1073% Figure 3F; proportion of
Grad-CAM intensity: within: 0.25 + 0.13, outside: 0.21 + 0.12;
t(3768) = 45.65, p < 10729, For both recovery conditions, the
eyes still contributed more information than the mouth (Figure 3E;
average Grad-CAM intensity: within: t(7536) = 53.82, p < 107°,
outside: #(7536) = 89.85, p < 10730, Figure 3F; proportion of
Grad-CAM intensity: within: #(7536) = 43.84, p < 10%°, outside:
(7536) = 72.29, p < 10739,

Similarly, for the mouth-foveated model, recovering within the
critical period led to increased utilization of eye information
compared with recovering outside of the critical period (see Fig-
ure 3C for an example and Figure 3D for group average; Fig-
ure 3G; average Grad-CAM intensity: within: 109.18 + 40.77,
outside: 76.03 + 35.50; {(3768) = 63.39, p < 10~3°; Figure 3H;
proportion of Grad-CAM intensity: within: 0.29 + 0.11, outside:
0.23 = 0.10; #(3768) = 56.29, p < 107>°). For both recovery con-
ditions, the mouth still contributed more information than the
eyes (Figure 3G; average Grad-CAM intensity: within: {(7536) =
19.15, p < 10730, outside: #(7536) = 67.13, p < 107%% Figure 3H;
proportion of Grad-CAM intensity: within: #(7536) = 16.34,
p < 107%°, outside: (7536) = 54.58, p < 107%9).

We next investigated the extent to which the foveated
models recovered by comparing them with the full-face model.
Although the eye-foveated model recovered with full-face im-
ages within the critical period improved performance, it did
not fully reach the level of the full-face model in model perfor-
mance (85.67% vs. 87.32%; Figure 3A vs. Figure 2B) and utili-
zation of facial information (Figure 3E vs. Figure 2C; average
Grad-CAM intensity: eyes: t(3768) = 22.72, p < 1073°, mouth:
t(3768) = 42.73, p < 1073 Figure 3F vs. Figure 2D; proportion
of Grad-CAM intensity: eyes: t(3768) = 42.60, p < 1073°, mouth:
t(3768) = 45.06, p < 107%9), suggesting that the impaired

(E) The Grad-CAM intensity maps for an example face.

(F) The Grad-CAM intensity maps for group average across faces. The intensity values indicate the contribution/importance of pixels for face recognition. The red

contours in the example face delineate the eyes and mouth ROls for this face.
(C and D) Full-face model.

(G and H) Eye-foveated model.

(I and J) Mouth-foveated model.
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Figure 3. Recovery with full-face images

A) The learning curve for the eye-foveated model.

B) The learning curve for the mouth-foveated model.

C) The Grad-CAM intensity maps for an example face.

D) The Grad-CAM intensity maps for group average across faces.
E and G) Average Grad-CAM intensity for each ROI.

F and H) The proportion of Grad-CAM intensity for each ROI.

E and F) Eye-foveated model.

G and H) Mouth-foveated model.

Legend conventions are as in Figure 2.
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eye-foveated model could be partially recovered within the crit-
ical period. Similarly for the mouth-foveated model, when re-
covery with full-face images happened within the critical
period, the resultant model improved model performance
(84.66% vs. 87.32%; Figure 3B vs. Figure 2B) and utilization
of facial information (Figure 3G vs. Figure 2C; average Grad-
CAM intensity: eyes: #3768) = 26.30, p < 107°, mouth:
#(3768) = 22.56, p < 1073%; Figure 3H vs. Figure 2D; proportion
of Grad-CAM intensity: eyes: t(3768) = 34.66, p < 10~°°, mouth:
t(3768) = 34.40, p < 1073°) toward the full-face model, although
the impaired mouth-foveated model was partially recovered.

Together, our results suggest that providing information in the
critical period can recover model performance and information
usage in the impaired models. However, providing information
outside of the critical period cannot recover impaired models
anymore, which justifies the importance of timing for the recov-
ery of impaired models.

Recovery with complementary information within vs.
outside of the critical period

Above, we have shown recovery with full-face images, which
contain full information of the faces. Can we recover impaired
models with complementary information (i.e., providing an eye-
foveated model with mouth-foveated images or a mouth-
foveated model with eye-foveated images)?

To answer these questions, we input mouth-foveated images
into the eye-foveated model within and outside of the critical
period. Recovering within the critical period using complemen-
tary stimuli led to a similar model performance (Figure 4A), but

Mouth Eyes Mouth

mm Recovery Outside Critical Period

interestingly, recovering outside of the critical period even dete-
riorated the model performance (Figure 4A). As expected, recov-
ering outside of the critical period did not change information
utilization; the eyes still contributed more information than
the mouth (see Figure 4C for an example and Figure 4D for
group summary; Figure 4E; average Grad-CAM intensity: eyes:
128.15 + 38.63, mouth: 77.75 =+ 37.45; t(7536) = 57.51,
p < 1073 Figure 4F; proportion of Grad-CAM intensity: eyes:
0.38 +0.13, mouth: 0.24 + 0.14; {(7536) = 49.23, p < 10~°"). How-
ever, notably, recovering within the critical period led to an oppo-
site pattern of information utilization: the mouth contributed
more information than the eyes (see Figure 4C for an example
and Figure 4D for group summary; Figure 4E; average Grad-
CAM intensity: eyes: 97.56 + 41.72, mouth: 120.46 + 39.65;
#(7536) = 24.42, p < 1073%; Figure 4F; proportion of Grad-CAM in-
tensity: eyes: 0.28 + 0.12, mouth: 0.36 = 0.16; ¢(7536) = 21.95,
p < 10739, a pattern of results that were more similar to the
mouth-foveated model. This result suggests that new comple-
mentary information provided during the critical period overrode
the original information utilization. In other words, it indicates that
the network mainly takes information provided later. It is worth
noting that the model performance seemed to switch as well
(Figures 4A and 4B): the eye-foveated model turned into the
mouth-foveated model.

Similarly, when we input eye-foveated images into the mouth-
foveated model, we found that recovering outside of the critical
period even deteriorated the model performance (Figure 4B),
and the critical period did not change information utilization: the
mouth still contributed more information than the eyes (see
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Figure 4. Recovery with images with complementary information
(A) The learning curve for the eye-foveated model.

(B) The learning curve for the mouth-foveated model.

(C) The Grad-CAM intensity maps for an example face.

(D) The Grad-CAM intensity maps for group average across faces.

(E and G) Average Grad-CAM intensity for each ROI.

(F and H) The proportion of Grad-CAM intensity for each ROI.

(E and F) Eye-foveated model.

(G and H) Mouth-foveated model.

Legend conventions are as in Figure 2.

Figure 4C for an example and Figure 4D for group summary; Fig-
ure 4G; average Grad-CAM intensity: eyes: 84.84 + 38.36, mouth:
128.98 + 41.65; {(7536) = 47.86, p < 10730, Figure 4H; proportion
of Grad-CAM intensity: eyes: 0.24 + 0.11, mouth: 0.38 + 0.17;
(7536) = 40.42, p < 10729, However, again, recovering within
the critical period led to an opposite pattern of information utiliza-
tion: the eyes contributed more information than the mouth (see
Figure 4C for an example; Figure 4D for group summary; Fig-
ure 4G; average Grad-CAM intensity: eyes: 122.19 + 10.42,
mouth: 91.48 + 40.97; t(7536) = 32.76, p < 10~3%; Figure 4H; pro-
portion of Grad-CAM intensity: eyes: 0.36 + 0.13, mouth: 0.27 +
0.15; {(7536) = 27.48, p < 10729, a pattern of results that was
more similar to the eye-foveated model. This result again suggests
that new complementary information provided during the critical
period overrode the original information utilization, and the
mouth-foveated model turned into the eye-foveated model. In
addition, the model performance seemed to switch as well
(Figures 4A and 4B; i.e., the mouth-foveated model turned into
the eye-foveated model), and this result could be further repli-
cated by a different DNN (Figures S2C and S2D).

Using complementary information for recovery, we not only
confirm that providing new information outside of the critical
period cannot alter the model anymore but also show that
providing new information within the critical period will override
the original model.

Computational mechanism underlying recovery from

the critical period

We next investigated why there was a critical period and why the
information provided in the critical period could override previ-
ous information. We hypothesize that the decrease in learning
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rate could explain the above results. This hypothesis is in line
with the developmental trajectory of the primate visual system,
where learning is decreased as a function of age.®* It is worth
noting that, during model training, the learning rate evolved
based on an adaptive rule (Methods) that is consistent with neu-
rodevelopment, and we did not preset the epoch-by-epoch
learning rates (see also Figure S1A for validation with different
initial learning rates).

Indeed, we showed that the learning rate monotonically drop-
ped as a function of the training epoch (Figure 5A), suggesting
that the learning became more local in the later stage, which is
consistent with the idea of a critical period during development.
Specifically, at epoch 80, the learning rate dropped below 0.001
(Figure 5A), which prevented the model from learning using full-
face images (Figure 5B, illustrated using the mouth-foveated
model; note that there was also an initial drop in performance
due to a change in training stimuli from mouth-foveated images
to full-face images; cf. Figure 3B). However, notably, when we
restored a larger learning rate in later epochs, the learning pro-
cess was recovered (Figure 5B). Interestingly, a smaller change
in the learning rate (0.001) initially resulted in a smaller drop in
performance compared with a larger change in the learning
rate (0.01), although over time a larger change in the learning
rate ultimately led to higher performance. Therefore, a larger
learning rate could lead to a better recovery, and the same
learning rate as the initial training phase (0.01, the learning rate
in the critical period) could best recover the model (Figure 5B).
In sum, the inability to recover outside of the critical period could
be explained by the reduced learning rate: the network could not
get out of the local minima to restore the learning for new infor-
mation. This also explained why the network overrode the
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Figure 5. Improving model recovery by adjusting the learning rate
(A) Learning rate as a function of training epoch in the mouth-foveated model.

(B) The learning curve for each learning rate. Model recovery ability varied as a function of learning rate. The learning curves for the full-face model and the mouth-
foveated model recovered by full-face images within and outside of the critical period are shown as a reference.

(C) Average Grad-CAM intensity for each learning rate.
(D) The proportion of Grad-CAM intensity for each learning rate (LR).
Legend conventions are as in Figure 2.

previously learned information for recovery within the critical
period: the network presumably converged to another local min-
imum with the new information for learning.

Furthermore, we showed that, consistent with improved
model performance, utilization of eye information increased as
a function of learning rate toward the full-face model (Figure 5C;
average Grad-CAM intensity: recovery outside of the critical
period: 76.03 + 35.50, learning rate = 0.001: 80.11 + 35.13,
learning rate = 0.005: 89.02 + 36.87, learning rate = 0.01:
96.50 + 37.92, full-face model: 124.47 + 39.97; one-way
repeated-measure ANOVA across learning rates: F(2,7536) =
1,220, p < 1072%; Figure 5D; proportion of Grad-CAM intensity:
recovery outside the critical period: 0.23 + 0.10, learning rate =
0.001: 0.24 + 0.10, learning rate = 0.005: 0.25 + 0.10, learning
rate = 0.01: 0.27 =+ 0.11, full-face model: 0.34 + 0.11;
F(2,7536) = 1,086, p < 1072°%). Moreover, we derived similar re-
sults with the eye-foveated model.

Together, our results suggest that the learning rate is a deter-
mining factor for the critical period and can explain the network
performance and information utilization concerning model
recovery.

Knowledge distillation and attention transfer for model
recovery

Can we achieve the same improvement in learning without modi-
fying the learning rate but by applying knowledge distillation and
attention transfer? Specifically, we used the full-face model as
the teacher model and applied attention transfer to improve the
mouth-foveated model outside of the critical period (i.e., the stu-
dent model, which is the same as the recovery outside of the crit-
ical period; Figure 6A; methods). Indeed, attention transfer
improved model performance outside of the critical period (Fig-
ure 6B) and increased information utilization in the eyes (see Fig-
ure 6C for an example and Figure 6D for group average; Figure 6E;
average Grad-CAM intensity: no attention transfer [i.e., recovery
outside of the critical period]: 76.03 + 35.50, attention transferred:
89.49 + 37.27; 1(3768) = 45.52, p < 10~3%; Figure 6F; proportion of
Grad-CAM intensity: no attention transfer: 0.23 + 0.10, attention
transferred: 0.25 + 0.10; #(3768) = 33.82, p < 107%%. However,
the model after attention transferred still did not reach the same
level of performance (Figure 6B; 80.76% vs. 87.32%; the perfor-
mance of the attention transferred model was similar to recovery

with a learning rate of 0.001 [80.53%]; Figure 5B) and utilization
of eye information (Figure 6E; average Grad-CAM intensity:
t(3768) = 47.91, p < 10~%%; Figure 6F; proportion of Grad-CAM in-
tensity: #(3768) = 39.01, p < 10739 as the full-face model (teacher
model). Furthermore, similar results were found for the eye-
foveated model.

Together, our results suggest that knowledge distillation and
attention transfer can partially recover an impaired model
outside of the critical period (i.e., when the learning rate is low),
although the extent of recovery is limited compared with directly
adjusting the learning rate.

Identity selectivity

We have shown before that those identity-selective units
(methods) are key building blocks of the DNN for face recogni-
tion.>®> We next investigated the change of identity selectivity
during the development of face recognition by summarizing
the percentage of identity-selective units in each model. We
focused on the top DNN layer (Conv4), where identity selectivity
is most established and relevant.?>>® Indeed, we found that the
full-face model (Figure 7; 87.5%) had a higher percentage of
identity-selective units than the eye-foveated model (78.9%;
%2 test: p < 107'% and a control forehead-foveated model
(72.8%; p < 107'% note that the eye-foveated model also
had a higher percentage of identity-selective units than the
control forehead-foveated model: p < 107 '9). Importantly, for
the eye-foveated model, recovery with full-face images within
the critical period increased the percentage of identity-selective
units (Figure 7; 84.2%; p < 107 '°), but recovery outside of the
critical period did not increase the percentage of identity-selec-
tive units (79.1%; p = 0.33; within vs. outside: p < 10~ °). Simi-
larly, for the forehead-foveated model, recovery with full-face
images within the critical period increased the percentage of
identity-selective units (Figure 7; 81.9%; p < 1079, although
recovery outside of the critical period also increased the per-
centage of identity-selective units (76.3%; p < 10719, albeit
to a lesser extent (within vs. outside: p < 107'9. Together,
our results further suggested a recovery mechanism using
identity-selective units: restricted visual information impaired
the formation of identity-selective units, and recovering within
the critical period could increase and recover identity-selective
units.
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Figure 6. Improving model recovery by applying KD and AT

(A) A computational framework for KD and AT. We used the model trained by full-face images as the teacher model to improve the performance of the mouth-
foveated model (student model) outside of the critical period. Both the teacher model and the student model had the same ResNet50 architecture.

(B) The learning curves for the mouth-foveated model with vs. without AT. The learning curves for the full-face model and the mouth-foveated model recovered by
full-face images within and outside the critical period are shown as a reference.

(C) The Grad-CAM intensity maps for an example face.

(D) The Grad-CAM intensity maps for group average across faces.

(E) Average Grad-CAM intensity for each ROI.

(F) The proportion of Grad-CAM intensity for each ROI.

Legend conventions are as in Figure 2.
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Figure 7. Percentage of identity-selective units for each model
Eyes within, eye-foveated model recovered by full-face images within the
critical period; eyes outside, eye-foveated model recovered by full-face im-
ages outside of the critical period; forehead within, forehead-foveated model
recovered by full-face images within the critical period; forehead outside,
forehead-foveated model recovered by full-face images outside of the critical
period. Asterisks indicate a significant difference between models using %2
test. **p < 0.001; n.s., not significant.

Establishing the relationship between artificial DNN
units and real primate neurons

The DNN performs face recognition tasks similarly to humans,
and it has been suggested that DNNs share similarities with
the primate visual system and can therefore help us better un-
derstand the neural mechanisms of face recognition®®'3°
(see more under introduction). We finally investigated whether
the development of face recognition in DNNs had a similar bio-
logical basis.

First, we analyzed whether the ensemble of DNN units shared
representational similarity with the ensemble of monkey infero-
temporal (IT) neurons (Figures 8A-8D). We used an independent
set of stimuli from the CelebA dataset (500 natural face images of
50 celebrities)®® to compare artificial DNN units and real IT neu-
rons. We recorded neuronal activity using two Utah arrays in the
anterior and central IT cortex (methods) while the monkey per-
formed a passive viewing task (Figure 8A). We identified 53 multi-
unit activity (MUA) channels that showed sufficient internal con-
sistency, and we focused on these channels for further analysis.
We found that, for all models, the pairwise distance from the
DNN (methods) significantly correlated with the neuronal pair-
wise distance from the monkey IT cortex (Figure 8C; see Fig-
ure 8D for temporal dynamics of each model), and for the full-
face model, there was an increase of correlation toward the
top DNN layer (Figure 8C). Notably, we found that the full-face
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model had a better correspondence with IT neurons than the
eye-foveated model and mouth-foveated model (Figure 8C).
We also found that the eye-foveated model recovered with full-
face images (Figure 3A) within the critical period increased cor-
respondence with IT neurons compared with the recovery
outside of the critical period (Conv4: permutation p < 0.001).
Therefore, the correspondence between DNN units and real IT
neurons could reflect model performance and recovery (cf.
Figure 3A).

Second, we analyzed whether the ensemble of DNN units
shares representational similarity with the ensemble of the hu-
man amygdala and hippocampal neurons (Figures 8B, 8E, and
8F). We used the same stimuli (500 natural face images of 50 ce-
lebrities) as for monkey recordings and recorded from 667 neu-
rons in the human amygdala and hippocampus (340 neurons
from the amygdala, 222 neurons from the anterior hippocampus,
and 105 neurons from the posterior hippocampus; firing
rate > 0.15 Hz) of 8 neurosurgical patients (23 sessions in total).*
Patients performed a one-back task (Figure 8B), and they could
well recognize the faces.*® The responses of 76 of 667 neurons
(11.39%) differed between different face identities in a window
of 250-1,250 ms following stimulus onset, and these neurons
were the real human identity-selective neurons. We grouped
amygdala and hippocampal neurons as a single neuronal popu-
lation (i.e., medial temporal lobe [MTL] neurons) for further anal-
ysis because they show very similar identity selectivity re-
sponses.®**® We found that the pairwise distance from the top
DNN layer significantly correlated with the neuronal pairwise dis-
tance from the human MTL, consistent with the processing stage
along the ventral visual pathway (Figure 8E; see Figure 8F for
temporal dynamics of the full-face model). We also found that
the full-face model had a better correspondence with MTL neu-
rons than the eye-foveated model and mouth-foveated model
(Figures 8E and 8F), and the mouth-foveated model recovered
with full-face images within the critical period increased corre-
spondence with MTL neurons compared with the recovery
outside of the critical period (Conv2: permutation p = 0.001).

By comparing artificial units and real primate neurons, we not
only revealed a systematic correspondence between the two
face recognition systems but also showed that such correspon-
dence was associated with DNN model performance and
recovery.

DISCUSSION

In this study, we systematically investigated face learning and
facial information utilization during a critical period. Specifically,
we revealed a critical period during development that has the
following properties. (1) Under the baseline condition, reduced
facial information resulted in reduced model performance and
subsequent inability to use information from the corresponding
facial parts. (2) When full-face information was provided within
the critical period, full recovery could be achieved, but recovery
did not happen when full-face information was provided outside
of the critical period. (3) When complementary information was
provided within the critical period, it could even override the orig-
inal model and become a model like that trained with new infor-
mation alone. We further provided a computational account with
a learning rate that could explain the properties of critical
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Figure 8. Match between the deep neural network (DNN) units and (real) primate neurons

(A, C, and D) Monkey inferotemporal (IT) cortical neurons.

(B, E, and F) Human amygdala and hippocampal neurons.

(A) Task used to acquire neural responses from a monkey. In each trial, 8 faces were presented for 100 ms each, followed by a fixed inter-stimulus-interval (ISl) of
100 ms. There was a central fixation point of 300 ms at the beginning of each trial, and there was an inter-trial-interval (ITl) of at least 500 ms following each trial.
The central fixation point persisted through the trial.

(B) Task used to acquire single-neuron responses from humans. We employed a one-back task in which patients responded whenever an identical famous face
was repeated. Each face was presented for 1 s, followed by a jittered ISI of 0.5-0.75 s. Face images are blurred for illustration purposes only.

(C and E) Correlation between pairwise distance in the primate neuronal face space and pairwise distance in the DNN face space.

(C) Here we used the mean firing rate in a time window of 70 ms-180 ms after stimulus onset as the response to each face, and we averaged the responses to 10
faces for each face identity.

(E) Here we used the mean firing rate in a time window of 250 ms-1000 ms after stimulus onset as the response to each face, and we averaged the responses to 10
faces for each face identity. Dashed lines denote +SD across permutation runs (n = 1,000), and solid circles represent a significant correlation (permutation test:
p < 0.05, Bonferroni correction across layers). The shaded area denotes +SEM across bootstrap runs (n = 1,000; each resample contained 35 identities), and
asterisks indicate a significant difference between models using one-tailed two-sample t test. ***p < 0.001.

(legend continued on next page)
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periods, and we showed that, by altering the learning rate,
learning could be recovered. We also demonstrated an alterna-
tive approach (i.e., knowledge distillation and attention transfer)
that can partially recover the model outside of the critical period.
Finally, we showed that model performance and recovery were
associated with identity-selective units as well as the correspon-
dence with the primate visual systems. Together, our results not
only highlight the importance of a critical period in face learning
but also elucidate its underlying computational mechanism and
restoration strategies.

Our present findings are consistent with the neurodevelop-
ment concepts. First, brains have developmental critical periods.
Classical studies have documented critical periods affecting a
range of species and systems, from visual acuity in kittens®>“°
to song learning in birds.*" Uncorrected eye defects (e.g., stra-
bismus, cataracts) during the critical period for visual develop-
ment lead to amblyopia.*® Second, our results show that,
outside of the critical period, the learning process could not be
restored, which is likely accounted for by the restricted learning
rate. In analogy, brain rewiring is significantly reduced after the
critical period,® which may cause a reduced learning rate. On
the other hand, pathways have been discovered in animal
models through which critical periods may be re-opened in
adults, making it possible to re-awaken a brain’s youth-like plas-
ticity and, thus, repair brain injury, recover sensory deficits, and
treat neurodevelopmental disorders.*? Third, network attention
transfer could partially improve model performance, which is
analogous to learning after development. Our recent study has
revealed a neural mechanism underlying face learning and
shown that the neuronal population geometry in the human
amygdala and hippocampus, quantified by the representational
distance, encodes face familiarity, similarity, and learning. Spe-
cifically, the neuronal separation between different face identi-
ties expands with increased exposure, suggesting that faces
become more distinctly represented in the neural network
following the learning process.'® Together, through a series of
experiments in an artificial neural network, our present results
implicate the importance of the critical period during model
training/learning, which is consistent with the neurobiology of
animal development.

Developmental prosopagnosia (DP) is an impairment in recog-
nizing faces despite normal vision, intelligence, and socio-cogni-
tive abilities and no history of brain damage.*® The impaired
development of face processing during the critical period may
lead to prosopagnosia.*” In this study, we demonstrated that in-
formation provided during the critical period determines subse-
quent information utilization, which is also consistent with the
development of visual attention.”® Recent arguments suggest
that neural coding strategies during development may exhibit
high levels of dynamism.'® Additionally, research has shown
that early emotional processing in young children differs from
that observed in adolescents, who are more adultlike.*® One hy-
pothesis is that, in TD, the brain undergoes a process of special-
ization for face processing where specific regions such as the
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FFA become dedicated to face recognition. It is believed that,
during the critical period, particular experiences and interactions
with faces shape and refine the neural circuits involved in face
processing. In the case of DP, it is proposed that disruptions
or abnormalities may occur during this process of face speciali-
zation in the critical period. Consequently, this can lead to
impaired development of the neural circuits involved in face
recognition, resulting in persistent difficulties with recognizing
faces throughout an individual’s life.

Our present results are relevant to neurodevelopmental disor-
ders such as ASD. Many studies have documented abnormal
face processing in people with ASD,'*">*7~52 and such a deficit
has both a developmental®® and genetic®* root. In particular,
people with ASD demonstrate impaired utilization of facial infor-
mation. During viewing naturalistic social videos, people with
autism demonstrate abnormal patterns of social visual pursuit
that are consistent with reduced saliency of eyes and increased
saliency of mouths, bodies, and objects.*® When viewing static
faces, people with autism view non-feature areas of the faces
significantly more often but core feature areas of the faces
(e.g., eyes and mouth) significantly less often than controls,*°
and they have piecemeal rather than configural strategies.®®
Similarly, some research suggests that people with ASD demon-
strate active avoidance of fixating the eyes in faces, which, in
turn, influences the recognition performance of emotions,*®
whereas other research suggests that children with ASD demon-
strate gaze indifference and passive insensitivity to social
signals in others’ eyes at the time of initial diagnosis.*® The atyp-
ical facial fixations are complemented by neuronal evidence of
abnormal processing of information from the eye region of faces
in blood-oxygen-level-dependent (BOLD) fMRI®” and single-
neuron responses in the amygdala.®®

Our present study provided a possible computational account
for such a deficit in ASD: reduced access to eye information dur-
ing the critical period resulted in impaired utilization of eye infor-
mation and, thus, gaze to the eyes after development. Therefore,
our results point to a potential way to recover from such face pro-
cessing deficits by early training with guided fixation onto the
eyes. On the other hand, although our results suggest that recov-
ery outside of the critical period could not restore normal func-
tion, the network attention transfer has provided an important
alternative to recover learning, which is also consistent with the
behavioral training strategy currently being applied in ASD. It is
worth noting that, although our results highlight the importance
of critical periods, a future study is needed to understand
whether such deficits in ASD are the cause or consequence of
a critical period. In addition, using human single-neuron record-
ings, it has been shown that neurons in the human amygdala and
hippocampus encode facial features (e.g., the eyes and mouth)
and eye movement to these facial features,®® which, in turn,
may be related to abnormal facial feature representation in
ASD.°%f% A future study is needed to directly investigate the
neuronal mechanisms for face learning concerning critical
periods.

(D and F) Temporal dynamics of correlation of pairwise distance between primate neurons and DNN units.

(D) Monkey IT neurons (bin size = 40 ms, step size = 10 ms).

(F) Human MTL neurons (bin size = 500 ms, step size = 50 ms). Color coding indicates the Spearman’s correlation coefficient. Asterisks indicate a significant
correlation in that bin (permutation test: *p < 0.05, false discovery rate [FDR]J*’ corrected across time bins for each layer).
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DNNs currently provide the most compelling quantitative
models of the response patterns of neurons throughout the pri-
mate ventral visual stream based on their predictive power, bio-
logical plausibility, generalization ability, and performance com-
parisons. In this study, we used DNNs as surrogate models that
can serve as accurate representations of many aspects of face
learning. It is worth noting that our current simulation approach
with surrogate computational models can be generalized to
other sensorimotor domains (e.g., auditory), and our findings
were not restricted to the model or visualization method used
but could be replicated with other models and visualization
methods. It has also been shown that DNNs trained with unsu-
pervised contrastive embedding can well simulate infant learning
during development.?® Interestingly, such unsupervised learning
produces brain-like representations even when trained solely
with real human child developmental data collected from head-
mounted cameras. In addition, our recent study has developed
a computational model that illustrates an increase in the repre-
sentational distance of artificial units with training, aligning with
neuronal findings.'®

On the other hand, artificial neural network models can have a
biological correspondence with both human and non-human pri-
mate neurons, which has been illustrated in face recognition.?*>
In this study, we compared typically developed primate neurons
with artificial units at various stages of face learning. The results
demonstrated that the full-face model showed a stronger corre-
spondence with IT and MTL neurons compared with the
foveated models. Additionally, we observed that foveated
models, when trained with full-face images during the critical
period, displayed increased correspondence with primate neu-
rons compared with models trained outside of the critical period.
Consequently, these results imply that our artificial DNN unit
modeling holds strong biological relevance and is well suited
for understanding real brain processes. The systematic corre-
spondence between the two face recognition systems allows
us to gain a deeper understanding of the computational mecha-
nisms involved in the development of face perception.

Conclusions

This study used DNNs as surrogate models to explore the critical
period in face processing development. DNNs, like humans and
animals, exhibit critical periods where temporary stimulus defi-
cits impair learning. Comparisons were made between DNN
computations and monkey/human single-neuron recordings.
Key findings include the following: (1) revealing the critical period
and its properties, such as reduced performance with limited
facial information and the importance of timing for recovery; (2)
providing a computational account with a learning rate explain-
ing critical period properties and demonstrating the role of iden-
tity-selective DNN units in recovery; (3) illustrating learning resto-
ration approaches, including adjusting the learning rate and
employing knowledge distillation and attention transfer; and (4)
establishing correspondence between artificial and human/
monkey neuron responses. This systematic investigation high-
lights the critical period’s importance, clarifies its computational
mechanism and restoration strategies, and sheds light on brain
development. It contributes to computational modeling of the
critical period in face processing, with implications for under-
standing ASD etiology.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Shuo Wang (shuowang@wustl.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

All data and statistical analysis code are available on Zenodo (https://doi.org/
10.5281/zenodo.10014797).°

Methods

Training and testing data

We used a subset of images from the CASIA_WebFace dataset as the training
and testing data.®” The CASIA-WebFace dataset has been used for various
face verification and identification tasks. The dataset contains 494,414 face
images of 10,575 real identities collected from the internet. In this study, we
selected images from 50 identities that have more than 400 images in the data-
set. The identities were diverse in race, sex, and age. Because the image qual-
ity varies, we manually removed the images that have a low resolution, major
facial occlusion, or extreme facial angles. As a result, our training and testing
dataset contained 37,000 images from 50 different identities, with each iden-
tity having more than 300 image samples.

Image processing

We applied the face and facial landmark detection tool Multi-Task Cascaded
Convolutional Neural Networks (MTCNN)®® to crop the faces from the images
and label the facial landmarks. MTCNN is a framework developed as a solution
for both face detection and face alignment. It is one of the most popular and
accurate face-detection tools. The process consists of three stages of convo-
lutional neural networks (CNNs). It uses a shallow CNN as the first step to pro-
duce candidate windows quickly. Through a more intricate CNN, it improves
the suggested candidate windows in the second step. To further refine the
outcome and output face landmark positions, a third CNN that is more compli-
cated than the others is used in the third step. After applying the MTCNN, we
derived a tight bounding box outlining the face area as well as the coordinates
for the centers of the eyes, nose tip, and two corners of the mouth.

We next applied foveated imaging to generate images that mimic human fo-
veation/fixation (i.e., the spatial resolution is highest at the point of the fovea and
drops rapidly away from that point as a function of eccentricity, and thus the re-
gion around the point of fixation [or foveation point] is sampled with the highest
intensity and perceived with the highest sensitivity; Figure 1). Foveated imaging
is a method of digital image processing where the level of detail or resolution
varies across the image according to one or more fixation points. We utilized
the open-source Python implementation of image retina transformation for
foveated imaging (https://github.com/ouyangzhibo/Image_Foveation_Python)
and produced two groups of foveated images (eye-foveated and mouth-
foveated) based on the facial landmarks identified by the MTCNN (Figure 1).
Specifically, in eye-foveated images, only the eye region was clear, and the
rest of the image was blurry, whereas in mouth-foveated images, only the
mouth region was clear, and the rest of the image was blurry.

The locations of the eyes and mouth were detected by the MTCNN, which, in
turn, determined the size of the eye and mouth regions. It is worth noting that
we did not set a region of interest for the eyes or mouth, and foveated imaging
was based on the center of the facial landmarks of the eyes or mouth. Because
different images had slightly different locations of the detected facial land-
marks, and we used the same parameters for foveated imaging across im-
ages, there might be slight differences in the content of the eye or mouth region
under foveation. We used the default parameters from the foveated imaging
toolbox, which are suitable for the faces detected by the MTCNN. Additionally,
we manually verified each foveated image to ensure its quality.

We finally cropped the images based on the bounding box derived using the
MTCNN (Figure 1). All subsequent analyses were based on the cropped images.

Model training and testing
We used the well-known DNN implementation based on the ResNet50°* CNN
architecture (see details in Figure 2A). Because the goal of the present study is
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to understand model performance during training, we trained the network from
scratch.

We first trained three base models, using full-face images, eye-foveated im-
ages, and mouth-foveated images. For each model, 80% of the images were
used as the training set, and the remaining 20% of the images were used as the
testing/validation set. We used the stochastic gradient descent (SGD) opti-
mizer with an initial learning rate of 1072, and all models were trained for 150
epochs. An adaptive learning rate scheduler was applied, which halved the
current learning rate when the loss of validation did not drop for 5 epochs.
To update the weights, we computed the cross-entropy loss on random
batches of 32 images (scaled to 224 x 224 pixels) for back-propagation. We
derived similar results using different initial learning rates (Figure S1A).

We next trained recovery models based on base models by providing base
models with different information (i.e., same images with different foveation)
during their training. We implemented the recovery at different stages of model
training, and the model training only continued with the new set of images. It is
worth noting that, to facilitate a direct comparison between base models and
recovery models, we used the same parameters for the recovery models as the
corresponding base models, including the epoch-by-epoch learning rate. The
recovery models were trained with the new set of images until they reached
150 epochs. For instance, if the base model was recovered at epoch 15,
then the recovery model would continue the training using the learning rate
at epoch 15 and inherit all the subsequent learning rates from the base model.
The recovery model would continue the training for another 135 epochs to
have a total of 150 training epochs.

To compare different models, we always used the same set of original im-
ages (not foveated) to test all models.

Critical period

The critical period is a time window of early post-natal development during
which sensory deficits can lead to permanent skill impairment.” Similar to hu-
mans and other animals, deep artificial neural networks exhibit critical periods
during which a temporary stimulus deficit can impair the model’s perfor-
mance.?" In this study, we defined the critical period of the DNN as the epochs
of the early fast learning phase (following the same definition as in Achille
et al.?"). Specifically, based on the learning curves of the base models, the first
30 epochs were defined as the critical period. We thus chose epoch 15 and
epoch 80 to compare recovery models starting within vs. outside of the critical
period, and we derived similar results using other epochs (e.g., epoch 10 vs.
epoch 90) to compare recovery models (Figures S1B and S1C).

Model visualization and quantification

In our experiments, we adopted the Grad-CAM®® as our visualization tool.
Grad-CAM is a popular technique for visualizing which regions in the original
image contribute to the final output. It uses the gradients of the target category
flowing into a certain convolution layer, usually the last one, to produce a
coarse localization map highlighting the important pixels/regions in the image
for predicting the category. This approach reveals the implicit attention of the
model to make the real contributor of features in the input image distinguish-
able. Grad-CAM is an improvement from the previous approach, CAM,® for
both versatility and accuracy.

We further quantified Grad-CAM intensity in the eye and mouth regions of
interest (ROIs) (Figure 2B). We defined the eye and mouth ROls in the image
based on the facial landmarks for each image. It is worth noting that the eye
ROI and the mouth ROI were of similar size across images (eyes: 4,894.76 +
1,668.83 pixels, mouth: 4,843.66 + 2,110.94; two-tailed two-sample t test:
t(7536) = 1.17, p = 0.24). Because most of the nose region was covered by
both the eyes and mouth ROIs, we did not separately analyze the Grad-
CAM intensity for the nose region. In addition to the average Grad-CAM inten-
sity in each ROI, we also calculated the proportion of total intensity in each ROI
by dividing the total Grad-CAM intensity of an image.

Knowledge distillation and attention transfer

The basic idea behind knowledge distillation (KD) is to train a small, lightweight
model using supervised information from a larger model with superior perfor-
mance to improve its performance. It was first proposed by Hinton et al.®” in
2015. The large model is known as the teacher model, while the small model
is characterized as the student model. The supervised information from the
output of the teacher model is called “knowledge,” and the process of student
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learning to migrate the supervised information from the teacher is called “distil-
lation.” Our recovery experiment, in contrast to the original KD concept, is built
upon two identical architectures (Figure 6A). The gap in model performance
was mainly reflected in the different stimuli. One model was trained by the
full-face images, which were regarded as the teacher model (Figure 6A, top),
whereas the other model was trained by the mouth-foveated images, which
were regarded as the student model (Figure 6A, bottom). Our purpose here
was to guide the mouth-foveated model to learn new features with information
from the full-face model when the mouth-foveated model had already missed
the critical period (i.e., recovery started at epoch 80, which is outside of the
critical period; note that this is the same model for recovery outside of the crit-
ical period).

DNN models can barely learn new features when they have passed the crit-
ical period, especially when the learning rate becomes extremely low. To rein-
force the recovery effect, we used another technique, attention transfer (AT),®®
which can work together with KD. We used the average feature map of each
group of convolutional layers as the attention and transferred the attention
from the teacher model to the student model. It is worth noting that only the
student model was updated during the process, while the teacher model acted
as a supervisor, enabling the student model to learn from its information, and,
as a result, all weights in the teacher model were frozen.

We made the learning rate of the student model identical to that of the
foveated model to determine whether the KD-AT method could effectively
aid in the recovery of the original foveated model under extremely low learning
rates. We computed the AT loss after each convolution group using the
following loss function:

Qi Q.
| Qrll2

Lar = L(Ws,x) + 3 || —
,ZE; I Qsllz

ll2
where L(Ws,x) denotes the standard cross-entropy loss, and / denotes the
indices of all teacher-student activation layer pairs. C}’S = vec(Avg(Ag)) and
Q/T = vec(Avg(A’})) are the j-th pair of student and teacher attention maps in
vectorized form, respectively, and the attention map is the cross-channel
average of the activation tensor A.

Finally, we added the KD loss between the output of the teacher model (y;)
and the student model (ys) to the previous loss function. As a result, the final
total loss was obtained as follows:
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With this total loss function, we aimed to enable the student model to not only
make correct predictions but also to learn similar feature representations as
the teacher model.

Selection of identity-selective DNN units and primate neurons

To select identity-selective units,”® we used a one-way ANOVA to identify
identity-selective units that had a significantly unequal response to different
identities (p < 0.01). We further imposed an additional criterion to identify a
subset of identity-selective units with selective identities; the response of iden-
tity was 2 standard deviations (SDs) above the mean of responses from all
identities. These identified identities whose response stood out from the global
mean were the encoded identities.

We followed the same selection procedure as for primate neurons.?>** We
used the mean firing rate in a time window of 250-1,000 ms after stimulus
onset as the response to each face for primate neurons. Note that we also
used this response to study the correlation between DNN units and primate
neurons.

Neural recordings from a monkey

The detailed procedure has been described in our previous study.>® Briefly, we
recorded from the anterior and central IT cortex in one male rhesus macaque
(Macaca mulatta) using two Utah arrays (Blackrock Microsystems) (see Kar
et al.* and Kar and DiCarlo®>®° for details). We detected the multiunit spikes
after the raw data were zero-phase band-pass filtered between 300 and
6,000 Hz (MATLAB ellip function, fourth order with 0.1-dB pass-band ripple
and 40-dB stop-band attenuation), and we used MUA for analyses. To test
with an independent dataset, the monkey passively viewed 500 images from
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the CelebA dataset.® In each trial, the monkey first viewed a white central fix-
ation point (0.2 degrees of visual angle [DVAs]) on a gray background for
300 ms to initiate a trial. Then, 8 faces were presented for 100 ms each,
each followed by a blank (gray) screen for an inter-stimulus interval (ISl) of
100 ms. The central fixation point persisted throughout the trial, and a fluid
reward was given when the monkey successfully fixated through the entire
trial. The inter-trial interval (ITl) of the blank gray screen was at least 500 ms.
We recorded 4,155 trials in total, and we rejected 666 trials where the monkey
broke the fixation (+2 DVAs). For each round of presentation, we generated a
random sequence for the 500 faces, and we used different sequences for
different rounds of presentation. All procedures conformed to local and US Na-
tional Institutes of Health guidelines, including the US National Institutes of
Health Guide for the Care and Use of Laboratory Animals. All experiments
were performed with the approval of the MIT Institutional Animal Care and
Use Committee (IACUC).

Neural recordings from human neurosurgical patients

The detailed procedure has been described in our previous study.>>”° Briefly,
we recorded from implanted depth electrodes in the amygdala and hippocam-
pus from 8 neurosurgical patients (23 sessions in total) with pharmacologically
intractable epilepsy. Bipolar wide-band recordings (0.1-9,000 Hz), using one
of the eight microwires as a reference, were sampled at 32 kHz and stored
continuously for offline analysis with a Neuralynx system. The raw signal
was filtered with a zero-phase-lag 300- to 3,000-Hz band-pass filter, and
spikes were sorted using a semi-automatic template-matching algorithm as
described previously.”" Units were carefully isolated, and recording and spike
sorting quality were assessed quantitatively. Only units with an average firing
rate of at least 0.15 Hz (entire task) were considered. Only single units were
considered. Trials were aligned to stimulus onset, and we used the mean firing
rate in a time window of 250 ms-1000 ms after stimulus onset as the response
to each face. We employed a one-back task with the same 500 CelebA images
as for monkey recordings. In each trial, a single face was presented at the
center of the screen for a fixed duration of 1 s, with uniformly jittered ITI of
0.5-0.75 s. Patients pressed a button when the present face image was iden-
tical to the immediately previous image. All participants provided written
informed consent using procedures approved by the Institutional Review
Board of West Virginia University (WVU).

Match between DNN units and primate neurons

We employed a pairwise distance metric®' to compare the neural coding of
face identities between primate neurons and DNN units. For each pair of
identities, we used the dissimilarity value (1 - Pearson’s n’ as a distance
metric. The primate neuronal distance metric was calculated between firing
rates of all recorded neurons, and the DNN distance metric was calculated
between activation of all DNN units. We then correlated the primate neuronal
distance metric and the DNN distance metric. To determine statistical signif-
icance, we used a non-parametric permutation test with 1,000 runs. In each
run, we randomly shuffled the face labels and calculated the correlation be-
tween the primate neuronal distance metric and the DNN distance metric.
The distribution of correlation coefficients computed with shuffling (i.e.,
null distribution) was eventually compared with the one without shuffling
(i.e., observed response). If the correlation coefficient of the observed
response was greater than 95% of the correlation coefficients from the null
distribution, then it was considered significant. A significant correlation indi-
cated that the DNN face space corresponded to the primate neuronal face
space.®’ We computed the correlation for each DNN layer so that we could
determine the specific layer that the neuronal population encoded. For each
face identity, we averaged the response of all faces of that identity to get a
single mean firing rate.

To get temporal dynamics, for human neurons, we used a moving window
with a bin size of 500 ms and a step size of 50 ms (given the sparseness of hu-
man MTL neurons, this time window is commonly used®*°%7%). The first bin
started at —300 ms relative to trial onset (the bin center was thus 50 ms before
trial onset), and we tested 19 consecutive bins (the last bin was thus from 600
1,100 ms after trial onset). For monkey neurons, we used a moving window
with a bin size of 40 ms and a step size of 10 ms. The first bin started at
—70 ms relative to stimulus onset (the bin center was thus 50 ms before
stimulus onset), and we tested 26 consecutive bins (the last bin was thus
from 180-220 ms after stimulus onset). We used Bonferroni correction to cor-
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rect for multiple comparisons across DNN layers and false discovery rate
(FDR)®’ to correct for multiple comparisons across time bins.

We used a bootstrap with 1,000 runs to compare between models (full-face
vs. eye-foveated and full-face vs. mouth-foveated). In each run, data from 70%
of the identities (i.e., 35 identities) were randomly selected to calculate the cor-
respondence between DNN units and primate neurons. We thus created a dis-
tribution of correspondence for each model.

We further used a permutation test with 1,000 runs to statistically compare
the correspondence for recovery within vs. outside of the critical period. In
each run, we shuffled the recovery labels (within vs. outside) and calculated
the difference in correspondence between recoveries. We then compared
the observed difference in correspondence between recoveries with the
permuted null distribution to derive statistical significance.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].
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