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SUMMARY
Recognizing familiar faces and learning new faces play an important role in social cognition. However, the
underlying neural computational mechanisms remain unclear. Here, we record from single neurons in the
human amygdala and hippocampus and find a greater neuronal representational distance between pairs of
familiar faces than unfamiliar faces, suggesting that neural representations for familiar faces are more
distinct. Representational distance increases with exposures to the same identity, suggesting that neural
face representations are sharpened with learning and familiarization. Furthermore, representational dis-
tance is positively correlated with visual dissimilarity between faces, and exposure to visually similar faces
increases representational distance, thus sharpening neural representations. Finally, we construct a
computational model that demonstrates an increase in the representational distance of artificial units
with training. Together, our results suggest that the neuronal population geometry, quantified by the repre-
sentational distance, encodes face familiarity, similarity, and learning, forming the basis of face recognition
and memory.
INTRODUCTION

Understanding face familiarity is essential to our understanding

of face recognition. For many years, it has been recognized that

there are notable distinctions in the perception of familiar and

unfamiliar faces (for reviews, see Hancock et al.,1 Johnston

and Edmonds,2 and Young and Burton3), and this point has

been emphasized in theoretical models of face recognition.4,5

Familiar faces, of which participants can recognize the identity,

demonstrate processing advantages. For example, across ex-

periments requiring participants to match unfamiliar faces, per-

formance is highly error prone, especially when matches vary in

viewpoint and expression.6 It has been shown that a brief

period of familiarization with faces can improve internal feature

matching performance beyond that observed with completely

novel faces.7 In studies of recognition memory, familiar faces

are recognized faster and more accurately than unfamiliar

faces.8,9 A recent view even argues that expertise in face

recognition is limited to familiar faces, while perceptual perfor-

mance with unfamiliar faces does not meet the criteria for

expertise.10 However, the neural basis of the transition from er-

ror-prone and inflexible recognition of unfamiliar faces1 to high-

ly accurate and robust recognition of familiar faces2 remains

unclear.
This is an open access article under the CC BY-N
Faces that vary in their degree of visual familiarity elicit neural

responses with different spatial and temporal characteristics in

multiple regions of the ventral-temporal and parietal cortex.11

Electroencephalogram (EEG) experiments using flicker steady

state visually evoked potential (SSVEP) argue for distinct neural

processes for the perception of familiar vs. unfamiliar faces along

the visual hierarchy.12 In analysis of the time course of neural re-

sponses to faces using magnetoencephalography (MEG), it has

been shown that the representations of identity and gender in

familiar faces undergo early enhancement, indicating that the

behavioral advantage associated with familiar faces arises

from the tuning of early feedforward processing mechanisms.13

Different patterns of neural activity are also elicited in response

to seeing visually familiar vs. unfamiliar people in motion.14

Furthermore, EEG experiments suggest how face familiarity

coding and identity coding vary as a function of levels of familiar-

ization (brief perceptual exposure vs. extensive media familiar-

ization vs. real-life personal familiarization).15 In addition, primate

studies have suggested a transition that turns face perception

into face memory in the temporal pole.16

The human amygdala and hippocampus play a key role in both

the processing of faces and memory for faces.17 Using faces

with experimentally induced visual familiarity that carries no bio-

graphical information or emotional content, it has been shown
Cell Reports --, 113520, --, 2023 ª 2023 The Author(s). 1
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A B C Figure 1. Behavior

(A) Task. We employed a one-back task in which

patients responded whenever an identical face

was repeated. Each face was presented for 1 s,

followed by a jittered inter-stimulus interval (ISI) of

0.5–0.75 s. For copyright reasons, we replaced

the original stimulus images with similar pictures.

(B) One-back detection accuracy for familiar vs.

unfamiliar faces.

(C) One-back detection reaction time for familiar

vs. unfamiliar faces.

Error bars denote ±SEM across sessions. See

also Figure S1.
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that familiar faces evoke a differential amygdala blood-oxygen-

level-dependent (BOLD) response relative to novel faces.18

In contrast to the ventral occipitotemporal face-preferential

regions, where BOLD activity reflects visual information irre-

spective of face familiarity, the amygdala and hippocampus

exhibit an abrupt increase in the BOLD signal when sufficient in-

formation is provided to identify a face as familiar.19 At the single-

neuron level, ‘‘concept’’ neurons in the human amygdala and

hippocampus that demonstrate identity-specific coding are pri-

marily probed using familiar faces,20–22 and selective cells are

more likely for familiar faces than unfamiliar faces.23 Together,

these findings suggest that a potential mechanism for the emer-

gence of highly selective cells in the amygdala and hippocampus

is that familiarization leads to the emergence and/or sharpening

of tuning of cells responsive to small subsets of faces of specific

individuals (i.e., concept cells).

In this study, we focused on the neural mechanisms underlying

face familiarization and learning. In particular, motivated by

theories of pattern separation,24,25 we investigated whether

neuronal representational distance changed as a function of

face familiarity, similarity, and learning, and we further investi-

gated whether the neuronal population geometry of face repre-

sentations changed during face learning. We finally employed

a high-performing deep neural network (DNN)-based computa-

tional face model (e.g., Blauch et al.26) to examine the computa-

tional principles underlying the neural face learning process and

face representation.

RESULTS

Behavior
Nine neurosurgical patients undergoing single-neuron record-

ings (Table S1) viewed 500 unique natural face images of 50

celebrities from the CelebA dataset (10 images per celebrity)

while performing a one-back task (Figure 1A; accuracy =

72.45% ± 20.54% [mean ± SD across sessions]). Patients

completed a questionnaire after they completed their record-

ings of whether they recognized (i.e., could tell the name

from a picture) each face identity (one of the 10 faces was

randomly selected from each identity for this question-

naire).27,28 We refer to the face identities that a patient recog-

nized as ‘‘familiar’’ and the face identities that a patient did

not recognize as ‘‘unfamiliar.’’ On average, patients rated

40.67% ± 21.52% (mean ± SD across patients) of the identities

shown as familiar. One-back detection performance (Figure 1B;
2 Cell Reports --, 113520, --, 2023
hit rate: 74.66% ± 21.47% for familiar faces and 72.04% ±

20.79% for unfamiliar faces; two-tailed paired t test: t(30) =

1.02, p = 0.32) and reaction time (Figure 1C; relative to image

onset; familiar: 1.22 ± 0.14 s; unfamiliar: 1.23 ± 0.13 s; t(30) =

1.17, p = 0.25) were similar for familiar faces vs. unfamiliar

faces (see Figure S1 for additional behavioral results).

Neurons encoding face familiarity
In the CelebA dataset, we recorded from 1,402 neurons in the

amygdala and hippocampus (31 sessions in total; overall firing

rate greater than 0.15 Hz; all sessions were recorded on different

days, and neurons from each individual recording session were

considered independent even when they were from the same

patient), which included 623 neurons from the amygdala, 478

neurons form the anterior hippocampus, and 401 neurons from

the posterior hippocampus. In this section, we identified and

analyzed the neurons that encoded face familiarity by contrast-

ing their response between familiar vs. unfamiliar faces. Using

the ratings provided by each patient, we found that the response

of 97 neurons (6.92%, binomial p = 0.0007) differed significantly

between all familiar vs. unfamiliar faces (see Figures 2A and 2B

for examples and Figures 2C–2F for group results). This suggests

that a subset of amygdala and hippocampal neurons encodes

face familiarity, andwe focus on this subset of neurons for further

analyses. Among these familiarity-selective neurons, 79 neurons

had a greater response to familiar faces (i.e., increasing activity

for familiar faces; Figures 2A–2C), and 18 neurons had a greater

response to unfamiliar faces (i.e., decreasing activity for familiar

faces; Figure 2D; see also Figure S2A for group analysis using

single-trial response index and Figure S2B for receiver operating

characteristic [ROC] analysis). The proportion of familiarity-se-

lective neurons that increased activity for familiar faces was

higher (c2 test: p < 10�20).

We next considered the response of all familiarity-selective

neurons (n = 97, including neurons increasing and decreasing

activity for familiar faces) as a population using a pairwise dis-

tance metric (i.e., representational distance). We found that the

neuronal representational distance (STAR Methods) between

pairs of familiar faces was greater than that of pairs of unfamiliar

faces (Figure 2E; two-tailed paired t test: t(96) = 4.30, p = 4.133

10�5; linear mixed effect model [representational distance � fa-

miliarity + (1|subject:session)]: b = 0.38 ± 0.12, t(168.71) = 3.21,

p = 0.002; see Figure 2F for temporal dynamics of individual

neurons), suggesting that pairs of familiar faces were more

neurally distinct compared with pairs of unfamiliar faces.
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Figure 2. Neurons that differentiate familiar vs. unfamiliar faces

(A and B) Example neurons that had a greater firing rate for familiar faces (selection by two-tailed t test in a time window of 250–1,250 ms after trial offset; both

p < 0.01). Trials are aligned to face stimulus onset (gray line) and grouped by individual identities. Shaded areas in the raster plot indicate familiar (red) and

unfamiliar (blue) identities. Asterisks indicate a significant difference between familiar vs. unfamiliar faces in that bin (p < 0.01, two-tailed t test, uncorrected; bin

size = 50 ms). Note that the selection of neurons was based on the entire time window.

(C) Average normalized firing rate of neurons with a greater response to familiar faces (n = 79; i.e., increasing activity for familiar faces).

(D) Average normalized firing rate of neurons with a greater response to unfamiliar faces (n = 18; i.e., decreasing activity for familiar faces). Shaded areas

denote ±SEMacross neurons. Asterisks indicate a significant difference between the conditions in that bin (p < 0.05, two-tailed t test, corrected by false discovery

rate [FDR]29 for q < 0.05).

(E) Representational distance between familiar vs. unfamiliar faces. Representational distance was calculated between faces using absolute difference in firing

rate. In the violin plots, the white dot represents the median, the thick gray bar in the center represents the interquartile range, and the thin gray line represents the

rest of the distribution, except for points that are determined to be outliers using amethod that is a function of the interquartile range. On each side of the gray line

is a kernel density estimation to show the distribution shape of the data. Asterisks indicate a significant difference between familiar vs. unfamiliar faces using two-

tailed paired t test. ****p < 0.0001.

(F) Representational distance for each familiarity-selective neuron with a greater response to familiar faces.

See also Figures S2 and S3.
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Notably, our results remained robust even after accounting for

differences in signal-to-noise ratio (SNR) related to changes in

firing rate (SNR = [(across trial variance)/(baseline variance)]�1;

analysis of covariance [ANCOVA] of familiarity effect: t = 2.75,

p = 0.007). The results were similar when we computed

the representational distance between pairs of identities (Fig-

ure S2F; t(96) = 11.21, p = 3.72 3 10�19; linear mixed effect

model: b = 6.27 ± 0.59, t(172) = 10.72, p = 7.68 3 10�21;

ANCOVA controlling for SNR: t = 10.93, p = 6.73 3 10�22),

showing that the increase in representational distance is not

restricted to specific visual features but extends to the more ab-

stract concept of identity of a face. Such a difference in neural

representation is in line with the widely accepted idea that

distinctive faces undergo deeper or more elaborate processing

than typical faces and are thus better recognized.2 Furthermore,

we observed a comparable encoding of familiarity in both the

amygdala and hippocampus (Table S1; Figures S3A, S3B,

S3G, and S3H). We show response latency (Figures S2D and

S2E), representational similarity with DNN units (Figure S2H),

and relationship with identity coding (Figures S2G and S2I).
Face learning and familiarization through identity
exposures within a session
Why does the representational distance between pairs of familiar

faces increase? Familiarity with a human face typically develops

via multiple visual exposures to a person during social interac-

tions. We next investigated the neural basis of how faces

become familiar (i.e., how the neuronal familiarity effect arises)

and how people learn to recognize a face identity through visual

exposures. In each session, we presented 10 different (unique,

each only seen once) pictures of the same person (identity) to

the patients, so we were able to examine the change in neural

response as a function of the number of exposures to a given

identity (see Figure S4 for behavioral results). We then tested, us-

ing a linear regression, whether neurons changed their firing rate

as a function of the number of times an image of the same iden-

tity was seen by the participant. Due to both physiological and

non-physiological factors, such as changes in attention or elec-

trode drift, there may be changes in firing rate as a function of

time, which could confound the analysis of face learning over

identity exposure within a session. To isolate the response
Cell Reports --, 113520, --, 2023 3
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specific to the stimulus from potential slow drifts in neurons’

firing over time, we calculated a mean baseline firing rate every

30 trials over a time window of 500 ms (�500 to 0 ms relative

to stimulus onset) and divided the response to the stimulus by

the corresponding baseline. Furthermore, we combined familiar

and unfamiliar identities for analysis, but we show below that

face learning and familiarization occurred similarly for both

familiar faces and unfamiliar faces (i.e., face learning still

happened for familiar faces; Figure S5).

We identified 225 neurons (16.05%, binomial p < 10�20) that

exhibited a significant change in response to identity exposure

within a session (see Figures 3A–3C and 3E for examples and

Figures 3G, 3H, 3J, and 3K for group summary). Among these

neurons, 165 (73.3%) linearly increased firing rate with identity

exposure (Figures 3A, 3C, 3E, 3G, and 3H), while only 60

(26.7%) linearly decreased firing rate with identity exposure

(Figures 3B, 3J, and 3K; c2 test: p < 10�20). As a consequence,

the representational distance between faces increased over

identity exposure (see Figures 3D and 3F for examples;

Figures 3I and 3L for group results; and Figures S3C, S3D, S3I,

and S3J for a breakdown of amygdala and hippocampal neu-

rons). Furthermore, the mean linear regression coefficient of

the entire neuronal population was significantly greater than

0 (linear mixed effect model [regression coefficient ～1 + (1|sub-

ject:session)]: b = 0.074 ± 0.029, t(7.13) = 2.58; p = 0.036).

Because the majority of the neurons increased their response,

neural face representations tended to be more distinct after

exposure to more faces of an identity. Notably, we found a

similar pattern of results for both familiar faces and unfamiliar

faces; i.e., face learning still happened for familiar faces with a

similar strength as for unfamiliar faces (Figure S5; regression co-

efficient: familiar: 0.82 ± 0.13, unfamiliar: 0.81 ± 0.14; two-tailed

two-sample t test: t(265) = 0.56, p = 0.58), suggesting that amyg-

dala and hippocampal neurons signal face learning and familiar-

ization regardless of whether an identity is already familiar to the

patient. Face familiarization is thus a continuous process that

also applies to known faces, and familiar faces can get further

familiarized.

Were our results specific to face identities? Although time

cells have been described in the hippocampus,30 and we

controlled for temporal change of overall neural response, it is

still possible that the response change over exposures was

due to adaptation or sensitization of faces rather than learning

about face identities per se. To address this potential confound-

ing factor, we conducted two control analyses. First, when we

grouped the trials by time bins (10 bins, 50 trials per bin) rather

than identity exposure, we did not find an above-chance popu-

lation of neurons showing a significant linear correlation with

time bins (75 neurons, 5.35%, binomial p = 0.25). Second, we

conducted a control experiment using FaceGen model faces,31

which contained only facial feature information but no face iden-

tity information. We recorded from 938 neurons (overall firing

rate greater than 0.15 Hz) in 28 sessions (10 patients; see Cao

et al.32 for a detailed analysis of behavior). Again, we grouped

the trials into 10 consecutive time bins (30 trials per bin), and

we did not find an above-chance population of neurons showing

a significant linear correlation with time bins (37 neurons,

3.94%, binomial p = 0.92). Therefore, our results were specific
4 Cell Reports --, 113520, --, 2023
to face identities; i.e., neurons linearly changed firing rate as a

function of identity exposure.

Neuronal population geometry for identity exposures
Above, we analyzed face learning for individual neurons. Would

the population geometry of the neural face space (including both

representational distance and angle) change as a function of

identity exposure? Specifically, if all neurons change their

response proportionally, then the angle between the neuronal

vectorswill not change; otherwise, a change in the angle will sug-

gest a change in the population geometry. To answer this ques-

tion, we calculated the representational distance and angle for

the population of neurons (STAR Methods) and used a linear

regression to test whether the population geometry changed lin-

early as a function of identity exposure.We combined all neurons

showing a significant linear change in response to identity expo-

sure (see Figures S6A–S6F for separate analyses of neurons with

increased or decreased firing rate as well as temporal dynamics;

we also derived similar results with all recorded neurons). As ex-

pected, changes in firing rate were translated into changes in

representational distance, and we found that the population

representational distance increased as a function of identity

exposure (Figure 4A; Pearson correlation: r(10) = 0.88, p =

0.00083; see Figures 4E and 4F for illustration). We also obtained

similar results when accounting for the SNR (partial linear corre-

lation: r(10) = 0.88, p = 0.0017). However, we found that the angle

between the neuronal vectors did not change (Figure 4B; r(10) =

0.21, p = 0.56), suggesting that individual neurons changed their

response proportionally so that the population geometry re-

mained constant (unchanged) across identity exposures. This in-

dicates that the primary effect of familiarization was a scaling of

the response rather than a change in tuning (which would result

in angle changes). Separate analyses within the amygdala and

hippocampus derived similar results (Figures S3E, S3F, S3K,

and S3L).

Can face learning happen across sessions? Specifically, can

representational distance further increase across sessions?

Indeed, we found that the representational distance increased

from the first session to the second session for all neurons

showing a significant linear change in response to identity expo-

sure (Figure 4C; two-tailed paired t test: t(1,224) = 40.50, p =

3.30 3 10�228), suggesting that face learning and familiarization

continued across sessions. Interestingly, the neuronal popula-

tion geometry also changed as the angle between neuronal vec-

tors changed (Figure 4D; t(1224) = 25.43, p = 6.76 3 10�115; for

both representational distance and angle, we derived the same

results whenwe used the same number of neurons between ses-

sions). Here, we compared representational distance and angle

by identity pairs, but we derived similar results when we

compared face pairs (Figures S6G and S6H; both p < 10�50).

We also derived similar results with all recorded neurons

(Figures S6I and S6J; both p < 10�231).

Together, our results show that representational distance in-

creases over identity exposures, an effect that can be carried

over to the following session. Therefore, neural face representa-

tions are sharpened with identity exposures. Our results also

show that the neuronal population geometry is constant within

a session but changes over sessions.
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Figure 3. Face learning within a session

(A and B) An example neuron that linearly increased firing rate with identity exposure (A) and an example neuron that linearly decreased firing rate with identity

exposure (B). Trials are aligned to face stimulus onset (gray line) and grouped by identity exposures. Error bars denote ±SEM across trials. We calculated a mean

baseline firing rate every 30 trials in a time window of �500 to 0 ms relative to stimulus onset, and firing rate was normalized to the baseline.

(C–F) Example neurons whose representational distance of faces increased as a function of identity exposure.

(C and E) Normalized firing rate for each identity exposure. Each dot represents a face/trial, and error bars denote ±SEM across faces/trials. These neurons

changed firing rate as a linear function of identity exposure.

(D, F) Distribution of faces in the neuronal feature space. Each dot represents a face. Color coding shows the number of identity exposures.

(G and H) Mean normalized firing rate for neurons that linearly increased firing rate with identity exposure (n = 165).

(J and K) Mean normalized firing rate for neurons that linearly decreased firing rate with identity exposure (n = 60).

(G and J) Group peristimulus time histogram (PSTH). Shaded areas denote ±SEM across neurons. Here, we averaged adjacent identity exposures for illustration

purposes.

(I) Mean representational distance for neurons that linearly increased firing rate with identity exposure.

(L)Mean representational distance for neurons that linearly decreased firing ratewith identity exposure. Representational distancewas calculated by faces (STAR

Methods).

See also Figure S3, S4, and S5.
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Representational distance encodes face similarity/
distinctiveness
We have shown above that population representational distance

is increased by face familiarity and learning and that, thus, neural
face representations become more distinct as faces become

familiar. Along this line of reasoning, representational distance

may, in addition, also reflect levels of face similarity; pairs of visu-

ally similar faces will have a smaller representational distance. We
Cell Reports --, 113520, --, 2023 5
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Figure 4. Neuronal population geometry

(A and C) Representational distance for the population of neurons.

(B and D) Angle between the neuronal vectors.

(A and B) Comparison across identity exposures.

(C and D) Comparison between the first vs. second session. Asterisks indicate a significant difference between sessions using two-tailed paired t test.

****p < 0.0001. Legend conventions are as in Figure 2 for violin plots.

(E and F) Distribution of faces in the neuronal space (constructed by t-distributed stochastic neighbor embedding [t-SNE] dimension reduction of the neuronal

vector for each face). Each dot represents a face. Color coding shows the number of identity exposures.

See also Figures S3, S4, S5, and S6.
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have shown that neurons in the human amygdala and hippocam-

pus encode visually similar faces (i.e., faces sharing similar visual

features are neurally more similar as well).27 Here, we investigated

whether representational distance was related to visual face sim-

ilarity/distinctiveness by comparing pairwise distances between

face identities assessed for similarity by human raters, neuronal

representational distance, and DNN representational distance.

With the CelebA stimuli (Figure 5A), 5 patients from whom we

recorded provided ratings for how visually similar each pair of

face identities looked to them (Figure 5B). We then correlated

this pairwise similarity with the population representational dis-

tance for each pair of face identities. We found a significant cor-

relation for all recorded neurons (Figures 5D and 5E; permutation

test: p < 0.001), face-responsive neurons (Figures S7A and S7C;

permutation test: p = 0.001), and identity-selective neurons

(Figures S7B and S7D; permutation test: p < 0.001) with visual

dissimilarity, suggesting that population representational dis-

tance was influenced by visual similarity/distinctiveness be-

tween face identities; the more visually similar two faces were

rated, the smaller the representational distance. Similarly, we

replicated this finding using DNN feature distance instead of hu-

man ratings (Figures 5C, 5F, and S7).

We next used the FBI Twins stimuli (Figure 5G) to validate our

findings and further demonstrate that representational distance

is influenced by face similarity in addition to face familiarity.
6 Cell Reports --, 113520, --, 2023
The FBI stimuli contained faces that were all unfamiliar to the pa-

tients with various levels of visual similarity, including identical

twins (ITs), mirror twins (MTs), fraternal twins (FT), mother-child

(MC), father-child (FC), and spouses (SPs). We first employed a

Siamese neural network (i.e., a convolutional neural network

that assigns a similarity score between input images)33 to esti-

mate the visual similarity between faces and confirmed the levels

of visual similarity in the stimuli (Figure 5H). We recorded from

837 neurons in the amygdala and hippocampus (overall firing

rate greater than 0.15 Hz) in 27 sessions (10 patients; accuracy =

75.7% ± 23.0% [mean ± SD across sessions]), and we identified

84 face-responsive neurons (10.0%, binomial p = 9.743 10�10).

We found that the representational distance of face-responsive

neurons (Figure 5I; one-way ANOVA: p = 0.048) and all neurons

(Figure 5J; p = 0.039) was related to visual similarity in a graded

manner; twin faces (including all IT, MT, and FT pairs) were most

visually similar and had the smallest representational distance,

parent-child faces (including MC and FC pairs) were visually

similar and had an intermediate representational distance, and

SP faces (including SP pairs) were not visually similar and had

the largest representational distance. Therefore, our results

again suggest that representational distance is related to face

similarity (here for faces that are all unfamiliar).

Together, our results suggest that representational distance is

correlated significantly with face similarity/distinctiveness,
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Figure 5. Face similarity

(A) The CelebA face feature space constructed by t-SNE for the deep neural network (DNN) layer Pool5. We applied t-SNE to convert high-dimensional DNN

features into a two-dimensional feature space. Each dot represents a face image, and each color represents an identity.

(B) Distance matrix for visual similarity ratings. Color coding shows the negative of Z-scored similarity ratings for each identity pair.

(C) Distance matrix for DNN features (i.e., DNN units). Color coding shows dissimilarity values (1 – Pearson’s r) between each identity pair.

(D) Population representational distance matrix. Color coding shows the Euclidean distance of neurons between each identity pair.

(E and F) Observed vs. permuted correlation coefficient between distance matrices. The correspondence between distance matrices was assessed using

permutation tests with 1,000 runs. The magenta line indicates the observed correlation coefficient between distance matrices. The null distribution of correlation

coefficients (shown in the gray histogram) was calculated by permutation tests of shuffling the face identities.

(G) Example stimuli from the FBI Twins dataset.

(H) Siamese score for each category of faces.

(I and J) Population representational distance for each category of faces.

(I) Face-responsive neurons (n = 84).

(J) All neurons (n = 837).

Each dot represents a face pair, and error bars denote ±SEM across face pairs. Asterisks indicate a significant difference using two-tailed two-sample t

test. +p < 0.1, **p < 0.01, ***p < 0.001, ****p < 0.0001. See also Figure S7.
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another important aspect of neural face representation (see Dis-

cussion for a comprehensive summary).

Face learning through visually similar faces
An important aspect of face learning is to generalize recognition

to similar faces (e.g., recognize a person’s sibling who looks

alike). Above, we have shown that neural face representations

become more distinct after exposure to faces of the same iden-

tity. Does population representational distance also increase af-
ter exposure to visually similar faces? In other words, can visually

similar faces play the same role in sharpening the neural face

representations during face learning as faces of the same iden-

tity? To address this question, we calculated the population

representational distance and angle between one of the twin

faces (including ITs, MTs, and FTs; STAR Methods) or one of

the non-twin faces (including MC, FC, and SPs), and contrasted

the population representational distance and angle between the

first vs. second exposures to these faces (see Figures 6A and 6D
Cell Reports --, 113520, --, 2023 7
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Figure 6. Face learning through visually similar faces
(A–C) Exposure to twin faces.

(D–F) Exposure to non-twin faces.

(A and D) Schematics of changes in representational distance following exposure to (A) twin faces and (D) non-twin faces.

(B and E) Representational distance for the population of neurons.

(C and F) Angle between the neuronal vectors. Here, we focused on the face-responsive neurons (n = 84).

Asterisks indicate a significant difference using two-tailed paired t test. ****p < 0.0001. n.s., not significant. Legend conventions are as in Figure 2 for violin plots.
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for schematics; see also Figures 5H–5J for quantification of vi-

sual similarity).

Indeed, when we compared population geometry between the

first vs. second exposures to a twin face (Figure 6A), we found

that population representational distance of face-responsive

neurons increased between face pairs (Figure 6B; two-tailed

paired t test: t(1,539) = 6.01, p = 2.26 3 10�9), consistent with

the increased representational distance after exposure to faces

of the same identity (Figures 4A and 4C). Interestingly, we found

that the neuronal population geometry also changed as the angle

between the neuronal vectors increased (Figure 6C; n = 84 neu-

rons for each group; t(1,539) = 6.14, p = 1.06 3 10�9), a result

similar to face learning across sessions (Figure 4D; Discussion).

This result included all three categories of twins (ITs, MTs, and

FTs), but it could be replicated without ITs (population represen-

tational distance: t(629) = 3.91, p = 1.03 3 10�4; angle: t(629) =

3.75, p = 1.96 3 10�4). Furthermore, as a control, we compared

population geometry between the first vs. second exposures to a

non-twin face (Figure 6D). We found that face learning was

abolished with non-twin faces (Figures 6E and 6F); neither the

representational distance (Figure 6E; t(119) = 0.89, p = 0.37)

nor the angle between the neuronal vectors (Figure 6F; n = 84

neurons for each group; t(119) = 0.61, p = 0.54) changed be-

tween exposures, suggesting that the change in neural face rep-

resentations through face exposure was specific to visually

similar faces.

Together, our results show that neural face representations

can be sharpened by exposure to visually similar faces, which,
8 Cell Reports --, 113520, --, 2023
in turn, suggest that face learning can be generalized to visually

similar faces. The learning through visually similar faces supports

the notion that individuals possess distinct areas of specialized

knowledge associated with each familiar face.34 These knowl-

edge ‘‘islands’’ enable us to enhance our performance when

dealing with faces that bear resemblance to those with which

we are already acquainted.

A computational model for face learning and similarity
Last, we employed a DNNmodel to investigate potential compu-

tational mechanisms that could give rise to the effects of face

learning and similarity we described. In our previous study,35

we showed that DNN units can discriminate faces that were

not involved in the training, indicating that DNNs generalize to

unfamiliar faces. The faces not included in the original training

of the DNN are equivalent to unfamiliar faces to humans. There-

fore, DNNs may offer a computational model to understand face

learning.

We first fine-tuned a VGG-Facemodel step by step to simulate

the face learning process (Figure 7A; STAR Methods). We up-

dated the DNN each time with 3 images of each of the 50 iden-

tities from the same CelebA dataset. The representational dis-

tance between faces of DNN units increased with updating

(Figures 7B and 7C; output layer: 1,225 of 1,225 face pairwise

distances increased from iteration 1 to 2, 1,140 of 1,225 face

pairwise distances increased from interaction 2 to 3), suggesting

that face discriminability was sharpened by training. This result

was consistent with the increasing representational distance
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Figure 7. Computational modeling for face learning

(A) Structure of the DNN (see STAR Methods for details). For copyright reasons, we replaced the original stimulus images with similar pictures.

(B and C) Representational distance of DNN units as a function of training iteration (STAR Methods).

(B) Across DNN layers. Error shade denotes ±SD across identity pairs.

(legend continued on next page)
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with learning (Figure 4A), suggesting a possible computational

mechanism for face learning. Furthermore, the larger the

representational distance, the more distinct the neural face rep-

resentations, leading to a better face recognition performance

(accuracy [mean ± SD]: iteration 1: 0.94 ± 0.020; iteration 2:

0.98 ± 0.020; iteration 3: 0.993 ± 0.0115). In addition, we

observed a very similar pattern of verification performance

(including a sharp increase in the output layer) for familiar faces

(Figure 7D) as well as a similar, roughly log-linear learning curve

(Figure 7E), as reported in Blauch et al.26 Notably, we observed a

population of neurons in the human amygdala and hippocampus

that exhibited a nonlinear response to face learning (n = 151,

binomial p < 10�20; STAR Methods), and these neurons had a

similar, roughly log-linear learning curve in representational dis-

tance (Figure 7F).

Using a pre-trained VGG-Face model, we found that DNN unit

representational distance between face pairs correlated with hu-

man similarity ratings (Figures 7G–7I; r(1,255) = 0.20, p = 1.2 3

10�12; permutation p = 0.007), suggesting that representational

distance can be the computational basis for visual similarity.

While visual similarity is a distinct aspect of face representations,

our modeling results indicate that fine-tuning an existing network

can enhance the distinctiveness of face representations by

reducing their visual similarity.

Together, our results suggest computational mechanisms un-

derlying face learning and similarity.

DISCUSSION

In this study, we identified neurons in the human amygdala and

hippocampus that encoded face familiarity. Familiar faces

had a greater representational distance between identities

compared with unfamiliar faces. We further showed that, with

face learning and familiarization, the representational distance

increased as a function of identity exposure within a session,

and it was the case for both familiar and unfamiliar faces.

Representational distance further increased across sessions,

but the neuronal population geometry also changed. Moreover,

representational distance encoded visual similarity of faces,

and notably, face learning could be acquired with visually

similar faces. We finally constructed a computational model

to account for the neural findings and elucidated the computa-

tional principles underlying face learning and similarity.

We revealed a neural computational mechanism based on

representational distance for face familiarity, familiarization,

and similarity.
(C) The output layer of the DNN. Asterisks indicate a significant difference using tw

violin plots.

(D) Verification d’ estimated with an ROC-based analysis. We followed the same

(E) Verification performance as a function of identity exposure in the output (i.e.,

(F) Neuronal representational distance as a function of identity exposure. Shown

151). A log10 x scale is plotted against a linear y scale.

(G) Distance matrix for DNN features (i.e., DNN units). Color coding shows Z-sco

(H) Correlation between distance in visual dissimilarity rating (the negative of Z-s

identities. Ratings from the general controls were averaged across participants. E

the linear fit (r(1,255) = 0.20, p = 1.2 3 10�12).

(I) Observed vs. permuted correlation coefficient between distance matrix for visu

as in Figure 5.
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Representational distance explains three aspects of
neural face representation
Our present results can be interpreted in the framework of pattern

separation,24,25 the process of transforming similar representa-

tions or memories into dissimilar, non-overlapping representa-

tions. Specifically, we showed that representational distance

changedasa functionof threeseparatebut relatedaspectsofneu-

ral face representation (i.e., familiarity, learning, and similarity).

First, the representational distance was larger between pairs of

familiar faces compared with unfamiliar faces, suggesting that

familiar facesweremoreneurally distinct andhadagreater pattern

separation compared with unfamiliar faces. Recent theories sug-

gest that familiar faces have amore robust representation inmem-

ory because they have been encountered over a wide variety of

contexts and image changes. In contrast, unfamiliar faces are

encountered only once, and so they do not benefit from such rich-

ness of experience and are represented based on image-specific

details.36 Second, the representational distance increased during

face familiarization, indicating that the neural representation of

faces was amplified and that, as a result, pattern separation was

enhanced during learning, similar to the tuning sharpening in the

primate inferior temporal cortex.37,38 The greater representational

distance suggests that individual neurons can better distinguish

different identities, which is also reflected by the stronger correla-

tion with the DNN pre-trained to distinguish face identities. Our re-

sults are consistent with the idea that deeper or more elaborate

processing of faces leads to a better recognition of faces,2 which

has also been shown in our simulation results (Figure 7). Third,

the representational distance between similar faces was smaller

compared with that between visually distinct faces (notably, this

was also the case for unfamiliar FBI faces). The neuronal represen-

tational distance varies as a function of face familiarity, visual sim-

ilarity, and learning, suggesting that the representation of face

space in the human amygdala and hippocampus is shaped by

pattern separation processes.24,25

It is worth noting that these three aspects of neural face repre-

sentation are consistent with each other. Faces become familiar

after learning and familiarization, and the representational dis-

tance between faces increases. Furthermore, visually similar

faces are more difficult to be discriminated because the repre-

sentational distance is smaller, but they can be better discrimi-

nated when they are familiar or familiarized because the repre-

sentational distance becomes greater. Interestingly, exposure

to visually similar faces can also induce learning. Therefore,

representational distance can be a generic code to explain neu-

ral face representation.
o-tailed paired t test. ****p < 0.0001. Legend conventions are as in Figure 2 for

procedure as described in Blauch et al.26

explicit probability) layer.

are neurons that had a significant logistic response to identity exposures (n =

red Euclidean distance between each identity pair.

cored similarity ratings) and DNN unit distance (Z scored) across pairs of face

ach dot represents a pair of face identities (n = 1,225), and the gray line denotes

al similarity ratings and distance matrix for DNN units. Legend conventions are
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Neuronal population geometry
The population representational distance increased as a function

of identity exposure (i.e., face learning), even across sessions

and for visually similar face identities. Interestingly, the angle be-

tween the neuronal vectors did not change for identity exposures

within a session, but changed for identity exposures across ses-

sions and for learning of visually similar faces. The change in

representational geometry is consistent with a recent study

showing that familiar faces are represented in a distinct sub-

space from unfamiliar faces in the monkey face patch AM and

perirhinal cortex and that the familiar face subspace is distorted

to increase neural distances between faces.39 In addition,

analyzing the temporal sequence of face presentations demon-

strates an early separation of neural patterns between highly

familiar and unfamiliar faces in the face-selective regions

fusiform face area (FFA) and occipital face area (OFA),11 consis-

tent with our present results.

The observed disparity in representational geometry changes

between within-session identity exposure and across-session

identity exposure indicates the involvement of distinct underlying

mechanisms. One possible explanation for the consistent repre-

sentational geometry during within-session identity exposure is

the maintenance of a stable internal representation or template

for familiar faces.When a face becomes familiar within a session,

the neural system can establish a consistent encoding of its

unique identity characteristics, resulting in a uniform representa-

tional geometry across repeated exposures. This stability is likely

crucial for robust recognition and efficient processing of familiar

faces within a short time frame. Conversely, the changes in

representational geometry during across-session identity expo-

sure suggest a flexible adaptation process that occurs over

longer periods. As faces are encountered repeatedly across

different sessions, the neural system may gradually adjust to

optimize the representation and discrimination of distinct identi-

ties. These adjustments might involve fine-tuning of neural re-

sponses to better capture the specific features that differentiate

individual faces, leading to alterations in the representational ge-

ometry. To gain a comprehensive understanding of these pat-

terns, further research is warranted to investigate the precise

neural mechanisms at play.

Computational modeling of face learning
Inspired by the primate visual system, DNNs have not only made

impressive progress in recognizing faces40 but also contributed

significantly to the understanding of neural face coding27,35 (see

O’Toole et al.41 and O’Toole and Castillo42 for reviews). In this

study, we constructed a DNN-based computational model that

explained the process of face familiarization and learning. A

similar computational approach using the same VGG-16 neural

network has been applied in a previous study that simulated

familiarization with face identities by fine-tuning the network on

images of unfamiliar identities.26 It has been shown that familiar-

ization leads to a sharp improvement in verification performance,

but it reaches near-optimal performance levels only in networks

that have received extensive training on faces.26 Notably,

consistent with our present study and the fact that amygdala

and hippocampal neurons correspond to the response of top

DNN layers,27 the sharp familiarity benefit is observed solely at
the identity-based output probability layer, independent of alter-

ations in perceptual representations.26 Furthermore, consistent

with our findings, a linear discriminant analysis (LDA) model on

identity recognizes unseen ambient images of familiar (trained)

faces but not unknown (untrained) faces.43 The LDA model

also reveals facial features relevant to face learning43 and indi-

cates that the concept of face familiarity can be better under-

stood as the development of more robust statistical descriptions

of unique within-person variations.44 However, the DNN-based

approach is a much more powerful tool to study neural face rep-

resentation.27 It is also worth noting that the VGG-16 DNN can

discriminate face identities that are not involved in the training.35

In addition, in line with our present results, research has shown

that the similarity structure found in face-trained DNNs is consis-

tent with human similarity ratings.45 Finally, our recent simulation

study systematically investigated the critical period in the devel-

opment of face processing.46 It demonstrated the computational

mechanisms involved and proposed restoration strategies for

early face learning.

Relationshipwith repetition suppression and perceptual
learning
Our present study differs from previous studies that have

focused on the repetition suppression phenomenon, which has

been observed in the visual cortex in non-human primates at

the single-neuron level47 and in humans using fMRI.48 Our study

found both neurons that increased response and neurons that

decreased response as a function of identity exposure within a

session. This difference may be because previous studies

used familiar stimuli, such as photos of celebrities and familiar

individuals, landmark buildings, animals, and objects, and

repeated the same images.49 In contrast, we used unfamiliar

faces and different pictures of the same identity to avoid adapta-

tion. Consistent with our results, previous neuroimaging studies

have shown concurrent repetition enhancement and suppres-

sion responses in the extrastriate visual cortex, which supports

predictive coding models that involve the computation of both

predictions (which are enhanced by repetition) and prediction er-

rors (which are suppressed by repetition).50 Our study also

showed that the population representational distance between

face identities increased over identity exposures both within

and across sessions, consistent with previous studies showing

that repeated image exposures (e.g., hundreds to thousands)

sharpen the tuning of inferior temporal neurons.37,38 Moreover,

our results are consistent with the finding that spaced learning

enhances face recognition memory by reducing neural repetition

suppression.51 It is important to note that a mix of repetition sup-

pression and enhancement is typical in the brain, and it may be

that repetition warps representational spaces in a general way

that is relevant to perceptual learning. Therefore, while some of

the effects we observed may be related to repetition, it is also

possible that they reflect a general mechanism that could be

relevant to both repetition suppression and enhancement.

Our present study is related to perceptual learning,52,53 where

face identities were learned and familiarized with visual expo-

sures. In particular, it has been shown that face learning occurs

through prediction errors, which update the level of stimulus fa-

miliarity in accordance with predictive coding principles.54 On
Cell Reports --, 113520, --, 2023 11
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one hand, a ubiquitous property of perceptual learning is speci-

ficity; i.e., performance improvement obtained during training

applies only to the trained stimulus features,52 which is consis-

tent with our observed specificity to identity for face exposures.

On the other hand, perceptual learning (using low-level stimuli)

can be generalized in the absence of sensory adaptation,55

which is consistent with our face learning through different im-

ages (including learning with visually similar faces). In addition,

context and expectation may modulate neural response in

perceptual learning (see Summerfield and de Lange56 for a re-

view). A future study is needed to understand the role of expec-

tation in face learning.

Limitations of the study
The task and stimuli employed in this study exhibit intrinsic differ-

ences compared with the classic behavioral and simulation

studies on face familiarity.10,26 Given these disparities, it is

crucial to note the following limitations associated with interpret-

ing our behavioral and neural findings.

First, in our main experiment, we utilized celebrity faces, and it

is important to acknowledge that prior knowledge of familiar

faces can influence face perception, particularly in social trait

judgment.57–59 However, we discovered face learning not only

for both familiar and unfamiliar celebrity faces but also for visually

similar faces using the FBI stimuli (consisting of entirely unfamil-

iar faces). On the other hand, although we observed differential

neural responses to familiar and unfamiliar faces, it is crucial to

recognize that the level of familiarity may vary significantly

among stimuli and across participants. Notably, the celebrity

faces used in our study, while familiar, may not have been

personally relevant to the participants. It is possible that the fa-

miliarity level associated with celebrity faces was weaker

compared with that of personally relevant and familiar faces,

such as photographs of the participants themselves, their fam-

ilies, or the experimenters. This disparity in familiarity levels

may explain the absence of a familiarity effect in behavior and

the presence of learning effects with both familiar and unfamiliar

faces (indicating ample room for participants to improve their fa-

miliarity). Supporting this notion, previous research has shown

that personally relevant faces elicit the strongest selective re-

sponses.23 To further substantiate the learning effect, it is neces-

sary for a future study to control for the level of familiarity and

potentially employ personally familiar faces instead of visually

familiar ones.

Second, in this study, we employed a one-back task where

participants were presented with naturalistic faces and required

to judge whether the current stimulus matched the immediately

preceding one. This task aimed to mimic real-world scenarios

where individuals perceive faces and form instant impressions.

As a result, we did not assess face recognition or matching per-

formance to demonstrate improved processing of familiar

faces.1–3 Consequently, we did not observe a behavioral famil-

iarity effect. Specifically, our findings revealed that face familiar-

ity did not modulate attention, as indicated by one-back task ac-

curacy and reaction time (Figures 1B and 1C), nor did it

significantly impact social trait judgment (Figure S1A). Eye

tracking results showed only weak modulation of eye move-

ments (Figures S1B–S1E). Previous research has shown that,
12 Cell Reports --, 113520, --, 2023
although the number of fixations does not differ between familiar

and unfamiliar faces, the fixation locations vary,60 which aligns

with our eye tracking outcomes. Furthermore, in the one-back

catch trials, participants were required to press a button after

the stimulus disappeared, which resulted in missed responses

from some patients. Notably, when we eliminated this require-

ment, patients exhibited a considerably higher response rate of

93.29% ± 6.82% (mean ± SD across 14 sessions from 11 pa-

tients). This may explain why the behavioral performance did

not reach its maximum potential.

Finally, while the amygdala and hippocampus are crucial com-

ponents of the face-processing network, our current study was

restricted by clinical limitations, preventing us from examining

the broader neural circuitry involved in face processing. Given

the distributed nature of face processing in the temporal cor-

tex,61,62 future studies should explore the neuronal coding of

face familiarity and recognition at the network level. We propose

the hypothesis that amygdala and hippocampal neurons exhibit

categorical responses as opposed to the graded responses

observed in the temporal cortex when encoding face familiar-

ity.19,26 Furthermore, in contrast to the previous finding that fa-

miliarity coding and identity coding emerge independently,15

here we show that identity coding varies as a function of face fa-

miliarity, which is likely due to different spatial resolution (EEG vs.

single unit) and brain areas recorded (scalp vs. amygdala/

hippocampus).
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60. Van Belle, G., Ramon,M., Lefèvre, P., and Rossion, B. (2010). Fixation pat-

terns during recognition of personally familiar and unfamiliar faces. Front.

Psychol. 1, 20.

61. Haxby, J.V., Hoffman, E.A., and Gobbini, M.I. (2000). The distributed hu-

man neural system for face perception. Trends Cognit. Sci. 4, 223–233.

62. Tsao, D.Y., Freiwald, W.A., Tootell, R.B.H., and Livingstone, M.S. (2006). A

Cortical Region Consisting Entirely of Face-Selective Cells. Science 311,

670–674.

63. Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep Learning Face Attri-

butes in the Wild.

64. Grossman, S., Gaziv, G., Yeagle, E.M., Harel, M., Mégevand, P., Groppe,
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Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Shuo Wang

(shuowang@wustl.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
(1) Data for the main experiment has been published as an open-access dataset28 with detailed descriptions of methods.

(2) The code specific for this study is available on OSF (https://doi.org/10.17605/OSF.IO/ZHQKB).

(3) Any additional information required to analyze the data reported in this paper is available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT PARTICIPANT DETAILS

There were 31 sessions from 9 patients in total (Table S1). We only included patients who indicated whether they recognized each

face identity in a follow-up questionnaire.27 All participants provided written informed consent using procedures approved by the

Institutional Review Board of West Virginia University (WVU; protocol #1709745061).

METHOD DETAILS

Stimuli
We used three sets of face stimuli, and we used the same stimuli for all patients.

First, in the main experiment, we used faces of celebrities from the CelebA dataset.27,63 We selected 50 identities (individuals). For

each, we picked 10 different images, resulting in a total of 500 images. The selected stimuli included both genders (33 of the 50 iden-

tities weremale) andmultiple races (40 identities were Caucasian, 9 identities were African American, and 1 identity was biracial). The

same stimuli were used for all sessions. It is worth noting that we used different pictures of the same identity to investigate face famil-

iarization. This not only provided a better generalization but alsomimicked real world conditions where there is no repeated viewing of

an identical face but people perceive the same face identity with different appearances. Using different pictures of the same identity

may also reduce stimulus suppression and adaptation. For illustration purposes, alternative facial representations were used in Fig-

ure 1 and subjects of the images provided consent for usage of their facial images in this publication.

Second, we used a newly-collected FBI Twins dataset that included pairs of colored photos with the following relationships: iden-

tical twins (IT), mirror twins (MT), fraternal twins (FT), mother-child (MC), father-child (FC), and spouses (SP). Therefore, this dataset

contained faces with various levels of similarity, and all faces from this dataset were unfamiliar to the patients. The photographing

conditions were well controlled to ensure similar background and lighting, and all photos are high resolution (3840 3 5760). There
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was one face per identity and a total of 144 faces. FBI IRB approval for re-use of images was obtained from select participants in the

FBI Twins dataset that provided data during the collections and gave permission for image publication at the time of collection.

Third, we used a FaceGen dataset with model faces, which notably contained only feature information but no real identity infor-

mation.We used the FaceGenModeller program (http://facegen.com; version 3.1) to randomly generate 300 faces (see31 for detailed

procedures). FaceGen constructs face space models using information extracted from 3D laser scans of real faces. To create the

face space model, the shape of a face was represented by the vertex positions of a polygonal model of fixed mesh topology.

With the vertex positions, a principal component analysis (PCA) was used to extract the components that accounted for most of

the variance in face shape. Each principal component (PC) thus represented a different holistic non-localized set of changes in all

vertex positions. The first 50 shape PCs were used to construct faces that had a symmetric shape. Similarly, because skin texture

is also important for face perception, 50 texture PCs based on PCA of the RGB values of the faces were also used to represent faces.

The resulting 300 faces were randomly generated from the 50 shape and 50 skin texture components with the constraint that all faces

were set to be Caucasian. It is worth noting that each PC is a feature dimension of the face space.

Experimental procedure
We used a 1-back task for the CelebA and FBI stimuli. In each trial, a single face was presented at the center of the screen for a fixed

duration of 1 s, with uniformly jittered inter-stimulus-interval (ISI) of 0.5–0.75 s (Figure 1A). Each image subtended a visual angle of

approximately 10�. Patients pressed a button if the present face image was identical to the immediately previous image. 10%of trials

were one-back repetitions. Each face was shown once unless repeated in one-back trials; and we excluded responses from one-

back trials to have an equal number of responses for each face. This task kept patients attending to the faces, but avoided potential

biases from focusing on a particular facial feature (e.g., compared to asking patients to judge a particular facial feature). The order of

faceswas randomized for each patient. This task procedure has been shown to be effective to study face representation in humans.64

For FaceGen stimuli, patients performed two face judgment tasks. In each task, there was a judgment instruction, i.e., patients

judged how trustworthy or how dominant a face was. We used a 1–4 scale: ‘1’: not trustworthy/dominant at all, ‘2’: somewhat trust-

worthy/dominant, ‘3’: trustworthy/dominant, and ‘4’: very trustworthy/dominant. Each image was presented for 1.5 s at the center of

the screen. One patient performed an additional passive-viewing task. In our previous studies,27,32 we have shown that we are able to

combine data from all tasks for analysis.

Stimuli were presented using MATLAB with the Psychtoolbox 365 (http://psychtoolbox.org) (screen resolution: 1600 3 1280).

Social trait judgment ratings of the CelebA stimuli
To examine whether face familiarity modulates social trait judgments (Figure S1A), we acquired trait ratings from patients using a set

of social traits that most comprehensively characterize social trait judgments,66 including warm, critical, competent, practical, femi-

nine, strong, youthful, and charismatic. These social traits represent the four core psychological dimensions of comprehensive trait

judgments of faces (warmth, competence, femininity, and youth; 2 traits per dimension), and they were well validated in the previous

study.66 Patients were asked to rate the faces on eight social traits using a 7-point Likert scale through an online rating task.

Electrophysiology
We recorded using implanted depth electrodes in the amygdala and hippocampus from patients with pharmacologically intractable

epilepsy. Target locations in the amygdala and hippocampuswere determined by the neurosurgeon based solely on clinical need and

verified using post-implantation CT. At each site, we recorded from eight 40 mm microwires inserted into a clinical electrode as

described previously.67,68 Efforts were always made to avoid passing the electrode through a sulcus, and its attendant sulcal blood

vessels, and thus the location varied but was always well within the body of the targeted area. Microwires projected medially out at

the end of the depth electrode and examination of the microwires after removal suggests a spread of about 20–30�. The amygdala

electrodes were likely sampling neurons in the mid-medial part of the amygdala and the most likely microwire location is the baso-

medial nucleus or possibly the deepest part of the basolateral nucleus. Bipolar wide-band recordings (0.1–9000 Hz), using one of the

eight microwires as reference, were sampled at 32 kHz and stored continuously for offline analysis with a Neuralynx system. The raw

signal was filtered with a zero-phase lag 300–3000 Hz bandpass filter and spikes were sorted using a semi-automatic template

matching algorithm as described previously.69 Units were carefully isolated and recording and spike sorting quality were assessed

quantitatively.28

Consistent with our previous studies,27,28,70–73 only single units with an average firing rate of at least 0.15 Hz throughout the entire

task were considered. Trials were aligned to stimulus onset. For the CelebA and FBI stimuli, we used the mean firing rate in a time

window 250 ms–1250 ms after stimulus onset as the response to each face. For FaceGen stimuli, we used the mean firing rate in a

time window 250 ms–1750 ms after stimulus onset as the response to each face.32

Eye tracking
Patients were recorded with a remote non-invasive infrared Eyelink 1000 system (SR Research, Canada) (Figures S1B–S1I). One of

the eyes was tracked at 500 Hz. The eye tracker was calibrated with the built-in 9-point grid method at the beginning of each block.

Fixation extraction was carried out using software supplied with the Eyelink eye tracking system. Saccade detection required a

deflection greater than 0.1�, with a minimum velocity of 30�/s and a minimum acceleration of 8000�/s2, sustained for at least
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4 ms. Fixations were defined as the complement of a saccade, i.e., periods without saccades. Analysis of the eye movement record

was carried out offline after completion of the experiments.

To quantitatively compare the fixation densities within certain parts of the face, we defined three rectangular ROIs: eyes, mouth,

and nose. The fixation density was calculated for each session during the entire 1 s stimulus period, and was normalized within each

session. Fixation locations were smoothed using a 2DGaussian kernel (kernel size = 0.04 * image height by 0.04 * image width) with a

standard deviation of 10 pixels.

We excluded sessions that had fewer than 10 fixations onto each facial region of interest (ROI) due to a substantial amount of

missing eye tracking data, resulting in a total of 21 sessions for the CelebA stimuli and 16 sessions for the FBI stimuli for further

analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Response index for single trials
To combine both types of familiarity-selective neurons (i.e., neurons with a greater response to familiar faces or unfamiliar faces) for

group analysis, we calculated a single-trial response index (Figure S2A). For each neuron we quantified whether its response differed

between familiar faces and unfamiliar faces using a single-trial index, Ri (Equation 1; Equation 2). The Ri facilitates group analysis and

comparisons between different types of neurons, as motivated by previous studies.70,74 The Ri quantifies the response during trial i

relative to the mean response to all unfamiliar faces and baseline (the interval right before stimulus onset). The mean response and

baseline were calculated individually for each neuron.

Neurons with a greater response to familiar faces:

Ri =
FRi � meanðFRUnfamiliarÞ

meanðFRBaselineÞ $100% (Equation 1)

Neurons with a greater response to unfamiliar faces:

Ri = �FRi � meanðFRUnfamiliarÞ
meanðFRBaselineÞ $100% (Equation 2)

For each trial i,Ri is the baseline normalizedmean firing rate (FR) during an interval from 250ms to 1250ms after stimulus onset (the

same time interval as neuron selection). Different time intervals were tested as well, to ensure that results were qualitatively the same

and not biased by particular spike bins.

If a neuron distinguishes familiar faces from unfamiliar faces, themean value ofRi across all trials/faces will be significantly different

from 0. Since neurons with a greater response to familiar faces have more spikes for familiar faces, the mean Ri is positive for these

neurons (Equation 1). Since neurons with a greater response to unfamiliar faces have more spikes for unfamiliar faces, to get an

aggregate measure of activity that pools across neurons, Ri was multiplied by �1 if the neuron has a greater response to unfamiliar

faces (Equation 2) so that the mean Ri is also positive for these neurons. Therefore, Equation 1 and Equation 2 make the mean Ri

positive for both types of neurons. Notice that the factor �1 in Equation 2 depends only on the neuron type but not trial type (note

that each neuron type has both familiar and unfamiliar face trials).

After calculating Ri for every trial, we subsequently averaged all Ri of trials that belong to the same category. By definition, the

average value of Ri for unfamiliar faces will be equal to zero because the definition of Ri is relative to the response to unfamiliar faces

(see Equation 1; Equation 2); and the average value of Ri for familiar faces will be greater than zero. Notably, this is the case for both

neurons with a greater response to familiar faces and neurons with a greater response to unfamiliar faces. The mean baseline firing

rate was calculated across all trials. The same FRUnfamiliar was subtracted for all types of trials.

The cumulative distribution function (CDF) was constructed by calculating for each possible value x of the Ri how many examples

are smaller than x (Figure S2A). That is, F(x) = P(X% x), where X is a vector of allRi values. The CDFs of trials between categories were

compared using two-tailed two-sample Kolmogorov-Smirnov (KS) tests.

Single-neuron ROC analysis
We conducted another group analysis to describe how neurons discriminated familiar vs. unfamiliar faces (Figure S2B). Neuronal

Receiver Operating Characteristics (ROCs) were constructed based on the spike counts in a time window of 250 ms–1250 ms after

stimulus offset. We varied the detection threshold between theminimal andmaximal spike count observed, linearly spaced in 20 steps.

The AreaUnder theCurve (AUC) of the ROCwas calculated by integrating the area under the ROCcurve (trapezoid rule). The AUC value

is an unbiased estimate for the sensitivity of an ideal observer that counts spikes and makes a binary decision based on whether the

number of spikes is above or below a threshold (Figure S2B). We defined the category with a higher overall firing rate as ‘true positive’

and the category with a lower overall firing rate as ‘false positive’. Therefore, the AUC value was always above 0.5 by definition.

Differential latency
We conducted a spike train analysis to estimate differential response latency of neurons for processing familiar vs. unfamiliar faces

(Figures S2D, and S2E). We binned spike trains into 1-ms bins and computed the cumulative sum. To facilitate averaging across
18 Cell Reports --, 113520, --, 2023
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neurons with different firing rates, we normalized the cumulative sum by its maximum value for each neuron. We then averaged the

normalized cumulative sums for familiar faces and unfamiliar faces, respectively, and compared, at every point of time, whether the

normalized cumulative sumswere different between familiar and unfamiliar faces (two-tailed paired t test; p < 0.001; FDR-corrected).

The first point of time of the significant cluster (cluster size >20 time points) was used as the estimate of the differential latency.

Representational distance
We calculated representational distance metrics for individual neurons and a population of neurons, as follows:

For individual neurons (Figures 2; S2; and Figures 3; S5), we used the absolute difference in firing rate to indicate the representa-

tional distance for each face pair (Figures 2E; S2G; and Figures 3I, 3L; S5Q–S5T). Additionally, we calculated the Euclidean distance

in firing rate between 10 faces of an identity to indicate the representational distance for each identity pair (Figure S2F). Next, we

averaged the representational distance for each neuron and compared them across neurons.

For a population of neurons (Figures 4A–4D; Figures 5D, 5I, 5J; and S6; Figures 6; and S7) or DNN units (Figure S2H; Figures 5C and

5F; S7E–S7I; Figure 7), we first obtained a mean response for each identity by averaging across faces, and then calculated the

Euclidean distance between neurons for each pair of identities. We obtained similar results when we first calculated the Euclidean

distance between neurons for each pair of faces and then averaged the representational distance across face pairs.We also obtained

similar results when we used the Pearson correlation coefficient (i.e., 1�r) as the distance metric.

Change in neuronal population geometry (Figures 4B and 4D; S6; Figure 6) was described using the cosine angle between the

neuronal vectors: cos q = a$b
jakbj, where a and b are the neuronal vectors for different conditions.

To visualize the change in representational distance, we applied a t-distributed stochastic neighbor embedding (t-SNE) method75

to convert high-dimensional features (i.e., 15 PSTH bins) into a two-dimensional feature space. We implemented t-SNE in the

MATLAB platform.

We also accounted for the potential impact of the signal-to-noise ratio (SNR) on the observed changes in representational distance,

which can lead to regression dilution.76 The signal was approximated by calculating the variance in neural activity during stimulus

presentation (the same neural response used for computing representational distance) across trials. The noise was estimated based

on the variance in neural activity during the baseline period. As such, we derived a proxy for the SNR that is relevant for represen-

tational distance analysis: [(variance across trials)/(variance during baseline)]� 1.We used thismetric as a covariate in the analysis of

covariance (ANCOVA) for assessing the familiarity effect and in the partial linear regression for assessing the face learning effect. This

allowed us to control for any potential influence arising from changes in SNR.

While we estimated the SNR by comparing the variance in neural responses during stimulus presentation and baseline and ob-

tained similar results after accounting for the SNR, it is important for future studies to investigate the potential influence of SNR

on data interpretation more thoroughly. For instance, more precise measurements of SNR in neural recordings could help account

for any differences between conditions. To gain a deeper understanding, it would be valuable to simulate the data under various as-

sumptions regarding the distribution of activity levels across neurons and the degree of noise in the system. This would allow us to

evaluate whether the reported changes in representational distance and correlation measures would still yield significant results un-

der these conditions. Furthermore, a future study should explore alternative explanations for the observed changes in representa-

tional distance, such as differences in attentional allocation or processing strategies between the conditions. These avenues of inves-

tigation will provide a more comprehensive understanding of the potential influence of SNR and other factors on the observed

changes in representational distance.

Representational distance in a deep neural network (DNN)
We calculated the population representational distance between face identity pairs using responses from DNN units (see section

above) and explored whether amygdala and hippocampal neurons shared a similar representational structure as DNN units (Fig-

ure S2H; Figures 5C and 5F; S7E–S7I; Figure 7). To obtain DNN unit activation for each face image, we used the well-known DNN

implementation based on the VGG-16 convolutional neural network (CNN) architecture77 (Figure 7A), which has been used in recent

work64 as the computational model for deep face feature extraction and has been validated in our previous studies.27,35 Specifically,

the VGG-16CNN consisted of a feature extraction section (13 convolutional layers) and a classification section (3 fully connected [FC]

layers). The feature extraction section was consistent with the typical architecture of a CNN. A 3 3 3 filter with 1-pixel padding and

1-pixel stride was applied to each convolutional layer, which was followed by a Batch Normalization (BatchNorm) and Rectified

Linear Unit (ReLU) operation. Some of the convolutional layers were followed by five 2 3 2 max-pool operations with a stride of 2.

There were 3 FC layers in each classification section: the first two had 4096 channels each, and the third performed an n-way clas-

sification. Each FC layer was followed by a ReLU and 50%dropout to avoid overfitting. A nonlinear Softmax operation was applied to

the final output of VGG-16 network tomake the classification prediction of 50 identities.We also confirmed that the pre-trainedmodel

could discriminate the identities used in the present study and thus serve as a suitable feature extractor (see27,35 for details).

To show representational similarity between human neurons and DNN units (see Figure S2H for comparison between familiar vs.

unfamiliar faces; see Figures 5C, 5F; S7E–S7I; Figure 7 for analysis of visual similarity), we correlated the pairwise representational

distance between face identities for neurons with that for DNN units. To determine statistical significance, we used a non-parametric

permutation test with 1000 runs. In each run, we randomly shuffled the face labels and calculated the correlation between the

neuronal representational distance and the DNN unit representational distance. The distribution of correlation coefficients computed
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with shuffling (i.e., null distribution) was eventually compared to the one without shuffling (i.e., observed response). If the correlation

coefficient of the observed response was greater than 95% of the correlation coefficients from the null distribution, it was considered

significant. We computed the correlation for each DNN layer; and we conducted separate analyses for familiar faces and unfamiliar

faces or for each neuronal group (i.e., all neurons, face-responsive neurons, and identity-selective neurons).

Identity-selective neuron
We investigated how face identity coding interactedwith familiarity coding (Figure S2G) and face learning (Figures S4G, and S4H).We

used our previous procedure to select identity-selective neurons.27 We first used a one-way ANOVA to identify neurons with a signif-

icantly unequal response to different identities. We next imposed an additional criterion to identify the selected identities: the neural

response of an identity was 2 standard deviations (SD) above the mean of neural responses from all identities (note that the mean

neural response could be considered as a baseline for the epochs when images were shown, even if we did not subtract a baseline).

These identified identities whose response stood out from the global mean were the encoded identities. Note that because identity-

selective neurons might change their firing rate for only a few stimuli, an overall response to stimulus onset might not be observed.

Therefore, given such sparseness of firing of amygdala and hippocampal neurons, we did not impose face responsiveness (overall

change of activity in response to stimulus onset compared to baseline) as a criterion for neuron selection.

To assess each neuron’s selectivity to different identities and compare it with familiarity coding, we defined an identity selectivity

index as the d0 between the most- and least-preferred identities (Figure S4H):

IdentitySelectivityIndex =
mbest � mleastffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
s2
best+s

2
least

�r

where mbest and mworst denote the mean firing rate for the most- and least-preferred identities, respectively, and s2
best and s2

worst

denote the variance of firing rate for the most- and least-preferred identities, respectively. A similar index was used in previous

studies to assess the level of selectivity to different faces.64 It is worth noting that the identity selectivity index was not used to select

identity-selective neurons or estimate the number of neurons that were identity selective. Instead, the identity selectivity index was

used to quantify the degree of identity selectivity for the identity and non-identity-selective neurons that had already been selected.

Population decoding of face identities
We employed a population decoding approach to study face identity coding with different familiarity (Figure S2I). We pooled all re-

corded neurons into a large pseudo-population. Firing rates were z-scored individually for each neuron to give equal weight to each

unit regardless of firing rate. We used a maximal correlation coefficient classifier (MCC) as implemented in the MATLAB neural de-

coding toolbox (NDT).78 The MCC estimates a mean template for each class i and assigns the class for test trial. We used 8-fold

cross-validation, i.e., all trials were randomly partitioned into 8 equal-sized subsamples, of which 7 subsamples were used as the

training data and the remaining single subsample was retained as the validation data for assessing the accuracy of the model,

and this process was repeated 8 times, with each of the 8 subsamples used exactly once as the validation data. We then repeated

the cross-validation procedure 50 times for different random train/test splits. Statistical significance of the decoding performance for

each group of neurons against chance was estimated by calculating the percentage of bootstrap runs (50 in total) that had an accu-

racy below chance (i.e., 2%when decoding all identities). Statistical significance for comparing between groups of neurons was esti-

mated by calculating the percentage of bootstrap runs (50 in total) that one group of neurons had a greater accuracy than the other.

Spikes were counted in bins of 500 ms size and advanced by a step size of 50 ms. The first bin started�500 ms relative to trial onset

(bin center was thus 250 ms before trial onset), and we tested 31 consecutive bins (the last bin was thus from 1000 ms to 1500 ms

after trial onset). For each bin, a different classifier was trained/tested. We used FDR29 to correct for multiple comparisons across

time points. The same decoding approach was used in our prior studies79,80 and has been shown to be very effective in the study

of neural population activity.

Model comparison
Neurons can respond to face learning with different characteristics. To better understand the response profiles of these neurons with

respect to face learning, we further investigated the percentage of neurons that changed firing rate gradually (e.g., as a linear function;

Figure 3) or abruptly (e.g., as a step function). We first selected neurons that showed a significantly different response across identity

exposures (one-way ANOVA: p < 0.05; 348 neurons, 24.82%, binomial p < 10�20). We then compared threemodels: linear regression

model, logistic model (sigmoidal), and step-function model, using the Akaike Information Criterion (AIC), which measures the relative

quality of statistical models for a given set of data.81 The AIC is founded on information theory and it offers a relative estimate of the

information loss when a given model is used to represent the process that generates the data. In doing so, it deals with the trade-off

between the goodness of fit of the model and the complexity of the model. Note that the AIC only estimates the quality of eachmodel

relative to the other models in comparison, providing a means for model selection, rather than the absolute quality of the model in a

sense of testing a null hypothesis.

For eachmodel, we have: AIC = n $ln RSS
n + 2k + 2kðk+1Þ

n� k� 1, where n is the sample size (i.e., the number of observations; n = 10 here for

10 identity exposures), k is the number of parameters of the model (kLinear = 2, kLogistic = 3, and kStep = 3; see below), and RSS is the
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residual sum of squares between the observed data and the fitted data. Note that we here corrected the relatively small sample size

(n/k < 40).

We fitted a linear function of f(x) = ax + b, where f is the firing rate and x is the number of identity exposure. a and bwere fitted from

the observed data (f and x); and thus, kLinear is 2.

We fitted a logistic function of fðxÞ = Finf

1+e�aðx� xhalf Þ, where f is the firing rate, x is the number of identity exposure, Finf is the value when

x approaches infinity (the curve’s maximum value), xhalf is the symmetric inflection point (the curve’s midpoint), and a is the steepness

of the curve. Finf, xhalf, and a were fitted from the observed data (f and x); and thus, kLogistic is 3.

We fitted a step function of f(x) = a when x R c, and f(x) = b when x < c, where f is the firing rate and x is the number of identity

exposure. We fitted the parameters usingmultidimensional unconstrained nonlinear minimization (Nelder-Mead) method tominimize

the least squares. a, b, and c were fitted from the observed data (f and x); and thus, kStep is 3.

With the model comparison, we found that the response of 169 neurons (48.56%) could be best explained by a linear model, the

response of 58 neurons (16.67%) could be best explained by a logistic model, and the response of 119 neurons (34.20%) could be

best explained by a step-like threshold model (separate analysis for familiar faces and unfamiliar faces found similar results).

Computational modeling of face learning
We simulated the face learning process by fine-tuning a DNNmodel step-by-step (Figures 7A and 7B). We used the pre-trained VGG-

Face model as the starting model (Figure 7A), and fine-tuned this model using the same CelebA stimuli as in our main experiment.

During fine-tuning, we unlocked all layers of themodel, and used a small learning rate for feature extractors (i.e., convolutional layers;

10�4) but a large learning rate for classifiers (i.e., fully connected layers; 10�2). This decision wasmadewith the intention of preserving

the original pre-trained model as much as possible for feature extraction, while facilitating the convergence of the model. This

approach aimed to strike a balance between extracting informative features from the limited data available and enabling efficient

classification. For each iteration, we utilized three images from each of the 50 identities, resulting in a pooled training dataset of

150 images. We conducted a total of three iterations. We used the 10th image of each identity in the dataset to test model recognition

performance and calculate representational distance between DNN units. To enhance the accuracy of model performance estima-

tion, we incorporated an additional 5 novel images per identity from the CelebA database during the assessment of model perfor-

mance. We calculated the Euclidean distance between DNN units for each pair of identities (in total 1225 pairs for 50 identities),

as we calculated the representational distance with neurons.

Statistics
We used t-tests to compare conditions/groups (e.g., familiar vs. unfamiliar, different levels of visual similarity) and linear regression to

analyze changes in firing rate as a function of face learning. For testing the correspondence between visual similarity matrices, we

used Spearman’s rank correlation and a non-parametric permutation test to confirm the correlation results. Our statistical threshold

was set at p < 0.05, and we corrected for multiple comparisons using Bonferroni correction except for the results presented in

Figures 5I and 5J. We also used linear mixed effect model to control for nested factors such as session and patient.

We primarily selected two groups of neurons. The first group consisted of neurons whose response differentiated familiar vs. un-

familiar faces using a two-tailed two-sample t test. The second group consisted of neurons whose response varied linearly as a func-

tion of identity exposure using linear regression. We also selected face-responsive neurons using a two-tailed paired t test and iden-

tity-selective neurons using a one-way ANOVA (see above). For each selection, we used a statistical threshold of p < 0.05 for each

neuron. Consistent with the vast neurophysiology literature,82 we did not correct for multiple comparisons at the individual neuron

level but used a binomial test to determine whether the number of selected neurons was significantly above chance (5% for p < 0.05).

As in our previous studies (e.g.,70,80), we used two-tailed two-sample Kolmogorov-Smirnov (KS) tests to compare cumulative dis-

tribution functions (Figure S2A) and bootstrap tests to determine significance in decoding analysis (Figure S2I). Due to the large num-

ber of temporally correlated data points, we used false discovery rate (FDR)29 to correct for multiple comparisons for PSTH

(Figures 2A–2D), cumulative firing rate (Figure S2D), and decoding time course (Figure S2I).
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