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SUMMARY

Recognizing familiar faces and learning new faces play an important role in social cognition. However, the
underlying neural computational mechanisms remain unclear. Here, we record from single neurons in the
human amygdala and hippocampus and find a greater neuronal representational distance between pairs of
familiar faces than unfamiliar faces, suggesting that neural representations for familiar faces are more
distinct. Representational distance increases with exposures to the same identity, suggesting that neural
face representations are sharpened with learning and familiarization. Furthermore, representational dis-
tance is positively correlated with visual dissimilarity between faces, and exposure to visually similar faces
increases representational distance, thus sharpening neural representations. Finally, we construct a
computational model that demonstrates an increase in the representational distance of artificial units
with training. Together, our results suggest that the neuronal population geometry, quantified by the repre-
sentational distance, encodes face familiarity, similarity, and learning, forming the basis of face recognition

and memory.

INTRODUCTION

Understanding face familiarity is essential to our understanding
of face recognition. For many years, it has been recognized that
there are notable distinctions in the perception of familiar and
unfamiliar faces (for reviews, see Hancock et al.,’ Johnston
and Edmonds,? and Young and Burton®), and this point has
been emphasized in theoretical models of face recognition.*°
Familiar faces, of which participants can recognize the identity,
demonstrate processing advantages. For example, across ex-
periments requiring participants to match unfamiliar faces, per-
formance is highly error prone, especially when matches vary in
viewpoint and expression.® It has been shown that a brief
period of familiarization with faces can improve internal feature
matching performance beyond that observed with completely
novel faces.” In studies of recognition memory, familiar faces
are recognized faster and more accurately than unfamiliar
faces.®? A recent view even argues that expertise in face
recognition is limited to familiar faces, while perceptual perfor-
mance with unfamiliar faces does not meet the criteria for
expertise.10 However, the neural basis of the transition from er-
ror-prone and inflexible recognition of unfamiliar faces' to high-
ly accurate and robust recognition of familiar faces® remains
unclear.

Faces that vary in their degree of visual familiarity elicit neural
responses with different spatial and temporal characteristics in
multiple regions of the ventral-temporal and parietal cortex."
Electroencephalogram (EEG) experiments using flicker steady
state visually evoked potential (SSVEP) argue for distinct neural
processes for the perception of familiar vs. unfamiliar faces along
the visual hierarchy.'? In analysis of the time course of neural re-
sponses to faces using magnetoencephalography (MEG), it has
been shown that the representations of identity and gender in
familiar faces undergo early enhancement, indicating that the
behavioral advantage associated with familiar faces arises
from the tuning of early feedforward processing mechanisms.'®
Different patterns of neural activity are also elicited in response
to seeing visually familiar vs. unfamiliar people in motion."
Furthermore, EEG experiments suggest how face familiarity
coding and identity coding vary as a function of levels of familiar-
ization (brief perceptual exposure vs. extensive media familiar-
ization vs. real-life personal familiarization).'® In addition, primate
studies have suggested a transition that turns face perception
into face memory in the temporal pole.'®

The human amygdala and hippocampus play a key role in both
the processing of faces and memory for faces.'” Using faces
with experimentally induced visual familiarity that carries no bio-
graphical information or emotional content, it has been shown
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that familiar faces evoke a differential amygdala blood-oxygen-
level-dependent (BOLD) response relative to novel faces.'®
In contrast to the ventral occipitotemporal face-preferential
regions, where BOLD activity reflects visual information irre-
spective of face familiarity, the amygdala and hippocampus
exhibit an abrupt increase in the BOLD signal when sufficient in-
formation is provided to identify a face as familiar.'® At the single-
neuron level, “concept” neurons in the human amygdala and
hippocampus that demonstrate identity-specific coding are pri-
marily probed using familiar faces,?°%? and selective cells are
more likely for familiar faces than unfamiliar faces.”® Together,
these findings suggest that a potential mechanism for the emer-
gence of highly selective cells in the amygdala and hippocampus
is that familiarization leads to the emergence and/or sharpening
of tuning of cells responsive to small subsets of faces of specific
individuals (i.e., concept cells).

In this study, we focused on the neural mechanisms underlying
face familiarization and learning. In particular, motivated by
theories of pattern separation,®*?° we investigated whether
neuronal representational distance changed as a function of
face familiarity, similarity, and learning, and we further investi-
gated whether the neuronal population geometry of face repre-
sentations changed during face learning. We finally employed
a high-performing deep neural network (DNN)-based computa-
tional face model (e.g., Blauch et al.?®) to examine the computa-
tional principles underlying the neural face learning process and
face representation.

RESULTS

Behavior

Nine neurosurgical patients undergoing single-neuron record-
ings (Table S1) viewed 500 unique natural face images of 50
celebrities from the CelebA dataset (10 images per celebrity)
while performing a one-back task (Figure 1A; accuracy =
72.45% =+ 20.54% [mean + SD across sessions]). Patients
completed a questionnaire after they completed their record-
ings of whether they recognized (i.e., could tell the name
from a picture) each face identity (one of the 10 faces was
randomly selected from each identity for this question-
naire).?”?® We refer to the face identities that a patient recog-
nized as “familiar” and the face identities that a patient did
not recognize as “unfamiliar.” On average, patients rated
40.67% + 21.52% (mean = SD across patients) of the identities
shown as familiar. One-back detection performance (Figure 1B;

+
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vs. unfamiliar faces.
Error bars denote +SEM across sessions. See
also Figure S1.

hit rate: 74.66% + 21.47% for familiar faces and 72.04%
20.79% for unfamiliar faces; two-tailed paired t test: #30)
1.02, p = 0.32) and reaction time (Figure 1C; relative to image
onset; familiar: 1.22 + 0.14 s; unfamiliar: 1.23 + 0.13 s; #(30) =
1.17, p = 0.25) were similar for familiar faces vs. unfamiliar
faces (see Figure S1 for additional behavioral results).

H

Neurons encoding face familiarity

In the CelebA dataset, we recorded from 1,402 neurons in the
amygdala and hippocampus (31 sessions in total; overall firing
rate greater than 0.15 Hz; all sessions were recorded on different
days, and neurons from each individual recording session were
considered independent even when they were from the same
patient), which included 623 neurons from the amygdala, 478
neurons form the anterior hippocampus, and 401 neurons from
the posterior hippocampus. In this section, we identified and
analyzed the neurons that encoded face familiarity by contrast-
ing their response between familiar vs. unfamiliar faces. Using
the ratings provided by each patient, we found that the response
of 97 neurons (6.92%, binomial p = 0.0007) differed significantly
between all familiar vs. unfamiliar faces (see Figures 2A and 2B
for examples and Figures 2C-2F for group results). This suggests
that a subset of amygdala and hippocampal neurons encodes
face familiarity, and we focus on this subset of neurons for further
analyses. Among these familiarity-selective neurons, 79 neurons
had a greater response to familiar faces (i.e., increasing activity
for familiar faces; Figures 2A-2C), and 18 neurons had a greater
response to unfamiliar faces (i.e., decreasing activity for familiar
faces; Figure 2D; see also Figure S2A for group analysis using
single-trial response index and Figure S2B for receiver operating
characteristic [ROC] analysis). The proportion of familiarity-se-
lective neurons that increased activity for familiar faces was
higher (32 test: p < 10729),

We next considered the response of all familiarity-selective
neurons (n = 97, including neurons increasing and decreasing
activity for familiar faces) as a population using a pairwise dis-
tance metric (i.e., representational distance). We found that the
neuronal representational distance (STAR Methods) between
pairs of familiar faces was greater than that of pairs of unfamiliar
faces (Figure 2E; two-tailed paired t test: #(96) = 4.30, p =4.13 X
1075; linear mixed effect model [representational distance ~ fa-
miliarity + (1|subject:session)]: 8 = 0.38 + 0.12, t(168.71) = 3.21,
p = 0.002; see Figure 2F for temporal dynamics of individual
neurons), suggesting that pairs of familiar faces were more
neurally distinct compared with pairs of unfamiliar faces.
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Figure 2. Neurons that differentiate familiar vs. unfamiliar faces

(A and B) Example neurons that had a greater firing rate for familiar faces (selection by two-tailed t test in a time window of 250-1,250 ms after trial offset; both
p < 0.01). Trials are aligned to face stimulus onset (gray line) and grouped by individual identities. Shaded areas in the raster plot indicate familiar (red) and
unfamiliar (blue) identities. Asterisks indicate a significant difference between familiar vs. unfamiliar faces in that bin (p < 0.01, two-tailed t test, uncorrected; bin
size = 50 ms). Note that the selection of neurons was based on the entire time window.

(C) Average normalized firing rate of neurons with a greater response to familiar faces (n = 79; i.e., increasing activity for familiar faces).

(D) Average normalized firing rate of neurons with a greater response to unfamiliar faces (n = 18; i.e., decreasing activity for familiar faces). Shaded areas
denote +SEM across neurons. Asterisks indicate a significant difference between the conditions in that bin (p < 0.05, two-tailed t test, corrected by false discovery
rate [FDR]? for q < 0.05).

(E) Representational distance between familiar vs. unfamiliar faces. Representational distance was calculated between faces using absolute difference in firing
rate. In the violin plots, the white dot represents the median, the thick gray bar in the center represents the interquartile range, and the thin gray line represents the
rest of the distribution, except for points that are determined to be outliers using a method that is a function of the interquartile range. On each side of the gray line
is a kernel density estimation to show the distribution shape of the data. Asterisks indicate a significant difference between familiar vs. unfamiliar faces using two-
tailed paired t test. ***p < 0.0001.

(F) Representational distance for each familiarity-selective neuron with a greater response to familiar faces.

See also Figures S2 and S3.

Notably, our results remained robust even after accounting for  Face learning and familiarization through identity
differences in signal-to-noise ratio (SNR) related to changes in  exposures within a session

firing rate (SNR = [(across trial variance)/(baseline variance)]-1;  Why does the representational distance between pairs of familiar
analysis of covariance [ANCOVA] of familiarity effect: t = 2.75, faces increase? Familiarity with a human face typically develops
p = 0.007). The results were similar when we computed via multiple visual exposures to a person during social interac-
the representational distance between pairs of identities (Fig- tions. We next investigated the neural basis of how faces
ure S2F; t(96) = 11.21, p = 3.72 x 1079 linear mixed effect become familiar (i.e., how the neuronal familiarity effect arises)
model: § = 6.27 + 0.59, t(172) = 10.72, p = 7.68 x 1072"; and how people learn to recognize a face identity through visual
ANCOVA controlling for SNR: t = 10.93, p = 6.73 x 10723, exposures. In each session, we presented 10 different (unique,
showing that the increase in representational distance is not each only seen once) pictures of the same person (identity) to
restricted to specific visual features but extends to the more ab-  the patients, so we were able to examine the change in neural
stract concept of identity of a face. Such a difference in neural  response as a function of the number of exposures to a given
representation is in line with the widely accepted idea that identity (see Figure S4 for behavioral results). We then tested, us-
distinctive faces undergo deeper or more elaborate processing ing a linear regression, whether neurons changed their firing rate
than typical faces and are thus better recognized.” Furthermore,  as a function of the number of times an image of the same iden-
we observed a comparable encoding of familiarity in both the tity was seen by the participant. Due to both physiological and
amygdala and hippocampus (Table S1; Figures S3A, S3B, non-physiological factors, such as changes in attention or elec-
S3G, and S3H). We show response latency (Figures S2D and  trode drift, there may be changes in firing rate as a function of
S2E), representational similarity with DNN units (Figure S2H),  time, which could confound the analysis of face learning over
and relationship with identity coding (Figures S2G and S2lI). identity exposure within a session. To isolate the response
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specific to the stimulus from potential slow drifts in neurons’
firing over time, we calculated a mean baseline firing rate every
30 trials over a time window of 500 ms (—500 to 0 ms relative
to stimulus onset) and divided the response to the stimulus by
the corresponding baseline. Furthermore, we combined familiar
and unfamiliar identities for analysis, but we show below that
face learning and familiarization occurred similarly for both
familiar faces and unfamiliar faces (i.e., face learning still
happened for familiar faces; Figure S5).

We identified 225 neurons (16.05%, binomial p < 1072°) that
exhibited a significant change in response to identity exposure
within a session (see Figures 3A-3C and 3E for examples and
Figures 3G, 3H, 3J, and 3K for group summary). Among these
neurons, 165 (73.3%) linearly increased firing rate with identity
exposure (Figures 3A, 3C, 3E, 3G, and 3H), while only 60
(26.7%) linearly decreased firing rate with identity exposure
(Figures 3B, 3J, and 3K; %2 test: p < 1072%). As a consequence,
the representational distance between faces increased over
identity exposure (see Figures 3D and 3F for examples;
Figures 3l and 3L for group results; and Figures S3C, S3D, S3I,
and S3J for a breakdown of amygdala and hippocampal neu-
rons). Furthermore, the mean linear regression coefficient of
the entire neuronal population was significantly greater than
0 (linear mixed effect model [regression coefficient ~ 1 + (1|sub-
ject:session)]: 8 = 0.074 + 0.029, t(7.13) = 2.58; p = 0.036).
Because the majority of the neurons increased their response,
neural face representations tended to be more distinct after
exposure to more faces of an identity. Notably, we found a
similar pattern of results for both familiar faces and unfamiliar
faces; i.e., face learning still happened for familiar faces with a
similar strength as for unfamiliar faces (Figure S5; regression co-
efficient: familiar: 0.82 + 0.13, unfamiliar: 0.81 + 0.14; two-tailed
two-sample t test: #(265) = 0.56, p = 0.58), suggesting that amyg-
dala and hippocampal neurons signal face learning and familiar-
ization regardless of whether an identity is already familiar to the
patient. Face familiarization is thus a continuous process that
also applies to known faces, and familiar faces can get further
familiarized.

Were our results specific to face identities? Although time
cells have been described in the hippocampus,®® and we
controlled for temporal change of overall neural response, it is
still possible that the response change over exposures was
due to adaptation or sensitization of faces rather than learning
about face identities per se. To address this potential confound-
ing factor, we conducted two control analyses. First, when we
grouped the trials by time bins (10 bins, 50 trials per bin) rather
than identity exposure, we did not find an above-chance popu-
lation of neurons showing a significant linear correlation with
time bins (75 neurons, 5.35%, binomial p = 0.25). Second, we
conducted a control experiment using FaceGen model faces,*’
which contained only facial feature information but no face iden-
tity information. We recorded from 938 neurons (overall firing
rate greater than 0.15 Hz) in 28 sessions (10 patients; see Cao
et al.*® for a detailed analysis of behavior). Again, we grouped
the trials into 10 consecutive time bins (30 trials per bin), and
we did not find an above-chance population of neurons showing
a significant linear correlation with time bins (37 neurons,
3.94%, binomial p = 0.92). Therefore, our results were specific
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to face identities; i.e., neurons linearly changed firing rate as a
function of identity exposure.

Neuronal population geometry for identity exposures
Above, we analyzed face learning for individual neurons. Would
the population geometry of the neural face space (including both
representational distance and angle) change as a function of
identity exposure? Specifically, if all neurons change their
response proportionally, then the angle between the neuronal
vectors will not change; otherwise, a change in the angle will sug-
gest a change in the population geometry. To answer this ques-
tion, we calculated the representational distance and angle for
the population of neurons (STAR Methods) and used a linear
regression to test whether the population geometry changed lin-
early as a function of identity exposure. We combined all neurons
showing a significant linear change in response to identity expo-
sure (see Figures S6A-S6F for separate analyses of neurons with
increased or decreased firing rate as well as temporal dynamics;
we also derived similar results with all recorded neurons). As ex-
pected, changes in firing rate were translated into changes in
representational distance, and we found that the population
representational distance increased as a function of identity
exposure (Figure 4A; Pearson correlation: r(10) = 0.88, p =
0.00083; see Figures 4E and 4F for illustration). We also obtained
similar results when accounting for the SNR (partial linear corre-
lation: r(10) = 0.88, p = 0.0017). However, we found that the angle
between the neuronal vectors did not change (Figure 4B; r(10) =
0.21, p = 0.56), suggesting that individual neurons changed their
response proportionally so that the population geometry re-
mained constant (unchanged) across identity exposures. This in-
dicates that the primary effect of familiarization was a scaling of
the response rather than a change in tuning (which would result
in angle changes). Separate analyses within the amygdala and
hippocampus derived similar results (Figures S3E, S3F, S3K,
and S3L).

Can face learning happen across sessions? Specifically, can
representational distance further increase across sessions?
Indeed, we found that the representational distance increased
from the first session to the second session for all neurons
showing a significant linear change in response to identity expo-
sure (Figure 4C; two-tailed paired t test: t(1,224) = 40.50, p =
3.30 x 1072%8), suggesting that face learning and familiarization
continued across sessions. Interestingly, the neuronal popula-
tion geometry also changed as the angle between neuronal vec-
tors changed (Figure 4D; #(1224) = 25.43, p = 6.76 x 10~ '"%; for
both representational distance and angle, we derived the same
results when we used the same number of neurons between ses-
sions). Here, we compared representational distance and angle
by identity pairs, but we derived similar results when we
compared face pairs (Figures S6G and S6H; both p < 107%9).
We also derived similar results with all recorded neurons
(Figures S6l and S6J; both p < 1072%"),

Together, our results show that representational distance in-
creases over identity exposures, an effect that can be carried
over to the following session. Therefore, neural face representa-
tions are sharpened with identity exposures. Our results also
show that the neuronal population geometry is constant within
a session but changes over sessions.
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Figure 3. Face learning within a session

(A and B) An example neuron that linearly increased firing rate with identity exposure (A) and an example neuron that linearly decreased firing rate with identity
exposure (B). Trials are aligned to face stimulus onset (gray line) and grouped by identity exposures. Error bars denote +SEM across trials. We calculated a mean
baseline firing rate every 30 trials in a time window of —500 to 0 ms relative to stimulus onset, and firing rate was normalized to the baseline.

(C-F) Example neurons whose representational distance of faces increased as a function of identity exposure.

(C and E) Normalized firing rate for each identity exposure. Each dot represents a face/trial, and error bars denote +SEM across faces/trials. These neurons
changed firing rate as a linear function of identity exposure.

(D, F) Distribution of faces in the neuronal feature space. Each dot represents a face. Color coding shows the number of identity exposures.

(G and H) Mean normalized firing rate for neurons that linearly increased firing rate with identity exposure (n = 165).

(J and K) Mean normalized firing rate for neurons that linearly decreased firing rate with identity exposure (n = 60).

(G and J) Group peristimulus time histogram (PSTH). Shaded areas denote +SEM across neurons. Here, we averaged adjacent identity exposures for illustration
purposes.

(I) Mean representational distance for neurons that linearly increased firing rate with identity exposure.

(L) Mean representational distance for neurons that linearly decreased firing rate with identity exposure. Representational distance was calculated by faces (STAR
Methods).

See also Figure S3, S4, and S5.

Representational distance encodes face similarity/ face representations become more distinct as faces become
distinctiveness familiar. Along this line of reasoning, representational distance
We have shown above that population representational distance  may, in addition, also reflect levels of face similarity; pairs of visu-
is increased by face familiarity and learning and that, thus, neural  ally similar faces will have a smaller representational distance. We
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Figure 4. Neuronal population geometry

(A and C) Representational distance for the population of neurons.
(B and D) Angle between the neuronal vectors.

(A and B) Comparison across identity exposures.

(C and D) Comparison between the first vs. second session. Asterisks indicate a significant difference between sessions using two-tailed paired t test.

****p < 0.0001. Legend conventions are as in Figure 2 for violin plots.

(E and F) Distribution of faces in the neuronal space (constructed by t-distributed stochastic neighbor embedding [t-SNE] dimension reduction of the neuronal
vector for each face). Each dot represents a face. Color coding shows the number of identity exposures.

See also Figures S3, S4, S5, and S6.

have shown that neurons in the human amygdala and hippocam-
pus encode visually similar faces (i.e., faces sharing similar visual
features are neurally more similar as well).?” Here, we investigated
whether representational distance was related to visual face sim-
ilarity/distinctiveness by comparing pairwise distances between
face identities assessed for similarity by human raters, neuronal
representational distance, and DNN representational distance.

With the CelebA stimuli (Figure 5A), 5 patients from whom we
recorded provided ratings for how visually similar each pair of
face identities looked to them (Figure 5B). We then correlated
this pairwise similarity with the population representational dis-
tance for each pair of face identities. We found a significant cor-
relation for all recorded neurons (Figures 5D and 5E; permutation
test: p < 0.001), face-responsive neurons (Figures S7A and S7C;
permutation test: p = 0.001), and identity-selective neurons
(Figures S7B and S7D; permutation test: p < 0.001) with visual
dissimilarity, suggesting that population representational dis-
tance was influenced by visual similarity/distinctiveness be-
tween face identities; the more visually similar two faces were
rated, the smaller the representational distance. Similarly, we
replicated this finding using DNN feature distance instead of hu-
man ratings (Figures 5C, 5F, and S7).

We next used the FBI Twins stimuli (Figure 5G) to validate our
findings and further demonstrate that representational distance
is influenced by face similarity in addition to face familiarity.
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The FBI stimuli contained faces that were all unfamiliar to the pa-
tients with various levels of visual similarity, including identical
twins (ITs), mirror twins (MTs), fraternal twins (FT), mother-child
(MC), father-child (FC), and spouses (SPs). We first employed a
Siamese neural network (i.e., a convolutional neural network
that assigns a similarity score between input images)** to esti-
mate the visual similarity between faces and confirmed the levels
of visual similarity in the stimuli (Figure 5H). We recorded from
837 neurons in the amygdala and hippocampus (overall firing
rate greater than 0.15 Hz) in 27 sessions (10 patients; accuracy =
75.7% + 23.0% [mean + SD across sessions]), and we identified
84 face-responsive neurons (10.0%, binomial p = 9.74 x 10~'9).
We found that the representational distance of face-responsive
neurons (Figure 51; one-way ANOVA: p = 0.048) and all neurons
(Figure 5J; p = 0.039) was related to visual similarity in a graded
manner; twin faces (including all IT, MT, and FT pairs) were most
visually similar and had the smallest representational distance,
parent-child faces (including MC and FC pairs) were visually
similar and had an intermediate representational distance, and
SP faces (including SP pairs) were not visually similar and had
the largest representational distance. Therefore, our results
again suggest that representational distance is related to face
similarity (here for faces that are all unfamiliar).

Together, our results suggest that representational distance is
correlated significantly with face similarity/distinctiveness,
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(A) The CelebA face feature space constructed by t-SNE for the deep neural network (DNN) layer Pool5. We applied t-SNE to convert high-dimensional DNN
features into a two-dimensional feature space. Each dot represents a face image, and each color represents an identity.

(B) Distance matrix for visual similarity ratings. Color coding shows the negative of Z-scored similarity ratings for each identity pair.

(C) Distance matrix for DNN features (i.e., DNN units). Color coding shows dissimilarity values (1 — Pearson’s r) between each identity pair.

(D) Population representational distance matrix. Color coding shows the Euclidean distance of neurons between each identity pair.

(E and F) Observed vs. permuted correlation coefficient between distance matrices. The correspondence between distance matrices was assessed using
permutation tests with 1,000 runs. The magenta line indicates the observed correlation coefficient between distance matrices. The null distribution of correlation
coefficients (shown in the gray histogram) was calculated by permutation tests of shuffling the face identities.

) Example stimuli from the FBI Twins dataset.

) Siamese score for each category of faces.
| and J) Population representational distance for each category of faces.
1) Face-responsive neurons (n = 84).
(J) All neurons (n = 837).
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Each dot represents a face pair, and error bars denote +SEM across face pairs. Asterisks indicate a significant difference using two-tailed two-sample t

test. +p < 0.1, **p < 0.01, **p < 0.001, ****p < 0.0001. See also Figure S7.

another important aspect of neural face representation (see Dis-
cussion for a comprehensive summary).

Face learning through visually similar faces

An important aspect of face learning is to generalize recognition
to similar faces (e.g., recognize a person’s sibling who looks
alike). Above, we have shown that neural face representations
become more distinct after exposure to faces of the same iden-
tity. Does population representational distance also increase af-

ter exposure to visually similar faces? In other words, can visually
similar faces play the same role in sharpening the neural face
representations during face learning as faces of the same iden-
tity? To address this question, we calculated the population
representational distance and angle between one of the twin
faces (including ITs, MTs, and FTs; STAR Methods) or one of
the non-twin faces (including MC, FC, and SPs), and contrasted
the population representational distance and angle between the
first vs. second exposures to these faces (see Figures 6A and 6D
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Figure 6. Face learning through visually similar faces
(A-C) Exposure to twin faces.
(D-F) Exposure to non-twin faces.

(A and D) Schematics of changes in representational distance following exposure to (A) twin faces and (D) non-twin faces.

(B and E) Representational distance for the population of neurons.

(C and F) Angle between the neuronal vectors. Here, we focused on the face-responsive neurons (n = 84).
Asterisks indicate a significant difference using two-tailed paired t test. ***p < 0.0001. n.s., not significant. Legend conventions are as in Figure 2 for violin plots.

for schematics; see also Figures 5H-5J for quantification of vi-
sual similarity).

Indeed, when we compared population geometry between the
first vs. second exposures to a twin face (Figure 6A), we found
that population representational distance of face-responsive
neurons increased between face pairs (Figure 6B; two-tailed
paired t test: #(1,539) = 6.01, p = 2.26 x 1079, consistent with
the increased representational distance after exposure to faces
of the same identity (Figures 4A and 4C). Interestingly, we found
that the neuronal population geometry also changed as the angle
between the neuronal vectors increased (Figure 6C; n = 84 neu-
rons for each group; t(1,539) = 6.14, p = 1.06 x 1079, a result
similar to face learning across sessions (Figure 4D; Discussion).
This result included all three categories of twins (ITs, MTs, and
FTs), but it could be replicated without ITs (population represen-
tational distance: t(629) = 3.91, p = 1.03 x 107%; angle: #(629) =
3.75, p = 1.96 x 10~%). Furthermore, as a control, we compared
population geometry between the first vs. second exposures to a
non-twin face (Figure 6D). We found that face learning was
abolished with non-twin faces (Figures 6E and 6F); neither the
representational distance (Figure 6E; t(119) = 0.89, p = 0.37)
nor the angle between the neuronal vectors (Figure 6F; n = 84
neurons for each group; t(119) = 0.61, p = 0.54) changed be-
tween exposures, suggesting that the change in neural face rep-
resentations through face exposure was specific to visually
similar faces.

Together, our results show that neural face representations
can be sharpened by exposure to visually similar faces, which,
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in turn, suggest that face learning can be generalized to visually
similar faces. The learning through visually similar faces supports
the notion that individuals possess distinct areas of specialized
knowledge associated with each familiar face.>* These knowl-
edge “islands” enable us to enhance our performance when
dealing with faces that bear resemblance to those with which
we are already acquainted.

A computational model for face learning and similarity
Last, we employed a DNN model to investigate potential compu-
tational mechanisms that could give rise to the effects of face
learning and similarity we described. In our previous study,®®
we showed that DNN units can discriminate faces that were
not involved in the training, indicating that DNNs generalize to
unfamiliar faces. The faces not included in the original training
of the DNN are equivalent to unfamiliar faces to humans. There-
fore, DNNs may offer a computational model to understand face
learning.

We first fine-tuned a VGG-Face model step by step to simulate
the face learning process (Figure 7A; STAR Methods). We up-
dated the DNN each time with 3 images of each of the 50 iden-
tities from the same CelebA dataset. The representational dis-
tance between faces of DNN units increased with updating
(Figures 7B and 7C; output layer: 1,225 of 1,225 face pairwise
distances increased from iteration 1 to 2, 1,140 of 1,225 face
pairwise distances increased from interaction 2 to 3), suggesting
that face discriminability was sharpened by training. This result
was consistent with the increasing representational distance
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Figure 7. Computational modeling for face learning

(A) Structure of the DNN (see STAR Methods for details). For copyright reasons, we replaced the original stimulus images with similar pictures.
(B and C) Representational distance of DNN units as a function of training iteration (STAR Methods).

(B) Across DNN layers. Error shade denotes +SD across identity pairs.

(legend continued on next page)
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with learning (Figure 4A), suggesting a possible computational
mechanism for face learning. Furthermore, the larger the
representational distance, the more distinct the neural face rep-
resentations, leading to a better face recognition performance
(accuracy [mean + SDJ: iteration 1: 0.94 + 0.020; iteration 2:
0.98 + 0.020; iteration 3: 0.993 + 0.0115). In addition, we
observed a very similar pattern of verification performance
(including a sharp increase in the output layer) for familiar faces
(Figure 7D) as well as a similar, roughly log-linear learning curve
(Figure 7E), as reported in Blauch et al.”® Notably, we observed a
population of neurons in the human amygdala and hippocampus
that exhibited a nonlinear response to face learning (n = 151,
binomial p < 1072% STAR Methods), and these neurons had a
similar, roughly log-linear learning curve in representational dis-
tance (Figure 7F).

Using a pre-trained VGG-Face model, we found that DNN unit
representational distance between face pairs correlated with hu-
man similarity ratings (Figures 7G-71; r(1,255) = 0.20, p = 1.2 X
10~'2; permutation p = 0.007), suggesting that representational
distance can be the computational basis for visual similarity.
While visual similarity is a distinct aspect of face representations,
our modeling results indicate that fine-tuning an existing network
can enhance the distinctiveness of face representations by
reducing their visual similarity.

Together, our results suggest computational mechanisms un-
derlying face learning and similarity.

DISCUSSION

In this study, we identified neurons in the human amygdala and
hippocampus that encoded face familiarity. Familiar faces
had a greater representational distance between identities
compared with unfamiliar faces. We further showed that, with
face learning and familiarization, the representational distance
increased as a function of identity exposure within a session,
and it was the case for both familiar and unfamiliar faces.
Representational distance further increased across sessions,
but the neuronal population geometry also changed. Moreover,
representational distance encoded visual similarity of faces,
and notably, face learning could be acquired with visually
similar faces. We finally constructed a computational model
to account for the neural findings and elucidated the computa-
tional principles underlying face learning and similarity.
We revealed a neural computational mechanism based on
representational distance for face familiarity, familiarization,
and similarity.

Cell Reports

Representational distance explains three aspects of
neural face representation
Our present results can be interpreted in the framework of pattern
separation,”*?® the process of transforming similar representa-
tions or memories into dissimilar, non-overlapping representa-
tions. Specifically, we showed that representational distance
changed as a function of three separate but related aspects of neu-
ral face representation (i.e., familiarity, learning, and similarity).
First, the representational distance was larger between pairs of
familiar faces compared with unfamiliar faces, suggesting that
familiar faces were more neurally distinct and had a greater pattern
separation compared with unfamiliar faces. Recent theories sug-
gest that familiar faces have a more robust representation in mem-
ory because they have been encountered over a wide variety of
contexts and image changes. In contrast, unfamiliar faces are
encountered only once, and so they do not benefit from such rich-
ness of experience and are represented based on image-specific
details.® Second, the representational distance increased during
face familiarization, indicating that the neural representation of
faces was amplified and that, as a result, pattern separation was
enhanced during learning, similar to the tuning sharpening in the
primate inferior temporal cortex.®”*® The greater representational
distance suggests that individual neurons can better distinguish
different identities, which is also reflected by the stronger correla-
tion with the DNN pre-trained to distinguish face identities. Our re-
sults are consistent with the idea that deeper or more elaborate
processing of faces leads to a better recognition of faces,” which
has also been shown in our simulation results (Figure 7). Third,
the representational distance between similar faces was smaller
compared with that between visually distinct faces (notably, this
was also the case for unfamiliar FBI faces). The neuronal represen-
tational distance varies as a function of face familiarity, visual sim-
ilarity, and learning, suggesting that the representation of face
space in the human amygdala and hippocampus is shaped by
pattern separation processes.?*°

It is worth noting that these three aspects of neural face repre-
sentation are consistent with each other. Faces become familiar
after learning and familiarization, and the representational dis-
tance between faces increases. Furthermore, visually similar
faces are more difficult to be discriminated because the repre-
sentational distance is smaller, but they can be better discrimi-
nated when they are familiar or familiarized because the repre-
sentational distance becomes greater. Interestingly, exposure
to visually similar faces can also induce learning. Therefore,
representational distance can be a generic code to explain neu-
ral face representation.

(C) The output layer of the DNN. Asterisks indicate a significant difference using two-tailed paired t test. ***p < 0.0001. Legend conventions are as in Figure 2 for

violin plots.

(D) Verification d” estimated with an ROC-based analysis. We followed the same procedure as described in Blauch et al.?®
(E) Verification performance as a function of identity exposure in the output (i.e., explicit probability) layer.
(F) Neuronal representational distance as a function of identity exposure. Shown are neurons that had a significant logistic response to identity exposures (n =

151). A log4o X scale is plotted against a linear y scale.

(G) Distance matrix for DNN features (i.e., DNN units). Color coding shows Z-scored Euclidean distance between each identity pair.

(H) Correlation between distance in visual dissimilarity rating (the negative of Z-scored similarity ratings) and DNN unit distance (Z scored) across pairs of face
identities. Ratings from the general controls were averaged across participants. Each dot represents a pair of face identities (n = 1,225), and the gray line denotes
the linear fit ((1,255) = 0.20, p = 1.2 x 1073

(I) Observed vs. permuted correlation coefficient between distance matrix for visual similarity ratings and distance matrix for DNN units. Legend conventions are
as in Figure 5.
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Neuronal population geometry

The population representational distance increased as a function
of identity exposure (i.e., face learning), even across sessions
and for visually similar face identities. Interestingly, the angle be-
tween the neuronal vectors did not change for identity exposures
within a session, but changed for identity exposures across ses-
sions and for learning of visually similar faces. The change in
representational geometry is consistent with a recent study
showing that familiar faces are represented in a distinct sub-
space from unfamiliar faces in the monkey face patch AM and
perirhinal cortex and that the familiar face subspace is distorted
to increase neural distances between faces.*® In addition,
analyzing the temporal sequence of face presentations demon-
strates an early separation of neural patterns between highly
familiar and unfamiliar faces in the face-selective regions
fusiform face area (FFA) and occipital face area (OFA),"" consis-
tent with our present results.

The observed disparity in representational geometry changes
between within-session identity exposure and across-session
identity exposure indicates the involvement of distinct underlying
mechanisms. One possible explanation for the consistent repre-
sentational geometry during within-session identity exposure is
the maintenance of a stable internal representation or template
for familiar faces. When a face becomes familiar within a session,
the neural system can establish a consistent encoding of its
unique identity characteristics, resulting in a uniform representa-
tional geometry across repeated exposures. This stability is likely
crucial for robust recognition and efficient processing of familiar
faces within a short time frame. Conversely, the changes in
representational geometry during across-session identity expo-
sure suggest a flexible adaptation process that occurs over
longer periods. As faces are encountered repeatedly across
different sessions, the neural system may gradually adjust to
optimize the representation and discrimination of distinct identi-
ties. These adjustments might involve fine-tuning of neural re-
sponses to better capture the specific features that differentiate
individual faces, leading to alterations in the representational ge-
ometry. To gain a comprehensive understanding of these pat-
terns, further research is warranted to investigate the precise
neural mechanisms at play.

Computational modeling of face learning

Inspired by the primate visual system, DNNs have not only made
impressive progress in recognizing faces*® but also contributed
significantly to the understanding of neural face coding®”*° (see
O'Toole et al.*" and O'Toole and Castillo® for reviews). In this
study, we constructed a DNN-based computational model that
explained the process of face familiarization and learning. A
similar computational approach using the same VGG-16 neural
network has been applied in a previous study that simulated
familiarization with face identities by fine-tuning the network on
images of unfamiliar identities.?® It has been shown that familiar-
ization leads to a sharp improvement in verification performance,
but it reaches near-optimal performance levels only in networks
that have received extensive training on faces.”® Notably,
consistent with our present study and the fact that amygdala
and hippocampal neurons correspond to the response of top
DNN layers,?” the sharp familiarity benefit is observed solely at

¢ CellP’ress

OPEN ACCESS

the identity-based output probability layer, independent of alter-
ations in perceptual representations.26 Furthermore, consistent
with our findings, a linear discriminant analysis (LDA) model on
identity recognizes unseen ambient images of familiar (trained)
faces but not unknown (untrained) faces.*> The LDA model
also reveals facial features relevant to face learning®® and indi-
cates that the concept of face familiarity can be better under-
stood as the development of more robust statistical descriptions
of unique within-person variations.** However, the DNN-based
approach is a much more powerful tool to study neural face rep-
resentation.?” It is also worth noting that the VGG-16 DNN can
discriminate face identities that are not involved in the training.*®
In addition, in line with our present results, research has shown
that the similarity structure found in face-trained DNNs is consis-
tent with human similarity ratings.*® Finally, our recent simulation
study systematically investigated the critical period in the devel-
opment of face processing.“® It demonstrated the computational
mechanisms involved and proposed restoration strategies for
early face learning.

Relationship with repetition suppression and perceptual
learning

Our present study differs from previous studies that have
focused on the repetition suppression phenomenon, which has
been observed in the visual cortex in non-human primates at
the single-neuron level*” and in humans using fMRI.*® Our study
found both neurons that increased response and neurons that
decreased response as a function of identity exposure within a
session. This difference may be because previous studies
used familiar stimuli, such as photos of celebrities and familiar
individuals, landmark buildings, animals, and objects, and
repeated the same images.*® In contrast, we used unfamiliar
faces and different pictures of the same identity to avoid adapta-
tion. Consistent with our results, previous neuroimaging studies
have shown concurrent repetition enhancement and suppres-
sion responses in the extrastriate visual cortex, which supports
predictive coding models that involve the computation of both
predictions (which are enhanced by repetition) and prediction er-
rors (which are suppressed by repetition).”® Our study also
showed that the population representational distance between
face identities increased over identity exposures both within
and across sessions, consistent with previous studies showing
that repeated image exposures (e.g., hundreds to thousands)
sharpen the tuning of inferior temporal neurons.*”-*® Moreover,
our results are consistent with the finding that spaced learning
enhances face recognition memory by reducing neural repetition
suppression.®! It is important to note that a mix of repetition sup-
pression and enhancement is typical in the brain, and it may be
that repetition warps representational spaces in a general way
that is relevant to perceptual learning. Therefore, while some of
the effects we observed may be related to repetition, it is also
possible that they reflect a general mechanism that could be
relevant to both repetition suppression and enhancement.

Our present study is related to perceptual learning,”**® where
face identities were learned and familiarized with visual expo-
sures. In particular, it has been shown that face learning occurs
through prediction errors, which update the level of stimulus fa-
miliarity in accordance with predictive coding principles.>* On
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one hand, a ubiquitous property of perceptual learning is speci-
ficity; i.e., performance improvement obtained during training
applies only to the trained stimulus features,®” which is consis-
tent with our observed specificity to identity for face exposures.
On the other hand, perceptual learning (using low-level stimuli)
can be generalized in the absence of sensory adaptation,®®
which is consistent with our face learning through different im-
ages (including learning with visually similar faces). In addition,
context and expectation may modulate neural response in
perceptual learning (see Summerfield and de Lange®® for a re-
view). A future study is needed to understand the role of expec-
tation in face learning.

Limitations of the study

The task and stimuli employed in this study exhibit intrinsic differ-
ences compared with the classic behavioral and simulation
studies on face familiarity.'®?° Given these disparities, it is
crucial to note the following limitations associated with interpret-
ing our behavioral and neural findings.

First, in our main experiment, we utilized celebrity faces, and it
is important to acknowledge that prior knowledge of familiar
faces can influence face perception, particularly in social trait
judgment.®”~*° However, we discovered face learning not only
for both familiar and unfamiliar celebrity faces but also for visually
similar faces using the FBI stimuli (consisting of entirely unfamil-
iar faces). On the other hand, although we observed differential
neural responses to familiar and unfamiliar faces, it is crucial to
recognize that the level of familiarity may vary significantly
among stimuli and across participants. Notably, the celebrity
faces used in our study, while familiar, may not have been
personally relevant to the participants. It is possible that the fa-
miliarity level associated with celebrity faces was weaker
compared with that of personally relevant and familiar faces,
such as photographs of the participants themselves, their fam-
ilies, or the experimenters. This disparity in familiarity levels
may explain the absence of a familiarity effect in behavior and
the presence of learning effects with both familiar and unfamiliar
faces (indicating ample room for participants to improve their fa-
miliarity). Supporting this notion, previous research has shown
that personally relevant faces elicit the strongest selective re-
sponses.”® To further substantiate the learning effect, it is neces-
sary for a future study to control for the level of familiarity and
potentially employ personally familiar faces instead of visually
familiar ones.

Second, in this study, we employed a one-back task where
participants were presented with naturalistic faces and required
to judge whether the current stimulus matched the immediately
preceding one. This task aimed to mimic real-world scenarios
where individuals perceive faces and form instant impressions.
As a result, we did not assess face recognition or matching per-
formance to demonstrate improved processing of familiar
faces.'™ Consequently, we did not observe a behavioral famil-
iarity effect. Specifically, our findings revealed that face familiar-
ity did not modulate attention, as indicated by one-back task ac-
curacy and reaction time (Figures 1B and 1C), nor did it
significantly impact social trait judgment (Figure S1A). Eye
tracking results showed only weak modulation of eye move-
ments (Figures S1B-S1E). Previous research has shown that,
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although the number of fixations does not differ between familiar
and unfamiliar faces, the fixation locations vary,°® which aligns
with our eye tracking outcomes. Furthermore, in the one-back
catch trials, participants were required to press a button after
the stimulus disappeared, which resulted in missed responses
from some patients. Notably, when we eliminated this require-
ment, patients exhibited a considerably higher response rate of
93.29% =+ 6.82% (mean + SD across 14 sessions from 11 pa-
tients). This may explain why the behavioral performance did
not reach its maximum potential.

Finally, while the amygdala and hippocampus are crucial com-
ponents of the face-processing network, our current study was
restricted by clinical limitations, preventing us from examining
the broader neural circuitry involved in face processing. Given
the distributed nature of face processing in the temporal cor-
tex,%"® future studies should explore the neuronal coding of
face familiarity and recognition at the network level. We propose
the hypothesis that amygdala and hippocampal neurons exhibit
categorical responses as opposed to the graded responses
observed in the temporal cortex when encoding face familiar-
ity.'®?® Furthermore, in contrast to the previous finding that fa-
miliarity coding and identity coding emerge independently,'®
here we show that identity coding varies as a function of face fa-
miliarity, which is likely due to different spatial resolution (EEG vs.
single unit) and brain areas recorded (scalp vs. amygdala/
hippocampus).
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Psychophysics toolbox PTB3 N/A http://psychtoolbox.org

Other

Neuralynx Neurophysiology System Neuralynx (https://neuralynx.com) Cat# ATLAS 128

EyelLink Eye Tracker SR Research (https://www.sr- Cat# 1000 Plus Remote

research.com)
Ad-Tech 8-contact Microelectrode Ad-Tech (https://adtechmedical.com/ Cat# WB09R-SP00X-014

subdural-electrodes)

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfiled by the Lead Contact, Shuo Wang
(shuowang@wustl.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
(1) Data for the main experiment has been published as an open-access dataset”® with detailed descriptions of methods.
(2) The code specific for this study is available on OSF (https://doi.org/10.17605/0SF.I0/ZHQKB).
(3) Any additional information required to analyze the data reported in this paper is available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT PARTICIPANT DETAILS

There were 31 sessions from 9 patients in total (Table S1). We only included patients who indicated whether they recognized each
face identity in a follow-up questionnaire.?” All participants provided written informed consent using procedures approved by the
Institutional Review Board of West Virginia University (WVU; protocol #1709745061).

METHOD DETAILS

Stimuli
We used three sets of face stimuli, and we used the same stimuli for all patients.

First, in the main experiment, we used faces of celebrities from the CelebA dataset.?”-°® We selected 50 identities (individuals). For
each, we picked 10 different images, resulting in a total of 500 images. The selected stimuli included both genders (33 of the 50 iden-
tities were male) and multiple races (40 identities were Caucasian, 9 identities were African American, and 1 identity was biracial). The
same stimuli were used for all sessions. It is worth noting that we used different pictures of the same identity to investigate face famil-
iarization. This not only provided a better generalization but also mimicked real world conditions where there is no repeated viewing of
an identical face but people perceive the same face identity with different appearances. Using different pictures of the same identity
may also reduce stimulus suppression and adaptation. For illustration purposes, alternative facial representations were used in Fig-
ure 1 and subjects of the images provided consent for usage of their facial images in this publication.

Second, we used a newly-collected FBI Twins dataset that included pairs of colored photos with the following relationships: iden-
tical twins (IT), mirror twins (MT), fraternal twins (FT), mother-child (MC), father-child (FC), and spouses (SP). Therefore, this dataset
contained faces with various levels of similarity, and all faces from this dataset were unfamiliar to the patients. The photographing
conditions were well controlled to ensure similar background and lighting, and all photos are high resolution (3840 x 5760). There
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was one face per identity and a total of 144 faces. FBI IRB approval for re-use of images was obtained from select participants in the
FBI Twins dataset that provided data during the collections and gave permission for image publication at the time of collection.

Third, we used a FaceGen dataset with model faces, which notably contained only feature information but no real identity infor-
mation. We used the FaceGen Modeller program (http://facegen.com; version 3.1) to randomly generate 300 faces (see®' for detailed
procedures). FaceGen constructs face space models using information extracted from 3D laser scans of real faces. To create the
face space model, the shape of a face was represented by the vertex positions of a polygonal model of fixed mesh topology.
With the vertex positions, a principal component analysis (PCA) was used to extract the components that accounted for most of
the variance in face shape. Each principal component (PC) thus represented a different holistic non-localized set of changes in all
vertex positions. The first 50 shape PCs were used to construct faces that had a symmetric shape. Similarly, because skin texture
is also important for face perception, 50 texture PCs based on PCA of the RGB values of the faces were also used to represent faces.
The resulting 300 faces were randomly generated from the 50 shape and 50 skin texture components with the constraint that all faces
were set to be Caucasian. It is worth noting that each PC is a feature dimension of the face space.

Experimental procedure
We used a 1-back task for the CelebA and FBI stimuli. In each trial, a single face was presented at the center of the screen for a fixed
duration of 1 s, with uniformly jittered inter-stimulus-interval (ISl) of 0.5-0.75 s (Figure 1A). Each image subtended a visual angle of
approximately 10°. Patients pressed a button if the present face image was identical to the immediately previous image. 10% of trials
were one-back repetitions. Each face was shown once unless repeated in one-back trials; and we excluded responses from one-
back trials to have an equal number of responses for each face. This task kept patients attending to the faces, but avoided potential
biases from focusing on a particular facial feature (e.g., compared to asking patients to judge a particular facial feature). The order of
faces was randomized for each patient. This task procedure has been shown to be effective to study face representation in humans.*

For FaceGen stimuli, patients performed two face judgment tasks. In each task, there was a judgment instruction, i.e., patients
judged how trustworthy or how dominant a face was. We used a 1-4 scale: ‘1’: not trustworthy/dominant at all, ‘2’: somewhat trust-
worthy/dominant, ‘3’: trustworthy/dominant, and ‘4’: very trustworthy/dominant. Each image was presented for 1.5 s at the center of
the screen. One patient performed an additional passive-viewing task. In our previous studies,””"** we have shown that we are able to
combine data from all tasks for analysis.

Stimuli were presented using MATLAB with the Psychtoolbox 3°° (http://psychtoolbox.org) (screen resolution: 1600 x 1280).

Social trait judgment ratings of the CelebA stimuli

To examine whether face familiarity modulates social trait judgments (Figure S1A), we acquired trait ratings from patients using a set
of social traits that most comprehensively characterize social trait judgments,®® including warm, critical, competent, practical, femi-
nine, strong, youthful, and charismatic. These social traits represent the four core psychological dimensions of comprehensive trait
judgments of faces (warmth, competence, femininity, and youth; 2 traits per dimension), and they were well validated in the previous
study.®® Patients were asked to rate the faces on eight social traits using a 7-point Likert scale through an online rating task.

Electrophysiology
We recorded using implanted depth electrodes in the amygdala and hippocampus from patients with pharmacologically intractable
epilepsy. Target locations in the amygdala and hippocampus were determined by the neurosurgeon based solely on clinical need and
verified using post-implantation CT. At each site, we recorded from eight 40 pm microwires inserted into a clinical electrode as
described previously.®”® Efforts were always made to avoid passing the electrode through a sulcus, and its attendant sulcal blood
vessels, and thus the location varied but was always well within the body of the targeted area. Microwires projected medially out at
the end of the depth electrode and examination of the microwires after removal suggests a spread of about 20-30°. The amygdala
electrodes were likely sampling neurons in the mid-medial part of the amygdala and the most likely microwire location is the baso-
medial nucleus or possibly the deepest part of the basolateral nucleus. Bipolar wide-band recordings (0.1-9000 Hz), using one of the
eight microwires as reference, were sampled at 32 kHz and stored continuously for offline analysis with a Neuralynx system. The raw
signal was filtered with a zero-phase lag 300-3000 Hz bandpass filter and spikes were sorted using a semi-automatic template
matching algorithm as described previously.®® Units were carefully isolated and recording and spike sorting quality were assessed
quantitatively.”®

Consistent with our previous studies, only single units with an average firing rate of at least 0.15 Hz throughout the entire
task were considered. Trials were aligned to stimulus onset. For the CelebA and FBI stimuli, we used the mean firing rate in a time
window 250 ms-1250 ms after stimulus onset as the response to each face. For FaceGen stimuli, we used the mean firing rate in a
time window 250 ms-1750 ms after stimulus onset as the response to each face.*”

27,28,70-73

Eye tracking

Patients were recorded with a remote non-invasive infrared Eyelink 1000 system (SR Research, Canada) (Figures S1B-S1l). One of
the eyes was tracked at 500 Hz. The eye tracker was calibrated with the built-in 9-point grid method at the beginning of each block.
Fixation extraction was carried out using software supplied with the Eyelink eye tracking system. Saccade detection required a
deflection greater than 0.1°, with a minimum velocity of 30°/s and a minimum acceleration of 8000°/s2, sustained for at least
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4 ms. Fixations were defined as the complement of a saccade, i.e., periods without saccades. Analysis of the eye movement record
was carried out offline after completion of the experiments.

To quantitatively compare the fixation densities within certain parts of the face, we defined three rectangular ROIs: eyes, mouth,
and nose. The fixation density was calculated for each session during the entire 1 s stimulus period, and was normalized within each
session. Fixation locations were smoothed using a 2D Gaussian kernel (kernel size = 0.04 *image height by 0.04 * image width) with a
standard deviation of 10 pixels.

We excluded sessions that had fewer than 10 fixations onto each facial region of interest (ROI) due to a substantial amount of
missing eye tracking data, resulting in a total of 21 sessions for the CelebA stimuli and 16 sessions for the FBI stimuli for further
analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Response index for single trials

To combine both types of familiarity-selective neurons (i.e., neurons with a greater response to familiar faces or unfamiliar faces) for
group analysis, we calculated a single-trial response index (Figure S2A). For each neuron we quantified whether its response differed
between familiar faces and unfamiliar faces using a single-trial index, R; (Equation 1; Equation 2). The R; facilitates group analysis and
comparisons between different types of neurons, as motivated by previous studies.”®’* The R; quantifies the response during trial i
relative to the mean response to all unfamiliar faces and baseline (the interval right before stimulus onset). The mean response and
baseline were calculated individually for each neuron.

Neurons with a greater response to familiar faces:

_ FR, — mean(FHUnfamiliar)
mean(FRgaseiine)

R; -100% (Equation 1)

Neurons with a greater response to unfamiliar faces:

_ FRi — mean(FRunamilar)
mean(FRgaseline )

R = -100% (Equation 2)

For each triali, R;is the baseline normalized mean firing rate (FR) during an interval from 250 ms to 1250 ms after stimulus onset (the
same time interval as neuron selection). Different time intervals were tested as well, to ensure that results were qualitatively the same
and not biased by particular spike bins.

If a neuron distinguishes familiar faces from unfamiliar faces, the mean value of R; across all trials/faces will be significantly different
from 0. Since neurons with a greater response to familiar faces have more spikes for familiar faces, the mean R; is positive for these
neurons (Equation 1). Since neurons with a greater response to unfamiliar faces have more spikes for unfamiliar faces, to get an
aggregate measure of activity that pools across neurons, R; was multiplied by —1 if the neuron has a greater response to unfamiliar
faces (Equation 2) so that the mean R; is also positive for these neurons. Therefore, Equation 1 and Equation 2 make the mean R;
positive for both types of neurons. Notice that the factor —1 in Equation 2 depends only on the neuron type but not trial type (note
that each neuron type has both familiar and unfamiliar face trials).

After calculating R; for every trial, we subsequently averaged all R; of trials that belong to the same category. By definition, the
average value of R; for unfamiliar faces will be equal to zero because the definition of R; is relative to the response to unfamiliar faces
(see Equation 1; Equation 2); and the average value of R, for familiar faces will be greater than zero. Notably, this is the case for both
neurons with a greater response to familiar faces and neurons with a greater response to unfamiliar faces. The mean baseline firing
rate was calculated across all trials. The same FRypmamiiar Was subtracted for all types of trials.

The cumulative distribution function (CDF) was constructed by calculating for each possible value x of the R; how many examples
are smaller than x (Figure S2A). That is, F(x) = P(X < x), where X is a vector of all R; values. The CDFs of trials between categories were
compared using two-tailed two-sample Kolmogorov-Smirnov (KS) tests.

Single-neuron ROC analysis

We conducted another group analysis to describe how neurons discriminated familiar vs. unfamiliar faces (Figure S2B). Neuronal
Receiver Operating Characteristics (ROCs) were constructed based on the spike counts in a time window of 250 ms-1250 ms after
stimulus offset. We varied the detection threshold between the minimal and maximal spike count observed, linearly spaced in 20 steps.
The Area Under the Curve (AUC) of the ROC was calculated by integrating the area under the ROC curve (trapezoid rule). The AUC value
is an unbiased estimate for the sensitivity of an ideal observer that counts spikes and makes a binary decision based on whether the
number of spikes is above or below a threshold (Figure S2B). We defined the category with a higher overall firing rate as ‘true positive’
and the category with a lower overall firing rate as ‘false positive’. Therefore, the AUC value was always above 0.5 by definition.

Differential latency

We conducted a spike train analysis to estimate differential response latency of neurons for processing familiar vs. unfamiliar faces
(Figures S2D, and S2E). We binned spike trains into 1-ms bins and computed the cumulative sum. To facilitate averaging across
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neurons with different firing rates, we normalized the cumulative sum by its maximum value for each neuron. We then averaged the
normalized cumulative sums for familiar faces and unfamiliar faces, respectively, and compared, at every point of time, whether the
normalized cumulative sums were different between familiar and unfamiliar faces (two-tailed paired t test; p < 0.001; FDR-corrected).
The first point of time of the significant cluster (cluster size >20 time points) was used as the estimate of the differential latency.

Representational distance
We calculated representational distance metrics for individual neurons and a population of neurons, as follows:

For individual neurons (Figures 2; S2; and Figures 3; S5), we used the absolute difference in firing rate to indicate the representa-
tional distance for each face pair (Figures 2E; S2G; and Figures 3I, 3L; S5Q-S5T). Additionally, we calculated the Euclidean distance
in firing rate between 10 faces of an identity to indicate the representational distance for each identity pair (Figure S2F). Next, we
averaged the representational distance for each neuron and compared them across neurons.

For a population of neurons (Figures 4A-4D; Figures 5D, 51, 5J; and S6; Figures 6; and S7) or DNN units (Figure S2H; Figures 5C and
5F; S7TE-ST7I; Figure 7), we first obtained a mean response for each identity by averaging across faces, and then calculated the
Euclidean distance between neurons for each pair of identities. We obtained similar results when we first calculated the Euclidean
distance between neurons for each pair of faces and then averaged the representational distance across face pairs. We also obtained
similar results when we used the Pearson correlation coefficient (i.e., 1—r) as the distance metric.

Change in neuronal population geometry (Figures 4B and 4D; S6; Figure 6) was described using the cosine angle between the
neuronal vectors: cos 0 = g"—‘&, where a and b are the neuronal vectors for different conditions.

To visualize the change in representational distance, we applied a t-distributed stochastic neighbor embedding (t-SNE) method®
to convert high-dimensional features (i.e., 15 PSTH bins) into a two-dimensional feature space. We implemented t-SNE in the
MATLAB platform.

We also accounted for the potential impact of the signal-to-noise ratio (SNR) on the observed changes in representational distance,
which can lead to regression dilution.”® The signal was approximated by calculating the variance in neural activity during stimulus
presentation (the same neural response used for computing representational distance) across trials. The noise was estimated based
on the variance in neural activity during the baseline period. As such, we derived a proxy for the SNR that is relevant for represen-
tational distance analysis: [(variance across trials)/(variance during baseline)] — 1. We used this metric as a covariate in the analysis of
covariance (ANCOVA) for assessing the familiarity effect and in the partial linear regression for assessing the face learning effect. This
allowed us to control for any potential influence arising from changes in SNR.

While we estimated the SNR by comparing the variance in neural responses during stimulus presentation and baseline and ob-
tained similar results after accounting for the SNR, it is important for future studies to investigate the potential influence of SNR
on data interpretation more thoroughly. For instance, more precise measurements of SNR in neural recordings could help account
for any differences between conditions. To gain a deeper understanding, it would be valuable to simulate the data under various as-
sumptions regarding the distribution of activity levels across neurons and the degree of noise in the system. This would allow us to
evaluate whether the reported changes in representational distance and correlation measures would still yield significant results un-
der these conditions. Furthermore, a future study should explore alternative explanations for the observed changes in representa-
tional distance, such as differences in attentional allocation or processing strategies between the conditions. These avenues of inves-
tigation will provide a more comprehensive understanding of the potential influence of SNR and other factors on the observed
changes in representational distance.

Representational distance in a deep neural network (DNN)

We calculated the population representational distance between face identity pairs using responses from DNN units (see section
above) and explored whether amygdala and hippocampal neurons shared a similar representational structure as DNN units (Fig-
ure S2H; Figures 5C and 5F; S7TE-S7I; Figure 7). To obtain DNN unit activation for each face image, we used the well-known DNN
implementation based on the VGG-16 convolutional neural network (CNN) architecture’” (Figure 7A), which has been used in recent
work®* as the computational model for deep face feature extraction and has been validated in our previous studies.?”"*® Specifically,
the VGG-16 CNN consisted of a feature extraction section (13 convolutional layers) and a classification section (3 fully connected [FC]
layers). The feature extraction section was consistent with the typical architecture of a CNN. A 3 x 3 filter with 1-pixel padding and
1-pixel stride was applied to each convolutional layer, which was followed by a Batch Normalization (BatchNorm) and Rectified
Linear Unit (ReLU) operation. Some of the convolutional layers were followed by five 2 X 2 max-pool operations with a stride of 2.
There were 3 FC layers in each classification section: the first two had 4096 channels each, and the third performed an n-way clas-
sification. Each FC layer was followed by a ReLU and 50% dropout to avoid overfitting. A nonlinear Softmax operation was applied to
the final output of VGG-16 network to make the classification prediction of 50 identities. We also confirmed that the pre-trained model
could discriminate the identities used in the present study and thus serve as a suitable feature extractor (see®”*° for details).

To show representational similarity between human neurons and DNN units (see Figure S2H for comparison between familiar vs.
unfamiliar faces; see Figures 5C, 5F; S7TE-S7I; Figure 7 for analysis of visual similarity), we correlated the pairwise representational
distance between face identities for neurons with that for DNN units. To determine statistical significance, we used a non-parametric
permutation test with 1000 runs. In each run, we randomly shuffled the face labels and calculated the correlation between the
neuronal representational distance and the DNN unit representational distance. The distribution of correlation coefficients computed
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with shuffling (i.e., null distribution) was eventually compared to the one without shuffling (i.e., observed response). If the correlation
coefficient of the observed response was greater than 95% of the correlation coefficients from the null distribution, it was considered
significant. We computed the correlation for each DNN layer; and we conducted separate analyses for familiar faces and unfamiliar
faces or for each neuronal group (i.e., all neurons, face-responsive neurons, and identity-selective neurons).

Identity-selective neuron
We investigated how face identity coding interacted with familiarity coding (Figure S2G) and face learning (Figures S4G, and S4H). We
used our previous procedure to select identity-selective neurons.?” We first used a one-way ANOVA to identify neurons with a signif-
icantly unequal response to different identities. We next imposed an additional criterion to identify the selected identities: the neural
response of an identity was 2 standard deviations (SD) above the mean of neural responses from all identities (note that the mean
neural response could be considered as a baseline for the epochs when images were shown, even if we did not subtract a baseline).
These identified identities whose response stood out from the global mean were the encoded identities. Note that because identity-
selective neurons might change their firing rate for only a few stimuli, an overall response to stimulus onset might not be observed.
Therefore, given such sparseness of firing of amygdala and hippocampal neurons, we did not impose face responsiveness (overall
change of activity in response to stimulus onset compared to baseline) as a criterion for neuron selection.

To assess each neuron’s selectivity to different identities and compare it with familiarity coding, we defined an identity selectivity
index as the d’ between the most- and least-preferred identities (Figure S4H):

IdentitySelectivitylndex = —Lest — Heast

E (o-l%est +0—feast)

where ppest and Lyorst denote the mean firing rate for the most- and least-preferred identities, respectively, and szest and szorst
denote the variance of firing rate for the most- and least-preferred identities, respectively. A similar index was used in previous
studies to assess the level of selectivity to different faces.® It is worth noting that the identity selectivity index was not used to select
identity-selective neurons or estimate the number of neurons that were identity selective. Instead, the identity selectivity index was
used to quantify the degree of identity selectivity for the identity and non-identity-selective neurons that had already been selected.

Population decoding of face identities

We employed a population decoding approach to study face identity coding with different familiarity (Figure S2I). We pooled all re-
corded neurons into a large pseudo-population. Firing rates were z-scored individually for each neuron to give equal weight to each
unit regardless of firing rate. We used a maximal correlation coefficient classifier (MCC) as implemented in the MATLAB neural de-
coding toolbox (NDT).”® The MCC estimates a mean template for each class i and assigns the class for test trial. We used 8-fold
cross-validation, i.e., all trials were randomly partitioned into 8 equal-sized subsamples, of which 7 subsamples were used as the
training data and the remaining single subsample was retained as the validation data for assessing the accuracy of the model,
and this process was repeated 8 times, with each of the 8 subsamples used exactly once as the validation data. We then repeated
the cross-validation procedure 50 times for different random train/test splits. Statistical significance of the decoding performance for
each group of neurons against chance was estimated by calculating the percentage of bootstrap runs (50 in total) that had an accu-
racy below chance (i.e., 2% when decoding all identities). Statistical significance for comparing between groups of neurons was esti-
mated by calculating the percentage of bootstrap runs (50 in total) that one group of neurons had a greater accuracy than the other.
Spikes were counted in bins of 500 ms size and advanced by a step size of 50 ms. The first bin started —500 ms relative to trial onset
(bin center was thus 250 ms before trial onset), and we tested 31 consecutive bins (the last bin was thus from 1000 ms to 1500 ms
after trial onset). For each bin, a different classifier was trained/tested. We used FDR?® to correct for multiple comparisons across
time points. The same decoding approach was used in our prior studies’®®° and has been shown to be very effective in the study
of neural population activity.

Model comparison
Neurons can respond to face learning with different characteristics. To better understand the response profiles of these neurons with
respect to face learning, we further investigated the percentage of neurons that changed firing rate gradually (e.g., as a linear function;
Figure 3) or abruptly (e.g., as a step function). We first selected neurons that showed a significantly different response across identity
exposures (one-way ANOVA: p < 0.05; 348 neurons, 24.82%, binomial p < 1072%). We then compared three models: linear regression
model, logistic model (sigmoidal), and step-function model, using the Akaike Information Criterion (AIC), which measures the relative
quality of statistical models for a given set of data.®' The AIC is founded on information theory and it offers a relative estimate of the
information loss when a given model is used to represent the process that generates the data. In doing so, it deals with the trade-off
between the goodness of fit of the model and the complexity of the model. Note that the AIC only estimates the quality of each model
relative to the other models in comparison, providing a means for model selection, rather than the absolute quality of the model in a
sense of testing a null hypothesis.

For each model, we have: AIC = n-In Rnﬁ +2K + ,27’1(’,‘;13, where n is the sample size (i.e., the number of observations; n = 10 here for
10 identity exposures), k is the number of parameters of the model (ki inear = 2, K ogistic = 3, and Kszep = 3; see below), and RSS is the
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residual sum of squares between the observed data and the fitted data. Note that we here corrected the relatively small sample size
(n/k < 40).

We fitted a linear function of f(x) = ax + b, where f is the firing rate and x is the number of identity exposure. a and b were fitted from
the observed data (f and x); and thus, k;jnear is 2.

We fitted a logistic function of f(x) = mﬁﬁ’ where fis the firing rate, x is the number of identity exposure, Fj¢is the value when
X approaches infinity (the curve’s maximum value), X, is the symmetric inflection point (the curve’s midpoint), and « is the steepness
of the curve. Finf, Xpar, and o were fitted from the observed data (f and x); and thus, K ogistic is 3.

We fitted a step function of f(x) = a when x > ¢, and f(x) = b when x < ¢, where f is the firing rate and x is the number of identity
exposure. We fitted the parameters using multidimensional unconstrained nonlinear minimization (Nelder-Mead) method to minimize
the least squares. a, b, and c were fitted from the observed data (f and x); and thus, ks, is 3.

With the model comparison, we found that the response of 169 neurons (48.56%) could be best explained by a linear model, the
response of 58 neurons (16.67%) could be best explained by a logistic model, and the response of 119 neurons (34.20%) could be
best explained by a step-like threshold model (separate analysis for familiar faces and unfamiliar faces found similar results).

Computational modeling of face learning

We simulated the face learning process by fine-tuning a DNN model step-by-step (Figures 7A and 7B). We used the pre-trained VGG-
Face model as the starting model (Figure 7A), and fine-tuned this model using the same CelebA stimuli as in our main experiment.
During fine-tuning, we unlocked all layers of the model, and used a small learning rate for feature extractors (i.e., convolutional layers;
10~ but a large learning rate for classifiers (i.e., fully connected layers; 10~2). This decision was made with the intention of preserving
the original pre-trained model as much as possible for feature extraction, while facilitating the convergence of the model. This
approach aimed to strike a balance between extracting informative features from the limited data available and enabling efficient
classification. For each iteration, we utilized three images from each of the 50 identities, resulting in a pooled training dataset of
150 images. We conducted a total of three iterations. We used the 10th image of each identity in the dataset to test model recognition
performance and calculate representational distance between DNN units. To enhance the accuracy of model performance estima-
tion, we incorporated an additional 5 novel images per identity from the CelebA database during the assessment of model perfor-
mance. We calculated the Euclidean distance between DNN units for each pair of identities (in total 1225 pairs for 50 identities),
as we calculated the representational distance with neurons.

Statistics

We used t-tests to compare conditions/groups (e.g., familiar vs. unfamiliar, different levels of visual similarity) and linear regression to
analyze changes in firing rate as a function of face learning. For testing the correspondence between visual similarity matrices, we
used Spearman’s rank correlation and a non-parametric permutation test to confirm the correlation results. Our statistical threshold
was set at p < 0.05, and we corrected for multiple comparisons using Bonferroni correction except for the results presented in
Figures 51 and 5J. We also used linear mixed effect model to control for nested factors such as session and patient.

We primarily selected two groups of neurons. The first group consisted of neurons whose response differentiated familiar vs. un-
familiar faces using a two-tailed two-sample t test. The second group consisted of neurons whose response varied linearly as a func-
tion of identity exposure using linear regression. We also selected face-responsive neurons using a two-tailed paired t test and iden-
tity-selective neurons using a one-way ANOVA (see above). For each selection, we used a statistical threshold of p < 0.05 for each
neuron. Consistent with the vast neurophysiology literature,®” we did not correct for multiple comparisons at the individual neuron
level but used a binomial test to determine whether the number of selected neurons was significantly above chance (5% for p < 0.05).

As in our previous studies (e.g.,”%), we used two-tailed two-sample Kolmogorov-Smirnov (KS) tests to compare cumulative dis-
tribution functions (Figure S2A) and bootstrap tests to determine significance in decoding analysis (Figure S2I). Due to the large num-
ber of temporally correlated data points, we used false discovery rate (FDR)?° to correct for multiple comparisons for PSTH
(Figures 2A-2D), cumulative firing rate (Figure S2D), and decoding time course (Figure S2I).

Cell Reports H M, 113520, H M, 2023 21




	CELREP113520_proof.pdf
	Neural mechanisms of face familiarity and learning in the human amygdala and hippocampus
	Introduction
	Results
	Behavior
	Neurons encoding face familiarity
	Face learning and familiarization through identity exposures within a session
	Neuronal population geometry for identity exposures
	Representational distance encodes face similarity/distinctiveness
	Face learning through visually similar faces
	A computational model for face learning and similarity

	Discussion
	Representational distance explains three aspects of neural face representation
	Neuronal population geometry
	Computational modeling of face learning
	Relationship with repetition suppression and perceptual learning
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject participant details
	Method details
	Stimuli
	Experimental procedure
	Social trait judgment ratings of the CelebA stimuli
	Electrophysiology
	Eye tracking

	Quantification and statistical analysis
	Response index for single trials
	Single-neuron ROC analysis
	Differential latency
	Representational distance
	Representational distance in a deep neural network (DNN)
	Identity-selective neuron
	Population decoding of face identities
	Model comparison
	Computational modeling of face learning
	Statistics





