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Functional connectivity between the amygdala and prefrontal
cortex underlies processing of emotion ambiguity
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Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions
involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve
network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional
effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both
bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity
resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC
neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons,
reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-
frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent
experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down
regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may
have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches,
we have delineated a neural network that underlies processing of emotion ambiguity.
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INTRODUCTION
Faces are among the most important visual stimuli that we
perceive in everyday life. We are able to not only perceive subtle
facial expressions but also recognize conflicting and ambiguous
facial expressions. The processing of faces and facial emotions
engages a distributed network of brain regions [1–3]. In particular,
judging ambiguous facial expressions requires orchestration
between multiple brain areas, notably involving the amygdala
and two regions of the prefrontal cortex (PFC): the dorsomedial
PFC (dmPFC) and ventromedial PFC (vmPFC) [4, 5].
The amygdala has long been associated with a key role in

recognizing facial emotions [2, 6, 7]. Human studies demonstrated
a selective impairment in recognizing fearful faces in participants
that lack a functional amygdala [8], mirrored by neuroimaging
studies showing significant activation differences within the
amygdala to fearful faces compared to happy faces [9]. Neurons
in the human amygdala encode subjective judgment of facial
emotions rather than simply their stimulus features [10].
Consistent with human single-unit studies, intracranial field
potentials in the human amygdala show modulation by emotion
and attention [11], and neurons in the monkey amygdala encode
facial expressions [12, 13]. In addition to facial expressions, the
amygdala is crucial for identifying ambiguous stimuli and in
modulating vigilance and attention as a function thereof [14–16].

For instance, the BOLD-fMRI signal in the amygdala is correlated
with the level of ambiguity in decision making [17] and focal
amygdala damage undermines decision making under ambiguity
[18]. In particular, our previous work has shown that both neurons
and BOLD-fMRI from the human amygdala parametrically encode
the intensity of specific facial emotions and their categorical
ambiguity [5]. Furthermore, unpredictability of stimuli even
without any motivational information activates the basolateral
amygdala in mice and causes sustained neural activity in the
amygdala in humans [19]. Together, these findings suggest that
the amygdala plays a key role in processing ambiguity.
The dmPFC, notably including the dorsal anterior cingulate

cortex (dACC) and pre-supplementary motor area (pre-SMA), plays
a critical role in cognitive control, including the detection of
performance errors and the monitoring of conflict [20–25],
reward-based decision making and learning more generally [26],
as well as emotion processing and regulation [27]. The vmPFC
plays a multifaceted role in emotion, decision making, and social
cognition [28]. It is involved in fear extinction [29], value
comparison and confidence [30], as well as emotion regulation
[27]. Human neurological patients with a focal vmPFC damage
demonstrate a severe defect in decision making with ambiguity
[31]. While a single unifying principle of dmPFC and vmPFC
function remains elusive, most of the above functions involve the
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processing of ambiguity in some form. Ambiguity inherently
involves conflict in how sensory information maps onto categories
or choices, requires continuous monitoring of ongoing actions,
and triggers dynamic adjustments in cognitive control. Ambig-
uous emotional faces relative to unambiguous emotional faces
activate the dmPFC, whereas ambiguous affective decisions
relative to ambiguous gender decisions activate the vmPFC [32].
In particular, we have shown that BOLD-fMRI from both dmPFC
and vmPFC encode emotion ambiguity [4], and a neural signature
originating from the dmPFC and vmPFC, the late positive potential
(LPP), indexes decision ambiguity of facial expressions of emotion
[4, 33].
While our prior studies have revealed compelling functional

localization of emotion ambiguity [4, 5, 33], it remains largely
unclear how these distributed brain areas interact and coordinate
with each other to collectively encode emotion ambiguity,
especially when the task requires orchestration between multiple
brain areas. The behavioral findings from human patients with a
focal damage in the bilateral amygdala [5] further suggested that
a network view is needed to understand the underlying neural
processes. The functional network including the dmPFC, vmPFC,
and the amygdala is critical for emotion processing, which has
been supported by the pattern of anatomical connectivity [29].
Robust reciprocal connections have also been found between the
dmPFC and the lateral basal nucleus of the amygdala, and
functional connectivity data from humans show a similar pattern
[22]. The vmPFC is important for the generation and regulation of
negative emotion, through its interactions with the amygdala
[28, 34]. Functional neuroimaging has shown that the activity in
the amygdala, vmPFC, and dmPFC reflects the amount of
emotional conflict, and the vmPFC modulates the activity in the
amygdala to resolve such conflict [35]. Furthermore, effective
amygdala-PFC (including both dmPFC and vmPFC) connectivity
predicts individual differences in successful emotion regulation
[36]. However, a detailed network-level understanding remains
missing.
To fill this gap, in this study, we employed multimodal

experimental approaches, including fMRI, electroencephalogram
(EEG), and human single-neuron recordings, to comprehensively
investigate the functional network underlying emotion ambiguity.
We sought to identify the functional/effective connectivity of the
amygdala-PFC network in representing and resolving ambiguous
facial expressions in neurotypical individuals, and we hypothesize
that the amygdala is functionally connected with the vmPFC and
dmPFC when modulated by levels of emotion ambiguity. We
further examined behavioral performance in several groups of
neuropsychiatric patients who show dysfunction of the amygdala-
PFC network. Specifically, task-based and task-free neuroimaging
studies have revealed altered amygdala-PFC functional or effective
connectivity in people with autism spectrum disorder (ASD)
[37, 38], attention-deficit/hyperactivity disorder (ADHD) [39], social
anxiety disorder [40, 41], major depression [42–44], aggressive
behavior [45], schizophrenia [46], and post-traumatic stress
disorders (PTSD) [47, 48]. Therefore, we hypothesize that patients
with a dysfunctional amygdala-PFC network will show altered
behavioral responses to ambiguous facial expressions.

METHODS
Participants
In the main task (face judgment task with fear-happy morphed emotions),
19 neurotypical participants (4 male, 20.9 ± 2.02 [mean ± SD] years)
participated in the functional magnetic resonance imaging (fMRI)
experiment, 16 neurosurgical patients (11 male, 42.3 ± 17.0 years;
22 sessions) participated in the single-neuron recording experiment, and
23 neurotypical participants (6 male, 22.4 ± 2.17 years) participated in the
EEG experiment. Furthermore, 16 neurotypical participants (5 male,
19.63 ± 0.96 years) performed the EEG control experiment with a speeded
response as well as the EEG control experiments with different task

instructions (i.e., judging the gender or the wealth [rich versus poor] of the
face model). Lastly, 32 neurotypical participants (17 male, 20.6 ± 1.79 years)
performed the EEG control experiment with context modulation.
Three groups of neuropsychiatric patients (autism spectrum disorder

[ASD], in-patient schizophrenia [SCZ], and out-patient SCZ) and one control
group of neurotypicals participated in the in-lab experiment. Specifically,
18 high-functioning participants with ASD (15 male, 30.8 ± 7.40 years; ASD
diagnosis confirmed by both DSM-V/ICD-10 and Autism Diagnostic
Observation Schedule-2 [ADOS-2]), 29 in-patient SCZ participants, 24 out-
patient SCZ participants, and 15 neurotypical controls (35.1 ± 11.4 years)
performed the main task. We excluded 7 in-patient SCZ participants and 3
out-patient SCZ participants from further analysis because of their
misunderstanding of instructions, repeated button presses, and incom-
plete data records. Therefore, data from 22 in-patient participants (12 male,
36.1 ± 10.48 years) and 21 out-patient participants (10 male, 36.7 ± 8.14
years) were further analyzed. There was no significant difference in age
between SCZ groups (two-tailed two-sample t-test, t(41)= 0.366, P= 0.718,
d= 0.07). All participants with SCZ were diagnosed by clinical psychiatrists
and had semi-structured clinical interviews with psychotherapists in the
hospital. In-patient SCZ participants had a history of schizophrenia of 5–31
years (mean ± SD: 14.0 ± 7.63 years). Furthermore, there was no significant
difference in age (one-way ANOVA, F(3, 75)= 1.19, P= 0.323, ηp

2= 0.14)
across in-lab neuropsychiatric patient populations and neurotypicals.
In addition to in-lab participants, four groups of self-identified

neuropsychiatric patients (anxiety, depression, ASD, and attention-deficit/
hyperactivity disorder [ADHD]) and one control group neurotypicals were
recruited online using the Prolific platform (https://www.prolific.co/). The
experiments were programmed using Labvanced (https://
www.labvanced.com/), which offers a graphical task builder with high
temporal accuracy and response time measures. Specifically, 38 partici-
pants with self-reported anxiety (16 male, 37.31 ± 6.62 years), 35
participants with self-reported depression (19 male, 36.17 ± 7.75 years),
34 participants with self-reported autism (16 male, 36.76 ± 6.81 years), 36
participants with self-reported ADHD (21 male, 34.80 ± 6.45 years), and 56
control participants without any self-reported neuropsychiatric disorders
(25 male, 36.96 ± 6.67 years) performed the online version of the main task.
All participants were proficient in English, unique, and involved in only one
experiment. There was no significant difference in age (one-way ANOVA,
F(4, 198)= 0.781, P= 0.539, ηp

2= 0.05) across groups.
All participants had normal or corrected-to-normal visual acuity.

Participants provided written informed consent according to protocols
approved by the Institutional Review Board (IRB) of the South China
Normal University, Cedars-Sinai Medical Center, California Institute of
Technology, Fujian University of Traditional Chinese Medicine, and Tohoku
University.

Stimuli and task
Stimuli were morphed expression continua between exemplars of fearful
and happy expressions. Four individuals (two female) were chosen from
the STOIC database [49], a database of face images expressing highly
recognizable emotions. For each individual we selected unambiguous
exemplars of fearful and happy expressions as evaluated with normative
rating data provided by the database creators. To generate the morphed
expression continua for this experiment, we interpolated pixel value and
location between fearful exemplar faces and happy exemplar faces using a
piece-wise cubic-spline transformation over a Delaunay tessellation of
manually selected control points. We created 5 levels of fear-happy
morphs, ranging from 30% fear/70% happy to 70% fear/30% happy in
steps of 10%. Low-level image properties were equalized by the SHINE
toolbox [50] (The toolbox features functions for specifying the (rotational
average of the) Fourier amplitude spectra, for normalizing and scaling
mean luminance and contrast, and for exact histogram specification
optimized for perceptual visual quality).
In the main task, on each trial, a face was presented for 1 s followed by a

question prompt asking participants to make the best guess of the facial
emotion. Participants reported faces as fearful or happy by pressing a
button on the keyboard or response box. After stimulus offset, participants
had 2 s (for in-lab participants) or 5 s (for online participants) to respond,
otherwise, the trial would be aborted and discarded. Participants were
instructed to respond only after stimulus offset. Patients with schizo-
phrenia did not have a time constraint to respond. No feedback message
was displayed, and the order of faces was completely randomized for each
participant. After judging the emotions, participants were asked to indicate
their confidence of judgment by pushing the button 1 for “very sure”, 2 for
“sure”, or 3 for “unsure”. As with the emotion judgment, participants had
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2 s to respond before the trial was aborted, and no feedback message was
displayed. Confidence rating was omitted for EEG participants, fMRI
participants, 7 in-lab ASD participants, and 4 in-lab neurotypical
participants. An inter-trial-interval (ITI) was jittered randomly with a
uniform distribution between 1 and 2 s for all participants except 2–8 s for
fMRI participants. EEG participants performed 252 trials in 2 blocks, fMRI
participants performed 168 trials in 2 blocks, neurosurgical patients
performed 176–440 trials in 2–5 blocks, in-lab ASD and neurotypical
participants performed 252 trials in 3 blocks, SCZ participants performed
84 trials in 2 blocks, and online participants performed 84 trials in 1 block.
We pooled trials from different blocks for each individual participant for
subsequent behavioral and neural analysis.
In the speeded version of the task, participants were instructed to

respond as quickly as possible. The stimulus stayed on the screen until
button press. Similarly, participants had 2 s to respond, otherwise the trial
was aborted and discarded. In contrast to the main task, the question
prompt asking participants to make the best guess of the facial emotion
preceded the stimulus and was presented for 500ms. Participants
performed 280 trials in 2 blocks.
In the context modulation task, participants only judged anchor faces in

the first and third block (64 trials each), whereas they judged both anchor
faces and morphed faces (identical to the main task) in the second block
(192 trials).
In the gender judgment task, participants were asked to judge the

gender of the face. This task had no ambiguity because all four face
models had clearly recognizable genders. In contrast, participants were
asked to guess the wealth (poor vs. rich) of the face model in the wealth
judgment task, and this task had the highest ambiguity because whether
the face model is poor or rich could not be told without any priors. Here,
we used the speeded version of the task. There were 280 trials in 2 blocks
for each experiment.

Behavioral analysis
We are mainly interested in the emotion discrimination threshold and
sensitivity to the changes in emotion intensity. We fitted a logistic function
to obtain smooth psychometric curves and derived the two parameters
from the fitted curves:

PðxÞ ¼ Pinf
1þ e�αðx�xhalf Þ

where P is the percentage of trials judging faces as fear, x is the morph
level, Pinf is the value when x approaches infinity (the curve’s maximum
value), xhalf is the symmetric inflection point (the curve’s midpoint,
threshold), and α is the steepness (sensitivity) of the curve. Pinf, xhalf, and α
were fitted from the observed data (P and x). Smaller xhalf suggests that
participants were more likely to judge faces as fearful (i.e., a lower
threshold to report fearful), and vice versa for larger xhalf. Flatter curves
(smaller α) suggest that participants were less sensitive to the change in
emotion intensity since they made similar judgments given different
morph levels, and vice versa for steeper curves (larger α). We derived these
two parameters (threshold and sensitivity) for each participant.

Functional magnetic resonance imaging (fMRI)
Detailed methods of fMRI imaging acquisition and functional localization
have been described in our previous reports [4, 5]. Below, we describe the
methods for functional connectivity analyses, which have not been
reported in our previous studies.
Our previous work [4] revealed a significant increase in BOLD signal in

the bilateral inferior frontal gyrus (IFG)/anterior insula and dorsal medial
prefrontal cortex (dmPFC) as a function of increasing emotion ambiguity;
and we also found a significant increase in BOLD signal in the right
amygdala, left vmPFC, posterior cingulate cortex (PCC), dorsolateral
prefrontal cortex (dlPFC), and inferior parietal lobule (IPL) as a function
of decreasing emotion ambiguity. Moreover, we observed an increase in
BOLD signal in the left amygdala, dmPFC, and insula as a function of
decreasing fearful intensity. In this study, our functional connectivity
analyses mainly focused on the amygdala-PFC network that has been
identified in the main contrast of emotion ambiguity.

fMRI: psychophysiological interaction (PPI) analyses
A psychological context does not only modulate the strength of regional
brain activation, but can also modulate the physiological connectivity
between two brain regions. The physiological connectivity between two

brain regions that vary with the psychological context is known as
psychophysiological interaction (PPI) [51]. In this study, the regional
connectivity arisen from perceiving emotional faces could be modulated
by the levels of emotion ambiguity. Thus, we conducted a PPI analysis to
identify the “target” regions whose connectivity with a seed region (i.e., the
right amygdala) varied as a function of increasing/decreasing emotion
ambiguity.
A general linear model (GLM) was constructed with PPI regressors of (1)

the main physiological effect of the right amygdala for the main contrast of
decreasing ambiguity levels, (2) the main psychological effect on
decreasing ambiguity, and (3) the interaction effect between the right
amygdala and target regions, corresponding to PPI.Y, PPI.P, and PPI.ppi in
the design matrix, respectively. The first-level model included the main
effect of the physiological, psychological, and interactive effects convolved
by the hemodynamic response function (HRF), as well as six movement
parameters as effects of no interest. Participant-specific PPI contrast
images were computed and entered into a second-level GLM to identify
brain areas for which the change in connectivity with the right amygdala
was modulated by emotion ambiguity. The same statistical approaches
previously described for the functional localization analyses [4] were
employed for the second-level connectivity maps. Specifically, activations
were reported if they survived P < 0.001 uncorrected, cluster size k > 20, or
P < 0.05 FWE after small volume correction (SVC). The pre-defined regions
of interest (ROIs) in the dmPFC and vmPFC for SVC were chosen based on
previous studies [32, 52].
A similar PPI analysis was conducted for increasing/decreasing fear

intensity with the left amygdala (Supplementary Fig. 1).

fMRI: high-order PPI analyses
To identify the regions that had functional connectivity with the right
amygdala and whose connectivity was modulated by the inter-individual
difference in ambiguity sensitivity, high-order PPI model was constructed.
Ambiguity sensitivity of each participant was defined as the difference in
RT between high ambiguity and anchor, and it was used in a regression
analysis to identify the brain regions that responded to the main PPI
contrast (i.e., PPI.ppi generated from the primary PPI model). The
subsequent PPI model was referred to as “high-order” because it was
built on the main PPI contrast.

fMRI: dynamic causal modeling (DCM) analyses
DCM explains the activity of groups of regions in terms of (1) “driving”
inputs (here, processing a face, regardless of emotion ambiguity) directly
triggering the response in one or more areas of the network, and (2) a
psychological context (here, levels of emotion ambiguity) acting on
“intrinsic” pathways and further modulating the pattern of effective
connectivity between regions. Three matrices were built with Matrix A
representing the intrinsic coupling between regions, Matrix B representing
the changes in functional coupling due to psychological context, and
Matrix C representing the direct influences of “driving” inputs on the
network under a specific psychological context.
To establish the model, we extracted data from the right amygdala

within a 10mm sphere centered on the local maximum of regional
activation under the decreasing ambiguity contrast (peak: Montreal
Neurological Institute [MNI] coordinate: x= 30, y= 0, z= –21). We also
extracted the volumes of interest (VOIs) from the left vmPFC under the
decreasing ambiguity contrast (peak: x= –6, y= 39, z= –9) and the left
dmPFC under the increasing ambiguity contrast (peak: x= –6, y= 15,
z= 54) within a 10mm sphere centered on the local maxima of regional
activation. It is worth noting that similar results could be derived using the
right vmPFC (peak: x= 21, y= 48, z= –3) and dmPFC (peak: x= 12, y= 36,
z= 48) indicated by the PPI results (Supplementary Fig. 3). The standard
model included “intrinsic” bidirectional connections among the amygdala,
vmPFC, and dmFPC. These “intrinsic” connections (DCM matrix A)
represent the intrinsic coupling between regions in the absence of any
experimental manipulations. Beyond the intrinsic connections, effective
connectivity in a network can be changed in two ways. First, the “driving
inputs” (faces vs. fixation, DCM matrix C) can directly influence an
individual region or a group of regions within the network. Second,
changes due to psychological context (i.e., increasing/decreasing ambi-
guity levels; DCM matrix B) can modulate both “intrinsic” and functional
connections within the network.
We specified 44 models in which the number and direction of involved

regions systematically varied. To identify the best family of model fits, we
conducted a random-effect family inference analysis. We fixed the driving
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inputs to the network (i.e., face signals) through the amygdala node. Based
on the inputs to the amygdala, we had four families of models
(Supplementary Fig. 2), including (1) Family 1: vmFPC-only or dmPFC-
only inputs to the amygdala (models 1–6), (2) Family 2: both vmPFC and
dmPFC inputs to the amygdala but with only one region connecting to the
other two (models 7–18), (3) Family 3: both vmPFC and dmPFC inputs to
the amygdala with all three regions connecting with each other
unidirectionally (models 19–36), and (4) Family 4: both vmPFC and dmPFC
inputs to the amygdala with at least two regions connecting with each
other bidirectionally (models 37–44).
The Random-effects Bayesian Model Selection (RFX-BMS) procedure

was used to determine the best model at the group level (i.e., we
compared the model evidence for all 44 pre-defined models). RFX-BMS
reports the posterior probability (i.e., how likely a specific model generates
the data of a randomly chosen participant) and the exceedance
probability (i.e., how likely a given model is more frequent than any
other models). The RFX-BMS is itself a statistical inference (statement of
relative probabilities) but not an index of the goodness of model fit for a
dataset. In the RFX-BMS, models are treated as random effects that can
differ between participants and have a fixed (unknown) distribution in
that population. Given that the RFX-BMS does not assume that the
optimal model is the most likely one for each individual participant and is
therefore less susceptible to outliers in the experimental data than fixed-
effects (FFX) methods [53, 54]. This procedure also implies that model
selection is relativistic, i.e., it compares models against each other.
Furthermore, the expected posterior and exceedance probabilities of an
individual model decrease as the number of models increase. Hence, we
only examined a set of highly plausible models based on our hypotheses
and interpreted the model with the highest exceedance probability (i.e.,
the best model).

Single-neuron electrophysiology and differential latency
analysis
Detailed methods of single-neuron electrophysiology have been described
in our previous study [5]. Briefly, we recorded bilaterally from implanted
depth electrodes in the amygdala and dmPFC (dACC and pre-
supplementary motor area [pre-SMA]). Only single units with an average
firing rate of at least 0.2 Hz (entire task) were considered. Trials were
aligned to stimulus onset. Average firing rates (PSTH) were computed by
counting spikes across all trials in consecutive 250ms bins.
For the differential latency analysis, we binned spike trains into 1-ms

bins and computed the cumulative sum. We then averaged the cumulative
sums for each ambiguity level. Because the differential latency analysis
requires a uniform group of neurons that (1) increase firing rate from the
baseline for the preferred stimuli and (2) have the same type of preferred
stimuli, we focused on the majority type of neurons for each brain area.
Specifically, we examined amygdala neurons that preferred unambiguous
faces and dmPFC neurons that preferred ambiguous faces. We then
compared, at every point of time, whether the cumulative sum of spikes
was significantly different between ambiguous and unambiguous trials
(P < 0.01, one-tailed pairwise t-test; FDR corrected). The first point of time
of the significant cluster (cluster size > 10 time points) was used as the
estimate of the differential latency. Note that this method is not sensitive
to differences in baseline firing rate between neurons because the latency
estimate is pairwise for each neuron individually. To assess statistical
significance, we estimated the null distribution by first randomly shuffling
the labels for groups and then repeated the above latency analysis. We
used 1000 runs for the permutation analysis. We compared the observed
latency difference between groups with this null distribution of latency
difference to obtain p-values.

Electroencephalogram (EEG)
Detailed methods of EEG data recording and preprocessing, event-related
potential (ERP) analysis, time frequency analysis, and source localization
have been described in our previous reports [4, 33]. Below, we describe the
methods for functional connectivity analyses, which have not been
reported in our previous studies.
Our previous work [4] revealed the strongest ERP response to emotion

ambiguity at the parietal-central (Pz) electrode (i.e., the late positive
potential [LPP], starting from 400ms after stimulus onset and lasting for
300ms), and this response can be source localized to the dmPFC and
vmPFC. Here, using the Pz as the source channel, we set out to identify
other channels that showed coordination with the Pz and further test how
such coordination was modulated by ambiguity levels.

EEG: cross-channel coherence
An event-related EEG cross-channel coherence analysis was performed to
identify the cortical coordination responding to emotion ambiguity. EEG
coherence is defined as the normalized cross-power spectrum of two

signals recorded simultaneously from different electrodes: Γ2xy ¼ Gxy ðf Þ2
Gxx ðf ÞGyy ðf Þ,

where Gxy(f) is the cross-power spectral density and Gxx(f) and Gyy(f) are the
respective auto-power spectral densities. EEG coherence is a measure of
the consistency of relative amplitude between a pair of signals at a given
frequency and can be interpreted as an index of their functional
communication [55, 56]. EEG coherence was computed for all pairwise
combinations of electrodes with the source electrode Pz, and it
was computed for a combined frequency range from 4 to 23 Hz that
mainly covered the theta, alpha, and beta frequency bands, given the
duration of the LPP signal (300ms). Notably, given that EEG coherence
does not convey the direction of information flow, here, we only used the
Pz as the source channel to search for its coherence with other channels
instead of repeating the same analysis using other channels as the sources.
Moreover, the magnitude-squared coherence is a function of frequency
across channels whose values range from 0 to 1. A greater coherence value
between a pair of electrodes indicates a greater synchronization between
the electrodes.

EEG: cross-frequency coupling
In addition to the functional connectivity at the channel level, we also
examined the functional connectivity using cross-frequency coupling
(CFC). The CFC denotes the interplay between two different frequencies,
and phase/amplitude-amplitude CFC provides an effective means to
integrate activity across different spatial and temporal scales [57, 58].
Phase/amplitude-amplitude CFC describes the statistical dependence
between the phase/amplitude of a low-frequency brain rhythm and the
amplitude of a high-frequency brain signal. Here, we focused on the lower-
frequency delta band given its role in encoding emotion ambiguity [4] and
its potential to couple with higher frequency bands (i.e., theta, alpha, and
beta) based on a 2-second epoch (500ms before stimulus onset to
1500ms after stimulus onset). Specifically, we first filtered the data into
high- and low-frequency bands. We then extracted the amplitude from the
filtered signals. Lastly, we constructed GLMs (one for delta-band signal and
one for theta/alpha/beta-band signal) to identify whether the amplitudes
of the theta, alpha or beta signals varied as a function of the amplitude of
the delta signal. Together, the amplitude-amplitude CFC could serve as the
modulation index (or predictive value) of the delta amplitude on the theta,
alpha, and beta amplitude.

EEG: source connectivity
We computed the effective connectivity at the source level. Specifically, we
used the group averaged LPP signals as inputs to identify the directed
functional (“causal”) interactions among time-series data generated from
the cortical sources. We first reconstructed the cortical source signals by
implementing a cortical current density inverse imaging analysis using a
realistic and spherical human head model. We then defined the ROI
sources based on the reconstructed regions showing the strongest
activation, which are generally consistent with the activated brain regions
identified by fMRI [4]. Next, we applied a directed transfer function (DTF), a
frequency-domain estimator of causal interaction based on the multi-
variate autoregressive (MVAR) modeling, to reveal the direction of the
information flow among the cortical ROIs. We used a permutation test with
1000 runs to determine the statistical significance across the time course
(300–600ms after stimulus onset; in the frequency domain from 1 to
30 Hz). We implemented this analysis using the MATLAB toolbox
eConnectome [59].

Predicting functional connectivity in neuropsychiatric
patients
We built a linear model to predict functional connectivity from behavioral
responses based on the high-order PPI analysis:

yðconnectivityÞ ¼ a ´ΔRTðhigh�anchorÞ þ b

where y is the strength of amygdala-dmPFC connectivity, a is the
regression coefficient reflecting the correlation between RT difference (i.e.,
ambiguity sensitivity) and amygdala-dmPFC connectivity, and b is the
regression intercept. The parameters a and b were fitted from the fMRI
data used in the high-order PPI analysis, and we derived 2.4739 and
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–0.1329 for a and b, respectively. A smaller RT difference suggests that
participants were less sensitive to differences in emotion ambiguity in
stimulus, which can lead to a smaller y that suggests a weaker amygdala-
dmPFC connectivity; and vice versa for a greater RT difference and
stronger amygdala-dmPFC connectivity. We then predicted y for each
group of participants (neuropsychiatric or control) based on their RT
difference.

RESULTS
Behavior and functional localization
In the main experiment with fear-happy morphed faces, we asked
participants to judge emotional faces as fearful or happy (Fig. 1a).
Faces were either unambiguously happy, unambiguously fearful,
or graded ambiguous morphs between the two emotions (Fig.
1b). Since emotion ambiguity was distributed symmetrically
between the two emotions, we grouped the seven emotion
levels into three ambiguity levels (Fig. 1b): anchor/unambiguous,
intermediate (30%/70% morph), and high (40–60% morph).
Detailed behavioral quantification has been described in our
previous reports [4, 5]. Briefly, for each participant, we quantified
behavior as the proportion of trials identified as fearful as a
function of the morph level (Fig. 1c, d). We found a monotonically
increasing relationship between the likelihood of identifying a
face as fearful and the fearfulness in the morphed face. Both EEG
and fMRI participants had similar psychometric curves (point-by-
point comparison using t-test, corrected for false discovery rate
(FDR) for Q < 0.05 [60]; all Ps > 0.05). Moreover, participants
responded slower (relative to stimulus onset) for the faces with
high ambiguous expressions compared to faces with unambig-
uous expressions (Fig. 1e, f; one-way repeated measures ANOVA:
F(6, 246)= 26.60, P < 10−10, ηp

2= 1; F(2, 82)= 48.54,
P= 1.23 × 10−14, ηp

2= 1).

PPI: PFC-amygdala connectivity is involved in encoding
emotion ambiguity
Functional localization has revealed brain activation to emotion
ambiguity: we found a significant increase of BOLD signal in the

bilateral dmPFC and inferior frontal gyrus (IFG)/anterior insula with
increasing level of emotion ambiguity (Fig. 2a) and a significant
increase of BOLD signal in the right amygdala, left vmPFC,
posterior cingulate cortex (PCC), dorsolateral prefrontal cortex
(dlPFC), inferior parietal lobule (IPL), and right postcentral gyrus
with decreasing level of emotion ambiguity (Fig. 2b). Based on
these functional localization results, we next investigated the
relationships between these brain regions involved in encoding
emotion ambiguity. Specifically, we first employed a PPI analysis,
which is an anatomically unconstrained, data-driven approach
that does not provide directionality of changes in connectivity
between brain regions. Based on the PPI results, we further
constructed hypothesis-driven models using DCM. Utilizing fMRI
allowed us to survey the functional connectivity at the whole-
brain level.
We employed the PPI analysis to identify target regions that

were functionally connected to the source (i.e., the right
amygdala; x= 30, y= 0, z= –21) and whose connectivity was
further modulated by ambiguity levels (see Methods). We found
that the right vmPFC (Fig. 2c; peak: x= 21, y= 48, z= –3; 24
voxels, SVC, FWE P= 0.05) and bilateral dmPFC (Fig. 2c; peak:
x= 0, y= –15, z= 39; 14 voxels, SVC, FWE P= 0.014) were
positively correlated with the activity in the amygdala, suggesting
an amygdala-PFC functional network that encoded emotion
ambiguity. Notably, this amygdala-PFC network (especially the
left amygdala) was also engaged in encoding emotion intensity
(Supplementary Fig. 1).
We next employed high-order PPI models (see Methods) to

identify brain regions whose functional connectivity with the right
amygdala correlated with behavioral ambiguity sensitivity (i.e.,
difference in reaction times between high ambiguity and anchor
conditions). We found that the functional connectivity between
the right amygdala and right dmPFC (Fig. 2d; peak: x= 12, y= 36,
z= 48; 26 voxels, P < 0.001 uncorrected) was positively correlated
with the increasing ambiguity sensitivity (Fig. 2d), suggesting that
inter-participant variability in ambiguity sensitivity modulated the
amygdala-PFC functional connectivity.
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Fig. 1 Behavior. a Task. A face was presented for 1 s followed by a question asking participants to identify the facial emotion (fearful or
happy). For behavioral participants, after a blank screen of 500ms, they were then asked to indicate their confidence in their decision (1” for
“very sure”, “2” for “sure”, “3” for “unsure”). Faces are not shown to scale. b Sample stimuli of one female identity ranging from 100% happy/0%
fearful to 0% happy/100% fearful. Three ambiguity levels (unambiguous, intermediate, and high) are grouped as shown above the stimuli.
c–f Behavioral results. c Psychometric curves from individual participants showing the proportion of trials judged as fearful as a function of
morph levels (ranging from 0% fearful [100% happy; on the left] to 100% fearful [0% happy; on the right]). d Group average of psychometric
curves. Shaded area denotes ±SEM across participants. e Reaction time (RT; relative to stimulus onset) for the fear/happy decision as a
function of the fearful level. f RT as a function of the ambiguity level. Violin plots present the distribution of RT for combined fMRI and EEG
participants (n= 42).
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DCM: directional effective connectivity involved in encoding
emotion ambiguity
Our PPI results have primarily identified two brain regions, the
vmPFC and dmPFC, that are functionally connected with
the amygdala. However, no directional information was shown
in the PPI results. To further pinpoint the directional pathway
among these three brain regions, we performed a DCM analysis.
The index derived from the RFX-BMS, model exceedance
probability, was used to evaluate the DCM models (see Methods);
and the model with the highest exceedance probability was
considered as the best model [53, 61–63]. Overall, the models
from Family 4 showed a higher exceedance probability than the
models from other families (Fig. 2e). In particular, the model with a

bidirectional connection between the vmPFC and amygdala, a
bidirectional connection between the dmPFC and vmPFC, and a
unidirectional connection from the dmPFC to the amygdala,
outperformed all other models with an exceedance probability of
approximately 15% (Fig. 2f; see other models in Supplementary
Fig. 2). The bidirectional connectivity between the vmPFC and
amygdala may reflect processes involving both emotion appraisal
(i.e., amygdala➔vmPFC➔dmPFC) and emotion regulation (i.e.,
dmPFC➔vmPFC➔amygdala). Using brain areas all from the right
hemisphere (Supplementary Fig. 3), we not only replicated the
top-down connectivity from the dmPFC to the amygdala and the
bottom-up connectivity through the vmPFC, but also revealed a
direct bottom-up connectivity from the amygdala to the ipsilateral
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dmPFC. Together, our results suggest both bottom-up affective
processes for ambiguity representation/perception and top-down
cognitive processes for ambiguity resolution/decision.

Single-neuron differential latency analysis
With the whole-brain functional connectivity analyzed, we next
zoomed into the key brain areas involved in processing emotion
ambiguity using human single-neuron recordings, which offer the
finest spatial and temporal resolution currently available in
humans. Human single-neuron recordings allowed us to elucidate
the relationship between the amygdala and PFC at the neural
circuit level. We recorded single-neuron activity from the
amygdala and dmPFC (dACC and pre-SMA) from 16 neurosurgical
patients. We recorded from 321 neurons in the amygdala
(21 sessions) and 236 neurons in the dmPFC (15 sessions; overall
firing rate greater than 0.2 Hz). It is worth noting that the
recording locations were in the vicinity of the areas showing BOLD
activation.
We investigated whether the responses of amygdala and

dmPFC neurons were modulated by the level of emotion
ambiguity. We used a linear regression to identify neurons whose
firing rate correlated trial-by-trial with three levels of emotion
ambiguity. We found 36 amygdala neurons (11.2%; binomial
P= 2.58 × 10−6; see Fig. 3a for an example and Fig. 3c, e for group
result) and 29 dmPFC neurons (12.3%; binomial P= 3.09 × 10−6;
see Fig. 3b for an example and Fig. 3d, f for group result) that
showed a significant trial-by-trial correlation. Notably, consistent
with the fMRI results (Fig. 2a, b), the majority of amygdala neurons
(33/36; χ2-test: P= 1.54 × 10−12) had the maximal firing rate for
unambiguous faces whereas the majority of dmPFC neurons (18/
29; χ2-test: P= 0.066) had the maximal firing rate for the most
ambiguous faces.
We next compared the onset latency, relative to stimulus onset,

of the ambiguity-coding neurons between the amygdala and

dmPFC. We found that amygdala ambiguity-coding neurons
(n= 36) responded significantly earlier than dmPFC ambiguity-
coding neurons (n= 29; Fig. 3g, h; amygdala: 658ms relative to
stimulus onset; dmPFC: 893ms; permutation test: P= 0.045; such
difference in onset latency can be appreciated from the single-
neuron examples shown in Fig. 3a, b). This result was similar for
dACC (permutation test: P < 0.001) and pre-SMA neurons (permu-
tation test: P < 0.001). Together, this latency difference reflects the
bottom-up process for ambiguity processing and is consistent
with the pathway revealed by DCM analysis
(amygdala➔vmPFC➔dmPFC).

EEG cross-channel coherence and cross-frequency coupling
Our prior EEG results have complemented the fMRI findings by
providing higher temporal resolution and the single-neuron
findings by providing broader spatial coverage [4]. Specifically,
our findings indicated that: (1) the late positive potential (LPP)
encodes levels of emotion ambiguity, (2) neural oscillations in the
delta frequency bands correlate with emotion ambiguity, and (3)
the brain regions showing a significant increase in BOLD signal are
highly consistent with the regional sources of the LPP. Addition-
ally, we conducted a series of control experiments to elucidate the
role of the LPP in encoding perceptual ambiguity [4, 33]. Here,
with the whole-brain functional connectivity analysis conducted
using fMRI and circuit-level analysis conducted using human
single-neuron recordings, we further investigated functional
connectivity at the network level using EEG, which offers both
high temporal resolution and broad spatial coverage. Importantly,
this analysis not only allowed us to compare with fMRI functional
connectivity but also enabled us to examine the modulation of
functional connectivity through a series of additional experiments.
We utilized two key EEG connectivity measures: cross-channel
coherence and cross-frequency coupling. These measures evalu-
ate the functional synchronization of cortical connections and the
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Fig. 3 Single-neuron differential latency. a An example amygdala neuron that fire most to unambiguous faces and least to the most
ambiguous faces (linear regression: P < 0.05). b An example dorsomedial prefrontal cortex (dmPFC) neuron that fire most to the most
ambiguous faces and least to unambiguous faces (linear regression: P < 0.05). Raster (top) and PSTH (bottom) are color coded according to
ambiguity levels as indicated. Trials are aligned to face stimulus onset (left gray bar, fixed 1 s duration) and sorted by reaction time (black line).
PSTH bin size is 250ms. Shaded area and error bars denote ±SEM across trials. Asterisk indicates a significant difference between the
conditions in that bin (P < 0.05, one-way ANOVA, Bonferroni-corrected). c, d Average normalized firing rate of ambiguity-coding neurons.
Asterisk indicates a significant difference between the conditions in that bin (P < 0.05, one-way ANOVA, Bonferroni-corrected). e, f Mean
normalized firing rate at ambiguity level. Normalized firing rate for each unit (left) and mean ± SEM across units (right) are shown at each
ambiguity level. Mean firing rate was calculated in a time window 250–1750ms after stimulus onset (the same time window as neuron
selections). Asterisks indicate a significant difference between conditions using paired two-tailed t-test. **P < 0.01 and ****P < 0.0001.
c, e Neurons in the amygdala that increased their firing rate for the least ambiguous faces (n= 33). d, f Neurons in the dmPFC that increased
their firing rate for the most ambiguous faces (n= 18). g Cumulative firing rate for neurons from the amygdala (green lines; n= 36 neurons)
and dmPFC (magenta lines; n= 29 neurons). Shaded area denotes ±SEM across neurons. Solid lines: unambiguous faces. Dotted lines: the
most ambiguous faces. Top bars show clusters of time points with a significant difference (one-tailed pairwise t-test; P < 0.01; FDR-corrected;
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neurons. h Difference in cumulative firing rate (same data as shown in g). Shaded area denotes ±SEM across neurons. Arrows indicate the first
time point of the significant cluster. Green: amygdala neurons. Magenta: dmPFC neurons.
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coordination of low and high frequency brain rhythms,
respectively.
First, we performed a cross-channel coherence analysis to

identify the channels that were functionally connected with the
channel Pz (the channel showing the LPP) during ambiguity
processing. We found that the central region (shown by the
activity from the Cz electrode) was functionally connected with
the parietal-central region (shown by the activity from the Pz
electrode) during ambiguity processing (Fig. 4a). Such connectivity
varied as a function of emotion ambiguity, with unambiguous
stimuli eliciting the strongest coherence (Fig. 4a; one-way
repeated measures ANOVA: F(2, 42)= 3.58, P= 0.036, ηp

2= 0.63).
Therefore, parietal-central coherence was involved in encoding
emotion ambiguity. Notably, we replicated this finding in the task
with a speeded response: the central (Cz) and frontal-central (FCz)
regions were connected with the parietal-central region (Fig. 4b;
F(2, 30)= 3.95, P= 0.029, ηp

2= 0.66), which further confirmed that
parietal-central EEG coherence was involved in encoding emotion
ambiguity.
We next conducted two additional experiments to investigate

the modulation of EEG cross-channel coherence. In a task with
different contexts (i.e., whether ambiguous faces were present
with anchor faces; see Methods), we first found in the second
block that the central (Cz) and frontal-central (FCz) regions were
connected with the parietal-central region (Fig. 4c; F(2, 56)= 5.99,
P= 0.004, ηp

2= 0.86), again replicating the finding in our main
experiment (Fig. 4a). By comparing the coherence for anchor faces
in the first, second, and third blocks, we found a reduced
coherence when no ambiguous stimuli were present (Fig. 4c; F(2,
56)= 4.48, P= 0.043, ηp

2= 0.53), indicating that the parietal-
central coherence was modulated by the context of ambiguous
stimuli. However, the parietal-central coherence was abolished
when the judgment decision was certain (judging the gender of
the face model; Fig. 4d; P > 0.1) or when the judgment decision

was not congruent with stimulus ambiguity (judging the wealth
[poor versus rich] of the face model; Fig. 4e; P > 0.1). Therefore, the
parietal-central coherence was specific to decisions made on a
dimension that was ambiguous.
Lastly, we performed a cross-frequency coupling analysis and

investigated the functional connectivity in the spectral domain.
We found that the alpha power was modulated by the delta
phase, and their connectivity varied as a function of emotion
ambiguity, with the most ambiguous stimuli eliciting the strongest
delta-alpha cross-frequency coupling (Fig. 4g; F(2, 42)= 4.03,
P= 0.025, ηp

2= 0.68). However, no significant difference was
found for the delta-theta (Fig. 4f; F(2, 42)= 0.41, P= 0.66,
ηp

2= 0.11) or the delta-beta (Fig. 4h; F(2, 42)= 1.72, P= 0.19,
ηp

2= 0.34) cross-frequency coupling.
Together, our results revealed parietal-frontal-central cross-

channel coherence as well as delta-alpha cross-frequency
coupling in processing emotion ambiguity.

EEG source connectivity: the dmPFC top-down regulates the
activities in other brain regions
We next investigated the effective connectivity in a source domain
using the directed transfer function, which could localize the
origins of EEG signals and their directional connections. Six brain
regions were covered in the effective connectivity analysis,
including the right dmPFC, bilateral superior frontal gyrus (SFG),
right vmPFC, bilateral dlPFC, bilateral IPL, and left occipital cortex
(Fig. 5a). We found that the right dmPFC had a directed
information flow (i.e., connectivity) to the left SFG, right dlPFC,
right vmPFC, and right IPL (Fig. 5a, b), suggesting a top-down
modulation of brain activity during processing of emotion
ambiguity. Notably, the directed source connectivity from the
right dmPFC to the right vmPFC was consistent with our DCM
results where we demonstrated a bidirectional connectivity
between these brain regions.
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Behavioral deficits in neuropsychiatric patients
Above, we have systematically investigated the functional
connectivity during processing of emotion ambiguity using
multimodal approaches. Previous research has shown intrinsic or
task-induced dysfunction of the amygdala-PFC network in
neuropsychiatry patients with anxiety [40, 41], depression
[42–44], ASD [37, 38], ADHD [39], and schizophrenia (SCZ) [46].
However, it remains unclear whether these patients show
behavioral deficits in processing perceptual ambiguity of facial
expressions. To answer this question, here we performed the same
main task in a group of in-lab participants (Fig. 6a–f) and a group
of online participants (Fig. 6g–l).
We first examined in-lab patients with confirmed diagnosis of

neuropsychiatric disorders (including in-patient SCZ, out-patient
SCZ, and ASD) and controls. Although we did not find a significant
difference in emotion discrimination threshold in patients (Fig. 6a,
b; F(3, 75)= 0.83, P= 0.47, ηp

2= 0.09), we found reduced
sensitivity to emotion intensity in each patient group (Fig. 6a, c;
F(3, 75)= 6.40, P= 0.001, ηp

2= 0.73; in-patient SCZ vs. control:
t(35)= 3.66, P= 0.001, d= 0.61; out-patient SCZ vs. control:
t(34)= 3.32, P= 0.002, d= 0.56; ASD vs. control: t(31)= 2.85,
P= 0.008, d= 0.51). Reduced sensitivity in emotion intensity (i.e.,
flatter psychometric curves and smaller α) suggest that both SCZ
and ASD patients were less specific in their emotion judgments,

since they made similar judgments given different morph levels.
Furthermore, although patients did not show a significant
difference in the modulation (high − anchor) of emotion
judgment RT (Fig. 6d; F(3, 75)= 0.55, P= 0.64, ηp

2= 0.06) or
confidence rating RT (Fig. 6f; F(3, 64)= 0.35, P= 0.64, ηp

2= 0.04),
all patient groups demonstrated a significantly reduced modula-
tion of confidence rating (Fig. 6e; F(3, 64)= 5.84, P= 0.0014,
ηp

2= 0.73; in-patient SCZ vs. control: t(31)= 4.35, P= 1.37 × 10−4;
out-patient SCZ vs. control: t(30)= 3.13, P= 0.0039, d= 0.57; ASD
vs. control: t(20)= 2.40, P= 0.026, d= 0.53; see data for each
condition in Supplementary Fig. 4). The RT for the fear/happy
decision can be considered as an implicit measure of confidence.
Therefore, patients with SCZ and ASD only demonstrated deficits
in explicit (Fig. 6e) rather than implicit (Fig. 6d) confidence
judgments.
We also explored a group of online patients with self-reported

diagnosis of neuropsychiatric disorders (including anxiety, depres-
sion, ASD, and ADHD) and controls. We found no significant
difference in emotion discrimination threshold in patients (Fig. 6g,
h; F(4, 198)= 1.79, P= 0.13, ηp

2= 0.13). Compared to the controls,
we found reduced sensitivity to emotion intensity in patients with
ADHD (Fig. 6g, i; t(90)= 2.05, P= 0.044, d= 0.21), a trend in
patients with ASD (t(88)= 1.43, P= 0.15, d= 0.15; cf. Fig. 6c), but
not in patients with anxiety (t(92)= 0.10, P= 0.91, d= 0.01) or
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depression (t(89)= 0.25, P= 0.80, d= 0.02). Moreover, we
observed a significantly reduced modulation of emotion judg-
ment RT in patients with depression (Fig. 6j; F(4, 198)= 3.55,
P= 0.031, ηp

2= 0.25; depression vs. control: t(89)= 2.33,
P= 0.021, d= 0.25), a trend in patients with anxiety (t(92)= 1.86,
P= 0.065, d= 0.19), but not in patients with ASD or ADHD (both
Ps > 0.05; see data for each condition in Supplementary Fig. 4). On
the other hand, for all patient groups, we did not observe a
significant difference in the modulation of confidence rating (Fig.
6k; F(4, 198)= 1.29, P= 0.27, ηp

2= 0.09) or confidence rating RT
(Fig. 6l; F(4, 198)= 0.25, P= 0.91, ηp

2= 0.01).
Together, we surveyed both in-lab and online patients with

neuropsychiatric disorders who have dysfunctions in amygdala-
PFC functional connectivity and revealed altered behavioral
responses in several aspects of emotion judgment in these
patients.

Predicting functional connectivity in neuropsychiatric
patients
We lastly explored whether behavioral deficits in neuropsychiatric
patients could be translated into abnormal amygdala-dmPFC
connectivity. To address this question, we built a predictive model
based on high-order PPI (i.e., the linear relationship between
behavioral response to ambiguity and amygdala-dmPFC connec-
tivity; Fig. 2d). We derived model parameters from fMRI
participants and then predicted functional connectivity for each
group of participants based on this model (see Methods). For in-
lab participants (Fig. 7a), compared to controls, the fitted model
predicted enhanced amygdala-dmPFC connectivity in in-patient
SCZ patients (two-tailed two-sample t-test: t(35)= 3.32,
P= 0.0021, d= 0.56) and out-patient SCZ patients (t(34)= 3.50,
P= 0.0013, d= 0.61), but not in ASD patients (t(31)= 0.89,
P= 0.37, d= 0.16). For online participants (Fig. 7b), compared to
controls, the fitted model predicted reduced amygdala-dmPFC
connectivity in patients with depression (t(89)= –2.17, P= 0.033,
d= 0.23), but not in patients with anxiety (t(92)= –1.55, P= 0.12,
d= –0.16), ASD (t(88)= 0.14, P= 0.89, d= 0.015), or ADHD
(t(90)= –0.39, P= 0.70, d= –0.04). Together, our results suggest
that behavioral deficits in emotion judgment can be translated
into abnormal functional connectivity in neuropsychiatric patients.

DISCUSSION
Motivated by our prior studies showing that (1) both single
neurons and BOLD-fMRI in the human amygdala parametrically
encode levels of emotion ambiguity [5], (2) there is vast activation
of the dmPFC and vmPFC for emotion ambiguity [4], and (3) the
LPP originating from the dmPFC and vmPFC differentiates levels
of emotion ambiguity and mediates behavioral judgments about
ambiguous choices [4, 33], in the present study, we employed
multimodal functional connectivity analyses to study the neural
network underlying perceiving and resolving emotion ambiguity.
PPI analysis showed amygdala-PFC connectivity in encoding
emotion ambiguity, and DCM analysis revealed the directional
effective connectivity between the amygdala, dmPFC, and vmPFC
in this process. Furthermore, the responses of amygdala and
dmPFC neurons were modulated by the level of emotion
ambiguity, and amygdala neurons responded earlier than dmPFC
neurons. We further found parietal-frontal coherence and delta-
alpha cross-frequency coupling involved in encoding emotion
ambiguity. In addition, EEG source connectivity revealed that the
dmPFC top-down regulated the activities in other brain regions.
Therefore, we have derived a network-level understanding of how
the brain processes ambiguous facial expressions. We lastly
showed altered behavioral responses in several groups of patients
who may have dysfunctions in amygdala-PFC functional
connectivity.

The amygdala-PFC network for processing emotion ambiguity
Emotional stimuli activate a broad network of brain regions,
including the amygdala, dmPFC, and vmPFC. In humans, there has
been increasing evidence showing that functional connectivity
between the PFC and amygdala is critical for processing facial
emotions. Our present results have pointed to an emotion
processing circuit that underlie representing and resolving
emotion ambiguity, consistent with convergent data from lesion,
electrophysiology, and imaging studies showing that the PFC
interacts with the amygdala to regulate cognitive and emotional
processing [64–66]. Specifically, the amygdala may encode and
represent the content of the emotion [5, 7] and provide input to
the PFC. The dmPFC has been associated with cognitive
processing and the vmPFC has been associated with affective
processing [29]. The affective division of the PFC (i.e., vmPFC)
modulates autonomic activity and internal emotional responses,
while the cognitive division (i.e., dmPFC) is engaged in action
selection associated with skeletomotor activity and motor
response [65, 66]. The response in the dmPFC may thus reflect a
control signal that resolves emotion ambiguity, consistent with
our prior results that the LPP originating from the dmPFC is
specifically associated with decisions (rather than stimulus) about
ambiguity [4].
Furthermore, the amygdala may also reflect competition

between passive and active responses to aversive stimuli [67],
punishment predictions or prediction errors [68], or a more
general source of information about errors [69], which recruits
both cognitive (dmPFC) and emotional (amygdala) monitoring
systems [69]. Such amygdala signals can be conveyed directly to
the dmPFC or indirectly through connections from the amygdala
to the striatum, insula, or vmPFC [22], consistent with the
pathways identified in the present study. Furthermore, consistent
with our DCM results of negative modulation of amygdala activity,
previous analysis has revealed that both the dmPFC and vmPFC
show an inverse interaction with the direct thalamus-amygdala
pathway [70].

Atypical functional connectivity in neuropsychiatric disorders
A breakdown in the amygdala-PFC functional/effective connectiv-
ity may give rise to a variety of emotion-related deficits seen in a
wide range of neuropsychiatric disorders. For example, enhanced
amygdala-vmPFC bottom-up effects have been observed in major
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depressive disorders when processing emotional faces [43]. Such
alterations can be even observed in infants exposed to prenatal
maternal depression [71]. Moreover, genetic variations in the
monoamine oxidase A (MAOA) associated with reduced
amygdala-PFC coupling can predict the course and severity of
major depression [72]. In addition, abnormal amygdala-PFC
effective connectivity to happy faces differentiates bipolar from
major depression [42], and antidepressant treatment efficacy can
be measured by a significantly increased coupling between the
amygdala and right PFC [73]. Consistent with these studies
[42, 72, 73], here, we found reduced modulation of emotion
judgment RT in patients with depression (Fig. 6j), which further
inferred a reduced amygdala-dmPFC functional connectivity
(Fig. 7b).
Increased connectivity between the amygdala, especially the

basolateral amygdala, and distributed brain systems (including the
PFC) involved in attention, emotion perception, and regulation, is
associated with high childhood anxiety [74]. Individuals with
anxiety show aberrant coupling between the amygdala and
dmPFC during the presentation of images known to elicit negative
affect [75]. Patients with generalized anxiety disorders show
relatively lower intrinsic connectivity between the right amygdala
and right PFC (both vmPFC and dmPFC) compared to controls
[76]. However, in this study, we only observed a marginally
significant modulation of emotion judgment RT (Fig. 6j), which
was not associated with a significant change in amygdala-PFC
connectivity (Fig. 7b), likely due to the task that we used or the
heterogeneity of patients that we sampled in the present study.
In patients with schizophrenia, resting-state fMRI has shown

enhanced variability of intrinsic connectivity between the
amygdala and vmPFC, which positively correlates with symptom
severity [77]. On the other hand, task-based fMRI studies have
demonstrated significantly weaker amygdala-PFC cortical cou-
pling when processing negative distractors [78]. In this study, in
both in-patient and out-patient SCZ patients, we observed a
strongly reduced sensitivity to emotion intensity (Fig. 6c) as well as
modulation of confidence rating (Fig. 6e), which may be attributed
to enhanced amygdala-PFC functional connectivity (Fig. 7a).
Studies have shown abnormal amygdala-PFC connectivity in

ASD [79, 80] and ADHD [39]. Both the PFC and amygdala are
critical components of the “social brain” [81] and both brain
regions may be pathological in autism [82]. In humans, connec-
tions between these brain regions have been linked to reduced
habituation after repeated presentations of faces in children with
ASD [38]. Furthermore, children with ASD show reduced
amygdala-PFC functional connectivity when viewing emotional
faces [79] and when at rest (see ref. [83] for a review), as well as
abnormal structural connections [84]. In children with ADHD, the
behavioral deficits in emotion regulation were found to be
associated with altered amygdala-vmPFC intrinsic functional
connectivity [39]. A theoretical account is that the amygdala
orchestrates cognitive processes based on social stimuli, but it
requires information conveyed from the PFC about the context in
which those stimuli occur. In the absence of such contextual input,
the amygdala may inappropriately interpret social stimuli [85].
Therefore, abnormal connections between the amygdala and PFC
may underlie social deficits that cascade beyond facial processing
to include processing of other socially relevant stimuli. In this
study, we observed reduced sensitivity to emotion intensity in
participants with ASD (Fig. 6c) and ADHD (Fig. 6i), and we also
observed modulation of confidence rating in participants with
ASD (Fig. 6e). For both groups, we did not observe an altered
predicted amygdala-PFC functional connectivity (Fig. 7a, b).

Advantages of a unique combination of multimodal
approaches
There are clear advantages of using multimodal approaches to
study emotion processing. For fMRI [86] data, two different but

complementary methods (PPI and DCM) were used to assess the
functional connectivity among the amygdala, dmPFC, and vmPFC
when processing emotion ambiguity. PPI is an anatomically
unconstrained (whole-brain), data-driven approach that does not
provide directionality of any changes in connectivity between
regions [54, 87]. DCM is an alternative method for analyzing PPI
within hypothesis-driven models that overcome this limitation
[88].
In addition to fMRI, the unique combination of single-neuron

recordings and scalp EEG shows promise in characterizing the
brain network at a finer time scale. Among various EEG
connectivity measures, cross-channel coherence evaluates the
functional synchronization of cortical connections [55], while cross-
frequency coupling (CFC) reflects the coordination of low and high
frequency brain rhythms that are entrained by both external
events and internal cognitive processes [57, 89]. The theoretical
importance of these two measures may reflect how one brain
region or rhythm is talking to another and is further modulated by
experimental conditions. EEG coherence provides an important
estimate of functional interactions between neural systems in a
frequency-selective manner [55]. It can yield information about
network formation and functional integration across brain regions.
The CFC provides a plausible mechanism for the long-range
communication between fast, spike-based computation with
slower external events and internal states, thus guiding perception,
cognition, and action [57, 90–93]. Notably, the scalp-based
connectivity analysis can be extended to a source level, which
may convey new information about the origins of signals and
signal flow that is comparable with fMRI-based measures.
In particular, single-neuron recordings have significantly higher

spatial and temporal resolution compared to previous human
studies solely using neuroimaging techniques, and this approach
has provided a key missing link between animal neurophysiology
and human neuroimaging. Simultaneous recordings from multiple
brain regions permitted latency analysis, which may explain our
findings at the circuit level and help distinguish between stimulus-
driven vs. goal-driven modulating processes, making possible the
isolation of specific neural processes especially relevant to
behavior. It is worth noting that the limitations of single-unit
recordings have been complemented by fMRI and EEG: the limited
spatial coverage were complemented by fMRI whole-brain
analysis, and the small number of patients from whom single-
neuron recordings were made was balanced by the large number
of in-lab EEG participants. Future studies are needed to perform
detailed functional connectivity analysis with single-neuron data.
Together, the present study employed multimodal approaches

that well complemented each other to comprehensively study the
neural mechanisms of emotion ambiguity. It provided a systematic
understanding of the amygdala-PFC network underlying emotion
ambiguity with fMRI-based connectivity, EEG coordination of
cortical regions, synchronization of brain rhythms, directed
information flow of the source signals, and latency of single-
neuron responses.

Possible caveats
With the advantages of our study in mind, we would also like to
note several limitations and possible caveats of our study. First,
although we employed multimodal approaches to study func-
tional connectivity that pointed to coherent results, they were not
employed in the same participants. A future study is needed to
account for the individual differences from different participant
groups. Second, the online participants with neuropsychiatric
disorders were only self-identified, and they may have large
variance in their symptoms and severity. This may explain the
weaker findings in these participants compared to the in-lab
group. A future study is needed to confirm our findings with
formally diagnosed patient groups. However, online participants
are more representative of the general population so they may
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have a better generalizability to the general population. Lastly, we
only predicted functional connectivity in patients with neuropsy-
chiatric disorders based on functional connectivity from controls
and patients’ behavior. A future study is needed to directly
measure functional connectivity in these patients when they
perform the same task.

DATA AVAILABILITY
All data and code are publicly available on OSF [94] (https://osf.io/26rhz/).
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