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ABSTRACT

The mysterious deep-sea shrimp Physetocaris microphthalma Chace, 1940 remains a challenge for
the understanding of caridean shrimp systematics. Upon first description in 1940, the unique
morphology in combination with lack of material made the allocation of P. microphthalma to any
family or superfamily difficult, therefore the monotypic superfamily Physetocaridoidea and family
Physetocarididae were described. The rarity of the species, only documented a few times in
scientific literature, in combination with a circumglobal distribution, makes the advancement of the
systematics and biology of this shrimp challenging. Current literature places Physetocaridoidea as a
superfamily with a sister relationship to Pandaloidea but this relationship has never been tested using
molecular data. Recent expeditions to the northern Gulf of Mexico and north-eastern Pacific Ocean
provided fresh material for inclusion in phylogenetic analyses. Here, we used a molecular systematics
approach to investigate the phylogenetic placement of this species within the infraorder Caridea and
test for cryptic diversity across oceanic basins. We sequenced five genes (/125 rRNA, 16S rRNA, H3,
NaK and PEPCK) and built phylogenetic trees including specimens across Pandaloidea and other
carideans (n = 75) using maximum-likelihood and Bayesian approaches. Our results strongly support
the inclusion of P. microphthalma within the family Pandalidae and superfamily Pandaloidea, indicating
that the superfamily Physetocaridoidea and family Physetocaridae are not valid. In addition, the
inclusion of specimens from the Atlantic and Pacific Oceans does not support evidence of cryptic
diversity, suggesting the global distribution of P. microphthalma. This is the first study to provide
genetic data for this species, resulting in an updated classification for the infraorder Caridea and
highlighting that deep-pelagic species can be rare yet still widely distributed.

Keywords: Caridea, deep-sea, Pandalidae, Pandaloidea, pelagic, phylogenetics, Physetocaris,

shrimp, systematics.

Introduction

The deep sea (>200 m) is the largest habitat on Earth yet is poorly known and explored
(Ramirez-Llodra et al. 2011; Sinniger et al. 2016; Sutton et al. 2017). Below the epipe-
lagic zone (>200m), light becomes dim, as animals transition from the photic zone
(0-200 m) into the mesopelagic or twilight zone (200-1000 m) until light is completely
lost and darkness dominates (bathypelagic or midnight zone, 1000-4000 m; abyssopela-
gic zone, 4000-6000 m; hadalpelagic zone, >6000 m). Animals within the deep sea have
adapted to a life of darkness, resulting in a suite of unique morphological adaptations
often compared to science fiction monsters or space creatures. Within these waters, the
deep-pelagic zone is no exception, containing many fascinating organisms only collected
a few times or new to science (Webb et al. 2010).

Exploration of the deep sea and associated diversity is challenging due to financial and
logistical constraints. However, in recent years, several deep-sea species have
been described from meso- and bathypelagic environments (Pietsch and Sutton 2015;
Varela and Bracken-Grissom 2021a; Judkins et al. 2022), and the use of genetic techniques
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has significantly enhanced our understanding of evolutionary
relationships and biodiversity (e.g. Tsang et al. 2009; Davis
et al. 2014; Filertsen and Malaquias 2015; Sinniger et al.
2016; Varela et al. 2021; Rodriguez-Flores et al. 2022). One
of these mysterious taxa is the enigmatic Physetocaris micro-
phthalma Chace, 1940 (Fig. 1), a small (max. carapace
length = 16 mm) meso- and bathypelagic shrimp from the
Infraorder Caridea. This species was originally described
from Bermuda in 1940 and since discovery, P. microphthalma
has only been collected eight other times according to scien-
tific records. This species has a large distribution ranging from
the south-western and north-eastern Pacific to the Eastern and
North Atlantic oceans (Fig. 2), and a depth range of 200 m to
over 2000 m within the pelagic environment. Diagnostic char-
acters include two lateral carinae, a pleon without any dorsal
carinae or spines, the second pereopod with a fixed finger
curving subrectangularly around a short, broad movable finger,
a greatly reduced maxilla and second maxilliped, and a telson
deeply sulcate dorsally and broadly truncate at the tip (Chace
1940, 1992). Other distinguishing characteristics include an
inflated rostrum, small eyes and overall body morphology

unlike any other caridean shrimp (pers. observation). This
combination of characters was so unique that the original
description states that,

It has been impossible to accommodate it in any known
caridean family and even its relative position among the
established families is uncertain. There is little doubt that
it is one of the most specialized bathypelagic carideans
known [Chace 1940, pp. 198-199].

The original description noted affinities of P. micro-
phthalma to Processidae and Crangonidae, mentioned the
lack of adult males and ovigerous females and speculated
that the specimen was an undescribed larval form (Chace
1940). Owing to the rarity in nature and lack of material for
study, the systematic position of P. microphthalma is under
debate and remains a mystery.

Early classification grouped the families Physetocarididae,
Pandalidae and Thalassocarididae into the superfamily
Pandaloidea based on the chelae of first pair of pereiopods
being microscopically small or absent and diagnosed

Fig. I.
(HBG10751). Photo: Danté Fenolio| DEEPEND|RESTORE.
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Physetocaris microphthalma Chace, 1940 collected in the Gulf of Mexico (DP07) and used for phylogenetic analyses
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Fig. 2. Compilation of all known records of Physetocaris microphthalma Chace, 1940. Full circles represent previous records,
dashed circle represent the new records from this study (Gulf of Mexico and Northeast Pacific). Sources: Chace (1940); Foxton and
Herring (1970); Gordon (1970); Foxton (1971); David (1972); Kikuchi and Omori (1985); Wasmer (1985); Kikuchi and Nemoto
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(1986); Guzman (1999).

Physetocarididae by the inflated carapace and simple mandi-
ble with palp absent (Holthuis 1955). Later, the superfamily
Physetocaridoidea, containing only Physetocarididae, was
coined with no morphological description (Bowman and Abele
1982). The use of the superfamily rank Physetocaridoidea was
probably accepted based on unique traits of the species and
used in further publications even with a lack of morphological
investigation and description that included characters that
distinguished this from all other caridean groups (Chace
1992; Holthuis 1993). Since then, few studies have tried to
solve this systematic and taxonomic conundrum. A phyloge-
netic hypothesis based on morphological data suggested
the synonymisation of Physetocaridoidea with Pandaloidea
because results indicated that P. microphthalma fell within
the Pandaloidea (Christoffersen 1989). Although Christoffersen
(1989) suggested synonymisation of the superfamily, the family
Physetocarididae was kept within Pandaloidea. The same work
also suggests that other genera should be included within
Physetocarididae: Stylopandalus, Chlorotocella, Chlorocurtis,
Anachlorocurtis and Miropandalus based on morphological
data (Christoffersen 1989). However, in this analysis,
Physetocarididae is represented by character reversal or loss
of traits and that is likely the reason why this phylogenetic
hypothesis was not totally accepted.

Advancements in molecular methods have helped to
elucidate the phylogenetic position and classification of
mysterious decapod species (Bracken et al. 2009, 2010;
Bracken-Grissom et al. 2012; Wang et al. 2021). One group

in which molecular systematic methods were employed
was the Pandaloidea, a superfamily that might include
Physetocarididae or that is sister to Physetocaridoidea
(Liao et al. 2019). These authors hypothesised that P. micro-
phthalma could be part of the new family Chlorotocellidae,
within Pandaloidea and sister to Pandalidae (Clade A in
Komai et al. 2019; Liao et al. 2019). Once again, due to the
rarity of P. microphthalma, this species was not included in
the study or any other past molecular phylogenies.

Molecular methods are also useful in the detection of
cryptic species complexes and the rarity of P. microphthalma
coupled with the broad distribution (Fig. 2) could indicate
undetected diversity. Although many deep-sea crustaceans
are considered to represent a single panmictic population
with distributions spanning oceanic basins (Bik et al. 2010;
Havermans et al. 2013), DNA-based approaches have
revealed surprising levels of genetic structure or cryptic
speciation (Miyamoto et al. 2010; Baco et al. 2016; Varela
et al. 2021). Studies that sample across global distributions
are challenging due to financial and logistical constraints,
therefore increased efforts are needed to investigate phylo-
genetic relationships and connectivity patterns in deep sea
taxa, especially rare species.

Here, we provide the first molecular phylogenetic investi-
gation of Physetocaris microphthalma Chace, 1940 to resolve
the phylogenetic placement of this enigmatic deep-sea spe-
cies. As mentioned, this species is historically under debate
but the most comprehensive checklist of all shrimp groups
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follows the classification that considers the monotypic spe-
cies P. microphthalma part of the family Physetocarididae
within the superfamily Physetocaridoidea (De Grave and
Fransen 2011; Poore and Ahyong 2023; World Register of
Marine Species, see https://www.marinespecies.org). We
tested two alternative hypotheses: (1) the reciprocal mono-
phyly of the superfamily Physetocaridoidea and Pandaloidea
(sensu Liao et al. (2019) and Komai et al. (2019),
[Pandalidae + 'Thalassocaridae’] + Chlorotocellidae) that
would agree with the recent classification of the species
(De Grave and Fransen 2011; Poore and Ahyong 2023); (2)
P. microphthalma nested within Chlorotocellidae (clade A -
Liao et al. 2019) and within Pandaloidea. Finally, considering
that we had one individual from the Gulf of Mexico and one
from the north-eastern Pacific, we tested the alternative
hypotheses that (3) there is cryptic diversity within P. micro-
phthalma; and (4) this is a circumglobally distributed species.
Our work expands the records of P. microphthalma to the Gulf
of Mexico and north-eastern Pacific, reveals the phylogenetic
placement of this enigmatic shrimp and provides data that can
support an updated classification for Infraorder Caridea.

Materials and methods

Sample collection

Specimens of Physetocaris microphthalma were collected
during research expeditions in the Gulf of Mexico and
Northeast Pacific (California, USA). The research cruises in
the Gulf of Mexico were on the R/V Point Sur as part of the
DEEPEND|RESTORE  consortium  (http://www.deepend
consortium.org) and the Northeast Pacific sample was
donated by Dr Anela Choy from Scripps Institution of
Oceanography, University of California—San Diego (San
Diego, CA, USA). The Gulf of Mexico sample was collected
in May 2021 (DP07) and the Northeast Pacific sample in June
2021 with a multiple opening—closing net and environmental
sensing system (MOC-10) rigged with six 3-mm mesh nets
ranging from O- to 1500-m depth, allowing for collected speci-
mens to be assigned to a depth bin (0-200, 200-600,
600-1000, 1000-1200 and 1200-1500 m; the sixth net sam-
pled from 0 to 1500 m). Physetocaris microphthalma from the
Gulf of Mexico was collected in the 600-1000-m bin and
north-eastern Pacific in the 400-1000-m bin. Animals were
preserved in 80% ethanol and later identified in the labora-
tory. Both specimens are deposited in the Florida International
University Crustacean Collection (FICC; voucher numbers,
HBG10571 and HBG11495).

DNA extraction, PCR amplification and
sequencing

Total genomic DNA was extracted from pleon muscle tissue
using DNeasy Blood and Tissue Kit (Qiagen). We selected
two mitochondrial and three nuclear genes to perform the
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phylogenetic analysis. The genes selected were the large
ribosomal subunit (16S rRNA), small ribosomal subunit
(12S rRNA), histone 3 (H3), sodium-potassium ATPase
a-subunit (NaK) and phosphoenolpyruvate carboxykinase
(PEPCK). These genes are well suited to investigate phylo-
genetic relationships in decapods (Timm and Bracken-
Grissom 2015) and have been used to investigate the
evolutionary relationships in Pandaloidea (Liao et al.
2019). Primers used were the same as indicated in Liao
et al. (2019). PCR amplification contained 12.5uL of
GoTaq, 8.5 L of water, 1 L of each primer (10 uM), and
2uL of DNA per sample, representing 25 pL of total PCR
reaction. The thermal profile was: 3 min at 94°C for initial
denaturation; 35 cycles of 30s at 94°C, 30s at the primer-
specific temperature (45-64°C) and 1 min at 72°C; and end-
ing in 5min at 72°C for final extension. PCR products were
purified and sequenced at TACGen (Richmond, CA, USA)
using the BigDye Terminator Cycle Sequencing Kit (ver. 3.1,
Applied Biosystems) and sequenced in a 3730x] DNA
Analyzer (Applied Biosystems). Physetocaris microphthalma
sequences were quality-checked, trimmed and assembled
using Geneious Prime software (ver. 2020.0.4, see https://
www.geneious.com/). Protein coding genes were translated
and examined for indels and stop codons to ensure that
pseudogenes were not included (Song et al. 2008).

Phylogenetic analysis

We selected all Pandalidae species (n = 62) and outgroups
(Alpheidae, Palaemonidae, Hippolytidae, Lysmatidae,
Merguidae, Crangonidae and Glyphocrangonidae; n = 11)
included in Liao et al. (2019), plus the two individuals of
P. microphthalma (total n = 75). We retrieved all five genes
for the species selected when these were available
from GenBank (Supplementary Table S1). We aligned the
sequences using MAFFT 7 (ver. 7.490, see https://mafft.
cbre.jp/alignment/software/; Katoh and Standley 2013) and
gene alignments were concatenated using Geneious Prime
software (ver. 2020.0.4).

The IQ-TREE 2 program (ver. 2.2.0.5, see http://www.
iqtree.org/; Kalyaanamoorthy et al. 2017; Minh et al. 2020)
was used to construct a phylogenetic hypothesis using a
Maximum Likelihood (ML) approach. The best model of
evolution and partitioning scheme was chosen based on
the Bayesian Information Criterion (BIC) estimated by the
ModelFinder implemented within the IQ-TREE (see http://
www.iqtree.org/ModelFinder/). The support of branches
was estimated through the ultrafast bootstrapping (UFboot,
Hoang et al. 2018) and SH-like approximate likelihood
ration test (SH-aLRT, Guindon et al. 2010) methods with
1000 replications.

The MrBayes program (ver. 3.2.6, see https://github.
com/NBISweden/MrBayes/; Ronquist et al. 2012) was used
to construct a phylogenetic hypothesis using a Bayesian (BY)
approach. Two independent runs were performed using the
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partitioning scheme and substitution models selected by
Modelfinder. When the selected model was not available in
MrBayes, the next more complex model was selected follow-
ing the MrBayes manual. Both runs contained four chains
and the Markov Chain Monte Carlo (MCMC) algorithm ran
for 10 000 000 generations, sampling every 1000 generations
with a burn-in set to 25%. Convergence was assumed when
the average standard deviation of split frequencies was
below 0.01. Branch support was estimated through posterior
probabilities (pp) computed on the 50% majority rule tree
(consensus tree).

Phylogenetic analyses were run on the Florida International
University High-Performance Computing Cluster (HPCC).

Genetic distance

Pairwise genetic distance analysis was performed to investi-
gate intraspecific diversity within P. microphthalma.

We used the p-distance method to calculate genetic distance
using the molecular marker 16S rRNA using MEGA11l
(ver. 11.0.13, see https://www.megasoftware.net; Tamura
et al. 2021) that was selected because this is one of the com-
monly used barcode genes in decapods (Varela et al. 2021).

Results

Our paper provides the first genetic sequences generated for
P. microphthalma. In total, we sequenced five sequences per
individual. Our analyses included 74 sequences of the
marker 12S rRNA, 75 of 16S rRNA, 73 of H3, 73 of NaK
and 71 of PEPCK (Supplementary Table S1). Topologies
derived from the ML and BY analyses were similar
(Fig. 3). Our main goal was to investigate the phylogenetic
placement of P. microphthalma, therefore we will not dis-
cuss evolutionary relationships beyond our focal taxa
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Fig. 3.

Phylogenetic hypothesis for the placement of Physetocaris microphthalma Chace, 1940 within the infraorder Caridea, with a

focus on Pandaloidea. The phylogram is based on the genes 12S rRNA, 16S rRNA, H3, NaK and PEPCK, and represents a combination
of the Maximum-likelihood (ML) and Bayesian (BY) trees. Branch support values are indicated only for the P. microphthalma clade
(SH-aLRT/UFboots/pp). For all other branches, support is represented by an asterisk (*) when all metrics are significant
(SH-aLRT > 80/UFboots > 95/pp > I). Branch support is not indicated if any of the metrics are below the threshold indicated.
Clades B, C, D and E follow Liao et al. (2019) notation. Clade A (sensu Liao et al. 2019) is represented as Chlorotocellidae.
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(but see Liao et al. (2019) for a discussion of evolutionary
relationships across genera). Our phylogenetic hypo-
theses show P. microphthalma nested within Pandalidae,
refuting hypothesis 1 (monophyly of the superfamily
Physetocaridoidea and Pandaloidea). Our phylogenetic
hypothesis also refutes hypothesis 2 (P. microphthalma nested
within Chlorotocellidae and within Pandaloidea). Physetocaris
microphthalma examined from the Gulf of Mexico and from
the Northeast Pacific were recovered in the same clade show-
ing short branch lengths (SH-aLRT, 100; UFboot, 100; pp, 1)
and low genetic distance (16S rRNA, 0.173%) indicating
that both represent the same species. Both specimens formed
a clade with Dorodotes reflexus, Heterocarpus dorsalis,
Plesionika bifurca, Plesionika fenneri, Plesionika laevis,
Plesionika nesisi, Heterocarpus abulbus, Heterocarpus fascir-
ostratus, Heterocarpus hayashii, Plesionika spinidorsalis,
Chlorotocus crassicornis and Procletes levicarina (SH-aLRT,
100; UFboot, 100; pp, 1). This clade represents clade D recov-
ered by Liao et al (2019).

We provide evidence against our prediction 3 (there is
cryptic diversity within P. microphthalma) and confirm our
prediction 4 (this is a circumglobally distributed species).
Therefore, our study also provides two new records for
P. microphthalma, extending the range of the species to
the Gulf of Mexico and north-eastern Pacific (Fig. 2).

Discussion

Based on phylogenetic analyses, our results show that the
rare and enigmatic deep-sea shrimp Physetocaris micro-
phthalma is nested within the caridean family Pandalidae.
This outcome challenges the current taxonomic classifica-
tion of this species and indicates that the superfamily
Physetocaridoidea and family Physetocarididae should not
be accepted. Therefore, the genus Physetocaris should be
transferred to the superfamily Pandaloidea and family
Pandalidae, being P. microphthalma part of a monotypic
genus. The inclusion of material from the Gulf of Mexico
and north-eastern Pacific also indicates that P. microphthalma
represents a single species with a very broad geographic
distribution; however, the inclusion of material from across
the entire distribution would confirm these findings.

Phylogenetic placement of the rare deep-sea
shrimp Physetocaris microphthalma

Some of the earliest morphological studies suggested P. micro-
phthalma to be nested within Pandaloidea (Christoffersen
1989). The most comprehensive molecular tree of pandalids
(Liao et al. 2019) used eight molecular makers and examined
the relationship between Pandalidae and Thalassocarididae,
the two families in Pandaloidea but these lacked samples of
P. microphthalma (Liao et al. 2019). The authors suggested
that P. microphthalma would fall within the newly designated
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Clade A (Chlorotocella, Chlorocurtis, Anachlorocurtis and
Miropandalus) (Liao et al. 2019). Later, Clade A was estab-
lished as the family Chlorotocellidae in a follow-up study
(Komai et al. 2019). The inclusion of P. microphthalma in
Chlorotocellidae (Clade A) was based on the argument
that this same clade had been recovered in a previous mor-
phological phylogeny (Christoffersen 1989). Physetocaris
microphthalma is unlikely to be part of Chlorotocellidae
(Clade A). In the morphological study (Christoffersen 1989),
the clade recovered as Physetocarididae (=Stylopandalus
(synonymised to Plesionika) + Chlorotocellidae genera +
Physetocaris) is supported by synapomorphies represented
by characters reversion or acquisition of a lost trait casting
doubts if this is a feasible grouping. The character that sup-
ports Physetocarididae (sensu Christoffersen 1989) is the
absence of palp, an apomorphic character of Physetocaris
but not a synapomorphy of Chlorotocellidae (Christoffersen
1989; Komai et al. 2019), casting doubt on the inclusion of
Physetocaris within Chlorotocellidae. When comparing the
morphological traits defining Physetocarididae (sensu
Christoffersen 1989) and Clade A (Liao et al. 2019), we find
no shared characters. Most characters recovered by the ances-
tral state reconstruction of Clade A (Liao et al. 2019) are not
characteristic of P. microphthalma because of this enigmatic
shrimp’s unique features. Another argument against P. micro-
phthalma being part of Chlorotocellidae is that this family is
represented by mostly shallow-water species while P. micro-
phthalma is found within the deep-pelagic environment. In
short, multiple lines of evidence question the position of
P. microphthalma within Chlorotocellidae.

Our study was the first to include P. microphthalma into a
molecular phylogeny of Pandaloidea and both specimens
are strongly supported within a clade including the genera
Dorodotes, Chlorotocus, Procletes, some Heterocarpus and
some Plesionika. This grouping is supported from a morpho-
logical perspective because P. microphthalma contains a
long postrostral carina found to be a synapomorphy uniting
this group (Liao et al. 2019). The fact that all genera within
this clade represent deep-sea pelagic species provides
further evidence of affinity. Although we have strong mole-
cular evidence to support Physetocaris + Dorodotes,
Chlorotocus + Procletes + some Heterocarpus, and + some
Plesionika many genera within Pandalidae are not recovered
as monophyletic, indicating that the whole family needs
further investigation (Liao et al. 2019) and substantial revi-
sion. Pandalid systematics are highly convoluted due to
high morphological disparity and biodiversity. Recently,
the superfamily Pandaloidea was rearranged with the syno-
nymisation of the family Thalassocaridae to Pandalidae
(Liao et al. 2019) and the creation of the new family
Chlorotocellidae (Komai et al. 2019). Similarly, our
results suggest the synonymisation of Physetocarididae
and Physetocaridoidea with Pandalidae and Pandaloidea,
respectively. Based on recent changes at the family-level
(Komai et al. 2019; Liao et al. 2019; this study), we should
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expect new arrangements as more genus-level studies are
performed.

Rare yet everywhere, Physetocaris microphthalma
is circumglobally distributed

After a literature search, we compiled all records for
P. microphthalma and found this species to be recorded
only eight times (Fig. 2) prior to this study. Records include
the type locality in the north-western Atlantic (Bermudas) and
offshore locations in the North Atlantic, south-eastern
Atlantic, north-western Pacific and south-eastern Pacific.
Our work contributes with two more new records: the Gulf
of Mexico and the north-eastern Pacific (off-shore California).
Many cosmopolitan deep-sea species, such as chaetognaths
and shrimps, represent cryptic species only discovered after
molecular investigations (Miyamoto et al. 2010; Varela et al.
2021). However, similar investigation across nematodes and
amphipods reveals true cosmopolitan distributions (Bik et al.
2010; Havermans et al. 2013). In the case of P. micro-
phthalma, cryptic diversity is a feasible hypothesis consider-
ing that no molecular or morphological analyses have been
performed that include individuals from many locations. The
lack of records might indicate that natural populations of
P. microphthalma have small population sizes. Genetic drift
strongly affects small populations, causing a more rapid accu-
mulation of genetic differences among populations that would
also support cryptic diversification within this species
(Charlesworth 2009). Surprisingly, when looking at our phy-
logenetic results, the individuals from the Gulf of Mexico and
the north-eastern Pacific fall within the same clade, represent-
ing the same species and no cryptic diversification is sup-
ported. This indicates that P. microphthalma occurs in the
North and South Atlantic, North and South Pacific and can
potentially be found across the globe.

We propose a few explanations for this ‘rare yet every-
where’ pattern. The first is that P. microphthalma is a small
deep-sea shrimp that can be carried by oceanic currents
across different ocean basins, reaching further locations.
Sampling data show P. microphthalma being collected at
different depths, indicating that this species participates in
diel vertical migration (DVM). Here, DVM is defined as a
predator avoidance behaviour characterised by the vertical
movement of pelagic organisms going from deep to shallow
waters (dusk) and back (dawn) over a 24-h cycle (Brierley
2014; Bandara et al. 2021). Vertical migration has been
shown to potentially influence dispersal and connectivity
using simulated particles (Gary et al. 2020) and empirical
data provide evidence that strong vertical migrators
(deep-sea shrimps Systellaspis debilis and Acanthephyra
purpurea) are more connected to adjacent ocean basins
than weak vertical migrators (Robustosergia robusta)
(Timm et al. 2020). Previous observations of a living speci-
men document strong buoyancy that could facilitate trans-
portation across oceanic currents (Foxton and Herring 1970).

The transportation could also occur during the larval phases
(Shanks 2009). Little is known about deep-sea pelagic
larvae, especially the total number of larval phases of a
determined species and the morphological variations along
the multiple stages (Varela and Bracken-Grissom 2021b).
The only description of a gravid P. microphthalma female
indicated three large eggs attached to the female’s pleopods
(Foxton and Herring 1970). The authors could not confirm
whether the female lost some of the embryos or if this is a
low fecundity species. The embryos were kept in an aquar-
ium until hatching (44 and 46 days) and reached the zoea II
stage 12days after hatching but no further stages were
recorded (Foxton and Herring 1970). Another deep-sea
shrimp, Systellaspis debilis, is notably known as a cosmopol-
itan and produces large eggs and only four zoea phases
(Bartilotti and Dos Santos 2019) that might be similar to
P. microphthalma. Only a few larval stages are sufficient to
guarantee that populations across the globe are connected
(Cowen and Sponaugle 2009; Weersing and Toonen 2009;
Baco et al. 2016; Gary et al. 2020). Another idea is that
P. microphthalma may be overlooked during midwater sam-
pling expeditions. Physetocaris microphthalma is believably
a common midwater species but due to the lack of taxo-
nomic expertise or studies on midwater organisms, this
species is infrequently identified and reported. Equally
believable, gear type (i.e. mesh size) can influence sampling
success, indicating that the species is present but the gear is
not adequate for the collection of the species (Kaartvedt
et al. 2012). Lastly, a combination of all these explanations
(buoyancy of adults, the presence of larval phases, DVM
behaviour, lack of taxonomic expertise and gear type)
may play a role in explaining our results indicating that
P. microphthalma is circumglobally distributed across oceanic
basins.

Conclusions

Historically, P. microphthalma has been accepted within the
family Physetocarididae and superfamily Physetocaridoidea,
sister to Pandaloidea (Pandalidae + Thalassocaridae).
However, the phylogenetic placement of P. microphthalma
has been under debate for many decades due to the rarity in
collection records and lack of molecular-grade material. Our
study is the first to perform a molecular phylogeny with
inclusion of this species and provides strong evidence that
this is nested within the family Pandalidae, indicating that the
superfamily Physetocaridoidea and family Physetocarididae
should not be accepted. The deep sea is a fascinating and
mysterious realm, teeming with hidden biodiversity waiting
to be discovered. We propose increased collaboration across
midwater researchers in an effort to conduct comprehensive
investigations across oceanic basins. We can better understand
this unique ecosystem and uncover new and exciting discov-
eries through collaborative efforts. Our ‘rare yet everywhere’
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shrimp is the perfect example of how much more we still have
left to discover in the deep-sea and pelagic environments.

Supplementary material

Supplementary material is available online.
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