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Abstract

Both CALPHAD (CALculation of PHAse Diagrams) and machine-learning (ML) approaches
were employed to analyze the phase formation in 2,436 experimentally measured high entropy
alloy (HEA) compositions consisting of various quinary mixtures of Al, Co, Cr, Cu, Fe, Mn, and
Ni. CALPHAD was found to have good capabilities in predicting the BCC/B2 and FCC phase
formation for the 1,761 solid-solution-only compositions, excluding HEAs containing an
amorphous phase (AM) or/and intermetallic compound (IM). Phase selection rules were
examined systematically using several parameters and it revealed that valency electron
concentration (VEC) < 6.87 and VEC > 9.16 are the conditions for the formation of single-phase
BCC/B2 and FCC, respectively; and CALPHAD could predict this with essentially 100%
accuracy. Both CALPHAD predictions and experimental observations show that more BCC/B2
alloys are formed over FCC alloys as the atomic size difference between the elements
increases. Four machine learning (ML) algorithms, decision tree (DT), k-nearest neighbor
(KNN), support vector machine (SVM), and artificial neural network (ANN), were employed to
study the phase selection rules for two different datasets, one consisting of 1,761 solid-solution
(SS) HEAs without AM and/or IM phases, and the other set consisting of all the 2,436 HEA
compositions. Cross validation (CV) was performed to optimize the ML models and the CV
accuracies are found to be 91.4%, 93.1%, 90.2%, 89.1% for DT, KNN, SVM, and ANN
respectively in predicting the formation of BCC/B2, BCC/B2 + FCC, and FCC; and 93.6%,
93.3%, 95.5%, 92.7% for DT, KNN, SVM, and ANN respectively in predicting SS, AM, SS + AM,
and IM phases. Sixty-six experimental bulk alloys with SS structures are predicted with trained
ANN model, and the accuracy reaches 81.8%. VEC is found to be most important parameter in
phase prediction for BCC/B2, BCC/B2 + FCC, and FCC phases. Electronegativity difference
and FCC-BCC-index (FBI) are the two additional dominating features in determining the
formation of SS, AM, SS + AM, and IM. A separation line AH,,;,, = 28.97 X VEC — 246.77 was
found in the VEC-vs-AH,,;, plot to predict the formation of single-phase BCC/B2 or FCC with a
96.2% accuracy (AH,,;,, = mixing enthalpy). These insights will be very valuable for designing
HEAs with targeted crystal structures.
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machine learning.
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1. Introduction

High entropy alloys (HEAs) typically consist of four or more principal elements with
concentration between 5 and 35 at.% [1-10] in contrast to traditional alloys such as copper,
iron, magnesium and aluminum alloys with low concentrations of other alloying elements. HEAs
open up vast composition spaces for designing and discovering new alloys for ever-increasing
demands of new materials for energy, environment, and human well-beings.

There are many experimental methods for preparation of HEAs, including mechanical
alloying, induction melting, vacuum arc melting, vapor deposition method, and sputtering
[3,5,11-15]. To accelerate the discovery of novel and advanced materials, the CALculation of
PHAse Diagrams (CALPHAD) approach has often been employed to predict and investigate
phase formation of HEAs [16—24]. In addition to CALPHAD, phase selection rules were
developed by various research groups to help predict phases of HEAs via studying the existing
experimental data. Such empirical rules are built by presenting the formation of phases in one-
dimensional histograms or two-dimensional plots whose axes are usually thermodynamic and
physical parameters. For instance, the Hume-Rothery rules depict the effects of atomic size
ratio and electrochemical properties on solid solution (SS) formation [25]. Guo et al. revealed
that single-phase FCC forms at valency electron concentration (VEC) > 8 and single-phase
BCC forms at VEC < 6.87, while Jiang’s work added some constraints based on their designed
alloys and indicated that this formation rule applies under the conditions of AS,,,;, > 12.47,
7.27kJ/mol < AH,,,;,, < 4 kd/mol, and 6 < 4.27%, where AS,,,;», AH i, and & are the mixing
entropy, mixing enthalpy, and difference in atomic sizes, respectively [26,27]. Recently, Yang et
al. developed a new VEC selection rule for predicting SS phases based on high-throughput
CALPHAD calculations in the Al-Co-Cr-Fe-Ni system [28]. Other parameters such as -22
SAHpi <7 kd/mol, 08< 8.5, and 11 < AS,,;,, < 19.5 kd/mol are found to be conditions for the
formation of SS [29]. According to the evaluation of Senkov et al. over 130,000 alloys, the
increasing number of alloying elements in a system beyond 3 results in a reduced likelihood of
occurrence of SS [30]. Inoue summarized the conditions to form bulk metallic glasses (BMGs) in
terms of the number of elements, atomic size ratios, and mixing heat of atomic pairs [31]. Both
Q=1.1 and 6 < 6.6% were shown by Yang and Zhang to be conditions for the formation of SS
phases, and BMGs form in regions of smaller Q and larger & as compared to HEAs, where Q is
a parameter related to the AH,,;,, AS,,ix, and melting temperature (T,,,) of constituent elements
[32]. A single dimensionless thermodynamic parameter ¢ which is correlated with AH,,;,, ASpixs
T, and excessive entropy was defined and HEAs were found to be single-phase SS (SPSS) at
¢ > 20 based on the analysis of nearly 50 types of HEAs [33]. All these phase selection rules
can be used to guide future design of HEAs; however, most of the rules were developed from
small experimental datasets. Li and Tsai collected 100 selected HEAs from the literature and
assessed the accuracies of 8 published formation rules; they found that the overall accuracy is
only ~ 72% in predicting SPSSs and intermetallics (IM) [34]. Therefore, it is highly desirable to
test and expand these rules using very large, consistent datasets.

Machine learning (ML) holds great promise for future materials design and discovery
[35,36]. Unlike CALPHAD that was built upon semi-empirical physical models, ML makes
prediction using data-driven strategies with unique algorithms [6,37,38] that learn from training
datasets with input patterns and a optimization target, and then extract the implicit insights
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hidden in the datasets. For phase prediction using ML, the properties of alloys or constituent
atoms will be taken as input features, and the crystal structures of the phases are the
corresponding targets. Since ML can explore different features simultaneously, it is able to
overcome the limitations of traditional strategies in studying phase selection rules [39-41]. For
example, phase selection rules was explored via support vector machine (SVM) and artificial
neural network (ANN) on two separate group of features - compositions of HEAs and physical
parameters of HEAs, respectively, and showed that the accuracies of learning obtained from
these two groups of input features are similar and high for HEAs when 4 or 5 physical
parameters were employed [42,43]. The Gaussian process statistical analysis was performed
on 322 alloys based on a combination of 9 physical parameters, which provided a robust
predictions for the formation of SPSSs [44]. Krishna et al. utilized six ML approaches with 5
input features to study the classification of SS and SS + IM with a dataset of 636 compositions,
and they found that the trained ANN reached 80% prediction accuracy and can correctly predict
the crystal structures of newly designed alloys [45]. Zhao et al. recently studied 3 categories
(SS, IM, SS + IM) using five ML models and achieved 87% prediction accuracy through ANN
with 5 selected features [46]. Pei et al. put forward a new parameter A related to bulk modulus,
melting temperature, volume, and configurational entropy with the help of performing ML and
found that SPSS forms at A > 1 with 73% accuracy and it can increase to 81% with a constraint
of § < 6%. They further applied their new formation rule to new compositions that are SPSSs
predicted by CALPHAD and the consistency reached 94% [47]. In addition to studying phase
formation separately, a recent study applied the eXtreme Gradient Boosting (XGBoost) model to
explore > 300,000 equilibrium data of HEAs generated by CALPHAD calculations, and built
more comprehensive and superior phase selection rules for single-phase FCC and BCC based
on the 5 ML-selected features [48]. Machaka applied 6 ML models to 896 SPSSs and 101 dual-
phase SSs and did feature selection using 36 dataset features [49]. The accuracy reaches 95%
with the top-most identified 13 features. Zhang et al used a model of SVM combined Kernel
Principal Component Analysis to classify a dataset of 556 entries including SS, amorphous
(AM), the mixture of SS and IM, and IM, and obtained 97% accuracy with 4 selected features
[50]. Zhou et al. performed various experiments on the (FeCrNi)1o.x(ZrCu)x system to verify the
ability of the trained ML models, and they achieved good agreements for bulk alloys made by
arc melting and ribbon samples through vacuum melt spinning. The thin films made via co-
sputtering presented a transition from a crystalline to amorphous structure as x in (FeCrNi)+o-
x(ZrCu)y increases, which is consistent with their ML predictions [51].

Table 1. Summary of experimental alloys classified by the phases [15].

Phase Number
BCC 604

B2 158
FCC 553
BCC + FCC 441

B2 + FCC 5

BCC + Amorphous 71

FCC + Amorphous 145
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BCC + FCC + Amorphous 34
Amorphous 192
Intermetallic compound (o and/or more) 233

Experimental data of 2,436 quinary HEAs with different mixtures of Al, Cr, Mn, Fe, Co, Ni,
Cu from Kube et al. [15] were employed in this study to perform a more extensive test of
CALPHAD predictions and ML capabilities. The phase categories and their corresponding
numbers of alloys are listed in Table 1. CALPHAD was utilized to calculate the phase
equilibrium of 1,761 SS HEAs from a full dataset of 2,436 HEAs, and the CALPHAD predictions
were analyzed and compared with experimental data. Phase selection rules based on different
parameters were also investigated using both traditional methods and ML models.

2. Methods
2.1 CALPHAD calculations

A program is written to predict the phase equilibrium of the 1,761 SS alloys using TC-
Python, a python language-based software development kit (SDK) that allows Thermo-Calc to
perform high throughput calculations. The computation settings were: TCHEA4 database, only
BCC and FCC phases were entered (explained in the Results section), and 1100 °C which is
the temperature at which all high-throughput thin film libraries were made.

2.2 Parameters for phase selection

Eight parameters are selected for studying the phase selection rules among 2,436 alloys:
the mixing entropy (AS,,ix), the mixing enthalpy (AH,,;,), atomic size difference () [52], Q that
links mixing entropy, mixing enthalpy and melting temperature [32,53], valence electron
concentration (VEC) [25,26], the FCC-BCC-index (FBI) [15], number of itinerant electrons (e/a)
[25,54], and the difference in Pauling electronegativity Ay [4,55]. These parameters are defined
as followings.

ASimix = —R Z?l:l cilne; (1)

AHpi = XN iei Qijcici s (2)

§ =100y¥%, c;(1 - /72, (3)

_ TmASmix

" [AHmiy] )
VEC = ¥, ;VEC; , (5)
FBI =Y;c; ¢; , (6)
efa =Y, cile/a);, (7)
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where ¢;, 1y, VEC;, (e/a);, xi, T(= 2=y i 1), X(= Xl ¢i X;) are the mole fraction, atomic radius,
valency electron concentration, number of itinerant electrons, electronegativity of element i,
average atomic radius, average electronegativity of an alloy. N is the number of elements in an

alloy system, and R is the gas constant. ;;(= 4AHAE ) is the regular solution interaction

parameter between elements i and j [56], and AHZZ . is the mixing enthalpy of A-B binary liquid

alloys whose values can be found in Refs. [57,58]. T;,, = Y.i~; ¢;(T}):, Where (Ty,); is the melting
point of element i. ®; is +1 for element i with either the FCC or HCP crystal structure, and ¢; is -
1 for elements i with the BCC crystal structure.

2.3 Machine learning

With these eight parameters as input features, four supervised ML algorithms, decision tree
(DT), k-nearest neighbor (KNN), SVM, and ANN were employed to predict the phase formation
of the HEAs. These four algorithms are implemented using the scikit-learn package, a machine
learning library in python [59]. Each algorithm has different tuning parameters that are used to
adjust the training model. Five-fold cross-validation (CV) was employed to judge the
performance of predictions, which can avoid the overfitting and underfitting phenomena in ML.
The dataset is split randomly into five disjoint subsets with nearly the same size. The models
were trained with 4 subsets and tested 5 times with the remaining subset. The 5-fold CV
accuracy is the average of the 5 test accuracies, which is called CV accuracy for simplicity
throughout this article.

The DT model divides the data at each parent node into the left child node and the right
child node in a binary tree [60,61]. Shannon’s entropy H(X,,) = X Pnrlog(pni) is employed,
where X,, denotes the data and p.« stands for the proportion of class k outcome in all outcomes
at node n, to measure the impurity information at node n. The DT algorithm minimizes the

function G (Qm, 0) = 4L H (Quere(9)) + 52 H ((Qrigne(0) ), where Qu, Quese, and Qrigns

represent the data at node m, the left child of node m, and the right child of m, respectively.
Nese @nd ny;qp, are the number of samples in the left child and the right child of node m,
respectively. N, is the number of samples at node m and 6 is a candidate split for the Q,,,. This
algorithm achieves most information gain at the best split 8* that minimizes G. However, using
DT can overfit the data by generating overly complex trees, resulting in failure of predictions.
Therefore, two parameters, the min_samples_leaf (the minimal number of samples at a node)
and max_depth (the maximal depth of a tree) were controlled during our ML to regularize the
size of trees to avoid overfitting.

KNN utilizes a voting mechanism by k nearest neighbors to a query sample [62,63]. In this
way, the query sample is assigned to the class with major votes among k nearest neighbors.
When the weight of voting for every nearest neighbor is the same, then KNN uses a uniform
weight. However, the voting weight is often different for every voter since the voting power of
every voter is not same. The distance weights are proportional to the inverse of distance
between training sample and query sample and are used here because the contributions of
nearer neighbors are generally more than that of farer neighbors, which is based on the
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calculation of the standard Euclidean distance [64], d(p,q) = /X~ ,(p; — q;)?, where p is a
training vector and q is the query vector. Not only does the weight of a neighbor matter, but also
the number of participating nearest neighbors. Thus, it is meaningful to control the number of
nearest neighbors for obtaining high CV accuracy, which can be adjusted by the parameter
n_neighbors.

The SVM model implements one-versus-one method for multi-class classification [65]. It is

chosen with radical basis function k(xl-,xj) = e‘V|xi‘xf|2 as the kernel function, where x; and x;
are the features of ith and jth samples, and vy is the kernel coefficient in this work. T is also an
indicator of the degree of effect of a training sample on other samples. A sample with larger y
has lower influence on other samples. Another penalty parameter C is also critical to control the
tradeoff between the overfitting and simplicity of the decision surface. A large C could increase
misclassification of samples in the training process and cause underfitting, while a small C could
improve the training accuracy but may lead to overfitting for the training samples. Hence the
appropriate parameters y and C of the SVM model should be determined to obtain reasonable
train and test outcomes.

ANN simulates the decision-making process of human mind by constructing artificial
neurons in the model [66,67], whose architecture is illustrated in Fig. 1. It usually contains an
input layer of the exploring features that are fed into separate neurons, some hidden layers
whose quantity and number of neurons are affected by the complexity of data and number of
classes, an output layer including the classified outcomes in each neuron. The input features
propagate forward to each neuron in each hidden layer with fitted weights, then the fitting values
are transformed by an activation function. The rectified linear unit activation function was
employed here. At each hidden layer, a bias is introduced and propagates with the transformed
fitting values to the next layer together. The propagating process stops till it arrives at the final
output layer. When number of neurons is too large or too small, it has a negative influence on
predictions, thus we search out the best set by using three hidden layers with the number of
neurons n4, N2, N3 in each layer ranged from 5 to 50 with an interval 5 — there are 1,000 total
combinations.

Since the effects of the initial 8 input features on phase prediction are likely very different, it
is very valuable to perform a systematic screening of the features and find those that are more
critical phase selection criteria. The forward selection is applied with a three-step procedure for
each model [36,68—70]. First step is training these features separately and creating an initial
empty feature pool. The feature with the highest CV accuracy is added to the initial pool of
features. The second step is adding next feature that increases the CV accuracy most to the
previous pool of features from remaining features until all the features are stored in the feature
pool. Therefore, a pool of features is ranked by their importance to ML models in datasets. The
last step is selecting a cutoff point from the ordered optimal pool for each ML model, where the
increase in the CV accuracy by adding a new feature to the pool becomes smaller than the
standard deviation of the CV accuracy.
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Fig. 1. The architecture of neural network with three hidden layers for classification (prediction)
of SS, AM, SS + AM, and IM phases.

3. Results and Discussion
3.1. CALPHAD results
3.1.1 Comparison between experimental data and CALPHAD predictions

We first performed unconstrained high-throughput thermodynamic calculations of the
equilibrium phases at the experimental temperature (1100 °C) for each of the 2,436 HEAs using
the Thermo-Calc software and its associated TCHEA4 thermodynamic database, and the
calculations are presented Figs. S1 and S2 in the Supplementary Information. The results are
very different from the experimental observations reported by Kube et al., including the
formation of IMs in far more alloys than experimental observations as well as the formation of
liquid in a large number of alloys. Since the liquid phase was not observed during the
experimental co-sputtering process of the combinatorial films, it is thus excluded in subsequent
thermodynamic calculations in this study. The experimental IM consists of Sigma and other
possible unidentified phases, which makes it hard to compare with thermodynamic calculations.
However, we also tried to perform constrained calculations for the 233 alloys with the IM phase
from experiments after excluding the liquid phase and it predicts 146 SS and 87 Sigma + SS
alloys, which deviates significantly from the experimental observations, as shown in Fig. S3(a)
and (b) in the Supplementary Information. The prediction of the IM formation is also beyond the
capabilities of the current TCHEA4 database, similar to the situation in Ni-based superalloys
[71], thus IMs are also excluded in further calculations; and we focused on calculating and
analyzing the phase formation of the SS alloys.
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Calculations using theTCHEA4 database predicted far more alloys with the B2 phase and
B2 associated two-phase cases (B2+FCC and BCC+B2) as well as the BCC+B2+FCC three-
phase cases than the experimental observations, as shown in Fig. 2(a). Far few single-phase
BCC alloys were predicted at the expense of forming the B2 phase in a very large number of
alloys. The TCHEA4 database calculations predicted the number of single-phase FCC alloys
close to experimental observations, but the overall consistency with experimental observations
(including all the matched predictions of BCC, B2, BCC+FCC, and B2+FCC phases) is only
28.2%. When the single-phase B2 and single-phase BCC phases are regarded as one BCC-
based single phase (BCC/B2), the agreement between the Thermo-Calc results and
experimental observations is much better and reaches 61.4%, Fig. 2(b), showing less single-
phase BCC/B2 and single-phase FCC, and more BCC/B2 + FCC two-phase cases. It is very
likely that the Thermo-Calc database TCHEA4 does not have accurate enough thermodynamic
parameters for the B2 phase whose Gibbs free energy is very close to the disordered BCC
phase and thus hard to be modeled accurately, especially for multicomponent HEAs. The
disparity between the CALPHAD predictions (representing the phases of bulk alloys) and the
sputtering experimental data may also be the results of some non-equilibrium nature of the
sputtering process [15].
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Fig. 2. Bar graphs showing the total number of HEAs with different phases: (a) B2 and BCC are
treated as separate phases in CALPHAD calculations, and (b) B2 and BCC are treated as the
same BCC-based phase (BCC/B2). The experimental data and CALPHAD predictions are
presented in blue and red bars, respectively.

Fig. 3 compares the experimental observations in the left column (a) with the CALPHAD
results in the middle column (b) by plotting the number of alloys in each category against VEC,
showing again a higher number of the computed BCC/B2 + FCC two-phase alloys than
experimental observations. The difference is also compared in Fig. 3(c), the right column,
where one can see that quite a number of the single-phase BCC/B2 alloys observed in
experiments show up as the BCC/B2 + FCC two-phase alloys — the red part of the bottom panel
of Fig. 3(c). The red part of the top panel of Fig. 3(c) represents alloys that were observed as
single-phase FCC experimentally but showed up as two-phase BCC/B2 + FCC in CALPHAD
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calculations. Only a few alloys as represented by the blue part of the middle panel of Fig. 3(c) of
the experimentally observed 2-phase (BCC/B2 + FCC) alloys were computed as single-phase
BCC/B2. Similarly, the green part of the middle panel in Fig. 3(c) represents the experimentally
observed 2-phase (BCC/B2 + FCC) alloys which were predicted to be single-phase FCC.

Fig. 3 also shows a clear trend that alloys with higher VEC prefer FCC over BCC/B2 both in
experimental observations and CALPHAD predictions. A previous study has found that the FCC
and BCC phases tend to be stable at higher VEC (> 8) and lower VEC (< 6.87), respectively
[26]. The rule of VEC < 6.87 for single-phase BCC/B2 formation holds well with respect to the
1,761 SS HEAs, as shown in Fig. 3. The VEC > 8 rule also holds well for the formation of
single-phase FCC, but at 8 < VEC < 9.16, there is also substantial alloys with BCC/B2 + FCC
two-phase structure. Only when VEC > 9.16, the single-phase FCC is formed with only a few
exceptions in the CALPHAD predictions. At VEC < 6.87 and VEC > 9.16, the predicted phase
formation is in good agreement with experimental observations, which illustrates the good ability
of CALPHAD in calculating phase equilibrium of HEAs, especially for single-phase solid solution
SPSS. Yang et al. found that more than 90% compositions have single-phase BCC structures at
5.7 <VEC =£7.2, and it has pure FCC structure at VEC > 8.4 in Al-Co-Cr-Fe-Ni system by high-
throughput calculations using CALPHAD [28]. The new rules revealed from this study and that
of Kube et al. [15] should be more reliable due to the very large number of experimental HEAs
that consist of more elements.
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Fig. 3. VEC histograms based on experimental data in (a) and CALPHAD results in (b). (c) is
plotted to show how alloys with different phases vary from experimental observations to the
CALPHAD predictions.

3.1.2. VEC, FBI, AH,,;,, 12, and § selection rules for SS alloys

The crystal structure, atomic radius, melting temperature, VEC, ¢, e/a, and electronegativity
of Al, Cr, Mn, Fe, Co, Ni, Cu in Table 2 are used to calculate those aforementioned 8
parameters for HEAs [4]. Representative 2D plots are shown in Fig. 4 in which the left-hand
side and right-hand side columns plot the experimental results and the CALPHAD results,
respectively, for comparison.

One can see from Fig. 4(a) and 4(b) that at § < 5 based the experimental data and 6 <4
based on the computed data, the FCC phase forms at higher FBI values, which is the direct
consequence of the definition of FBI, Eq. 6. For experimental data at § > 6, the FBI effect
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breaks down and almost all alloys form single-phase BCC irrespective of the FBI values,
showing the overwhelming effect of § in dictating the formation of BCC when § value is high.
This phenomenon is also verified and is more obvious in the CALPHAD calculations. Formation
of BCC/B2 over FCC with increasing size difference 6 was attributable to the lower packing
density of BCC/B2 and higher ability to accommodate atoms with different sizes than FCC
structure [15].

Table 2. Crystal structure, atomic radius r, T, VEC, @, e/a, y of each element involved in this
study (Data from Ref. [4]).

Element Structure r(A) Tm(K)  VEC @ ela ¥
Al FCC 1.4317 933 3 1 3 1.61
Cr BCC 1.2491 2180 6 -1 1 1.66
Mn Cubic 1.3500 1519 7 0 2 1.55
Fe BCC 1.2412 1811 8 -1 2 1.83
Co HCP 1.2510 1768 9 1 2 1.88
Ni FCC 1.2459 1728 10 1 2 1.91
Cu FCC 1.2780 1358 11 1 1 1.90
1.0 1.0
0.5 0.5
m m
L L
0.0 0.0
-0.5 -0.5
0 0 1 2 3 4 5 6 7
(a) (b) 6
40 ® BCC/B2 40
® BCC/B2 + FCC
20
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Fig. 4. FBI, AH,,;,, and Q versus § based on experimental data in (a) and (c); as well as
CALPHAD predictions in (b) and (d).

® BCC/B2 ° (b)
® BCC/B2+FCC
® FCC

(@)

100, 0 100 0
0 50 100 0 50 100
Cog4 4Nigg s Fel/at%
Alyg 3Crsq 7
(c) ) e BCC/B2 . (d)
® BCC/B2+FCC
® FCC

100 100
0 0
.0 50 100 0 50 100
(:()54”8Pq|45iz (:lJ/Eitgé

Fig. 5. Comparison of phase formation between experimental and computational (CALPHAD)
results in the pseudo-ternary Fe — Cos1.4Niss.s — Als2.7Crs7.3 System shown in (a) and (b) as well
as the pseudo-ternary Cu — Cos4.8Niss.2 — Alyg.3Crsi.7 system in (c) and (d).

Guo and Liu [29] found that AH,,;, and & for the formation of SS should satisfy —22 < AH,,;,
<7 kd/mol, 06 <85, and 11 < AS,,,;x < 8.5 simultaneously. Our study, covering far more alloy
compositions than those of Guo and Liu, shows that the AH,,;, range for the formation of FCC is
similar to that of Guo and Liu, but it can be expanded to —33.6kJ/mole to 17.5 kJ/mol for forming
single-phase BCC/B2, Fig. 4(c) and (d). Single-phase BCC can form at a negative AH,,;, and
larger & values, which agrees with the work of Raghaven et al [72] and Agarwal and Rao [43].

12


https://doi.org/10.1016/j.jallcom.2022.165173

This article is published as: Chuangye Wang, Wei Zhong, Ji-Cheng Zhao, “Insights on Phase Formation
from Thermodynamic Calculations and Machine Learning of 2436 Experimentally Measured High
Entropy Alloys”, Journal of Alloys and Compounds, vol. 915, 165173, 2022.
https://doi.org/10.1016/j.jallcom.2022.165173

Our results also agree with the observation of Agarwal and Rao that BCC can coexist with FCC
at a lower § and FCC preferentially forms at a negative AH,,,;,, while BCC prefer to form at a
positive AH,,,;,.. The CALPHAD results show similar trend but more pronounced separations of
the phase formation regions, Fig. 4(d). These phase selection rules are useful for predicting
alloy crystal structures and compositions, but more effective rules are still highly desired; thus
we will subsequently explore the capabilities of ML in improving the phase predictions.

3.1.3 Examples of phase formation in specific systems

Different HEA libraries cover different regions of the multicomponent HEA composition
space. The agreements between experimental and computational results can be very different.
Two examples are shown in Fig. 5 to illustrate the degree of agreements for both the Al-Cr-Co-
Ni-Fe and Al-Cr-Co-Ni-Cu systems. Fig. 5(a) and (b) show that for the compositions covered by
a pseudo-ternary Fe — Cos1.4Nisse — Als27Crs7.3 system, the agreement is good except for a
smaller single-phase FCC region and slightly larger BCC/B2 + FCC two-phase region from
CALPHAD. Much pronounced difference was observed in Fig. 5(c) and (d) for the compositions
covered by the pseudo-ternary Cu — Cos4 sNiss2 — Alsg 3Crs17 system. Such comparisons may
also help identify the specific systems where CALPHAD assessments need to be improved.

3.2 Machine learning results

Two groups of datasets are analyzed using ML, one is the SS only dataset with 1,761 HEAs,
the other is the full dataset with 2,436 HEAs. Similar to the analysis using CALPHAD, the SS is
divided into three categories, BCC/B2, BCC/B2 + FCC, FCC, which are the targets of the ML
models. The predictions from ML in the SS dataset are further compared with the experimental
observations. The full dataset is classified into four classes, SS, AM, SS + AM, and IM as the
output of the ML models. It is noted that IM is used here to refer to alloys with an intermetallic
compound (mostly the o phase) identified from XRD and some alloys contain additional phases
in addition to IM. The ML models are optimized by adjusting their parameters first. Then the best
feature sets are screened by their contributions towards improving the CV accuracy of
predictions for each ML model, which provides information for the relative importance among
these input features.

3.2.1 ML for classifying BCC/B2, BCC/B2 + FCC, FCC phases

Before training the ML model and making predictions, it is important to look into the
correlation among these features because adding collinear features will not provide more
valuable information and will increase the time cost of training and could even degrade the
performance of the models. The Pearson correlation coefficient is used for the quantitative
assessment of the correlation between any pair of features, and it is calculated with the
following formula,

I » F{CTE ol TE))
YL G -0 G- 9)?
where x, y are the two variables/features, x; and y; are the x and y values of ith sample, x and

y are the mean values of x and y, and n is the sample size of both x and y [73]. Using this
formula, the correlation between any pair of features is shown in Fig. 6, indicating that all input
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features can be kept and further used in the ML models since there is no high correlation
coefficient between any two features.

0.9
VEC
6 -0.452 0.6
B 0.3
FBI - -0.091 -0.034 0.386
-0.0
ASpmix - 0.004 0.131 -0.011
Q- -0.452 -0.091 0.064 -—0.3
Ay 0.034 0.131
e/a- 0.386 -0.011

VEC 6 ODHmx FBI ASmx Q Ay ela

Fig. 6. The heat-map of the correlation matrix between any pair of features. The value at each
cell is the calculated coefficient.

The ML models can be modified by tuning parameters and then judged by the CV accuracy.
Here, the grid search method was employed to adjust parameters for each model with all the
eight features, and the optimized results are shown in Fig. 7. The max_depth is identified as the
main factor in determining the quality of the DT model and the min_samples_leaf has negligible
effect, Fig. 7(a). The CV accuracy of the DT model reaches highest when max_depth is 10 and
stay stable after 10; thus min_samples_leaf = 2 and max_depth = 10 were selected for the final
DT model. The n_neighbors = 2 is best for the KNN model in Fig. 7(b). For SVM, a parameter
setof y = 10? and C = 29 is created, where —6 < p < 4and 1 < q < 10. Both y and C affect the
accuracy of the SVM model, and both cannot be too large or too small; otherwise, they would
lead to inefficiency. The pair of y = 0.01 and C = 64 (p = -2, q = 6) achieved a high CV accuracy
from the parameter sets, Fig. 7(c). The neural network was built with three hidden layers that
contain n4, n2, N3 neurons in each hidden layer, and the corresponding CV result is shown in
Fig. 7(d). For each third hidden layer with neurons changing from 5 to 50 (interval 5), the
combination of three layers’ neurons with highest CV accuracy is marked in black dot, so there
are 10 highest CV accuracies shown in 10 black dots. Finally, the combination ns = 35, n2 = 25,
ns = 10 is chosen from these 10 CV accuracies.
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Fig. 7. The grid search method for tuning input parameters to obtain the high CV accuracy in
each ML model: (a) DT, (b) KNN, (c) SVM, (d) ANN, respectively.

The results of feature selections for the four ML models are shown in Fig. 8. The CV
accuracy increases rapidly first, then stays stable, and finally decreases when more input
features are employed for the ML models, Fig. 8(a), indicating that more features are not always
helpful in ML because they could lead to overfitting in the training process and decreasing CV
test accuracy. The order of precedence of the features in each ML model are shown in Fig.
8(b), and the best feature sets for different ML models are colored for easier visualization. The
{VEC, AH,,;y, €/a, 8} set is the best features for the DT model, which renders a 91.4% CV
accuracy. Adding other features does not improve the performance of learning. The {VEC, §,
FBI, e/a}, and { VEC, AH,,;,, e/a, 8§, ASix}, {VEC, AH,,;, €/a, §, AS,ix} sets are the best three
feature combinations for KNN, SVM, and ANN, which achieves 93.1%, 90.2%, and 89.1% CV
accuracy, respectively. In all four feature sets, the VEC feature owns the highest order of
precedence, thus is the most influential among these eight features in determining SS
formation. It is noted that the CV accuracy obtained by using only VEC feature is comparable to
or even better than the prediction accuracy from CALPHAD; and the CV accuracy is higher than
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85% after training with the first three best features in each ML model, showing advantages of
phase predictions over current state of thermodynamic calculations. The other features that are
helpful for enhancing prediction accuracies are AH,,;,, ela, 6. The two worst features are Q and
Ay that degrade the performance of the ML models in predicting SS formation. Li and Guo also
found that VEC is the most important feature in classifying BCC, FCC, and NSP (not forming
SPSS) with the SVM model and the CV accuracy reaches 90.7% under the input of {VEC, §, T,
AH i, AShix} feature set [68]. A study by Zeng et al. explored >300,000 phase equilibrium
generated by CALPHAD calculations in 3 classes (single-phase FCC, single-phase BCC, and
other phases) using XGBoost [48]. They achieved > 99% accuracy on both the training set and
the test set and predicted 155 experimental phases with 81% accuracy through the selection of
5 most important features {equilibrium temperature, average atomic radius, VEC difference,
VEC, Ayx}. A feature set of 13 top-ranked features was screened in classifying BCC, FCC, and
BCC + FCC by Machaka, and VEC was found to have the highest relative importance [49]. His
models can reach 97.5%, 95.8%, 94.35%, and 94.0% using random forest (RF), SVM, KNN,
and ANN, which is slightly higher than the current study possibly due to the larger set of
features used in his study. Zhang et al. utilized a genetic algorithm with ANN and also found that
the VEC criterion is important in classifying BCC, FCC, and dual-phase HEAs [70]. Their
classification accuracy achieved 91.3% with a feature set containing VEC, the core electron
distance, Ay, the mismatch in compression modulus. Their CV accuracy is comparable to ours
in ANN learning. Overall, the accuracy could reach higher than 89% for these four models,
making the application of ML in phase prediction significant.

0% DT KNN SVM ANN
0.90 VEC VEC VEC
- 0.85 AHix o) AHnmix
§ 0.80 e/a FBI e/a
5
S 0751 6 e/a 1)
rU .
5 0.70 FBI Oy ASmix
0.65 1 Ax ASpix AV FBI
Q AHmy  |FBI A
0.60 A
T r . . . . . . ASmix Q Q Q
1 2 3 4 5 6 7 8
(a) number of features (b)

Fig. 8. (a) Feature selection process to increase the CV accuracy in each ML model for
classifying the BCC/B2, BCC/B2 + FCC, FCC phases of the solid-solution only compositions. (b)
Corresponding features based on the order of precedence from top to bottom after each
selection step. The colored features are the best sets that achieve the performance of the ML
models.

Since ML has found both VEC and AH,,,;, are the two most significant features to predict the
SS phases, VEC-vs-AH,,;, plots are made based on experimental results in Fig. 9(a) and SVM
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ML predictions in Fig. 9(b). All alloys with BCC/B2 + FCC two phases are located in the shading
red region in Fig. 9(a). Towards the left side of this region is single-phase BCC/B2 and single-
phase FCC on the right side. By counting the correct phases predicted by this division strategy,
the accuracy is 67.1% in Fig. 9(a), which is much more efficient than relying on the VEC only
(VEC < 6.87 for BCC/B2 and VEC > 9.16 for FCC). The colored areas in Fig. 9(b) are the
predicted phases by SVM, and the boundaries for classification are curves rather than straight
lines. When experimental data points are in the area with same color, then the predictions for
phases agree with experiments (Note some of the red color points are outside the red region).
The CV accuracy achieves 81.9% by SVM based on VEC and AH,,;,, exhibiting the advantages
of ML in predicting right phases over traditional strategies. We also used the ML models to
study the classification on BCC, B2, FCC, BCC + FCC, and B2 + FCC phases (having B2 and
BCC separately) and found that VEC is still the most important feature in every ML model as
shown in Fig. S6 in the Supplementary Information.

The VEC-vs-AH,,;, plots are far more accurate in predicting the single-phase BCC/B2 and
single-phase FCC solid solutions without considering the BCC/B2 + FCC two-phase alloys, as
shown in Fig. 9(c) and (d). Even a simple plot of experimental data only, a simple straight line of
AH,;, = 28.97 X VEC — 246.77 can achieve 96.2% accuracy, which is simply remarkable, Fig.
9(c). The CV accuracy of 96.4%, 97.0%, 97.4%, and 96.5% is achieved for DT, KNN, SVM, and
ANN, respectively, not significantly better than the predicted results determined by the straight
line, Fig. 9(d) which shows SVM results only. Even though the simply plots of experimental data
achieve excellent abilities to predict the right phases, it is ML that helps identify these two key
parameters for the plots.
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Fig. 9. VEC vs AH,,;, plots for SS data in (a) and (b), and SPSS data in (c) and (d),
respectively. The experimental data are plotted in circle points and predictions by SVM are
plotted in colored area in (b) and (d), where the blue, red, and green area manifests predicted
BCC/B2, BCC/B2 + FCC, and FCC phases, respectively. The p value refers to the prediction
accuracy in (a) and (c), and the CV accuracy in (b) and (d).

With these well-trained models, we applied them to predict the selected alloy systems
(containing 13 elements) that were tested in the study of Zeng et al. [49]. The compositions,
experimentally determined phases, and ML-predicted phases are shown in the Supplementary
Information Table S1. ANN beats other ML models with highest overall prediction accuracy
81.8%, demonstrating the feasibility of using trained ANN with thin-film data to predict the phase
formation of bulk alloys. The CALPHAD prediction accuracy is 78.8% without a constrained limit
and 86.4% with constrained input of only BCC and FCC phases. The prediction accuracy of
ANN lies in between the two CALPHAD predictions, exhibiting a comparable prediction ability of
ANN with CALPHAD. There is an advantage of using ANN over CALPHAD in predicting the
phase equilibria of bulk alloys whose elements are not available in the TCHEA4 or other HEA
CALPHAD database.

3.2.2 ML for classification of SS, AM, SS + AM, and IM phases

In addition to analyzing the classification of SS into BCC/B2, BCC/B2 + FCC, and FCC, ML
was applied to distinguish SS from other phases, such as AM, SS + AM, and IM. Such
information is very beneficial for the design of new materials, especially when it is necessary to
avoid the additional phases. The ML process of tuning parameters for SS, AM, SS + AM, IM
phases are the same as that for the SS process in the above discussions and the corresponding
plots are presented in Fig. S4 in the Supplementary Information. The best conditions are
min_samples_leaf = 2 and max_depth = 10 for the DT model, n_neighbors = 4 for KNN, y =
0.01 and € = 256 for SVM, and ny = 50, nz = 15, n3 = 35 for ANN. The feature selection process
and the corresponding CV accuracy values are shown in Fig. 10.

—=— DT DT KNN SVM ANN
0.95 4
—e— KNN Ay Ay Ax
—— SUM
. 0.90] ANN FBI FBI FBI
§ AHmi>< e/a AHmix
3 %] ; VEC VEC VEC
&)
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070 e/a Q (@) Q
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(a) number of features (b)

Fig. 10. (a) Feature selection process measured by the CV accuracy in each ML model for
predicting SS, AM, SS+AM, and IM. (b) Corresponding features based on the order of
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precedence from top to bottom after each selection step. The colored features are the best sets
that achieve the performance of the ML models.

The best four feature sets are {Ax, FBI, AH,,;,, VEC}, { Ax, FBI, e/a, VEC, §, AS,,i.}, { Ax,
FBI, AH,,ix, VEC, 6, ASpnix 3, { Ax, FBI, AH,,;,, 6} with a CV accuracy of 93.6%, 93.3%, 95.5%,
92.7% for DT, KNN, SVM, ANN, respectively. The CV accuracies of these ML models are very
high and very close to one another. The two best features for predicting the phases here are Ay
and FBI, which is different with VEC as the best feature in classifying BCC/B2, BCC/B2 + FCC,
and FCC phases. Islam et al. found that VEC and AS,,,;, are the most and the least important
features respectively in classifying AM, SS, and IM, by performing singular value decomposition
on the weight matrix in the first hidden layer of ANN [39]. Our results also show the positive
effect of VEC in helping classify phases, but it is not the most important feature. The VEC
feature has the fourth priority in the feature set of DT, KNN, and SVM. It can also be seen that Q
is not helpful in predictions in both the full dataset and SS dataset from Fig. 10(b) since it
decreases the CV accuracy when it is added into the input features. To separate SS and IM,
King et al. proposed a new parameter & related to mixing enthalpy of both SS and IM by means
of Miedema’s model [74]. They found that & > 1 favors SS and almost all IM forms when ® < 1,
which forecasts more accurately than using Q. Zhou et al. reported that their trained ANN,
convolutional neural network (CNN), and SVM can reach around 95% accuracy with 13 features
and reach around 89% with 4 features {AS,,ix, 8, AHp,ix, Ax} in predicting AM, IM, and SS. The 4
top-ranked features they selected are amongst our selected feature sets. The CV accuracy with
only Ax and FBI as the two input features can reach more than 80% for the four ML models,
which motivates us explore the Ax-vs-FBI plot as a potential useful phase selection rule.

In the Ax-vs-FBI plot shown in Fig. 11, all amorphous alloys are in the purple shading area,
where —0.065 < FBI < 0.5 and 0.13 < Ay < 0.165. All intermetallics with only one exception are
in the black shading area, in which FBI < 0.015 and Ax = 0.09. These two shading areas only
have a small, overlapped area of which the most SS alloys form in the lower right area.
Therefore, these two areas could be used as phase selection rules for screening amorphous
alloys and intermetallics, respectively. The ML methods are also applied to classify BCC, B2,
FCC, BCC+FCC, B2+FCC, BCC+AM, FCC+AM, BCC+FCC+AM, AM, and IM phases (having
B2 and BCC separately) and FBI and & are found to be the two best features in improving the
CV accuracies rather than Ay and FBI as shown in Fig. S8. The corresponding FBI-vs-§ plot is
shown in Fig. 89 in the Supplementary Information.

4. Conclusions

High-throughput CALPHAD calculations were performed on 2,436 experimental HEAs and
compared the results with experimental observations. Both CALPHAD predictions and
experimental results show that alloys prefer BCC/B2 over FCC at larger atomic size difference
which is understandable since BCC is less constrained than FCC, and alloys tend to form FCC
structure at higher FBI, negative AH,,;,., and small . Alloys exhibit single-phase BCC/B2 at VEC
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< 6.87 and FCC at VEC > 9.16, which agrees with prior findings for BCC/B2, but the range has
been expanded beyond VEC > 8 for FCC as reported in the literature.

Four ML models were applied to two different datasets, one with the 1,761 solid solution
only HEA compositions and the other with the entire 2,436 HEAs with alloys with form
amorphous (AM) and/or intermetallic compounds (IMs). The best feature sets were identified
using the five-fold cross validation method and achieve 91.4%, 93.1%, 90.2%, 89.1% for
classifying BCC/B2, BCC/B2 + FCC, FCC with DT, KNN, SVM, and ANN models, respectively.
These trained models were applied on predicting the phase structures of 66 selected bulk
alloys, and the ANN model achieved 81.8% prediction accuracy, which is comparable to
CALPHAD predictions. For classification of SS, AM, SS + AM, IM phases, the CV accuracy can
reach 93.6%, 93.3%, 95.5%, and 92.7% in DT, KNN, SVM, and ANN models, respectively. The
CV accuracies for both datasets are very high, which shows the effectiveness of ML in phase
predictions of HEAs. In the ranked feature sets, VEC is identified as the most important feature
in determining phase formation of SS. ML identified both AH,,;, and VEC as two dominating
factors for predicting the solid solution phase; and based on this learning, a simple straight line
of AH,,;,, = 28.97 X VEC — 246.77 was found to be able to predict single-phase BCC/B2 and
single-phase FCC at 96.2% accuracy, which is simply remarkable, Fig. 8(c).
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Fig. 11. FBI-vs-Ay plot for identification of SS, AM, SS+AM, and IM. Most IM-containing alloys
are in the black shading area in the left-hand side with only one exception.

Both Ay and FBI are the two best features that improve the performance of ML models in
predicting the formation of SS, AM, SS + AM, and IM phases. In the Ax-vs-FBI plot shown in
Fig. 10, all amorphous alloys are in the purple shading area, where —0.065 < FBI < 0.5 and
0.13 < Ax = 0.165. All intermetallic-containing alloys with only one exception are in the black
shading area, in which FBI < 0.015 and Ay = 0.09. All these phase selection rules will be very
valuable for future design of advanced HEAs for challenging applications.
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