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Abstract 

Both CALPHAD (CALculation of PHAse Diagrams) and machine-learning (ML) approaches 
were employed to analyze the phase formation in 2,436 experimentally measured high entropy 
alloy (HEA) compositions consisting of various quinary mixtures of Al, Co, Cr, Cu, Fe, Mn, and 
Ni. CALPHAD was found to have good capabilities in predicting the BCC/B2 and FCC phase 
formation for the 1,761 solid-solution-only compositions, excluding HEAs containing an 
amorphous phase (AM) or/and intermetallic compound (IM). Phase selection rules were 
examined systematically using several parameters and it revealed that valency electron 
concentration (VEC) < 6.87 and VEC > 9.16 are the conditions for the formation of single-phase 
BCC/B2 and FCC, respectively; and CALPHAD could predict this with essentially 100% 
accuracy. Both CALPHAD predictions and experimental observations show that more BCC/B2 
alloys are formed over FCC alloys as the atomic size difference between the elements 
increases. Four machine learning (ML) algorithms, decision tree (DT), k-nearest neighbor 
(KNN), support vector machine (SVM), and artificial neural network (ANN), were employed to 
study the phase selection rules for two different datasets, one consisting of 1,761 solid-solution 
(SS) HEAs without AM and/or IM phases, and the other set consisting of all the 2,436 HEA 
compositions. Cross validation (CV) was performed to optimize the ML models and the CV 
accuracies are found to be 91.4%, 93.1%, 90.2%, 89.1% for DT, KNN, SVM, and ANN 
respectively in predicting the formation of BCC/B2, BCC/B2 + FCC, and FCC; and 93.6%, 
93.3%, 95.5%, 92.7% for DT, KNN, SVM, and ANN respectively in predicting SS, AM, SS + AM, 
and IM phases. Sixty-six experimental bulk alloys with SS structures are predicted with trained 
ANN model, and the accuracy reaches 81.8%. VEC is found to be most important parameter in 
phase prediction for BCC/B2, BCC/B2 + FCC, and FCC phases. Electronegativity difference 
and FCC-BCC-index (FBI) are the two additional dominating features in determining the 
formation of SS, AM, SS + AM, and IM. A separation line Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 28.97 × 𝑉𝑉𝑉𝑉𝑉𝑉 − 246.77 was 
found in the VEC-vs-Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 plot to predict the formation of single-phase BCC/B2 or FCC with a 
96.2% accuracy (Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = mixing enthalpy). These insights will be very valuable for designing 
HEAs with targeted crystal structures.  
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1. Introduction 

High entropy alloys (HEAs) typically consist of four or more principal elements with 
concentration between 5 and 35 at.% [1–10] in contrast to traditional alloys such as copper, 
iron, magnesium and aluminum alloys with low concentrations of other alloying elements. HEAs 
open up vast composition spaces for designing and discovering new alloys for ever-increasing 
demands of new materials for energy, environment, and human well-beings.  

There are many experimental methods for preparation of HEAs, including mechanical 
alloying, induction melting, vacuum arc melting, vapor deposition method, and sputtering 
[3,5,11–15]. To accelerate the discovery of novel and advanced materials, the CALculation of 
PHAse Diagrams (CALPHAD) approach has often been employed to predict and investigate 
phase formation of HEAs [16–24].  In addition to CALPHAD, phase selection rules were 
developed by various research groups to help predict phases of HEAs via studying the existing 
experimental data. Such empirical rules are built by presenting the formation of phases in one-
dimensional histograms or two-dimensional plots whose axes are usually thermodynamic and 
physical parameters. For instance, the Hume-Rothery rules depict the effects of atomic size 
ratio and electrochemical properties on solid solution (SS) formation [25]. Guo et al. revealed 
that single-phase FCC forms at valency electron concentration (VEC) > 8 and single-phase 
BCC forms at VEC < 6.87, while Jiang’s work added some constraints based on their designed 
alloys and indicated that this formation rule applies under the conditions of Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 > 12.47, 
7.27kJ/mol < Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 < 4 kJ/mol, and δ < 4.27%, where Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, and δ are the mixing 
entropy, mixing enthalpy, and difference in atomic sizes, respectively [26,27]. Recently, Yang et 
al. developed a new VEC selection rule for predicting SS phases based on high-throughput 
CALPHAD calculations in the Al-Co-Cr-Fe-Ni system [28]. Other parameters such as -22 
≤ Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 7 kJ/mol,  0 ≤ δ ≤ 8.5, and 11 ≤ Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 19.5 kJ/mol are found to be conditions for the 
formation of SS [29]. According to the evaluation of Senkov et al. over 130,000 alloys, the 
increasing number of alloying elements in a system beyond 3 results in a reduced likelihood of 
occurrence of SS [30]. Inoue summarized the conditions to form bulk metallic glasses (BMGs) in 
terms of the number of elements, atomic size ratios, and mixing heat of atomic pairs [31]. Both 
Ω ≥ 1.1 and δ ≤ 6.6% were shown by Yang and Zhang to be conditions for the formation of SS 
phases, and BMGs form in regions of smaller Ω and larger δ as compared to HEAs, where Ω is 
a parameter related to the Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, and melting temperature (𝑇𝑇𝑚𝑚) of constituent elements 
[32]. A single dimensionless thermodynamic parameter ϕ which is correlated with Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, 
𝑇𝑇𝑚𝑚, and excessive entropy was defined and HEAs were found to be single-phase SS (SPSS) at 
ϕ > 20 based on the analysis of nearly 50 types of HEAs [33]. All these phase selection rules 
can be used to guide future design of HEAs; however, most of the rules were developed from 
small experimental datasets. Li and Tsai collected 100 selected HEAs from the literature and 
assessed the accuracies of 8 published formation rules; they found that the overall accuracy is 
only ~ 72% in predicting SPSSs and intermetallics (IM) [34]. Therefore, it is highly desirable to 
test and expand these rules using very large, consistent datasets.  

Machine learning (ML) holds great promise for future materials design and discovery 
[35,36]. Unlike CALPHAD that was built upon semi-empirical physical models, ML makes 
prediction using data-driven strategies with unique algorithms [6,37,38] that learn from training 
datasets with input patterns and a optimization target, and then extract the implicit insights 
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hidden in the datasets. For phase prediction using ML, the properties of alloys or constituent 
atoms will be taken as input features, and the crystal structures of the phases are the 
corresponding targets. Since ML can explore different features simultaneously, it is able to 
overcome the limitations of traditional strategies in studying phase selection rules [39–41]. For 
example, phase selection rules was explored via support vector machine (SVM) and artificial 
neural network (ANN) on two separate group of features - compositions of HEAs and physical 
parameters of HEAs, respectively, and showed that the accuracies of learning obtained from 
these two groups of input features are similar and high for HEAs when 4 or 5 physical 
parameters were employed [42,43]. The Gaussian process statistical analysis was performed 
on 322 alloys based on a combination of 9 physical parameters, which provided a robust 
predictions for the formation of SPSSs [44]. Krishna et al. utilized six ML approaches with 5 
input features to study the classification of SS and SS + IM with a dataset of 636 compositions, 
and they found that the trained ANN reached 80% prediction accuracy and can correctly predict 
the crystal structures of newly designed alloys [45]. Zhao et al. recently studied 3 categories 
(SS, IM, SS + IM) using five ML models and achieved 87% prediction accuracy through ANN 
with 5 selected features [46]. Pei et al. put forward a new parameter λ related to bulk modulus, 
melting temperature, volume, and configurational entropy with the help of performing ML and 
found that SPSS forms at λ ≥ 1 with 73% accuracy and it can increase to 81% with a constraint 
of δ ≤ 6%. They further applied their new formation rule to new compositions that are SPSSs 
predicted by CALPHAD and the consistency reached 94% [47]. In addition to studying phase 
formation separately, a recent study applied the eXtreme Gradient Boosting (XGBoost) model to 
explore > 300,000 equilibrium data of HEAs generated by CALPHAD calculations, and built 
more comprehensive and superior phase selection rules for single-phase FCC and BCC based 
on the 5 ML-selected features [48]. Machaka applied 6 ML models to 896 SPSSs and 101 dual-
phase SSs and did feature selection using 36 dataset features [49]. The accuracy reaches 95% 
with the top-most identified 13 features. Zhang et al used a model of SVM combined Kernel 
Principal Component Analysis to classify a dataset of 556 entries including SS, amorphous 
(AM), the mixture of SS and IM, and IM, and obtained 97% accuracy with 4 selected features 
[50]. Zhou et al. performed various experiments on the (FeCrNi)10-x(ZrCu)x system to verify the 
ability of the trained ML models, and they achieved good agreements for bulk alloys made by 
arc melting and ribbon samples through vacuum melt spinning. The thin films made via co-
sputtering presented a transition from a crystalline to amorphous structure as x in (FeCrNi)10-

x(ZrCu)x increases, which is consistent with their ML predictions [51]. 

Table 1. Summary of experimental alloys classified by the phases [15]. 

Phase Number 
BCC 604 
B2 158 
FCC 553 
BCC + FCC 441 
B2 + FCC 5 
BCC + Amorphous 71 
FCC + Amorphous 145 
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Experimental data of 2,436 quinary HEAs with different mixtures of Al, Cr, Mn, Fe, Co, Ni, 
Cu from Kube et al. [15] were employed in this study to perform a more extensive test of 
CALPHAD predictions and ML capabilities. The phase categories and their corresponding 
numbers of alloys are listed in Table 1. CALPHAD was utilized to calculate the phase 
equilibrium of 1,761 SS HEAs from a full dataset of 2,436 HEAs, and the CALPHAD predictions 
were analyzed and compared with experimental data. Phase selection rules based on different 
parameters were also investigated using both traditional methods and ML models. 

 

2. Methods 

2.1 CALPHAD calculations 

A program is written to predict the phase equilibrium of the 1,761 SS alloys using TC-
Python, a python language-based software development kit (SDK) that allows Thermo-Calc to 
perform high throughput calculations. The computation settings were: TCHEA4 database, only 
BCC and FCC phases were entered (explained in the Results section), and 1100 °C which is 
the temperature at which all high-throughput thin film libraries were made. 

2.2 Parameters for phase selection 

Eight parameters are selected for studying the phase selection rules among 2,436 alloys:  
the mixing entropy (Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚), the mixing enthalpy (Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚), atomic size difference (δ) [52], Ω that 
links mixing entropy, mixing enthalpy and melting temperature [32,53], valence electron 
concentration (VEC) [25,26], the FCC-BCC-index (FBI) [15], number of itinerant electrons (e/a) 
[25,54], and the difference in Pauling electronegativity Δχ [4,55]. These parameters are defined 
as followings. 

Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑅𝑅∑ 𝑐𝑐𝑖𝑖𝑙𝑙𝑙𝑙𝑐𝑐𝑖𝑖𝑁𝑁
𝑖𝑖=1  ,         (1) 

Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ Ω𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1,𝑖𝑖≠𝑗𝑗 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗 ,       (2) 

δ = 100�∑ 𝑐𝑐𝑖𝑖(1 − 𝑟𝑟𝑖𝑖/𝑟̅𝑟)2𝑛𝑛
𝑖𝑖=1  ,  (3) 

Ω = 𝑇𝑇𝑚𝑚Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
|Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚|  ,                          (4) 

𝑉𝑉𝑉𝑉𝑉𝑉 = ∑ 𝑐𝑐𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  ,                   (5) 

𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖 φ𝑖𝑖 ,                       (6) 

𝑒𝑒/𝑎𝑎 = ∑ 𝑐𝑐𝑖𝑖(𝑒𝑒/𝑎𝑎)𝑖𝑖𝑁𝑁
𝑖𝑖=1  ,              (7) 

BCC + FCC + Amorphous 34 
Amorphous 192 
Intermetallic compound (σ and/or more) 233 
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Δχ = �∑ 𝑐𝑐𝑖𝑖(χ𝑖𝑖 − χ�)2𝑁𝑁
𝑖𝑖=1  ,         (8) 

where 𝑐𝑐𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑉𝑉𝑉𝑉𝐶𝐶𝑖𝑖, (𝑒𝑒/𝑎𝑎)𝑖𝑖, 𝜒𝜒𝑖𝑖, 𝑟̅𝑟(= ∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑟𝑟𝑖𝑖), χ�(= ∑ 𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1 χ𝑖𝑖) are the mole fraction, atomic radius, 
valency electron concentration, number of itinerant electrons, electronegativity of element 𝑖𝑖, 
average atomic radius, average electronegativity of an alloy. N is the number of elements in an 
alloy system, and R is the gas constant. Ω𝑖𝑖𝑖𝑖(= 4ΔH𝑚𝑚𝑚𝑚𝑚𝑚

𝐴𝐴𝐴𝐴 ) is the regular solution interaction 
parameter between elements 𝑖𝑖 and 𝑗𝑗 [56], and ΔH𝑚𝑚𝑚𝑚𝑚𝑚

𝐴𝐴𝐴𝐴  is the mixing enthalpy of A-B binary liquid 
alloys whose values can be found in Refs. [57,58]. 𝑇𝑇𝑚𝑚 = ∑ 𝑐𝑐𝑖𝑖(𝑇𝑇𝑚𝑚)𝑖𝑖𝑛𝑛

𝑖𝑖=1 , where (𝑇𝑇𝑚𝑚)𝑖𝑖 is the melting 
point of element 𝑖𝑖. Φ𝑖𝑖 is +1 for element 𝑖𝑖 with either the FCC or HCP crystal structure, and φ𝑖𝑖 is -
1 for elements 𝑖𝑖 with the BCC crystal structure.   

2.3 Machine learning 

With these eight parameters as input features, four supervised ML algorithms, decision tree 
(DT), k-nearest neighbor (KNN), SVM, and ANN were employed to predict the phase formation 
of the HEAs. These four algorithms are implemented using the scikit-learn package, a machine 
learning library in python [59]. Each algorithm has different tuning parameters that are used to 
adjust the training model. Five-fold cross-validation (CV) was employed to judge the 
performance of predictions, which can avoid the overfitting and underfitting phenomena in ML. 
The dataset is split randomly into five disjoint subsets with nearly the same size. The models 
were trained with 4 subsets and tested 5 times with the remaining subset. The 5-fold CV 
accuracy is the average of the 5 test accuracies, which is called CV accuracy for simplicity 
throughout this article.    

The DT model divides the data at each parent node into the left child node and the right 
child node in a binary tree [60,61]. Shannon’s entropy 𝐻𝐻(𝑋𝑋𝑛𝑛) = ∑ 𝑝𝑝𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑛𝑛𝑛𝑛)𝑘𝑘  is employed, 
where 𝑋𝑋𝑛𝑛 denotes the data and pnk stands for the proportion of class k outcome in all outcomes 
at node n, to measure the impurity information at node n. The DT algorithm minimizes the 
function 𝐺𝐺(𝑄𝑄𝑚𝑚, θ) = 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑚𝑚
𝐻𝐻 �𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(θ)� + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡

𝑁𝑁𝑚𝑚
𝐻𝐻 �𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(θ)�, where 𝑄𝑄𝑚𝑚, 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 

represent the data at node m, the left child of node m, and the right child of m, respectively. 
𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 are the number of samples in the left child and the right child of node m, 
respectively. 𝑁𝑁𝑚𝑚 is the number of samples at node m and θ is a candidate split for the 𝑄𝑄𝑚𝑚. This 
algorithm achieves most information gain at the best split θ∗ that minimizes G. However, using 
DT can overfit the data by generating overly complex trees, resulting in failure of predictions. 
Therefore, two parameters, the min_samples_leaf (the minimal number of samples at a node) 
and max_depth (the maximal depth of a tree) were controlled during our ML to regularize the 
size of trees to avoid overfitting. 

KNN utilizes a voting mechanism by k nearest neighbors to a query sample [62,63]. In this 
way, the query sample is assigned to the class with major votes among k nearest neighbors. 
When the weight of voting for every nearest neighbor is the same, then KNN uses a uniform 
weight. However, the voting weight is often different for every voter since the voting power of 
every voter is not same. The distance weights are proportional to the inverse of distance 
between training sample and query sample and are used here because the contributions of 
nearer neighbors are generally more than that of farer neighbors, which is based on the 
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calculation of the standard Euclidean distance [64], 𝑑𝑑(𝑝𝑝, 𝑞𝑞) = �∑ (𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 , where 𝑝𝑝 is a 

training vector and 𝑞𝑞 is the query vector. Not only does the weight of a neighbor matter, but also 
the number of participating nearest neighbors. Thus, it is meaningful to control the number of 
nearest neighbors for obtaining high CV accuracy, which can be adjusted by the parameter 
n_neighbors.  

The SVM model implements one-versus-one method for multi-class classification [65]. It is 
chosen with radical basis function 𝑘𝑘�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = 𝑒𝑒−γ�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2
 as the kernel function, where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 

are the features of 𝑖𝑖th and 𝑗𝑗th samples, and γ is the kernel coefficient in this work. Γ is also an 
indicator of the degree of effect of a training sample on other samples. A sample with larger γ 
has lower influence on other samples. Another penalty parameter C is also critical to control the 
tradeoff between the overfitting and simplicity of the decision surface. A large C could increase 
misclassification of samples in the training process and cause underfitting, while a small C could 
improve the training accuracy but may lead to overfitting for the training samples. Hence the 
appropriate parameters γ and C of the SVM model should be determined to obtain reasonable 
train and test outcomes.   

ANN simulates the decision-making process of human mind by constructing artificial 
neurons in the model [66,67], whose architecture is illustrated in Fig. 1. It usually contains an 
input layer of the exploring features that are fed into separate neurons, some hidden layers 
whose quantity and number of neurons are affected by the complexity of data and number of 
classes, an output layer including the classified outcomes in each neuron. The input features 
propagate forward to each neuron in each hidden layer with fitted weights, then the fitting values 
are transformed by an activation function. The rectified linear unit activation function was 
employed here. At each hidden layer, a bias is introduced and propagates with the transformed 
fitting values to the next layer together. The propagating process stops till it arrives at the final 
output layer. When number of neurons is too large or too small, it has a negative influence on 
predictions, thus we search out the best set by using three hidden layers with the number of 
neurons n1, n2, n3 in each layer ranged from 5 to 50 with an interval 5 – there are 1,000 total 
combinations. 

Since the effects of the initial 8 input features on phase prediction are likely very different, it 
is very valuable to perform a systematic screening of the features and find those that are more 
critical phase selection criteria. The forward selection is applied with a three-step procedure for 
each model [36,68–70]. First step is training these features separately and creating an initial 
empty feature pool. The feature with the highest CV accuracy is added to the initial pool of 
features. The second step is adding next feature that increases the CV accuracy most to the 
previous pool of features from remaining features until all the features are stored in the feature 
pool. Therefore, a pool of features is ranked by their importance to ML models in datasets. The 
last step is selecting a cutoff point from the ordered optimal pool for each ML model, where the 
increase in the CV accuracy by adding a new feature to the pool becomes smaller than the 
standard deviation of the CV accuracy. 
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Fig. 1. The architecture of neural network with three hidden layers for classification (prediction) 
of SS, AM, SS + AM, and IM phases. 

 

3. Results and Discussion 

3.1. CALPHAD results 

3.1.1 Comparison between experimental data and CALPHAD predictions  

We first performed unconstrained high-throughput thermodynamic calculations of the 
equilibrium phases at the experimental temperature (1100 °C) for each of the 2,436 HEAs using 
the Thermo-Calc software and its associated TCHEA4 thermodynamic database, and the 
calculations are presented Figs. S1 and S2 in the Supplementary Information. The results are 
very different from the experimental observations reported by Kube et al., including the 
formation of IMs in far more alloys than experimental observations as well as the formation of 
liquid in a large number of alloys. Since the liquid phase was not observed during the 
experimental co-sputtering process of the combinatorial films, it is thus excluded in subsequent 
thermodynamic calculations in this study. The experimental IM consists of Sigma and other 
possible unidentified phases, which makes it hard to compare with thermodynamic calculations. 
However, we also tried to perform constrained calculations for the 233 alloys with the IM phase 
from experiments after excluding the liquid phase and it predicts 146 SS and 87 Sigma + SS 
alloys, which deviates significantly from the experimental observations, as shown in Fig. S3(a) 
and (b) in the Supplementary Information. The prediction of the IM formation is also beyond the 
capabilities of the current TCHEA4 database, similar to the situation in Ni-based superalloys 
[71], thus IMs are also excluded in further calculations; and we focused on calculating and 
analyzing the phase formation of the SS alloys. 
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 Calculations using theTCHEA4 database predicted far more alloys with the B2 phase and 
B2 associated two-phase cases (B2+FCC and BCC+B2) as well as the BCC+B2+FCC three-
phase cases than the experimental observations, as shown in Fig. 2(a). Far few single-phase 
BCC alloys were predicted at the expense of forming the B2 phase in a very large number of 
alloys. The TCHEA4 database calculations predicted the number of single-phase FCC alloys 
close to experimental observations, but the overall consistency with experimental observations 
(including all the matched predictions of BCC, B2, BCC+FCC, and B2+FCC phases) is only 
28.2%. When the single-phase B2 and single-phase BCC phases are regarded as one BCC-
based single phase (BCC/B2), the agreement between the Thermo-Calc results and 
experimental observations is much better and reaches 61.4%, Fig. 2(b), showing less single-
phase BCC/B2 and single-phase FCC, and more BCC/B2 + FCC two-phase cases. It is very 
likely that the Thermo-Calc database TCHEA4 does not have accurate enough thermodynamic 
parameters for the B2 phase whose Gibbs free energy is very close to the disordered BCC 
phase and thus hard to be modeled accurately, especially for multicomponent HEAs. The 
disparity between the CALPHAD predictions (representing the phases of bulk alloys) and the 
sputtering experimental data may also be the results of some non-equilibrium nature of the 
sputtering process [15]. 

 

Fig. 2. Bar graphs showing the total number of HEAs with different phases: (a) B2 and BCC are 
treated as separate phases in CALPHAD calculations, and (b) B2 and BCC are treated as the 
same BCC-based phase (BCC/B2). The experimental data and CALPHAD predictions are 
presented in blue and red bars, respectively. 

 

Fig. 3 compares the experimental observations in the left column (a) with the CALPHAD 
results in the middle column (b) by plotting the number of alloys in each category against VEC, 
showing again a higher number of the computed BCC/B2 + FCC two-phase alloys than 
experimental observations. The difference is also compared in Fig. 3(c), the right column, 
where one can see that quite a number of the single-phase BCC/B2 alloys observed in 
experiments show up as the BCC/B2 + FCC two-phase alloys – the red part of the bottom panel 
of Fig. 3(c). The red part of the top panel of Fig. 3(c) represents alloys that were observed as 
single-phase FCC experimentally but showed up as two-phase BCC/B2 + FCC in CALPHAD 
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calculations. Only a few alloys as represented by the blue part of the middle panel of Fig. 3(c) of 
the experimentally observed 2-phase (BCC/B2 + FCC) alloys were computed as single-phase 
BCC/B2. Similarly, the green part of the middle panel in Fig. 3(c) represents the experimentally 
observed 2-phase (BCC/B2 + FCC) alloys which were predicted to be single-phase FCC. 

Fig. 3 also shows a clear trend that alloys with higher VEC prefer FCC over BCC/B2 both in 
experimental observations and CALPHAD predictions. A previous study has found that the FCC 
and BCC phases tend to be stable at higher VEC (> 8) and lower VEC (< 6.87), respectively 
[26]. The rule of VEC < 6.87 for single-phase BCC/B2 formation holds well with respect to the 
1,761 SS HEAs, as shown in Fig. 3. The VEC > 8 rule also holds well for the formation of 
single-phase FCC, but at 8 < VEC < 9.16, there is also substantial alloys with BCC/B2 + FCC 
two-phase structure. Only when VEC > 9.16, the single-phase FCC is formed with only a few 
exceptions in the CALPHAD predictions. At VEC < 6.87 and VEC > 9.16, the predicted phase 
formation is in good agreement with experimental observations, which illustrates the good ability 
of CALPHAD in calculating phase equilibrium of HEAs, especially for single-phase solid solution 
SPSS. Yang et al. found that more than 90% compositions have single-phase BCC structures at 
5.7 ≤ VEC ≤ 7.2, and it has pure FCC structure at VEC > 8.4 in Al-Co-Cr-Fe-Ni system by high-
throughput calculations using CALPHAD [28]. The new rules revealed from this study and that 
of Kube et al. [15] should be more reliable due to the very large number of experimental HEAs 
that consist of more elements. 

 

Fig. 3. VEC histograms based on experimental data in (a) and CALPHAD results in (b). (c) is 
plotted to show how alloys with different phases vary from experimental observations to the 
CALPHAD predictions. 

3.1.2. VEC, FBI, 𝛥𝛥𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, 𝛺𝛺, and 𝛿𝛿 selection rules for SS alloys 

The crystal structure, atomic radius, melting temperature, VEC, φ, e/a, and electronegativity 
of Al, Cr, Mn, Fe, Co, Ni, Cu in Table 2 are used to calculate those aforementioned 8 
parameters for HEAs [4]. Representative 2D plots are shown in Fig. 4 in which the left-hand 
side and right-hand side columns plot the experimental results and the CALPHAD results, 
respectively, for comparison.  

One can see from Fig. 4(a) and 4(b) that at δ < 5 based the experimental data and δ < 4 
based on the computed data, the FCC phase forms at higher FBI values, which is the direct 
consequence of the definition of FBI, Eq. 6. For experimental data at  δ > 6, the FBI effect 
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breaks down and almost all alloys form single-phase BCC irrespective of the FBI values, 
showing the overwhelming effect of δ in dictating the formation of BCC when δ value is high. 
This phenomenon is also verified and is more obvious in the CALPHAD calculations. Formation 
of BCC/B2 over FCC with increasing size difference δ was attributable to the lower packing 
density of BCC/B2 and higher ability to accommodate atoms with different sizes than FCC 
structure [15].  

Table 2. Crystal structure, atomic radius r, Tm, VEC, 𝜑𝜑, e/a, χ of each element involved in this 
study (Data from Ref. [4]). 

Element Structure r (Å) Tm (K) VEC φ e/a χ 

Al FCC 1.4317 933 3 1 3 1.61 
Cr BCC 1.2491 2180 6 -1 1 1.66 
Mn Cubic 1.3500 1519 7 ±0 2 1.55 
Fe BCC 1.2412 1811 8 -1 2 1.83 
Co HCP 1.2510 1768 9 1 2 1.88 
Ni FCC 1.2459 1728 10 1 2 1.91 
Cu FCC 1.2780 1358 11 1 1 1.90 
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Fig. 4. FBI, 𝛥𝛥𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and Ω versus 𝛿𝛿 based on experimental data in (a) and (c); as well as 
CALPHAD predictions in (b) and (d). 

 

Fig. 5. Comparison of phase formation between experimental and computational (CALPHAD) 
results in the pseudo-ternary Fe – Co51.4Ni48.6 – Al42.7Cr57.3 system shown in (a) and (b) as well 
as the pseudo-ternary Cu – Co54.8Ni45.2 – Al48.3Cr51.7 system in (c) and (d). 

 

Guo and Liu [29] found that Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and δ for the formation of SS should satisfy –22 ≤ Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 
≤ 7 kJ/mol, 0 ≤ δ ≤ 8.5, and 11 ≤ ΔSmix ≤ 8.5 simultaneously. Our study, covering far more alloy 
compositions than those of Guo and Liu, shows that the Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 range for the formation of FCC is 
similar to that of Guo and Liu, but it can be expanded to –33.6kJ/mole to 17.5 kJ/mol for forming 
single-phase BCC/B2, Fig. 4(c) and (d). Single-phase BCC can form at a negative Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and 
larger  δ  values, which agrees with the work of Raghaven et al [72] and Agarwal and Rao [43]. 
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Our results also agree with the observation of Agarwal and Rao that BCC can coexist with FCC 
at a lower δ and FCC preferentially forms at a negative Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 while BCC prefer to form at a 
positive Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚. The CALPHAD results show similar trend but more pronounced separations of 
the phase formation regions, Fig. 4(d). These phase selection rules are useful for predicting 
alloy crystal structures and compositions, but more effective rules are still highly desired; thus 
we will subsequently explore the capabilities of ML in improving the phase predictions. 

3.1.3 Examples of phase formation in specific systems 

Different HEA libraries cover different regions of the multicomponent HEA composition 
space. The agreements between experimental and computational results can be very different. 
Two examples are shown in Fig. 5 to illustrate the degree of agreements for both the Al-Cr-Co-
Ni-Fe and Al-Cr-Co-Ni-Cu systems. Fig. 5(a) and (b) show that for the compositions covered by 
a pseudo-ternary Fe – Co51.4Ni48.6 – Al42.7Cr57.3 system, the agreement is good except for a 
smaller single-phase FCC region and slightly larger BCC/B2 + FCC two-phase region from 
CALPHAD. Much pronounced difference was observed in Fig. 5(c) and (d) for the compositions 
covered by the pseudo-ternary Cu – Co54.8Ni45.2 – Al48.3Cr51.7 system. Such comparisons may 
also help identify the specific systems where CALPHAD assessments need to be improved. 

3.2 Machine learning results 

Two groups of datasets are analyzed using ML, one is the SS only dataset with 1,761 HEAs, 
the other is the full dataset with 2,436 HEAs. Similar to the analysis using CALPHAD, the SS is 
divided into three categories, BCC/B2, BCC/B2 + FCC, FCC, which are the targets of the ML 
models. The predictions from ML in the SS dataset are further compared with the experimental 
observations.  The full dataset is classified into four classes, SS, AM, SS + AM, and IM as the 
output of the ML models. It is noted that IM is used here to refer to alloys with an intermetallic 
compound (mostly the σ phase) identified from XRD and some alloys contain additional phases 
in addition to IM. The ML models are optimized by adjusting their parameters first. Then the best 
feature sets are screened by their contributions towards improving the CV accuracy of 
predictions for each ML model, which provides information for the relative importance among 
these input features. 

3.2.1 ML for classifying BCC/B2, BCC/B2 + FCC, FCC phases 

Before training the ML model and making predictions, it is important to look into the 
correlation among these features because adding collinear features will not provide more 
valuable information and will increase the time cost of training and could even degrade the 
performance of the models. The Pearson correlation coefficient is used for the quantitative 
assessment of the correlation between any pair of features, and it is calculated with the 
following formula,  

𝑟𝑟𝑥𝑥𝑥𝑥 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1
 

where 𝑥𝑥, 𝑦𝑦 are the two variables/features,  𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the 𝑥𝑥 and 𝑦𝑦 values of ith sample, 𝑥̅𝑥 and 
𝑦𝑦� are the mean values of 𝑥𝑥 and 𝑦𝑦, and 𝑛𝑛 is the sample size of both 𝑥𝑥 and 𝑦𝑦 [73]. Using this 
formula, the correlation between any pair of features is shown in Fig. 6, indicating that all input 
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features can be kept and further used in the ML models since there is no high correlation 
coefficient between any two features.  

 

Fig. 6. The heat-map of the correlation matrix between any pair of features. The value at each 
cell is the calculated coefficient. 

 

The ML models can be modified by tuning parameters and then judged by the CV accuracy. 
Here, the grid search method was employed to adjust parameters for each model with all the 
eight features, and the optimized results are shown in Fig. 7. The max_depth is identified as the 
main factor in determining the quality of the DT model and the min_samples_leaf has negligible 
effect, Fig. 7(a). The CV accuracy of the DT model reaches highest when max_depth is 10 and 
stay stable after 10; thus min_samples_leaf = 2 and max_depth = 10 were selected for the final 
DT model. The n_neighbors = 2 is best for the KNN model in Fig. 7(b). For SVM, a parameter 
set of 𝛾𝛾 = 10𝑝𝑝 and 𝐶𝐶 = 2𝑞𝑞 is created, where −6 ≤ 𝑝𝑝 ≤ 4 and 1 ≤ 𝑞𝑞 ≤ 10. Both 𝛾𝛾 and 𝐶𝐶 affect the 
accuracy of the SVM model, and both cannot be too large or too small; otherwise, they would 
lead to inefficiency. The pair of 𝛾𝛾 = 0.01 and 𝐶𝐶 = 64 (𝑝𝑝 = -2, 𝑞𝑞 = 6) achieved a high CV accuracy 
from the parameter sets, Fig. 7(c). The neural network was built with three hidden layers that 
contain n1, n2, n3 neurons in each hidden layer, and the corresponding CV result is shown in 
Fig. 7(d). For each third hidden layer with neurons changing from 5 to 50 (interval 5), the 
combination of three layers’ neurons with highest CV accuracy is marked in black dot, so there 
are 10 highest CV accuracies shown in 10 black dots. Finally, the combination n1 = 35, n2 = 25, 
n3 = 10 is chosen from these 10 CV accuracies. 
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Fig. 7. The grid search method for tuning input parameters to obtain the high CV accuracy in 
each ML model: (a) DT, (b) KNN, (c) SVM, (d) ANN, respectively. 

 

The results of feature selections for the four ML models are shown in Fig. 8. The CV 
accuracy increases rapidly first, then stays stable, and finally decreases when more input 
features are employed for the ML models, Fig. 8(a), indicating that more features are not always 
helpful in ML because they could lead to overfitting in the training process and decreasing CV 
test accuracy. The order of precedence of the features in each ML model are shown in Fig. 
8(b), and the best feature sets for different ML models are colored for easier visualization. The 
{VEC, Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, e/a, δ} set is the best features for the DT model, which renders a 91.4% CV 
accuracy. Adding other features does not improve the performance of learning. The {VEC, δ, 
FBI, e/a}, and { VEC, Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, e/a, δ, ΔSmix}, {VEC, Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, e/a, δ, ΔSmix} sets are the best three 
feature combinations for KNN, SVM, and ANN, which achieves 93.1%, 90.2%, and 89.1% CV 
accuracy, respectively. In all four feature sets, the VEC feature owns the highest order of 
precedence, thus is the most influential among these eight features in determining SS 
formation. It is noted that the CV accuracy obtained by using only VEC feature is comparable to 
or even better than the prediction accuracy from CALPHAD; and the CV accuracy is higher than 
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85% after training with the first three best features in each ML model, showing advantages of 
phase predictions over current state of thermodynamic calculations. The other features that are 
helpful for enhancing prediction accuracies are Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, e/a, δ. The two worst features are Ω and 
Δχ that degrade the performance of the ML models in predicting SS formation. Li and Guo also 
found that VEC is the most important feature in classifying BCC, FCC, and NSP (not forming 
SPSS) with the SVM model and the CV accuracy reaches 90.7% under the input of {VEC, δ, Tm, 
Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚} feature set [68]. A study by Zeng et al. explored >300,000 phase equilibrium 
generated by CALPHAD calculations in 3 classes (single-phase FCC, single-phase BCC, and 
other phases) using XGBoost [48]. They achieved > 99% accuracy on both the  training set and 
the test set and predicted 155 experimental phases with 81% accuracy through the selection of 
5 most important features {equilibrium temperature, average atomic radius, VEC difference, 
VEC, Δχ}. A feature set of 13 top-ranked features was screened in classifying BCC, FCC, and 
BCC + FCC by Machaka, and VEC was found to have the highest relative importance [49]. His 
models can reach 97.5%, 95.8%, 94.35%, and 94.0% using random forest (RF), SVM, KNN, 
and ANN, which is slightly higher than the current study possibly due to the larger set of 
features used in his study. Zhang et al. utilized a genetic algorithm with ANN and also found that 
the VEC criterion is important in classifying BCC, FCC, and dual-phase HEAs [70]. Their 
classification accuracy achieved 91.3% with a feature set containing VEC, the core electron 
distance, Δχ, the mismatch in compression modulus. Their CV accuracy is comparable to ours 
in ANN learning. Overall, the accuracy could reach higher than 89% for these four models, 
making the application of ML in phase prediction significant. 

 

Fig. 8. (a) Feature selection process to increase the CV accuracy in each ML model for 
classifying the BCC/B2, BCC/B2 + FCC, FCC phases of the solid-solution only compositions. (b) 
Corresponding features based on the order of precedence from top to bottom after each 
selection step. The colored features are the best sets that achieve the performance of the ML 
models.  

 

Since ML has found both VEC and Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 are the two most significant features to predict the 
SS phases, VEC-vs-Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 plots are made based on experimental results in Fig. 9(a) and SVM 
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ML predictions in Fig. 9(b). All alloys with BCC/B2 + FCC two phases are located in the shading 
red region in Fig. 9(a). Towards the left side of this region is single-phase BCC/B2 and single-
phase FCC on the right side. By counting the correct phases predicted by this division strategy, 
the accuracy is 67.1% in Fig. 9(a), which is much more efficient than relying on the VEC only 
(VEC < 6.87 for BCC/B2 and VEC > 9.16 for FCC). The colored areas in Fig. 9(b) are the 
predicted phases by SVM, and the boundaries for classification are curves rather than straight 
lines. When experimental data points are in the area with same color, then the predictions for 
phases agree with experiments (Note some of the red color points are outside the red region). 
The CV accuracy achieves 81.9% by SVM based on VEC and Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, exhibiting the advantages 
of ML in predicting right phases over traditional strategies. We also used the ML models to 
study the classification on BCC, B2, FCC, BCC + FCC, and B2 + FCC phases (having B2 and 
BCC separately) and found that VEC is still the most important feature in every ML model as 
shown in Fig. S6 in the Supplementary Information. 

The VEC-vs-Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 plots are far more accurate in predicting the single-phase BCC/B2 and 
single-phase FCC solid solutions without considering the BCC/B2 + FCC two-phase alloys, as 
shown in Fig. 9(c) and (d). Even a simple plot of experimental data only, a simple straight line of 
Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 28.97 × 𝑉𝑉𝑉𝑉𝑉𝑉 − 246.77 can achieve 96.2% accuracy, which is simply remarkable, Fig. 
9(c). The CV accuracy of 96.4%, 97.0%, 97.4%, and 96.5% is achieved for DT, KNN, SVM, and 
ANN, respectively, not significantly better than the predicted results determined by the straight 
line, Fig. 9(d) which shows SVM results only. Even though the simply plots of experimental data 
achieve  excellent abilities to predict the right phases, it is ML that helps identify these two key 
parameters for the plots.  
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Fig. 9. VEC vs 𝛥𝛥𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 plots for SS data in (a) and (b), and SPSS data in (c) and (d), 
respectively. The experimental data are plotted in circle points and predictions by SVM are 
plotted in colored area in (b) and (d), where the blue, red, and green area manifests predicted 
BCC/B2, BCC/B2 + FCC, and FCC phases, respectively. The p value refers to the prediction 
accuracy in (a) and (c), and the CV accuracy in (b) and (d). 

      With these well-trained models, we applied them to predict the selected alloy systems 
(containing 13 elements) that were tested in the study of Zeng et al. [49]. The compositions, 
experimentally determined phases, and ML-predicted phases are shown in the Supplementary 
Information Table S1. ANN beats other ML models with highest overall prediction accuracy 
81.8%, demonstrating the feasibility of using trained ANN with thin-film data to predict the phase 
formation of bulk alloys. The CALPHAD prediction accuracy is 78.8% without a constrained limit 
and 86.4% with constrained input of only BCC and FCC phases. The prediction accuracy of 
ANN lies in between the two CALPHAD predictions, exhibiting a comparable prediction ability of 
ANN with CALPHAD. There is an advantage of using ANN over CALPHAD in predicting the 
phase equilibria of bulk alloys whose elements are not available in the TCHEA4 or other HEA 
CALPHAD database. 

3.2.2 ML for classification of SS, AM, SS + AM, and IM phases  

In addition to analyzing the classification of SS into BCC/B2, BCC/B2 + FCC, and FCC, ML 
was applied to distinguish SS from other phases, such as AM, SS + AM, and IM. Such 
information is very beneficial for the design of new materials, especially when it is necessary to 
avoid the additional phases. The ML process of  tuning parameters for SS, AM, SS + AM, IM 
phases are the same as that for the SS process in the above discussions and the corresponding 
plots are presented in Fig. S4 in the Supplementary Information. The best conditions are 
min_samples_leaf = 2 and max_depth = 10 for the DT model, n_neighbors = 4 for KNN, 𝛾𝛾 = 
0.01 and 𝐶𝐶 = 256 for SVM, and n1 = 50, n2 = 15, n3 = 35 for ANN. The feature selection process 
and the corresponding CV accuracy values are shown in Fig. 10. 

 

Fig. 10. (a) Feature selection process measured by the CV accuracy in each ML model for 
predicting SS, AM, SS+AM, and IM. (b) Corresponding features based on the order of 
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precedence from top to bottom after each selection step. The colored features are the best sets 
that achieve the performance of the ML models.  

 

The best four feature sets are {Δχ, FBI, Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, VEC}, { Δχ, FBI, e/a, VEC, δ, Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚}, { Δχ,  
FBI, Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, VEC, δ, Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 }, { Δχ, FBI, Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, δ} with a CV accuracy of 93.6%, 93.3%, 95.5%, 
92.7% for DT, KNN, SVM, ANN, respectively. The CV accuracies of these ML models are very 
high and very close to one another. The two best features for predicting the phases here are Δχ 
and FBI, which is different with VEC as the best feature in classifying BCC/B2, BCC/B2 + FCC, 
and FCC phases. Islam et al. found that VEC and Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 are the most and the least important 
features respectively in classifying AM, SS, and IM, by performing singular value decomposition 
on the weight matrix in the first hidden layer of ANN [39]. Our results also show the positive 
effect of VEC in helping classify phases, but it is not the most important feature. The VEC 
feature has the fourth priority in the feature set of DT, KNN, and SVM. It can also be seen that Ω 
is not helpful in  predictions in both the full dataset and SS dataset from Fig. 10(b) since it 
decreases the CV accuracy when it is added into the input features. To separate SS and IM, 
King et al. proposed a new parameter Φ related to mixing enthalpy of both SS and IM by means 
of Miedema’s model [74]. They found that Φ > 1 favors SS and almost all IM forms when Φ < 1, 
which forecasts more accurately than using Ω. Zhou et al. reported that their trained ANN, 
convolutional neural network (CNN), and SVM can reach around 95% accuracy with 13 features 
and reach around 89% with 4 features {Δ𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, δ, Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, Δχ} in predicting AM, IM, and SS. The 4 
top-ranked features they selected are amongst our selected feature sets. The CV accuracy with 
only Δχ and FBI as the two input features can reach more than 80% for the four ML models, 
which motivates us explore the Δχ-vs-FBI plot as a potential useful phase selection rule. 

In the Δχ-vs-FBI plot shown in Fig. 11, all amorphous alloys are in the purple shading area, 
where  –0.065 ≤ FBI ≤ 0.5 and 0.13 ≤ Δχ ≤ 0.165. All intermetallics with only one exception are 
in the black shading area, in which FBI ≤ 0.015 and Δχ ≥ 0.09. These two shading areas only 
have a small, overlapped area of which the most SS alloys form in the lower right area. 
Therefore, these two areas could be used as phase selection rules for screening amorphous 
alloys and intermetallics, respectively. The ML methods are also applied to classify BCC, B2, 
FCC, BCC+FCC, B2+FCC, BCC+AM, FCC+AM, BCC+FCC+AM, AM, and IM phases (having 
B2 and BCC separately) and FBI and δ are found to be the two best features in improving the 
CV accuracies rather than Δχ and FBI as shown in Fig. S8. The corresponding FBI-vs-δ plot is 
shown in Fig. S9 in the Supplementary Information. 

 

4. Conclusions 

High-throughput CALPHAD calculations were performed on 2,436 experimental HEAs and 
compared the results with experimental observations. Both CALPHAD predictions and 
experimental results show that alloys prefer BCC/B2 over FCC at larger atomic size difference 
which is understandable since BCC is less constrained than FCC, and alloys tend to form FCC 
structure at higher FBI, negative Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, and small δ. Alloys exhibit single-phase BCC/B2 at VEC 
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< 6.87 and FCC at VEC > 9.16, which agrees with prior findings for BCC/B2, but the range has 
been expanded beyond VEC > 8 for FCC as reported in the literature. 

Four ML models were applied to two different datasets, one with the 1,761 solid solution 
only HEA compositions and the other with the entire 2,436 HEAs with alloys with form 
amorphous (AM) and/or intermetallic compounds (IMs). The best feature sets were identified 
using the five-fold cross validation method and achieve 91.4%, 93.1%, 90.2%, 89.1% for 
classifying BCC/B2, BCC/B2 + FCC, FCC with DT, KNN, SVM, and ANN models, respectively. 
These trained models were applied on predicting the phase structures of 66 selected bulk 
alloys, and the ANN model achieved 81.8% prediction accuracy, which is comparable to 
CALPHAD predictions. For classification of SS, AM, SS + AM, IM phases, the CV accuracy can 
reach 93.6%, 93.3%, 95.5%, and 92.7% in DT, KNN, SVM, and ANN models, respectively. The 
CV accuracies for both datasets are very high, which shows the effectiveness of ML in phase 
predictions of HEAs. In the ranked feature sets, VEC is identified as the most important feature 
in determining phase formation of SS. ML identified both Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑉𝑉𝑉𝑉 as two dominating 
factors for predicting the solid solution phase; and based on this learning, a simple straight line 
of Δ𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 28.97 × 𝑉𝑉𝑉𝑉𝑉𝑉 − 246.77 was found to be able to predict single-phase BCC/B2 and 
single-phase FCC at 96.2% accuracy, which is simply remarkable, Fig. 8(c).  
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Fig. 11. FBI-vs-𝛥𝛥𝛥𝛥 plot for identification of SS, AM, SS+AM, and IM. Most IM-containing alloys 
are in the black shading area in the left-hand side with only one exception. 

 

Both Δχ and FBI are the two best features that improve the performance of ML models in 
predicting the formation of SS, AM, SS + AM, and IM phases. In the Δχ-vs-FBI plot shown in 
Fig. 10, all amorphous alloys are in the purple shading area, where  –0.065 ≤ FBI ≤ 0.5 and 
0.13 ≤ Δχ ≤ 0.165. All intermetallic-containing alloys with only one exception are in the black 
shading area, in which FBI ≤ 0.015 and Δχ ≥ 0.09. All these phase selection rules will be very 
valuable for future design of advanced HEAs for challenging applications. 
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