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Abstract The solubility values of eight common alloying

elements Al, Ca, Ce, Gd, Nd, Sn, Y and Zn in hcp Mg are

experimentally measured from diffusion profiles obtained

from diffusion multiples and liquid-solid diffusion couples

(LSDCs) using electron probe microanalysis. These solu-

bility values are used to stablish solidus and solvus lines

and compared with the experimental results reported in the

literature as well as the computed phase boundaries using

two CALPHAD (CALculation of PHAse Diagrams) data-

bases. Our experimental values for Mg-Ca (530, 580, 600,

630 �C), Mg-Ce (605, 630 �C), Mg-Gd (570, 600, 630 �C)
and Mg-Nd (615, 630 �C) are the first ever measurements

of the hcp solidus for these four binary systems. Additional

solubility data obtained from our experiments are reported

for Mg-Al (375, 420, 450, 500, 550, 600 �C), Mg-Sn (375,

420, 500, 550, 600 �C), Mg-Y (590, 610, 630 �C), and Mg-

Zn (275, 450, 500, 550 �C). Our experimental data are

valuable input to future thermodynamic reassessments of

the eight binary systems. This study also clearly shows the

effectiveness of measuring solidus data using the elegant

LSDCs.

Keywords CALPHAD � magnesium � phase diagram �
solubility � solidus � solvus

1 Introduction

Magnesium alloys are highly attractive lightweight metal-

lic materials for vehicles to improve the energy efficiency

in the transportation sector as well as biocompatible

implant materials.[1–8] The Integrated Computational

Materials Engineering (ICME) approach is now widely

used to accelerate the design of Mg alloys.[9–11] CAL-

PHAD (CALculation of PHAse Diagrams) is one of the

most important ICME tools as it predicts the phase equi-

libria for given alloy compositions to promote the desirable

phases to improve the mechanical properties of Mg

alloys.[12–16] The parameters in the underlying CALPHAD

Mg thermodynamic databases are optimized from experi-

mental data such as solubility values of alloying elements

in Mg. Efficient approaches of determining multiple soli-

dus and solvus solubility data along a temperature gradient

in a single experiment was developed by Zhao et al. and

Engelhardt et al., respectively.[17,18] In this study, we

obtained solubility values using diffusion-couple based

experimental methods.

The experimental solubility data of eight solutes Al, Ca,

Ce, Gd, Nd, Sn, Y and Zn in hcp magnesium are reported

in this short communication and compared with literature

experimental data as well as computed phase boundaries

using two commercial CALPHAD software packages-

Pandat (database used: PanMg2019) and Thermo-Calc

(database used: TCMG5). Our solubility data were

extracted from diffusion profiles obtained using electron

probe microanalysis (EPMA) on both liquid-solid diffusion

couples (LSDCs) and diffusion multiples. Those samples

were initially prepared for studying the diffusion coeffi-

cients of Mg-based binary systems[19–23] and the experi-

mental profiles are directly employed for this study without

collecting more EPMA data. The process of obtaining the
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solubility data from LSDCs is explained in Fig. 1 and the

detailed process of making LSDCs can be found in

Refs.[19–22] LSDCs are designed to promote the forma-

tion of a liquid phase inside (being contained) a block of

pure Mg. Diffusion of a solute element from the liquid

phase into Mg forms a solid solution gradient to allow the

solubility to be well defined as shown in Fig. 1. Below the

eutectic temperatures of the binary systems, diffusion

multiples are very efficient ways to determine isothermal

phase diagrams, including the solubility values.[23–28] The

process of using diffusion multiples to obtain the solubility

data is illustrated in Fig. 2 and the detailed process of

making the Mg-containing diffusion multiples can be

found in Ref. [23]

Figure 3 summarizes all the solubility values of Al in

hcp Mg from measured diffusion profiles of four Mg-Al

LSDCs above the eutectic temperature and four diffusion

multiples (two sets of different diffusion multiples and

each annealed at two temperatures) below the eutectic

temperature. The diffusion profiles at above and below

eutectic point are shown in Fig. 3(b) and (c), respectively.

Our experimental solubility data points are presented as red

dots in the Mg-rich part of the Mg-Al phase diagram in

Fig. 3(a) in comparison with the literature data and the

computed solidus and solvus lines using Pandat.

The solubility values of Al, Sn, Y and Zn in hcp Mg for

both the solidus and solvus curves obtained from both

LSDCs and diffusion multiples are summarized in Fig. 4.

The solubility values of Al in hcp Mg have been well

studied in the literature.[29–36] Six new data points from this

study are shown in Fig. 4(a) and (b) in comparison with the

solubility data from the literature as well as the computed

solidus and solvus curves. Our four solubility values above

the eutectic temperature are in excellent agreement with

the literature data and the computed results. Our other two

data points below the eutectic temperature are slightly

lower than the literature data and the computed solvus

curves, but still in overall good agreement. Since our

Fig. 1 Application of LSDCs to the determination of solubility

values of elements in Mg above the eutectic temperatures: (a) to

(d) Preparation of a LSDC; (e) Example of an EPMA scan

superimposed on an SEM backscattered electron image of an Mg-

Al LSDC that was diffusion annealed at 600 �C for 4 h; and

(f) diffusion profiles of four LSDCs superimposed together including

the one that was annealed 600 �C for 4 h where the solubility is

marked with an arrow. The detailed process of making LSDCs can be

found in Refs. [19–22]
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diffusion multiples were annealed for up to 1760 h, it is

likely that our data are quite reliable.

Figure 4(c) and (d) summarize the solubility values of

the Mg-Sn system. In the region above eutectic tempera-

ture, all the data points show good agreement with two

computed solidus curves. Below the eutectic temperature,

our solubility data are in excellent agreement with the

results reported by Raynor, Vosskuhler, and Willey.[37–39]

The solubility data reported by Grube and Vosskuhler are

lower than our data at temperatures below 500 �C,[40] and
solubility values reported by Nayak and Oelsen[41] using

calorimetric method are substantially higher than our sol-

ubility values at 500 �C, 420 �C, and 375 �C. Near the

eutectic temperature of * 550 �C, the solubility value

from our experiment and that of Grube and Vosskuhler are

significantly higher than other literature data. The extrap-

olated composition of the hcp solid solution at the eutectic

temperature using our experimental solubility values will

be higher than that using other datasets. Two solvus curves

computed using Pandat and Thermo-Calc differ

appreciably, possibly due to the use of different thermo-

dynamic assessments that have relied on different experi-

mental datasets. The excellent agreement of our data with

those reported by Raynor, Vosskuhler, and Willey[37–39]

indicates that the thermodynamic parameters used in the

Thermo-Calc TCMG5 database could predict the solvus

line of the hcp Mg-Sn solid solution better than that using

the Pandat PanMg2019 database. These four consistent

datasets also indicate that Sn can be a very effective ele-

ment to induce precipitation-strengthening due to the pro-

nounced solubility decrease with decreasing temperatures.

Our solubility data of Y in hcp Mg at both 590 �C and

610 �C are lower than the literature data[42–47] and the

computed solvus lines from both Pandat and Thermo-Calc

but with a better agreement with the Thermo-Calc result,

as shown in Fig. 4 (e) and (f). Our solubility value at

630 �C agrees well with the computed results. The solidus

and solvus curves from both Pandat and Thermo-Calc are

overall consistent, despite a slightly higher eutectic tem-

perature from Pandat than that from Thermo-Calc.

Fig. 2 Application of two diffusion multiples to the determination of

solubility of elements in Mg below the eutectic temperatures: (a) and

(b) A diffusion multiple containing Mg-Al-Ca-Mn-Zn [(b) is a cross-

sectional photo of (a)]; (c) and (d) A diffusion multiple containing Al-

Ca-Mg-Mn-Sn [(d) is a photo of diffusion multiple in (c)]; (e) An

EPMA scan line (red) crossing the diffusion zone of the Mg-Al binary

diffusion couple region of a diffusion multiple that was annealed at

375 �C for 210 h (SEM backscattered electron image); and (f) Com-

position profile crossing the red line in (e) showing the compositions

of the phases and the solubility data. The detailed process of making

these two diffusion multiples can be found in Ref. [23] (Color

figure online)
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Our experimental solubility data of Zn in hcp Mg at

550 �C, 500 �C, and 450 �C obtained from three LSDCs

are appreciably higher than those reported by Park and

Wyman,[48] as shown in Fig. 4(g) and (h). The results call

for more experimental measurements in the future to see

whether the higher solubility values are reliable. Our sol-

ubility value measured at 275 �C from a diffusion multiple

agrees well with the other literature data.[49–51]

Our solubility data of the other four solutes Ca, Ce, Gd,

and Nd were all obtained from LSDCs and are summarized

in Fig. 5. All these data are first measurements in the world

of the solidus of the hcp Mg phase for the Mg-Ca, Mg-Ce,

Mg-Gd, and Mg-Nd systems. The new experimental data

fill the gap of missing data for these systems and will be

very valuable input to future enhanced thermodynamic

reassessments of these binary systems. The calculated

phase diagrams using the current TCMG5 and PanMg2019

databases are also included in Fig. 5 for comparison

together with the literature experimental data below the

eutectic temperatures for Mg-Ca,[52–56] Mg-Ce,[48,57–61]

Mg-Gd system,[47,62–64] and Mg-Nd[48,59,65–67] systems.

Fig. 3 The process of extracting solubility values from diffusion

profiles: (a) Solubility data from this study and the literature [29–36]

together with the computed solubility lines using the Pandat software;

(b) Diffusion profiles from four LSDCs at temperature above the

eutectic temperature; and (c) Mg-rich part of the diffusion profiles

from two diffusion multiples that were diffusion annealed at

temperatures below the eutectic temperature
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In summary, solubility values of eight solutes Al, Ca,

Ce, Gd, Nd, Sn, Y and Zn in hcp Mg at various tempera-

tures are measured using experimental diffusion profiles

collected from diffusion multiples and LSDCs. The results

clearly show that LSDC is a very effective way to measure

the solidus values. The solidus data for the hcp Mg phase

for Mg-Ca, Mg-Ce, Mg-Gd, and Mg-Nd are the first such

experimental measurements in the world and will be very

valuable input to future reassessment of the thermody-

namic parameters of these binary systems. Our data and the

Fig. 4 Comparison of the experimental solubility data from the

current study with the literature experimental data as well as the

computed phase boundaries using both Pandat and Thermo-Calc and

their associated databases: (a) and (b) for Mg-Al, (c) and (d) for Mg-

Sn, (e) and (f) for Mg-Y, and (g) and (h) for Mg-Zn, respectively
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good agreement with the data reported by Raynor,

Vosskuhler, and Willey[37–39] show a more pronounced

temperature dependence of the Sn solubility in hcp Mg,

which is good for promoting precipitation strengthening.

The above four consistent datasets indicate the solubility

data reported by Nayak and Oelsen[41] at 500 �C, 420 �C,
and 375 �C may not be very reliable. We also reported

Fig. 5 Comparison of the experimental solubility data from the

current study with the literature experimental data as well as the

computed phase boundaries using both Pandat and Thermo-Calc and

their associated databases: (a) and (b) for Mg-Ca, (c) and (d) for Mg-

Ce, (e) and (f) for Mg-Gd, and (g) and (h) for Mg-Nd, respectively.

The solidus data are the first experimental measurements for the hcp

Mg phase of these four binary systems
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much higher solubility of Zn in hcp Mg than data reported

by Park and Wyman above the eutectic temperature.
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