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Abstract The solubility values of eight common alloying
elements Al, Ca, Ce, Gd, Nd, Sn, Y and Zn in hcp Mg are
experimentally measured from diffusion profiles obtained
from diffusion multiples and liquid-solid diffusion couples
(LSDCs) using electron probe microanalysis. These solu-
bility values are used to stablish solidus and solvus lines
and compared with the experimental results reported in the
literature as well as the computed phase boundaries using
two CALPHAD (CALculation of PHAse Diagrams) data-
bases. Our experimental values for Mg-Ca (530, 580, 600,
630 °C), Mg-Ce (605, 630 °C), Mg-Gd (570, 600, 630 °C)
and Mg-Nd (615, 630 °C) are the first ever measurements
of the hcp solidus for these four binary systems. Additional
solubility data obtained from our experiments are reported
for Mg-Al (375, 420, 450, 500, 550, 600 °C), Mg-Sn (375,
420, 500, 550, 600 °C), Mg-Y (590, 610, 630 °C), and Mg-
Zn (275, 450, 500, 550 °C). Our experimental data are
valuable input to future thermodynamic reassessments of
the eight binary systems. This study also clearly shows the
effectiveness of measuring solidus data using the elegant
LSDCs.
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1 Introduction

Magnesium alloys are highly attractive lightweight metal-
lic materials for vehicles to improve the energy efficiency
in the transportation sector as well as biocompatible
implant materials." ™ The Integrated Computational
Materials Engineering (ICME) approach is now widely
used to accelerate the design of Mg alloys.”'"1 CAL-
PHAD (CALculation of PHAse Diagrams) is one of the
most important ICME tools as it predicts the phase equi-
libria for given alloy compositions to promote the desirable
phases to improve the mechanical properties of Mg
alloys."'?"'®! The parameters in the underlying CALPHAD
Mg thermodynamic databases are optimized from experi-
mental data such as solubility values of alloying elements
in Mg. Efficient approaches of determining multiple soli-
dus and solvus solubility data along a temperature gradient
in a single experiment was developed by Zhao et al. and
Engelhardt et al., respectively.!'”'®! In this study, we
obtained solubility values using diffusion-couple based
experimental methods.

The experimental solubility data of eight solutes Al, Ca,
Ce, Gd, Nd, Sn, Y and Zn in hcp magnesium are reported
in this short communication and compared with literature
experimental data as well as computed phase boundaries
using two commercial CALPHAD software packages-
Pandat (database used: PanMg2019) and Thermo-Calc
(database used: TCMGS). Our solubility data were
extracted from diffusion profiles obtained using electron
probe microanalysis (EPMA) on both liquid-solid diffusion
couples (LSDCs) and diffusion multiples. Those samples
were initially prepared for studying the diffusion coeffi-
cients of Mg-based binary systems''*~>*! and the experi-
mental profiles are directly employed for this study without
collecting more EPMA data. The process of obtaining the

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11669-023-01077-5&amp;domain=pdf
https://doi.org/10.1007/s11669-023-01077-5

680

J. Phase Equilib. Diffus. (2023) 44:679-686

solubility data from LSDCs is explained in Fig. 1 and the
detailed process of making LSDCs can be found in
Refs.[19-22] LSDCs are designed to promote the forma-
tion of a liquid phase inside (being contained) a block of
pure Mg. Diffusion of a solute element from the liquid
phase into Mg forms a solid solution gradient to allow the
solubility to be well defined as shown in Fig. 1. Below the
eutectic temperatures of the binary systems, diffusion
multiples are very efficient ways to determine isothermal
phase diagrams, including the solubility values.!****! The
process of using diffusion multiples to obtain the solubility
data is illustrated in Fig. 2 and the detailed process of
making the Mg-containing diffusion multiples can be
found in Ref. [23]

Figure 3 summarizes all the solubility values of Al in
hcp Mg from measured diffusion profiles of four Mg-Al
LSDCs above the eutectic temperature and four diffusion
multiples (two sets of different diffusion multiples and
each annealed at two temperatures) below the eutectic

Before diffusion

temperature. The diffusion profiles at above and below
eutectic point are shown in Fig. 3(b) and (c), respectively.
Our experimental solubility data points are presented as red
dots in the Mg-rich part of the Mg-Al phase diagram in
Fig. 3(a) in comparison with the literature data and the
computed solidus and solvus lines using Pandat.

The solubility values of Al, Sn, Y and Zn in hcp Mg for
both the solidus and solvus curves obtained from both
LSDCs and diffusion multiples are summarized in Fig. 4.
The solubility values of Al in hcp Mg have been well
studied in the literature.”~°! Six new data points from this
study are shown in Fig. 4(a) and (b) in comparison with the
solubility data from the literature as well as the computed
solidus and solvus curves. Our four solubility values above
the eutectic temperature are in excellent agreement with
the literature data and the computed results. Our other two
data points below the eutectic temperature are slightly
lower than the literature data and the computed solvus
curves, but still in overall good agreement. Since our
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Fig. 1 Application of LSDCs to the determination of solubility
values of elements in Mg above the eutectic temperatures: (a) to
(d) Preparation of a LSDC; (e) Example of an EPMA scan
superimposed on an SEM backscattered electron image of an Mg-
Al LSDC that was diffusion annealed at 600 °C for 4 h; and
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(f) diffusion profiles of four LSDCs superimposed together including
the one that was annealed 600 °C for 4 h where the solubility is
marked with an arrow. The detailed process of making LSDCs can be
found in Refs. [19-22]
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375°C 210 h

Fig. 2 Application of two diffusion multiples to the determination of
solubility of elements in Mg below the eutectic temperatures: (a) and
(b) A diffusion multiple containing Mg-Al-Ca-Mn-Zn [(b) is a cross-
sectional photo of (a)]; (c) and (d) A diffusion multiple containing Al-
Ca-Mg-Mn-Sn [(d) is a photo of diffusion multiple in (c)]; (e) An
EPMA scan line (red) crossing the diffusion zone of the Mg-Al binary

diffusion multiples were annealed for up to 1760 h, it is
likely that our data are quite reliable.

Figure 4(c) and (d) summarize the solubility values of
the Mg-Sn system. In the region above eutectic tempera-
ture, all the data points show good agreement with two
computed solidus curves. Below the eutectic temperature,
our solubility data are in excellent agreement with the
results reported by Raynor, Vosskuhler, and Willey.”—"]
The solubility data reported by Grube and Vosskuhler are
lower than our data at temperatures below 500 °C,[4O] and
solubility values reported by Nayak and Oelsen™'! using
calorimetric method are substantially higher than our sol-
ubility values at 500 °C, 420 °C, and 375 °C. Near the
eutectic temperature of ~ 550 °C, the solubility value
from our experiment and that of Grube and Vosskuhler are
significantly higher than other literature data. The extrap-
olated composition of the hcp solid solution at the eutectic
temperature using our experimental solubility values will
be higher than that using other datasets. Two solvus curves
computed using Pandat and Thermo-Calc differ
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diffusion couple region of a diffusion multiple that was annealed at
375 °C for 210 h (SEM backscattered electron image); and (f) Com-
position profile crossing the red line in (e) showing the compositions
of the phases and the solubility data. The detailed process of making
these two diffusion multiples can be found in Ref. [23] (Color
figure online)

appreciably, possibly due to the use of different thermo-
dynamic assessments that have relied on different experi-
mental datasets. The excellent agreement of our data with
those reported by Raynor, Vosskuhler, and Willey’—"
indicates that the thermodynamic parameters used in the
Thermo-Calc TCMGS5 database could predict the solvus
line of the hcp Mg-Sn solid solution better than that using
the Pandat PanMg2019 database. These four consistent
datasets also indicate that Sn can be a very effective ele-
ment to induce precipitation-strengthening due to the pro-
nounced solubility decrease with decreasing temperatures.
Our solubility data of Y in hcp Mg at both 590 °C and
610 °C are lower than the literature data*>~*" and the
computed solvus lines from both Pandat and Thermo-Calc
but with a better agreement with the Thermo-Calc result,
as shown in Fig. 4 (e) and (f). Our solubility value at
630 °C agrees well with the computed results. The solidus
and solvus curves from both Pandat and Thermo-Calc are
overall consistent, despite a slightly higher eutectic tem-
perature from Pandat than that from Thermo-Calc.
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Fig. 3 The process of extracting solubility values from diffusion
profiles: (a) Solubility data from this study and the literature 2%~
together with the computed solubility lines using the Pandat software;
(b) Diffusion profiles from four LSDCs at temperature above the

Our experimental solubility data of Zn in hcp Mg at
550 °C, 500 °C, and 450 °C obtained from three LSDCs
are appreciably higher than those reported by Park and
Wyman,[48] as shown in Fig. 4(g) and (h). The results call
for more experimental measurements in the future to see
whether the higher solubility values are reliable. Our sol-
ubility value measured at 275 °C from a diffusion multiple
agrees well with the other literature data.!**->"

Our solubility data of the other four solutes Ca, Ce, Gd,
and Nd were all obtained from LSDCs and are summarized
in Fig. 5. All these data are first measurements in the world
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eutectic temperature; and (c) Mg-rich part of the diffusion profiles
from two diffusion multiples that were diffusion annealed at
temperatures below the eutectic temperature

of the solidus of the hcp Mg phase for the Mg-Ca, Mg-Ce,
Mg-Gd, and Mg-Nd systems. The new experimental data
fill the gap of missing data for these systems and will be
very valuable input to future enhanced thermodynamic
reassessments of these binary systems. The calculated
phase diagrams using the current TCMGS5 and PanMg2019
databases are also included in Fig. 5 for comparison
together with the literature experimental data below the
eutectic temperatures for Mg-Ca,?>5%1 Mg-Ce,[48-7-61
Mg-Gd system,*”%>%4 and Mg-Na!*®>%95-671 gystems.
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Fig. 4 Comparison of the experimental solubility data from the
current study with the literature experimental data as well as the
computed phase boundaries using both Pandat and Thermo-Calc and

In summary, solubility values of eight solutes Al, Ca,
Ce, Gd, Nd, Sn, Y and Zn in hcp Mg at various tempera-
tures are measured using experimental diffusion profiles
collected from diffusion multiples and LSDCs. The results
clearly show that LSDC is a very effective way to measure

their associated databases: (a) and (b) for Mg-Al, (c) and (d) for Mg-
Sn, (e) and (f) for Mg-Y, and (g) and (h) for Mg-Zn, respectively

the solidus values. The solidus data for the hcp Mg phase
for Mg-Ca, Mg-Ce, Mg-Gd, and Mg-Nd are the first such
experimental measurements in the world and will be very
valuable input to future reassessment of the thermody-
namic parameters of these binary systems. Our data and the
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Fig. 5 Comparison of the experimental solubility data from the
current study with the literature experimental data as well as the
computed phase boundaries using both Pandat and Thermo-Calc and
their associated databases: (a) and (b) for Mg-Ca, (c) and (d) for Mg-

good agreement with the data reported by Raynor,
Vosskuhler, and Willey”’=°! show a more pronounced
temperature dependence of the Sn solubility in hcp Mg,
which is good for promoting precipitation strengthening.
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Ce, (e) and (f) for Mg-Gd, and (g) and (h) for Mg-Nd, respectively.
The solidus data are the first experimental measurements for the hcp
Mg phase of these four binary systems

The above four consistent datasets indicate the solubility
data reported by Nayak and Oelsen*'! at 500 °C, 420 °C,
and 375 °C may not be very reliable. We also reported
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much higher solubility of Zn in hcp Mg than data reported
by Park and Wyman above the eutectic temperature.
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