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Abstract—The microprocessor industry faces several chal-
lenges: total power consumption, processor speed, and increasing
chip cost. It is visible that the processor speed in the last decade
has not improved and saturated around 2 GHz to 5 GHz.
Researchers believe that brain-inspired computing has great
potential to resolve these problems. The spiking neural network
(SNN) exhibits excellent power performance compared to the
conventional design. However, we identified several key challenges
to implementing large-scale neural networks (NNs) on silicon,
such as nonexistent automated tools and requirements of many-
domain expertise, and existing algorithms can not partition and
place large-scale SNN computation efficiently on the hardware.
In this research, we propose to develop an automated tool flow
that can convert any NN to an SNN. In this process, we will
develop a novel graph-partitioning algorithm and place SNN on
a network-on-chip (NoC) to enable future energy-efficient and
high-performance computing.

Index Terms—Artificial neural network (ANN), spiking neural
network (SNN), convolutional neural network (CNN), ANN-to-
SNN conversion.

I. INTRODUCTION

Spiking Neural Networks (SNNs) are the next generation of
artificial neural networks (ANNs) inspired by biological organ-
isms. These networks can be efficiently implemented in Neu-
romorphic platforms consisting of multiple processing cores
where a fixed number of neurons are mapped to the cores. The
communication among the neurons in synapses is facilitated
by the network-on-chip (NoC) architecture, a de facto design
choice for enabling communication in a multicore system. The
conventional SNN uses artificial spiking neurons and crossbars
similar to the cache memory architecture [1]. The neuron fires
(i.e., produces spikes) as soon as it exceeds its action poten-
tial threshold, and crossbars store the synaptic weights [2].
The computational efficiency in terms of execution time and
power consumption of the SNN-based neuromorphic platform
depends on the optimal mapping of those neurons to the cores
with minimum communications delay. However, the electrical
limitation of fan-in and fan-out constrained the number of
synapses per neuron. As a result, NoC architectures are used
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to integrate multiple crossbars. However, existing mapping
strategies for mapping neurons to the cores in a multicore
system are agnostic of the underlying NoC architecture and
do not ensure minimum communication latency. Besides, we
identified several critical challenges in implementing large-
scale SNNs in real-hardware platforms, and these are: (i)
Existing approaches have no real guidelines for high-level
architecture building to hardware implementation; (ii) The
nonexistant automated tools and requirements of many-domain
expertise; (iii) Existing neuron clustering approaches could
not handle more than a few thousand neurons in an SNN.
This research resolves the above issues by proposing a novel
graph-partitioning algorithm and placing SNN models on a
NoC architecture with a generic tool flow.

In this paper, we resolve the major bottleneck of existing
graph-partitioning algorithms [1], [3], [4], where the number
of vertices limited to below 10 k. The proposed greedy graph-
partitioning algorithm can handle graphs with more than 100
k vertices and reduces a significant amount of communication
when placed in the crossbar hardware. In particular, the
specific contributions of this work are:

e We propose an automated tool to convert any ANN and
convolutional neural network (CNN) into an SNN for
energy-efficient computing systems.

e We propose a novel graph-partitioning algorithm to im-
plement large SNNs.

e We benchmark different deep NN (DNN) architectures
and integrate various applications to show the efficiency
of the proposed methodology.

II. BACKGROUND

In the past decade, researchers paying great attention to
SNN. The primary reason is the energy efficient operation [5].
Unlike conventional low-power techniques [6]-[9], SNN mod-
els inherently respond to event-based data and suitable for
address event representation-based computation [10]. The
CARLsim is a C++ library that is commonly used to train and
simulate large biologically detailed neural networks (NNs) [5].
The simulator supports the concurrent use of multiple CPUs
and GPUs for heterogeneous computing platforms. Another
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interesting automation tool uses a pre-trained ANN to con-
struct an SNN, named SNN tool Box (SNN-TB) [11]. This
tool’s significant advantage is that one can extract the SNN
model and deploy to the existing SNN simulator [12]. Hence,
we utilized this tool for graph extraction.

Graph-partitioning is an essential technique in the electronic
design automation flow, where a heuristic based on Kernighan-
Lin (KL) algorithm [13] for graph bipartition is trivial. The
major bottleneck of existing graph-partitioning algorithms [1],
[3], [4] is that the number of vertices is limited to below
10 k. Hence, this paper resolves this issue by proposing
an SNN graph-partitioning algorithm (SNN-GPA) that can
handle graphs with more than 100 k vertices and reduces
a significant amount of communication when placed in the
crossbar hardware.

III. PROPOSED SPIKING NEURAL NETWORK
IMPLEMENTATION TOoOL FLOW

A. Spiking Neural Network Characterization

In this research, we propose a comprehensive platform
for high-level neural architecture exploration to character-
ize and implementation of SNN accurately. First of all, we
train a NN model using a conventional software library
(i.e., Keras [14]), and it is implemented in the TensorFlow
platform [15]. The proposed tool flow supports conventional
dense (fully connected), 2D convolutional, average pooling,
flattening, dropout, and batch normalization Keras layers.
Then we convert the trained NN model using an open-source
SNN converter [11] into an SNN model. The SNN converter
translates the ANN/CNN into an SNN in two steps. First,
the ANN is parsed into an intermediate architecture where
dropout and batch normalization layers are either removed
or incorporated into adjacent layers. The weights for each
layer are normalized at this stage. Second, the parsed CNN
is converted into an SNN model. The SNN converter supports
several simulator backends [12], [16], but currently, the built-in
INI backend is used with a temporal mean rate approximation.

Unlike conventional methodologies, we validate the accu-
racy of the SNN model using the test data. Then, we extract
the spike events of each neuron and the classification accuracy.
The constant current and the Poisson spike trains can be
utilized as input current. Then, the proposed methodology
uses the SNN architecture and spike event data to translate
the ANN connectivity between layers into equivalent synaptic
connections. The overall tool flow is shown in Figure 1. We
build an SNN graph considering the presynaptic neuron
fire rate and the weight of the connection.

B. Graph Partitioning

Once an SNN is trained, we extract a connected graph.
Then, depending on the synaptic weight, the proposed graph
partitioning algorithm clusters neurons considering pair-wise
SNN-layers. The algorithm is based on the existing KL
algorithm [13]. It considers the intra-communication (i.e.,
neurons reside in the same cluster) weights (IntraWW) and

inter-communication (i.e., neurons reside in different clusters)
weights (InterW) of the synapses.

Algorithm 1 SNN Graph partitioning algorithm

1: Input: G(V, E), Graph with V vertices and E edges; K, # of
Clusters; n, # of layers;
2: Output: P partitions;

4 K'=K/(n—-1)
pair-of layer.

> Compute the total number of clusters in a

50 G ={G1, Gy, ...,Gn} = RandGraph(G, n) > Create a
random partition considering consequtive layers

6: for all G; € G’ do :

7: C ={C1,C2,...,Cx} = RandCut(G3, K") > Create
random clusters from each initial partitions.

8: for all {C;,C;} € C do:

9: {C;,C;} = KLmethod(C;,Cj) > Apply the KL-based
method to improve intra-cluster weights and reduce inter-cluster
weights.

10: end for
11: end for
122 P=G' > Assigned clusters to partitions list.

13: return P

The proposed SNN graph-partitioning algorithm (SNN-
GPA) is shown in Algorithm 1. The SNN-GPA takes an SNN
as a graph (G), the number of clusters (K), and the number of
layers (n) as inputs and returns partitions or a list of subgraphs.
Here, the number of clusters depends on the constraint of the
maximum number of neurons per cluster. The SNN-GPA com-
putes the number of clusters in a pair-of layers and creates a
set of random graphs/partitions considering consecutive layers
in Line 4 and Line 5, respectively. Then, it iteratively converts
each partitions into random clusters and applies K Lmethod()
to maximize IntraW and minimize InterW using Line 6 to
Line 11. Then, the updated clusters are assigned to output
partitions Line 12, and SNN-GPA returns the partitions in
Line 13. The optimal partition with trained SNN is then used
to map on hardware grids for deployment.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

For initial results, we performed analysis on an Intel
32-cores Intel Xeon Gold processor with 64 GB RAM,
NVIDIA Quadro P4000 GPU running Ubuntu 18.04. We
used Python programming language to build the tool flow.
We used both synthetic and realistic networks. We used the
3-layer synthetic feedforward network with 4000 neurons
and 3.75M synapses (i.e., synthetic_4k network). For realistic
networks, we used CNN_mnist [1], LeNet mnist [17],
Zambrano_mnist [18], Rueckauer_Cifarl10 [11],

LeNet_cifar10 [19], AlexNet_mnist [20], multilayer
perceptron  for mnist (MLP_mnist), a CNN for
DogsVsDogs [21], a CNN for Fruits360 [22], and

AlexNet_CatsVsDogs [20] for benchmarking. For analysis,
we used mnist handwritten digit [17], Cifarl0, and
CatsVsDogs [21] datasets.
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Fig. 1: The proposed tool flow trains an ANN model using TensorFlow, converts the trained model to SNN, and then applies
the proposed graph partitioning algorithm to cluster and place it on an NoC grid.

B. Implementation Results

We implemented each network using TensorFlow and
trained using the Keras library. To convert a CNN or ANN
into an SNN, we used a modified version of SNN-TB [11]. It
is worth mentioning that the normalization of CNN weights
is critical for accurate SNN models. Unfortunately, the SNN-
TB implementation requires the layer activations for the entire
normalization dataset to be loaded into GPU memory at
once. As a result, large models with large datasets can’t
be normalized on most GPUs. As a result, we created a
normalization workaround that generates identical results but
shifts the space constraint to system memory.

To verify the efficiency of the ANN-to-SNN conversation,
we used Pearson correlation coefficients considering ANN ac-
tivations and SNN spike rates. Figure 2 shows the CNN_mnist
network’s correlated coefficients for each layer trained for the
mnist dataset, averaged over all the batches.

Correlation between ANN activations
and SNN spikerates,
averaged over 64 samples
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Fig. 2: The Pearson correlation coefficients confirm the ANN-
layers activations and SNN-layers spike rates for CNN_mnist.

Besides, we traced the evolution of the classification error
during training for different values of the communication
periods, as shown in Figure 3. Simulation time is taken in steps
of 1 ms. The scatter points in green represent the top-1 errors
over the time and the points in blue represent the top-5 errors
over the time.The shaded area represents the standard deviation
of the classification errors by SNN and ANN, respectively.
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Fig. 3: As expected, the classification error of the SNN model
reduces with the increase of simulation time, while the ANN
remains nearly constant, as we provided a trained ANN model
for this analysis.

The realistic networks ANN and SNN accuracy comparison
is shown in Table 1. The networks uses 173.8 M synapses and
0.39 M neurons on average, respectively. The average number
of spike count and simulation time (S7) are 8476.14 M and
320 s, respectively. The proposed methodology can efficiently
converts ANN architectures to SNN with only 2.65% average
error penalty.

To analyze the efficiency of the proposed graph-partitioning
algorithm, we consider the IntraW and InterW synaptic
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TABLE I: The average number of synapses and neurons are 173.8 M and 0.39 M, respectively; The proposed tool flow
efficiently converts ANN to SNN considering realistic benchmarks with only 2.65% average error penalty.

Application # of synapses (M) | # of neurons (M) | # of spikes M) | St (s) | SNN acc. (%) | ANN acc. (%)
CNN_mnist [1] 1.61 0.01 79.33 200 | 97.947 98.46
LeNet_mnist [17] 0.29 0.007 93.72 200 | 98.037 98.88
Zambrano_mnist [18] 1.42 0.01 125.10 200 | 99.25 99.36
Rueckauer_Cifar10 [11] 2.50 0.11 7786.46 1000 | 79.43 81.25
LeNet_Cifar10 [19] 0.66 0.01 752.26 200 | 53.596 60.64
AlexNet_mnist [20] 923.45 0.79 9550.44 500 | 97.24 98.54
MLP_mnist 0.20 0.001 30.27 200 | 97.33 97.60
CNN_CatsVsDogs [21] 522.82 2.03 9290.56 50 | 91.60 93.88
CNN_Fruits360 [22] 96.09 0.40 48092.77 600 | 89.5 96.71
AlexNet_CatsVsDogs [20] 165.01 0.53 8960.47 50 | 77.7 82.78
Average 173.80 0.39 8476.14 320 | 88.16 90.81

weights. For this analysis, we used both synthetic and realistic
networks considering mnist dataset. In addition, we used an
SNN architecture for standard edge detection graph_edgedet.
Using the Zambrano_mnist network, the proposed graph-
partitioning algorithm can reduce 6.65% and 99.86% inter-
communication and intra-communication weights compared to
a baseline model, respectively. Overall, the proposed SNN-
GPA reduce 14.22% and 87.58% inter-communication and
intra-communication weights compared to a baseline model.

Once we create the partitions, then the proposed tool flow
can place those neurons on a dedicated NoC grid. We designed
a 2D mesh NoC architecture considering a 2 nm grid length
and using a Cartesian coordinate system. However, this is
a design choice and can vary from 10 pm to hundreds
of micrometers [23]. Figure 4 exhibits a representative dia-
gram when proposed tool flow places Zambrano_mnist in a
120 x 120 mm chip.

V. CONCLUSION

This paper proposed a comprehensive tool flow to explore
high-level NN architectures that can efficiently implement
and explore SNN models. The tool flow uses Python Keras
libraries, SNN-TB, and our proposed SNN-GPA algorithm
partitions and place SNN on an NoC architecture. The pro-
posed methodology efficiently converts ANN architectures to
SNN with only a 2.65% average error penalty. In addition,
the proposed SNN-GPA reduces 7.28% and 83.18% inter-
communication and intra-communication weights compared to
a baseline model.
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