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ABSTRACT

Polariton chemistry exploits the strong interaction between quantized excitations in molecules and quantized photon states in optical cavities
to affect chemical reactivity. Molecular polaritons have been experimentally realized by the coupling of electronic, vibrational, and
rovibrational transitions to photon modes, which has spurred a tremendous theoretical effort to model and explain how polariton formation
can influence chemistry. This tutorial review focuses on computational approaches for the electronic strong coupling problem through the
combination of familiar techniques from ab initio electronic structure theory and cavity quantum electrodynamics, toward the goal of
supplying predictive theories for polariton chemistry. Our aim is to emphasize the relevant theoretical details with enough clarity for
newcomers to the field to follow, and to present simple and practical code examples to catalyze further development work.
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I. INTRODUCTION

Strong interactions between nanoconfined photons and molecu-
lar systems1–3 can lead to the creation of hybrid light–matter states
known as polaritons that may display remarkably different chemical

and physical properties than their parent components.4–15 The techno-
logical and chemical applications of these strongly coupled light–mat-
ter states are wide-ranging. Recent examples of cavity control of
chemical reactivity and catalysis,16–18 polariton lasing,14 manipulation
of non-linear optical effects in organic molecules,19 optical energy
propagation,20,21 plasmon-based photostabilization,22 plasmon-based
multimode vibrational strong coupling,23 Bose–Einstein condensation
of molecular exciton–polaritons,24 and protection against decoherence
processes25 offer only a glimpse into the transformative potential of
polaritonic approaches to chemistry and materials science. In order for
the field to fully live up to its promise, the experimental realization of
strong and ultra-strong light–matter coupling must be accompanied
by high-quality theoretical descriptions of the emergence and proper-
ties of molecular polaritons.

There have been several excellent reviews and perspective articles
focusing on theoretical advances related to polaritonic chemistry.
Theoretical challenges in polaritonic chemistry bridge most domains
of chemical physics, including polaritonic structure, dynamics, statisti-
cal thermodynamics, and rate theories as pointed out by a recent com-
prehensive review by Huo and co-workers26 and an incisive
perspective by Feist and co-workers.27 Ruggenthaler et al. have con-
tributed a rigorous review of several promising directions in ab initio
cavity quantum electrodynamics (QED) methods with a particular
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emphasis on real-space approaches to bridge density functional theory
(DFT) and its real-time extensions with cavity QED; the resulting
QEDFT approach28 has played an important role in simulating polari-
tonic structure. In this tutorial review, we also focus on the problem of
simulating polaritonic structure through the lens of ab initio cavity
QED, but we emphasize emerging methods implemented with
Gaussian basis sets. Throughout, we refer to ab initio cavity QED
methods (whether in Gaussian or real-space grid bases) as those where
the starting point is a single time-independent Schr€odinger equation
for charged particles comprising a molecular system coupled to quan-
tized photonic degrees of freedom. These methods can be seen to be
complementary to parameterized cavity QED (pCQED) methods
where one essentially considers solving two Schr€odinger equations in
series: a first for the molecular system, and the second for the coupled
molecular–photonic system that is parameterized by the solutions to
the first.26,29,30 As a tutorial review, our aim is to provide a level of
technical detail sufficient for newcomers to the field to implement
some of the more introductory methods and start applying them as-is,
or to leverage these implementations to seed new or more elaborate
methodological developments. In addition to the discussion of the
related theory in text, we provide example code in a tutorial style that
utilizes the Psi4Numpy framework for a QED-Hartree–Fock self-
consistent field method and a QED-Configuration Interaction Singles
method. We will present some illustrative calculations utilizing these
methods and also discuss results from the literature for methods
beyond those for which we have provided tutorial implementations.

Historically, theoretical descriptions of strong light–matter inter-
actions have been built upon simple model Hamiltonians that describe
interactions between two- or few-level quantum emitters and a single
photon mode. For electronic strong coupling in polariton chemistry,
the Jaynes–Cummings model provides such an example. Here, two
states of the quantum emitter are parameterized by the ground- and
excited-state energies, and these states couple to the photon mode
through a dipolar transition; see, for example, Ref. 26 for a derivation
and detailed discussion of this model. Such models are powerful tools
for simulating qualitative changes to properties of molecular systems
strongly coupled to nanoconfined photons,1,31,32 offering essential
insight, for example, into optical changes that can be induced by
manipulating the energy content of an external field33 or into changes
in chemical reactivity34 or rates of electron transfer reactions.35 While
such simulations improve our qualitative understanding of many
problems, quantitative predictions of chemical reactivity or orbital-
specific quantities (e.g., ionization potentials) within optical cavities or
other nanoconfined environments necessitate an ab initio approach to
light–matter interactions or a pCQED treatment with a sufficiently
large basis of molecular and photonic eigenstates.26

The most conceptually straightforward strategy to realize an ab
initio polaritonic model is to generalize an existing methodology to
treat more than one type of quantum mechanical particle—namely,
for the description of both electrons and photons. Following this
scheme, approaches based on quantum electrodynamics generaliza-
tions of density functional theory (QEDFT28,36–42 and QED-DFT43–45)
configuration interaction (QED-CIS),46 and coupled cluster (QED-
CC)47 have emerged. An alternative and perhaps more direct descrip-
tion of polaritonic structure could be obtained from a theory designed
from the outset with a different particle type, the polariton, in
mind.48–50 This approach could be the more natural one, but, in the

framework outlined in Ref. 50, the technical challenge of designing
algorithms for treating multiple types of quantum mechanical particles
is supplanted by a new problem: enforcing the correct Fermi–Bose sta-
tistics on the polaritonic wave function. In either case, the vast majority
of polaritonic quantum chemical models are built upon density func-
tional theory (DFT). For many applications, DFT offers an excellent
balance of accuracy and computational affordability. However, DFT
suffers from a number of well-known deficiencies51 that are no doubt
inherited by polaritonic extensions of the model and potentially limit
its applicability to arbitrary polaritonic problems. Hence, while this
review article touches on QED generalizations of DFT, the main focus
is wave function methods.

II. THE PAULI–FIERZ HAMILTONIAN

The starting point for our presentation of ab initio polaritonic
structure theory is the Pauli–Fierz (PF) Hamiltonian,52,53 represented
in the length gauge and within the dipole and Born–Oppenheimer
approximations. An excellent pedagogical discussion and derivation of
this Hamiltonian from the minimal coupling Hamiltonian in the
Coulomb gauge can found in recent papers and reviews by Huo and
co-workers.26,54 Here, we briefly outline some key details, assuming a
single photon mode for simplicity, but the Hamiltonian we derive can
be generalized for multiple modes. It has been shown that the inclusion
of multiple modes can profoundly impact ground-state and excited-
state polariton surfaces, and physiochemical process in model sys-
tems.55 Most ab initio cavity QED studies to date have considered only
a single mode, so multi-mode effects represent an important area to
explore in future work.

We begin with the minimal coupling Hamiltonian in the
Coulomb gauge

Ĥp�A ¼
X

N

i

1

2mi
p̂ i � ziÂ?

� �2

þ V̂ ðx̂Þ þ �hxcavb̂
†
b̂; (1)

where the subscript on the Hamiltonian denotes that this operator is
also referred to as the “p � A” Hamiltonian.54 The sum runs over all
charged particles (electrons and nuclei in molecular systems); p̂ i and zi
are the momentum operator and charge for particle i, respectively; Â?
is the transverse component of the vector potential, which points along
ê shown in Fig. 1; V̂ ðx̂Þ is the Coulomb potential operator for all pairs
of charged particles; and �hxcavb̂

†
b̂ captures the photon energy. The

symbols b̂
†
and b̂ are photonic creation and annihilation operators,

respectively. Important properties of the photonic creation and annihi-
lation operators include their action on photon number states

b̂
†jni ¼

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

jnþ 1i; (2)

b̂jni ¼
ffiffiffi

n
p

jn� 1i; (3)

b̂
†
b̂jni ¼ njni; (4)

and their commutation relations

b̂; b̂
†

h i

¼ 1; (5)

b̂
†
; b̂

h i

¼ �1: (6)

In Eq. (1), the coupling between light and matter is captured by
the first term, which includes the matter momenta and the product of
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the matter charges and the vector potential; note that, in the Coulomb
gauge, the vector potential is purely transverse. The p � AHamiltonian
in the Coulomb gauge is quite natural for formulations of ab initio
QED represented in a real-space grid basis, and so, approaches such as
QEDFT are formulated in this gauge.28 However, because momentum
eigenfunctions are delocalized functions, capturing the coupling matrix
elements between in the p � A representation is challenging for formu-
lations that utilize Gaussian basis sets, which are inherently localized in
space. Therefore, PF Hamiltonian in the length gauge that we seek
may be obtained from Ĥp�A via a gauge transformation, known as the
Power–Zienau–Wooley (PZW) transformation, followed by a unitary
phase transformation. The PZW transformation operator is

Û PZW ¼ exp � i

�h
l̂ � Â

� �

; (7)

where, within the dipole approximation, Â ¼ A0ðb̂ þ b̂
†Þ and A0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�h
2xcave0V

q

ê are the vector potential of the cavity photon, which is still

purely transverse, but we are dropping the? for simplicity. We can see
that the cavity mode volume derives from the cavity length L shown in

Fig. 1 as V ¼ L3, and sets the magnitude of the vector potential.
Let us consider the PZW transform of each term in Eq. (1). As

noted in Ref. 54, the PZW operator boosts the momentum operator by
an amount zÂ. To see why this is the case, consider the BCH expan-
sion of this transformation for the light–matter coupling term for a
single particle with charge z,

Û PZW p̂ � zÂ
� �

Û
†

PZW ¼ eB̂ Ĉe�B̂

¼ Ĉ þ B̂; Ĉ
	 


þ 1

2
B̂; B̂; Ĉ
	 
	 


þ � � � ; (8)

where Ĉ ¼ ðp̂ � zÂÞ and B̂ ¼ � i
�h
zÂx̂ , and we have used the fact

that the dipole operator l̂ ¼ zx̂ . Because Â commutes with itself,

we have ½Ĉ ; B̂� ¼ � i
�h
zÂ½x̂; p̂� ¼ zÂ, and all subsequent commutators

equal to zero. Thus, we can see that

Û PZW p̂ � zÂ
� �

Û
†

PZW ¼ p̂ � zÂ
� �

þ zÂ ¼ p̂: (9)

Consequently, the first term in the PZW transformation of Eq. (1)
becomes

Û PZW

X

N

i

1

2mi
p̂i � ziÂ
� �2

Û
†

PZW ¼
X

N

i

1

2mi
p̂i: (10)

Both Â and x̂ commute with V̂ ðx̂Þ, so we have

Û PZWV̂ ðx̂ÞÛ †

PZW ¼ V̂ ðx̂Þ: (11)

Finally, we have

Û PZW �hxcav b̂
†
b̂ Û

†

PZW ¼ eB̂ Ĉe�B̂

¼ Ĉ þ B̂; Ĉ
	 


þ 1

2
B̂; B̂; Ĉ
	 
	 


þ � � � ; (12)

where we will call Ĉ ¼ �hxcavb̂
†
b̂ and B̂ ¼ gðb̂ þ b̂

†Þ, where
g ¼ � i

�h
l̂ � A0. The first commutator gives

�hxcavg ðb̂ þ b̂
†Þ; b̂†b̂

h i

¼ ��hxcavgðb̂
† � b̂Þ; (13)

and the second commutator gives

� 1

2
�hxcavg

2 ðb̂ þ b̂
†Þ; ðb̂† � b̂Þ

h i

¼ ��hxcavg
2
; (14)

so that this term overall reads

Û PZW �hxcavb̂
†
b̂ Û

†

PZW ¼ �hxcavb̂
†
b̂ þ ixcavl̂ � A0ðb̂

† � b̂Þ

þ xcav

�h
ðl̂ � A0Þ2: (15)

Combining all terms gives the Hamiltonian in the dipole gauge, also
called the “d � E”Hamiltonian26

Ĥd�E ¼
X

N

i

p̂
2
i

2mi
þ V̂ ðx̂Þ þ �hxcav b̂

†
b̂ þ ixcavl̂ � A0ðb̂

† � b̂Þ

þ xcav

�h
ðl̂ � A0Þ2: (16)

To derive the Pauli–Fierz Hamiltonian from Eq. (16), we apply a uni-
tary phase transformation defined by the operator

Û/ ¼ exp i
p

2
b̂
†
b̂

� �

; (17)

which transforms the photonic operators as follows:

Û/b̂
†
Û

†

/ ¼ ib̂
†
;

Û/b̂Û
†

/ ¼ �ib̂;

Û/b̂
†
b̂Û

†

/ ¼ b̂
†
b̂:

(18)

Thus, the Pauli–Fierz Hamiltonian can be defined as

ĤPF ¼ Û/Ĥd�EÛ
†

/

¼
X

N

i

p̂
2
i

2mi
þ V̂ ðx̂Þ þ �hxcavb̂

†
b̂ � xcavl̂ � A0ðb̂

† þ b̂Þ

þ xcav

�h
ðl̂ � A0Þ2: (19)

FIG. 1. Schematic of a Fabry–P�erot cavity containing molecular subsystems. The
transverse component of the vector potential and the associated electric field com-
ponent points along the vector ê, which is parallel to the z axis in this scheme. The
cavity mode volume is determined by L3.
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It is common to define the coupling vector k ¼
ffiffiffiffiffiffi

�h
e0V

q

ê, and so after

recalling the definition A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�h
2xcave0V

q

ê, we can write A0 ¼
ffiffiffiffiffiffiffiffi

1
2xcav

q

k.

At this point, the sum
PN

i
p̂
2
i

2mi
¼ T̂ e þ T̂N runs over the electrons and

nuclei, and the potential operator V̂ ðx̂Þ ¼ V̂ ee þ V̂ eN þ V̂NN includes
electron–electron repulsion, electron–nuclear attraction, and nuclear–
nuclear repulsion operators. We will invoke the Born–Oppenheimer
approximation, which fixes the nuclei and eliminates the nuclear kinetic
energy operator and makes the nuclear–nuclear repulsion a constant for
a givenmolecular geometry.With these definitions in mind, we write the
Pauli–Fierz Hamiltonian52,53 in the length gauge and within the dipole
and Born–Oppenheimer approximations and in atomic units as follows:

Ĥ ¼ Ĥ e þ xcavb̂
†
b̂ �

ffiffiffiffiffiffiffiffiffi

xcav

2

r

ðk � l̂Þðb̂† þ b̂Þ þ 1

2
ðk � l̂Þ2: (20)

Here, Ĥ e represents the electronic Hamiltonian that arises in standard
electronic structure theories when the Born–Oppenheimer approxima-

tion is imposed on the charged particles captured by the
PN

i
p̂
2
i

2mi

þ V̂ ðx̂Þ term in Eq. (19). The second term Ĥ cav ¼ xcavb̂
†
b̂ represents

the Hamiltonian for the cavity mode, which is a Harmonic oscillator
with fundamental frequency xcav . The last two terms are the bilinear

coupling, Ĥ blc ¼ �
ffiffiffiffiffiffi

xcav

2

p

ðk � l̂Þðb̂† þ b̂Þ, and dipole self-energy terms

ĤDSE ¼ 1
2
ðk � l̂Þ2, respectively. We will assume a Cartesian coordinate

system, where k and l̂ will have x, y, and z components. As is shown
in Fig. 1, the projection of the Cartesian components of the molecular
dipole operator onto ê will arise from the orientation of the molecule
relative to the cavity polarization. We note that for molecules in the
gas phase, the orientations sampled will depend on the distribution of
rotational states occupied by the molecules at the temperature of the
setup. The molecular dipole operator l̂ has electronic and nuclear con-
tributions, i.e., l̂ ¼ l̂e þ ln. In the Born–Oppenheimer approxima-
tion, the nuclear contribution is a constant for a given geometry. While
this review focuses on purely electronic coupling, a more complete
description of the polaritonic structure could also consider nuclear
effects, in which case the breakdown of the Born–Oppenheimer
approximation may have considerable consequences on predicted spec-
tra and dynamics of these systems. As an example, simulated vibration-
ally resolved electronic spectra can vary dramatically depending on
whether they are computed in the adiabatic or diabatic representation
and also on the particular diabatization scheme.56

For the remainder of the paper, we use standard labeling notation
formolecular spin orbitals, i.e., labels i, j, k, and l refer to electronicmolec-
ular spin orbitals that are occupied in a reference configuration, and labels
a, b, c, and d refer to unoccupied electronic molecular spin orbitals.
General electronic molecular orbitals will be indexed by p, q, r, and s, and
electronic atomic orbitals will be indexed by Greek labels. Unless other-
wise noted, all electronic orbital labels refer to spin orbitals. The symbols
â† and â will represent fermionic creation and annihilation operators,

respectively, while b̂
†
and b̂ will represent the bosonic equivalents.

III. MEAN-FIELD CAVITY QED

As our first step in approximating the energy eigenstates of
Eq. (20), we introduce the cavity quantum electrodynamics Hartree–
Fock (QED-HF) method based on the reference wavefunction

j0e0pi ¼ j0ei � j0pi; (21)

which is a direct product of a Slater determinant of electronic spin
orbitals (j0ei) and a zero-photon state (j0pi). This zero-photon state is
defined as a linear combination of photon-number states

j0pi ¼
X

n

ðb̂†Þnj0icn; (22)

where j0i represents the photon vacuum. The functions j0ei and j0pi
can be determined via the following modified Roothaan–Hall proce-
dure. In the first step, the electronic wavefunction can be determined
as the Slater determinant that minimizes the expectation value of Eq.
(20), given a fixed zero-photon state. Second, given j0ei, we integrate
out the electronic degrees of freedom of Eq. (20) to obtain a photon
Hamiltonian

Ĥp ¼ h0ejĤ j0ei; (23)

the lowest eigenfunction of which is j0pi. In practice, j0pi can be deter-
mined by expanding Ĥp in a basis of photon-number states and bring-
ing it to diagonal form. This two-step procedure should be repeated
until self-consistency.

One key detail in this procedure is that incorrect behavior can be
recovered if the photon space is not fully converged. As an example,
Fig. 2(a) illustrates the QED-HF energy for a cavity-bound hydrogen
fluoride cation (described by the cc-pVQZ basis set) as the molecule is
moved away from the origin. Here, the cation is coupled to a single-
mode cavity with a fundamental frequency of 2 eV, the cavity mode is
polarized along the molecular axis, the coupling strength, k, is 0.05
atomic units, and the H–F distance is fixed at 0.917 Å throughout the
translation. The QED-HF energy should be origin invariant, but, as is
evident from the data, the correct invariance properties are only
observed in the limit that the photon basis is complete. Figure 2(b)
illustrates the error in the QED-HF energy, with respect to calculations
carried out in the so-called “coherent-state basis,”57which, as discussed
below, yields results that are equivalent to those obtained with a com-
plete photon basis. Here, we can see that even with 20 photon number
states, the QED-HF energy is still not strictly origin invariant, and this
issue is more pronounced the farther from the origin the molecule is
placed.

Aside from origin invariance, the QED-HF energy should be
independent of the photon frequency;57 any polaritonic wave function
that is factorizable as a product of an electronic wave function and a
photonic wave function should have this property. Figure 3 illustrates
the frequency dependence of the QED-HF energy for the same cavity-
bound hydrogen fluoride cation when the molecule is placed 10 Å
from the origin. Clearly, an incomplete photon basis leads to an incor-
rect frequency dependence in the QED-HF energy. The errors with
respect to calculations carried out in the coherent-state basis depicted
in Fig. 3(b) demonstrate that errors due to the incompleteness of the
photon basis can be quite large, even when considering 20 photon
number states. In this case, errors larger than 10�3 Eh are observed for
cavity mode frequencies less than 1.5 eV; these errors become much
smaller as the photon frequency increases.

As alluded to above, an equivalent representation of ground-state
QED-HF involves representing the problem within the coherent-state
basis,57 which is the basis that diagonalizes Ĥp. In this way, we avoid
the need to solve the second step of the modified Roothaan–Hall
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procedure described above and automatically ensure convergence of
the procedure with respect to the number of photon-number states. In
the coherent-state basis, we need only solve the electronic problem with
a transformed Hamiltonian, the form of which is derived in Sec. IIIA.

A. Coherent-state transformation of the Hamiltonian

As noted in Ref. 57, j0pi can be exactly defined with a unitary
coherent-state transformation operator of the form

ÛCS ¼ exp zðb̂† � b̂Þ
� �

; (24)

where z is a parameter defined such that ÛCSĤpÛ
†

CS is a diagonal
operator

z ¼ �k � hl̂i
ffiffiffiffiffiffiffiffiffiffiffi

2xcav

p : (25)

The term hl̂i in Eq. (25) represents the expectation value of the molecu-
lar dipole moment (with respect to the Slater determinant, j0ei), which
is also a vector quantity. We can relate the photon vacuum to the zero-
photon state through the unitary transformation defined in Eq. (24),

j0pi ¼ Û
†

CSj0i; (26)

where j0i represents the photon vacuum. Now, consider the expecta-
tion value of the PF Hamiltonian with respect to the QED-HF
wavefunction

h0e0pjĤ j0e0pi ¼ h0ej � h0jÛCSĤ Û
†

CSj0i � j0ei: (27)

From the right-hand side of this expression, it is evident that the elec-
tronic wave function, j0ei, could be determined by minimizing the
expectation value of the transformed Hamiltonian, h0jÛCSĤ Û

†

CSj0i,
with respect to variations in the orbitals, without any explicit consider-
ation of the photon degrees of freedom. Hence, by applying the
coherent-state transformation to the full PF Hamiltonian, we avoid the
second step of the modified Roothaan–Hall procedure for QED-HF
that is outlined above.

To transform ĤPF to the coherent-state basis, we note that

ÛCSb̂
†
Û

†

CS ¼ b̂
† � z b̂

†
; ðb̂† � b̂Þ

h i

¼ b̂
† � z;

ÛCSb̂Û
†

CS ¼ b̂ � z b̂; ðb̂† � b̂Þ
h i

¼ b̂ � z;

ÛCSb̂
†
b̂Û

†

CS ¼ Û CSb̂
†
Û

†

CSÛCSb̂Û
†

CS ¼ ðb̂† � zÞðb̂ � zÞ:

(28)

FIG. 2. Origin dependence of the QED-Hartree–Fock energy when varying the number of photon-number states used to represent the photon Hamiltonian, Ĥ p, for a hydrogen
fluoride cation.

FIG. 3. Frequency dependence of the QED-Hartree–Fock energy when varying the number of photon-number states used to represent the photon Hamiltonian, Ĥ p, for hydro-
gen fluoride cation.
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So, applying this transformation to Eq. (20) yields

ĤCS ¼ Ĥ e þ xcavðb̂
† � zÞðb̂ � zÞ �

ffiffiffiffiffiffiffiffiffi

xcav

2

r

k � l̂ðb̂† þ b̂ � 2zÞ

þ 1

2
ðk � l̂Þ2; (29)

and substituting Eq. (25) gives the specific form of the Pauli–Fierz
Hamiltonian in the coherent-state basis

ĤCS ¼ Ĥ e þ xcavb̂
†
b̂ �

ffiffiffiffiffiffiffiffiffi

xcav

2

r

k � ðl̂ � hl̂iÞ½ �ðb̂† þ b̂Þ

þ 1

2
k � ðl̂ � hl̂iÞ½ �2: (30)

Although we see that in Fig. 2 the total energy for charge systems
remains origin invariant in the coherent state basis, the orbitals and
the Fock matrix itself are not origin invariant for charged systems in
this formulation. This presents challenges for introducing perturbative
corrections for electron–electron and electron–photon correlation.
This was recently observed by Riso et al. who developed a strong cou-
pling quantum electrodynamics Hartree–Fock theory (SC-QED-HF)
that leads to a fully origin-invariant formulation58 based on the follow-
ing ansatz:

jUSCQEDHFi ¼ exp � k
ffiffiffiffiffiffiffiffiffiffiffi

2xcav

p
X

pr

gprâ
†
prâpr b̂� b̂

†
� �

 !

j0eij0i; (31)

where â†pr and âpr are fermionic creation and annihilation operators
for spin orbital pr and gp are orbital-specific coherent-state coefficients.

B. Cavity QED Hartree–Fock (QED-HF) in the coherent-

state basis

Consider a QED-HF wave function of the form of Eq. (21).
We express the photon state using the coherent-state transformation
[Eq. (26)] and take the expectation value of the Pauli–Fierz
Hamiltonian to give

EQED�HF ¼
X

l�

Tl� þ Vl� þ
1

2
Jl� �

1

2
Kl�

� �

cl�

þ
�

1

2
k � ðl̂e � hl̂eÞi
	 
2

�

: (32)

Here, l and � represent atomic basis functions, and Tl� ; Vl� ; Jl� , and
Kl� are electron kinetic energy integrals, electron–nucleus potential
energy integrals, elements of the Coulomb matrix, and elements of the
exchange matrix, respectively. The elements of the Coulomb and
exchange matrices are defined by

Jl� ¼
X

kr

ðl�jkrÞckr (33)

and

Kl� ¼
X

kr

ðlkjr�Þckr; (34)

where the symbol ðl�jkrÞ represents a two-electron repulsion integral
in chemists’ notation, and cl� ¼

PNe

i c�lic�i is the one-particle reduced
density matrix (with fclig and Ne being molecular orbital coefficients

and the number of electrons, respectively). The last term in Eq. (32) is
the dipole self-energy; note that, in the coherent-state basis, this quan-
tity depends on only electronic degrees of freedom. Note also that the
bilinear coupling term in Eq. (30) does not contribute to the QED-HF
total energy when the Hamiltonian is represented in the coherent-state
basis. This property is shared by all QED approaches where the wave
function is represented as a product of electron and photon functions
(e.g., in the QED-DFT approach described in Ref. 43 and in Sec. III C).

The implementation of the dipole self-energy term is not consis-
tent across the literature, with the difference being the treatment of the
square of the electric dipole operator. To appreciate these differences,
we first expand the dipole self-energy operator as

1

2
k � ðl̂e � hl̂eiÞ
	 
2 ¼ 1

2
ðk � l̂eÞ2 � ðk � l̂eÞðk � hl̂eiÞ þ

1

2
ðk � hl̂eiÞ2:

(35)

Now, the square of the electric dipole operator [the first term on the
right-hand side of Eq. (35)] can be expanded in terms of one- and
two-electron contributions as

ðk � l̂eÞ2 ¼
X

i 6¼j

k � l̂eðiÞ
	 


k � l̂eðjÞ
	 


þ
X

i

k � l̂eðiÞ
	 
2

; (36)

where i and j represent different electrons. The right-hand side of Eq.
(36) can be expressed in second-quantized notation as

ðk � l̂eÞ2 ¼
X

l�kr

dl�dkrâ
†
lâ

†

kârâ� �
X

l�

ql� â
†
lâ� ; (37)

where â† and â represent fermionic creation and annihilation opera-
tors, respectively. The symbols dl� and ql� represent modified electric
dipole and electric quadrupole integrals, which have the form

dl� ¼ �
X

a2fx;y;zg
ka

ð

v�lrav�ds (38)

and

ql� ¼ �
X

ab2fx;y;zg
kakb

ð

v�lrarbv�ds; (39)

respectively, and are evaluated over atomic basis functions, vl. Here,
ka is a Cartesian component of k, and ra is a Cartesian component of
the position vector [e.g., for r ¼ ðx; y; zÞ, rx¼ x]. As is well known, the
square of an operator expanded initially in first quantization and then
represented in second quantization is not necessarily the same as the
square of the second quantized form of the operator; these representa-
tions are only equivalent in the limit that the one-electron basis set is
complete. Equation (37) makes no assumptions about the complete-
ness of the one-particle basis set and is the form of the square of the
dipole operator employed in Refs. 43, 46, and 59–61. On the other
hand, many other studies take the second-quantized form of the
square of the electric dipole operator to be the product of second-
quantized electric dipole operators, which leads to

ðk � l̂eÞ2 ¼
X

l�kr

dl�dkrâ
†
lâ� â

†

kâr

¼
X

l�kr

dl�dkrâ
†
lâ

†

kârâ� þ
X

l�

â†lâ�
X

r

dlrdr� : (40)
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In these studies, the assumption that the basis set is assumed to be
complete is never stated, but this choice is evident in the form of the
Fock matrix [see Eq. (30) of Ref. 57, for example]. In this review, we
choose the form of ðk � l̂eÞ2 given by Eq. (37). Given that choice, and
the fact that

ðk � l̂eÞ ¼
X

l�

dl� â
†

lâ� ; (41)

we arrive at

1

2
k � ðl̂e � hl̂eiÞ
	 
2 ¼ 1

2

X

l�kr

dl�dkrâ
†
lâ

†

kârâ�

þ
X

l�

ODSE
l� â†lâ� þ

1

2
ðk � hleiÞ2; (42)

where

ODSE
l� ¼ �ðk � hl̂eiÞdl� �

1

2
ql� : (43)

Now, we can evaluate the expectation of Eq. (42) with respect to a sin-
gle determinant, which gives

�

1

2
k � ðl̂e � hl̂eiÞ
	 
2

�

¼
X

l�

1

2
JDSEl� � 1

2
KDSE
l� þ ODSE

l�

� �

cl�

þ 1

2
ðk � hleiÞ2: (44)

Here, JDSEl� and KDSE
l� are elements of dipole self-energy matrices that

are analogies of the usual Coulomb and exchange matrices

JDSEl� ¼ dl�
X

kr

dkrckr ¼ ðk � hl̂eiÞdl� ; (45)

KDSE
l� ¼

X

kr

dlrdk�ckr: (46)

With all of the components of the energy [Eq. (32)] defined, we
can make this energy stationary with respect to the molecular orbital
expansion coefficients, fclig, while enforcing orthogonality of the
molecular orbitals, which leads to a set of Hartree–Fock equations that
resembles those in the ordinary electronic problem, augmented by the
dipole self-energy contributions. As such, QED-HF orbitals are eigen-
functions of a modified Fock matrix

Fl� ¼ Tl� þ Vl� þ Jl� � Kl� þ ODSE
l� þ JDSEl� � KDSE

l� : (47)

For organizational purpose, it will become convenient to partition the
Fock matrix into contributions that define the canonical Fock opera-

tor, FC
l� ¼ Tl� þ Vl� þ Jl� � Kl� , plus terms that derive from the

dipole self-energy, FDSE
l� ¼ ODSE

l� þ JDSEl� � KDSE
l� .

Upon solving the QED-HF equations, one obtains a set of molec-
ular orbitals corresponding to the (mean-field) ground state of a
many-electron system coupled to an optical cavity. For sufficiently
large coupling strengths, the cavity can induce significant changes in
these orbitals, as compared to orbitals obtained from a standard HF
procedure on the isolated many-electron system. Here, we examine
such changes for a formaldehyde molecule that has been coupled to a
single-mode optical cavity. Excited states of this system have been
explored using QED generalizations of time-dependent density

functional theory (TDDFT)62,63 (see Sec. IVB for a description of the
relevant theory). Here, we adapt the results of Ref. 46 and focus on
cavity-induced changes to the ground state (i.e., to the molecular orbi-
tals). We supplement this discussion with a tutorial implementation of
QED-HF that the interested reader can find online.64 The tutorial pro-
vides a benchmark calculation on the water molecule and can be modi-
fied to study other systems.

As described in Ref. 46, the geometry of isolated formaldehyde was
optimized using restricted HF (RHF) theory and the cc-pVDZ basis set,
and the principal symmetry axis of the molecule is aligned along the z
axis. At this level, the RHF ground state has a dipole moment oriented
along the z axis with hliz ¼ �1:009 a.u. We consider solutions to the
QED-HF equations for a coupling vector with fixed magnitude (i.e.,
jkj ¼ 0:1 a.u.), and three different cavity mode polarizations: ky

¼ 0:1 êy a.u., kz ¼ 0:1 êz a.u., and kyz ¼
ffiffi

1
2

q

ðky þ kzÞ a.u., with êy

¼ ð0; 1; 0Þ and êz ¼ ð0; 0; 1Þ. As compared to the HF energy, the
QED-HF energy is higher in all cases, with the largest increase occur-
ring for kz (see Table I). Going back to the explicit expressions for the
QED-HF dipole self-energy derived above, we can see that this large
change likely originates from the permanent dipole moment that is ori-
ented along the z axis, which contributes to the last term in Eq. (44).
The cavity-induced changes to the energy for the other polarizations
point to important effects arising from the other contributions to Eq.
(44). Specifically, in the case of ky , we should see no permanent dipole

moment contributions to the dipole self-energy, which indicates that
the cavity effects stem entirely from the quadrupolar contribution to

ODSE [Eq. (43)] and the exchange-like contribution [Eq. (46)].
To quantify cavity-induced changes to the energy, Ref. 46 consid-

ered how various contributions to the QED-HF energy change with
and without coupling to the photon field. Specific formulas for these
couplings are given in Ref. 46. The quadrupolar contribution to ODSE

(D1qe) and the Coulomb-like and exchange-like contributions [Eqs.
(45) and (46)], the combination of which is denoted D2de in Table I,
typically account for the largest changes to the QED-HF energy for the
three polarizations considered in Table I. However, the changes in the
one- and two-electron contributions to the canonical RHF energy
(denoted D1E and D2E) suggest that cavity-induced changes to the
orbitals themselves can have appreciable energetic consequences. We
note that the various components of the energetic changes largely

TABLE I. Change in total QED-HF energy (DE in eV) and % relative changes in dif-
ferent contributions to the total QED-HF energy for three different polarizations of a
photonic mode with magnitude jkj ¼ 0:1 a.u. The terms D1E and D2E denote
changes in the RHF 1- and 2-electron energies, respectively, and the terms
D1de; D2de; D1qe; Ddc denote changes in the QED-HF 1-electron dipole, 2-electron
dipole, 1-electron quadrupole, and dipole constant terms, respectively.

Total
Canonical RHF Cavity contributions

DE (eV) % D1E % D2E % D1de % D1qe % D2de % Ddc

ky
0.925 �229 230 0 209 �110 0

kz
1.110 �178 179 �31 431 �316 15

kyz
1.034 �200 201 �16 329 �222 8
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cancel with one other (i.e., D1E � �D2E in all three cases), leading to
more modest changes in the total energy (see Table I).

Aside from the energy, we can also visualize the impact that the
cavity has on the real-space form of the molecular orbitals. As an
example, Fig. 4 depicts HF orbitals for the highest occupied molecular
orbital (HOMO, 2B2) and the second-lowest unoccupied molecular
orbital (LUMOþ 1, 6A1) for an isolated formaldehyde molecule and
the corresponding QED-HF orbitals for the kyz case (7A0 and 8A0).
The QED-HF orbitals are noticeably distorted compared to the HF
ones, which results in a reduction of symmetry from C2v to Cs and
impacts both ground-state energy and properties. The direct inclusion
of these cavity-induced effects on the orbital basis is one appealing
advantage of ab initioQEDmethods.

C. Cavity QED density functional theory (QED-DFT)

The QED-HF theory outlined above can easily be adapted to
develop a QED generalization of Kohn–Sham DFT or QED-DFT.43–45

To do so, one can simply follows the basic premise of Kohn–Sham
DFT:65 there exists a fictitious system of non-interacting photons and
electrons that has the same density as the fully interacting system. The
QED-DFT ground state is then taken to have the form of Eq. (21),
except that j0ei now refers to a determinant of Kohn–Sham orbitals.
As with QED-HF, the photon part of the wave function can be exactly
represented using the coherent-state transformation operator, see Eq.
(26). All electron–electron correlation and exchange effects and elec-
tron–photon correlation effects can then, in principle, be accounted
for by appropriate functionals of the density (and gradient of the den-
sity, etc.), as in standard Kohn–Sham DFT. Historically, QED-DFT
was predated by a different generalization of DFT for cavity QED
applications, called QEDFT,40,42,66–68 which, rather than following the
Kohn–Sham scheme, represents the electronic and photonic degrees of
freedom directly in real space. QED-DFT studies typically employ
standard exchange-correlation functionals used in electronic structure
theory (i.e., they ignore electron–photon correlation effects), while, for
QEDFT, a few examples of electron–photon correlation functions have
been put forward.39,40,69–71

IV. SINGLE-PARTICLE POST-SCF CAVITY QED
METHODS

A. Cavity QED-configuration interaction with single

excitations (QED-CIS)

A general correlated wave function for a many-electron system
coupled to a single-mode cavity could take the form

jWi ¼
X

l

X

A

cAl jlei � jApi; (48)

where jlei represents a determinant of electronic orbitals, jApi is a
photon-number state corresponding to A photons in the cavity mode,
and cAl is an expansion coefficient. If {jlei} includes all possible deter-
minants and {jApi} includes all possible photon-number states, then
this full configuration interaction (CI) wave function provides an exact
description of the electronic/polaritonic structure, within a given one-
electron basis set. However, as in the usual electronic case, a full CI
description of a cavity-coupled many-electron system is, in general,
an intractable prospect. The simplest solution to this problem is to trun-
cate both the many-electron basis and the photon basis at some level.

McTague and Foley proposed46 a truncated cavity QED-CI
approach wherein the sum over Slater determinants, l, in Eq. (48) was
restricted to include only the reference electronic configuration, j0ei,
and all single electronic excitations out of this configuration, and the
sum over photon-number states was restricted to include only states
representing zero or one photon in the cavity (j0i and j1i, respec-
tively). Those authors termed this approach cavity QED configuration
interaction with single excitations, or CQED-CIS, but, following the
naming convention used in some QED coupled-cluster approaches57

(see Sec. V), we adopt the name QED-CIS-1. The QED-CIS-1 wave
function for state I takes the form

jWIi¼c00j0ei�j0iþ
X

i;a

c0iajUa
i i�j0iþc10j0ei�j1iþ

X

i;a

c1iajUa
i i�j1i:

(49)

Following Ref. 46, jUa
i i ¼ 1

ffiffi

2
p ðjUaa

ia
i þ jUab

ib
iÞ represents a singlet spin-

adapted basis function, where jUar
ir
i is a determinant generated by

exciting an electron with spin r from a spatial orbital that is occupied
in j0ei; /i, to an unoccupied spatial orbital, /a. For multiple cavity
modes, QED-CIS-1 is defined such that the photon basis includes all
possible combinations zero or one photon in each of the modes.

The expansion coefficients in Eq. (49) can be determined as the
elements of the eigenvectors of the matrix representation of the
Pauli–Fierz Hamiltonian represented within the coherent-state basis
[ĤCS, Eq. (30)], i.e., by solving the eigenvalue problem

0 0 0 �hg

0 Aþ D �hg† �hG

0 �hg �hx 0

�hg† �hG 0 Aþ Dþ �hX

2

6

6

6

6

6

4

3

7

7

7

7

7

5

c00

c0ia

c10

c1ia

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ XQED�CIS�1

c00

c0ia

c10

c1ia

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

(50)

Note that the matrix on the left-hand side of Eq. (50) actually is the
matrix representation of ĤCS � EQED�HF, where EQED�HF is the
energy of the QED-HF reference state. The elements of A are similar
to those encountered in canonical CIS theory

FIG. 4. Comparison of the HOMO and LUMOþ 1 orbitals of formaldehyde uncoupled to
an photon mode (top) and strongly coupled to a photon mode polarized along the y–z axis
(bottom), where strong coupling results in a change in symmetry from C2v to Cs. Adapted
from Ref. 46 [McTague and Foley, J. Chem. Phys. 156, 154103 (2022). Copyright 2022
Author(s), licensed under a Creative Commons Attribution (CC BY) license.].
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Aia;jb ¼ FC
abdij � FC

ij dab þ 2ðiajjbÞ � ðijjabÞ (51)

with important differences being that (i) the two-electron integrals are
performed over QED-HF orbitals, and (ii) FC is not diagonal in the
QED-HF basis when the coupling strength is non-zero. The dipole
self-energy contribution to the Hamiltonian in the subspace of spin-
adapted singly excited functions is contained in the D matrix, with
elements

Dia;jb ¼ FDSE
ab dij � FDSE

ij dab þ 2diadjb � dijdab: (52)

Again, we note that FDSE is not necessarily diagonal in the QED-HF
basis. The symbol X represents a diagonal matrix of photon energy
contributions, defined by

Xia;jb ¼ xdijdab: (53)

The symbols g andG arise from the bilinear coupling term in ĤCS and
are defined by

gia ¼ �
ffiffiffiffi

x
p

dia (54)

and

Gia;jb ¼
ffiffiffiffi

x

2

r

dijdab � dabdij þ hdidijdab
� �

: (55)

The g term couples the reference to jUa
i ij1i, while G couples singly

excited configurations with different photon numbers, i.e., jUa
i ij0i and

jUa
i ij1i. Note that the fact that g couples the reference to jUa

i ij1i
implies that QED-CIS-1 captures some electron–photon correlation
effects. Indeed, the lowest eigenvalue, XQED�CIS�1, obtained from solv-
ing Eq. (50) is nonpositive and represents an electron–photon correla-
tion energy.

B. Cavity QED time-dependent density functional

theory (QED-TDDFT)

Given the popularity of time-dependent DFT (TDDFT) for
the electronic structure problem, it is not surprising that multiple
generalizations of TDDFT have been proposed and applied to cavity-
embedded molecular systems. Both real-time36–38,72–74 and linear-
response42,43,63,67,68,75,76 formulations have been put forward; here, we
focus on the linear-response approaches because they more closely
resemble the QED-CIS-1 method discussed above. Both real-
space42,67,68,75 and atom-centered Gaussian basis function43,45,63,76

representations of the electronic structure have been used within
linear-response QED-TDDFT. In the latter category, Refs. 63 and 76
have considered QED-TDDFT calculations on top of canonical
Kohn–Sham reference configurations (i.e., j0ei � j0i, where j0ei is a
Kohn–Sham determinant optimized in the absence of the cavity),
while Refs. 43 and 45 have considered fully relaxed QED-DFT refer-
ence functions and represented the QED-TDDFT problem in the
coherent-state basis, similar to what is done in QED-CIS-1. As dis-
cussed in Ref. 45, significant differences in excitation energies obtained
from these “unrelaxed” and “relaxed” QED-TDDFT protocols can
occur when considering large coupling strengths. In either case, linear-
response QED-TDDFT can be implemented as a solution to a general-
ization of Casida’s equations

Aþ D Bþ D0
�hg† �h~g†

Bþ D0 Aþ D �hg† �h~g†

�hg �hg �hx 0

�h~g �h~g 0 �hx

2

6

6

6

6

6

4

3

7

7

7

7

7

5

X

Y

M

N

2

6
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6

6

6
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7

7

7

7

5

¼ X
QED�TDDFT

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

2
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X

Y

M

N

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: (56)

Assuming a spin-adapted basis, the A matrix is the same as that given
in Eq. (51), except that the exchange term ðijjabÞ is replaced with
appropriate derivatives of the exchange-correlation energy. For a cavity
QED random phase approximation (RPA), the Bmatrix has elements

Bia;jb ¼ 2ðiajjbÞ � ðibjjaÞ; (57)

and, for QED-TDDFT, the exchange term ðibjjaÞ is again replaced by
the appropriate derivatives of the exchange-correlation energy. The D0

matrix has elements

D
0
ai;bj ¼ 2daidbj � dajdib; (58)

and, finally, ~g ¼ g. As described, the QED-TDDFT formalism corre-
sponds to the “relaxed” one developed in Ref. 43. The “unrelaxed”
QED-TDDFTmethod proposed in Ref. 63 can be obtained by ignoring
the effects of the cavity in the underlying ground-state Kohn–Sham
problem and taking

Dia;jb ¼ D
0
ia;jb ¼ 2daidbj: (59)

The elements of X; Y; M, and N parameterize the QED-TDDFT
excited states; the elements of X and Y correspond to the usual elec-
tronic excitation and de-excitation amplitudes encountered in conven-
tional TDDFT, while M and N refer to photon creation and
annihilation amplitudes, respectively. We see clear connections to
QED-CIS-1, where the CI coefficients c0ai and c

1
0 play roles that are sim-

ilar to those of the elements of X and M, respectively. Unlike QED-
CIS-1, however, the linear-response QED-TDDFT equations do not
couple the QED-DFT reference to any excited configurations. Hence,
this approach does not account for any explicit electron–photon corre-
lation effects, absent any that are included via the exchange-correlation
functional. Such effects were ignored in Refs. 43, 45, 63, and 76; all cal-
culations reported therein used standard density functional approxi-
mations designed for non-QED applications.

C. The QED-TDDFT and QED-CIS prisms

As mentioned above, some coefficients from the QED-CIS-1 prob-
lem map directly onto amplitudes that arise in QED-TDDFT. However,
QED-CIS-1 lacks analogues to the de-excitation and annihilation ampli-
tudes (Y andN, respectively). That said, in Ref. 63, Shao and co-workers
explored an approximation to QED-TDDFT that ignored these terms,
called the Tamm–Dancoff-Rotating Wave Approximation (TDA-
RWA) in that work, which has a simpler structure that is more similar
to QED-CIS-1. The TDA-RWA eigenvalue problem is
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Aþ D �hg†

�hg �hx

" #

X

M

" #

¼ X
TDA-RWA X

M

" #

: (60)

The primary differences between QED-CIS-1 and TDA-RWA are (i)
the different definitions of the Amatrix that we have already discussed
and (ii) the fact that TDA-RWA, like QED-TDDFT, does not account
for simultaneous electronic excitations and photon creation, which
would couple the QED-DFT reference to excited configurations. Other
subtle differences exist, depending on whether the TDA-RWA is done
in a fully relaxed way or not (as discussed in the context of QED-
TDDFT above). The TDA-RWA approach is only one of eight possible
approximations to QED-TDDFT that Shao and co-workers analyzed
in Ref. 63; these approximations live on what those authors describe as
the QED-TDDFT prism (see Fig. 5). The facets of their prism include
all possible combinations of including or neglecting of the B matrix,
the D/D0 matrices, and ~g.

An analogous family of approximations to QED-CIS-1 can be
developed by neglecting D or the bilinear coupling terms in Eq. (50) or
by excluding simultaneous electron excitation and photon creation
terms (jUa

i i � j1i) in Eq. (49). For example, excluding jUa
i i � j1i

from the wave function expansion results in a QED-CIS method has
the same structure as TDA-RWA,

Aþ D �hg†

�hg �hx

" #

c0ia

c10

" #

¼ XQED-CIS
c0ia

c10

" #

: (61)

On the other hand, neglecting D Eq. (50) leads to a
Jaynes–Cummings-like approximation to QED-CIS-1 (JC-CIS-1),

0 0 0 �hg

0 A �hg† �hG

0 �hg �hx 0

�hg† �hG 0 Aþ �hX

2

6

6

6

6
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7

7

7

7

5

c00

c0ia
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2

6

6

6

6

4

3

7

7

7

7

5

¼ XJC-CIS-1

c00

c0ia

c10

c1ia

2
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6

6

6

4

3

7

7

7

7

5

; (62)

and if we neglect D from Eq. (61), we arrive at a JC-CIS methods that
has the same structure as the TDA-JC method of Shao and co-
workers63

A �hg†

�hg �hx

" #

c0ia

c10

" #

¼ XJC-CIS
c0ia

c10

" #

: (63)

Reference 63 provides a detailed analysis of the behavior of differ-
ent facets of the QED-TDDFT prism for several cavity-coupled molec-
ular systems. Here, we consider how the description of an MgHþ

cation coupled to a single-mode cavity differs for facets of the QED-
CIS-1 prism. The cavity mode frequency is chosen to be resonant with
the S0 ! S1 transition in MgHþ at an Mg–H distance of 2.2 Å
(4.75 eV, as evaluated at the CIS/cc-pVDZ level of theory). The mole-
cule is chosen to be oriented along the cavity mode polarization axis,
and we consider two coupling strengths, jkj ¼ 0:01 a.u. and jkj ¼ 0:05
a.u. For the smaller coupling strength (jkj ¼ 0:01 a.u.), all facets of the
prism provide a similar description of the upper and lower polariton
states (see Fig. 6). On the other hand, clear differences between each
model become evident for the stronger coupling strength (jkj ¼ 0:05
a.u.). Not surprisingly, energies from Jaynes–Cummings approxima-
tions (JC-CIS-1 and JC-CIS) are consistently lower than those from

FIG. 5. The QED-TDDFT prism with the front-most upper-left vertex representing
full linear-response TDDFT applied to the Pauli–Fierz Hamiltonian (TDDFT-PF,
herein referred to as QED-TDDFT), the back-most lower right vertex representing
the most severe approximation (TDA-JC) through neglect of the electronic de-
excitation matrix B, the dipole self-energy D/D0 matrices, and the counter-rotating
bilinear coupling terms ~g . Reproduced with permission from Yang et al., J. Chem.
Phys. 155, 064107 (2021). Copyright 2021 AIP Publishing.

FIG. 6. Potential energy curves of the lower- and upper-polariton states of MgHþ

coupled to a photon with energy x ¼ 4:75 eV and fundamental coupling strength
jkj ¼ 0:01 a.u. (left), and jkj ¼ 0:05 a.u. (right). Energies correspond to EQED-HF
þ X, where X is the excitation energy for a given QED-CIS-1 facet.

Chemical Physics Reviews REVIEW pubs.aip.org/aip/cpr

Chem. Phys. Rev. 4, 041301 (2023); doi: 10.1063/5.0167243 4, 041301-10

Published under an exclusive license by AIP Publishing

 1
1
 O

c
to

b
e
r 2

0
2
3
 1

7
:5

2
:1

4



the Pauli–Fierz approaches (QED-CIS-1 and QED-CIS) because the
Jaynes–Cummings model neglects the quadratic dipole self-energy
contributions, which are non-negative. We also see that QED-CIS-1
energies are consistent lower bounds to energies from QED-CIS; the
reason is that simultaneous electron excitations and photon creation
terms in QED-CIS-1 account for electron–photon correlation effects
that lower the energy. For large coupling strengths, these effects can be
quite large; at an Mg–H bond length of 2.2 Å and jkj ¼ 0:05 a.u., for
example, the energies of the upper- and lower-polariton states com-
puted by QED-CIS and QED-CIS-1 energies differ by 12.4 mEh and
5.35 mEh, respectively.

As mentioned above, simultaneous electron excitations and pho-
ton creation terms in QED-CIS-1 incorporate electron–photon corre-
lation effects into the approach and, as a result, the lowest-energy
eigenvalue associated with Eq. (50) is nonpositive and corresponds to
an electron–photon correlation contribution to the ground-state
energy. Table II quantifies these effects for a formaldehyde molecule
coupled to a single-mode cavity with two different coupling vectors, kz
and kyz , which both have magnitudes of 0.1 a.u. and were defined in
Sec. III B. The geometry for formaldehyde was taken from Ref. 46,
with the principal axis of the molecule aligned in the z direction. The
authors of Ref. 46 considered a photon mode with x¼ 10.4 eV, which
is approximately resonant with the first two dipole allowed transitions
at the CIS/cc-pVDZ level of theory. The changes to the ground-state
energy as predicted by QED-CIS-1 are given relative to the canonical
RHF method and the QED-HF method in Table II. A Jupyter-note-
book-based tutorial implementing the prism of QED-CIS-1 methods
can be found online.77 The tutorial provides a benchmark calculation
on the MgHþ ion, and it can easily be modified to study other systems.

V. CAVITY QED COUPLED CLUSTER (QED-CC)

Beyond the single-particle theories discussed in Secs. III and IV, a
number of groups have considered many-body frameworks for ab
initio cavity QED calculations. Many of these efforts have focused on
the coupled-cluster (CC)78–81 ansatz, which has enjoyed great success
in conventional (non-QED) quantum chemistry applications. CC
methods exhibit a number of desirable features that have contributed
to this success, including the size extensivity of truncated CC expan-
sions, the size intensivity of equation of motion (EOM)81–84 or linear-
response85–92 CC excitation energies, and systematic convergence of
the approach toward the full CI limit.

Two slightly different generalizations of CC theory for use with
the PF Hamiltonian appeared in the literature at roughly the same
time.57,93 The polaritonic coupled-cluster theory of Mordovina et al.93

considered an exponential parameterization of the ground-state polari-
tonic wave function that included single and double electronic

transition operators, as well as photon creation operators and coupled
electron transition and photon creation operators. They applied this
ansatz, along with QED full CI, to the description of strong coupling
between a single photon mode and a four-site Hubbard model. It
should be noted that this work did not use typical boson creation oper-
ators, but, rather, nilpotent operators that lead to a linear parameteri-
zation of the photon space. On the other hand, the QED-CCSD-1
model presented by Haugland et al.57 used an exponential parameteri-
zation of similar complexity, along with more familiar (non-nilpotent)
boson creation operators, and they applied this approach strong cou-
pling problems involving an ab initio molecular Hamiltonian. The
ground-state QED-CCSD-1 wave function is

jWCCi ¼ eT̂ jU0i (64)

with

T̂ ¼
X

ia

tai â
†
aâi þ

1

4

X

ijab

tabij â
†
aâ

†

bâ jâi þ u0b̂
† þ

X

ia

uai â
†
aâib̂

†

þ 1

4

X

ijab

uabij â
†
aâ

†

bâ jâib̂
†
; (65)

and where jU0i is a reference configuration of the form

jU0i ¼ j0ei � j0i: (66)

In Eq. (65), the symbols tai ; t
ab
ij , u0, u

a
i , and uabij represent the cluster

amplitudes, and we can see that QED-CCSD-1 is an extension of the
usual CCSD model94 that includes both photon creation operators and
products of electronic transition and photon creation operators.

Excited states in QED-CC theory are represented within the
EOM-CC framework,81–84 in which we define both left- and right-
hand excited states of the form

jWIi ¼ R̂Ie
T̂ jU0i; (67)

h ~WI j ¼ hU0jL̂Ie
�T̂

; (68)

where the label I denotes the state. These functions satisfy left- and
right-hand eigenvalue equations

hU0jL̂I
�H ¼ hUjL̂IEI ; (69)

�HR̂I jU0i ¼ EI R̂I jUi; (70)

involving the similarity transformed PF Hamiltonian, �H ¼ e�T̂ ĤeT̂ .
Here, Ĥ is represented in the coherent-state basis. At the EOM-QED-
CCSD-1 level of theory, the R̂I and L̂I operators are defined by

L̂I ¼ l0 þ
X

ai

liaâ
†
i âa þ

1

4

X

abij

l
ij
abâ

†
i â

†
j âbâa þm0b̂ þ

X

ai

mi
aâ

†
i âab̂

þ 1

4

X

abij

m
ij
abâ

†

i â
†

j âbâab̂ (71)

and

R̂I ¼ r0 þ
X

ai

rai â
†
aâi þ

1

4

X

abij

rabij â
†
aâ

†

bâ jâi þ s0b̂
† þ

X

ai

sai â
†
aâ ib̂

†

þ 1

4

X

abij

sabij â
†
aâ

†

bâ jâib̂
†
; (72)

TABLE II. Changes to the ground-state energy predicted by QED-CIS-1 relative to
the canonical RHF energy as well as the QED-HF energy in atomic units.
Calculations were performed with a fixed magnitude of jkj ¼ 0:1 a.u. for the kz and
kyz polarizations. QED-CIS-1 method calculations were performed to reflect formalde-
hyde coupling to a photon with �hx ¼ 10:4 eV.

Relative to RHF Relative to QED-HF
Polarization DE (eV) DE (eV)

kz 0.811 �0.318

kyz 0.771 �0.266
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respectively, and the amplitudes appearing in Eqs. (71) and (72) are
determined by solving Eqs. (69) and (70).

Since 2020, several groups have developed implementations of
similar QED-CC approaches and explored the influence of cavity
effects on various ground-state properties. DePrince59 used QED-
CCSD-1 to demonstrate that strong coupling leads to appreciable
changes in electron affinities in sodium halide compounds and that
QED-HF significantly overestimates these effects. Ionization potentials
were found to be less sensitive to cavity effects in these systems.
Pavo�sevi�c and Flick95 also explored the influence of cavity effects on
electron affinities using a unitary formulation of QED-CCSD-1, imple-
mented using the variational quantum eigensolver (VQE)96–98 algo-
rithm, on a quantum computer. They also extended the framework to
include up to two photon creation operators plus single and double
electronic excitations (termed QED-CCSD-2). These works led to a
study on the features of ionization in QED environments by Riso
et al.99 that highlighted the importance of an appropriate treatment of
the ionized electron.

Beyond these studies on ionization/electron attachment, a num-
ber of works have used QED-CC approaches to explore how vacuum
fluctuations can be leveraged in chemical contexts. Here, it is impor-
tant to note that we are referring to changes to ground states of cavity-
embedded systems, without driving transitions or creating polariton
states via the addition of photons to the cavity. Pavo�sevi�c et al.100 used
non-unitary QED-CCSD-2 to show that strong coupling leads to non-
negligible changes in proton transfer reaction barrier heights; changes
as large as 20% were reported in Ref. 100. These authors also intro-
duced an approximation to QED-CCSD-2 in which single electron
transitions appear with up to two photon creation operators, but dou-
ble electron transitions only appear with up to single photon creation
operators (termed QED-CCSD-21). This QED-CCSD-21 model has a
similar structure to the approach of White et al.,101 which was devel-
oped to model electron–phonon interactions. Pavo�sevi�c et al. applied
an approximate QED-CCSD-1 model (that ignores coupled two-
electron plus photon interactions) to two cycloaddition reactions. In
that work, the authors demonstrated that sufficiently strong coupling,
along with precise control over the relative orientation of molecules
and the cavity mode axis, could influence the major products of these
reactions. Pavo�sevi�c and Rubio have also incorporated QED-CCSD-1
into an embedding protocol44 that treats a subset of a cavity-
embedded molecular system using QED-CC and the remainder of the
system via QED-DFT or QED-HF (termed “QED-CC-in-QED-SCF”).
Assuming that electron–photon correlations are limited to the embed-
ded region, this protocol could circumvent the high computational
cost of the many-body ab initio cavity QED framework.

Haugland, Sch€afer, Ronca, Rubio, and Koch used QED-CCSD-1,
QED-DFT, and QED full CI to model the effects of vacuum fluctua-
tions on nature of intermolecular interactions.47 Not surprisingly,
QED-HF and QED-DFT do not provide good descriptions of intermo-
lecular interactions in a cavity, particularly for van der Waals interac-
tions. Additional notable observations include an R�3 contribution to
van der Waals interactions (which display R�6 dependence in the
absence of a cavity), stemming from electron–photon correlations, and
an apparently infinite distance over which cavity-embedded molecules
remain correlated, which results from the dipole self-energy contribu-
tion to the interaction energy. It should be noted that the coupling
strength employed in this study was quite large: k ¼ 0:1 a.u., which,

assuming a single cavity mode, corresponds to an effective mode vol-
ume of � 0:2 nm3. The authors correctly note that, at the mean-field
level, multiple modes polarized along the same axis can be treated as a
single effective mode with coupling strength, k2eff ¼

P

i k
2
i . Even so,

some conclusions regarding long-range correlation effects involve
inter-molecule distances on the order of hundreds of Å, which seems
inconsistent with such large coupling strengths. More recently, Philbin
et al.102 used machine learning (ML) techniques to learn intermolecu-
lar potentials for cavity-embedded dimers of H2molecules, which were
treated using QED-CCSD-1 plus two-photon creation operators
(termed QED-CCSD-12-SD1 in that work) and QED full CI with up
to five photon creation operators (QED-FCI-5). Interestingly, compar-
isons between QED-CCSD-1 and QED-CCSD-12-SD1 revealed that
two-photon transitions are crucial for recovering the correct sign on
interaction energies for H2 molecules separated by large distances;
QED-CCSD-12-SD1 and QED-FCI-5 predict these interactions to be
attractive, while QED-CCSD-1 predicts a repulsive interaction. Given
machine-learned potentials, path integral molecular dynamics simula-
tions on hundreds of cavity embedded molecules revealed that cavity-
modified van der Waals interactions result in orientational order not
seen in cavity-free simulations.

In 2022, Riso et al.103 developed a formulation of QED-CCSD-1
that models interactions between electronic degrees of freedom and
the quantized photon field of a chiral cavity mode. They found that a
proper description requires that the photon field be treated beyond the
dipole (or even multipolar) approximation, which results in a
complex-valued Hamiltonian that depends on two cavity modes (for a
single resonant frequency). These complications aside, Ref. 103, dem-
onstrated that circularly polarized light can discriminate between
enantiomers of chiral molecules embedded within a chiral cavity (e.g.,
via changes to the energies of the ground states of the enantiomers or
their rotational spectra). Moreover, the discriminating power of the
cavity increases with the number of molecules.

Cleary, a large body of work has considered the effects of strong
light–matter interactions on ground states of cavity-embedded sys-
tems. Somewhat less work has considered excited-state electronic/
polaritonic structure of such systems. The initial papers57,93 describing
generalizations of CC theory for use with the PF Hamiltonian devel-
oped and applied QED-EOM-CC formalisms to cavity-embedded sys-
tems. In particular, Ref. 57 describes how polariton formation can
manipulate conical intersections; QED-CCSD-1 calculations on a
cavity-coupled pyrrole molecule show sufficiently strong coupling can
open a gap at a conical intersection between the 1B1

1A2 states. An
exciting chemical consequence is that such modifications to the energy
landscape could lead to changes in relaxation pathways or dynamics in
chemical reactions. This idea has also been put forward in the context
of linear response QEDFT, as well;67 QEDFT simulations on cavity-
embedded formaldehyde42 have shown that different combinations of
cavity parameters can move or suppress avoided crossings between
excited states. While we have limited this discussion to consider
descriptions of purely electronic strong coupling, we recognize that
Vidal et al.56 have used similar QED-EOM-CC approaches to explore
how coupling to a cavity mode can affect vibronic structure.

Liebenthal et al.61 extended QED-EOM-CC theory to consider
non-particle-conserving excitation operators. Specifically, they devel-
oped a QED-EOM-CCSD-1 model for electron attachment (EA),
which is a cavity QED generalization of the EOM-EA-CC approach104
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from electronic structure theory. One of the key findings in Ref. 61
was that, in order to recover electron affinities obtained from separate
QED-CCSD-1 calculations on different charge states,59 QED-EOM-
EA-CCSD-1 calculations starting from an N-electron reference must
employ the coherent-state basis defined for the (Nþ 1)-electron state.
This finding suggests that the coherent-state basis should be chosen
with care in any QED-EOM-CC model that samples non-particle or
spin-conserving sectors of Fock space. This work also revealed defects
in the similarity-transformed PF Hamiltonian (i.e., complex eigenval-
ues) at a same-symmetry conical intersection in magnesium fluoride
(MgF), involving the lower-polariton state. Such defects can emerge in
standard EOM-CC theories that make use of truncated cluster expan-
sions; the MgF example highlights that this issue persists in the cavity
QED generalization of EOM-CC.

We note that most QED-CC studies are formulated within the
coherent-state basis introduced in Sec. III A. The primary reason for
this choice is that it guarantees that the correlated calculation will be
strictly origin invariant, even for charged species. Liebenthal et al.45

studied the numerical consequences of this choice by comparing
QED-CCSD-1 and QED-EOM-CCSD-1 calculations in the coherent-
state basis, using a QED-HF reference (termed “relaxed”), to calcula-
tions performed in the canonical Hartree–Fock basis, using a
Hartree–Fock wave function that was not perturbed by cavity interac-
tions (termed “unrelaxed”). For the unrelaxed case, they found that the

presence of exponentiated single electron transitions (eT̂ 1 ) does a good
job of accounting for orbital relaxation effects from QED-HF, while

exponentiated boson creation operators (eu0 b̂
†

) can mimic the effects
of the coherent-state transformation itself. For example, ground-state
unrelaxed QED-CCSD-1 energies on charged species acquire only
modest origin dependence; for a cavity-bound HFþ cation, described
by a cc-pVDZ basis set and a large coupling strength of k ¼ 0:05 a.u.,

that work showed that the energy changes by less than 1�10�3Eh
when shifting the molecule 10 Å from the origin. Moreover, for the
most part, excitation energies from relaxed and unrelaxed QED-EOM-
CCSD-1 are similar, particularly for experimentally feasible coupling
strengths (i.e., k < 0:05). These results stand in stark contrast to results
obtained from unrelaxed and relaxed formulations of QED-DFT and
QED-TDDFT. First, unrelaxed QED-DFT acquires a substantial origin
dependence in the energy (stemming from the dipole self-energy con-
tribution). Second, relaxed and unrelaxed QED-TDDFT yield signifi-
cantly different spectra, with relaxed QED-TDDFT generally doing a
better job of reproducing some trends from relaxed QED-EOM-
CCSD-1. These observations are important, given that multiple formu-
lations of QED-TDDFT can be found in the literature, and not all of
them account for cavity self-consistently in the ground state.63,76

Fregoni et al. have applied QED-EOM-CCSD-1 to interactions
between a molecular system and a plasmonic nano/picocavity.105

Their protocol is similar to that discussed throughout this section,
except for the precise form of the Hamiltonian. First, a polarized con-
tinuum model for nanoparticles106 is applied to describe the plasmon
mode. Second, the dipole self-energy contribution is not included in
the Hamiltonian for the coupled system. The argument for neglecting
the dipole self-energy is that the collective electronic oscillations com-
prising the plasmon excitation interact with the molecule through lon-
gitudinal Coulomb interactions, and this interaction dominates over
the coupling between the molecule transverse components of the vec-
tor potential.107,108 It should also be noted that in the case of strong

coupling to a cavity mode with a significant material contribution to
the excitation (such as a plasmonic mode), Eq. (1) should be aug-
mented to include coupling between the charged particles of the
molecular subsystem and the electric scalar potential /ðxÞ associated
with the plasmon excitation: Ĥp�A ¼

PN
i

1
2mi

ðp̂ i � ziÂ?Þ2 þ zi/ðxiÞ
þ V̂ ðx̂Þ þ �hxcavb̂

†
b̂. We note that the dipole self-energy term (even if

very small) still emerges upon PZW transformation of this
Hamiltonian, particularly through transformation of the energy of the

cavity mode �hxcavb̂
†
b̂ [see Eq. (15)]. Third, the bilinear coupling term

takes a slightly different form. Despite these differences, the QED-
EOM-CCSD-1 wave function ansatz is the same as that discussed
herein. Building upon this work, Romanelli et al.109 have developed a
QED-CC model that folds in the effects of multiple plasmonic modes
into a single effective mode. Other models for plasmon–molecule
interactions that make use of quantized radiation fields and parame-
trized plasmon modes have been proposed as well.110

Finally, two many-body perturbation theory approaches to cavity
QED have recently emerged. First, a cavity QED extension of second-
order Møller–Plesset perturbation theory (MP2) and the algebraic dia-
grammatic construction (ADC) has been developed by Bauer and
Dreuw.111 QED-MP2 is an approximation to QED-CCSD-1, and, like
conventional ADC, QED-ADC can be thought of a Hermitian approx-
imation to QED-EOM-CCSD-1. The data presented in Ref. 111 sug-
gest that the QED-MP2 correlation energy is much more sensitive to
the frequency of the cavity mode than the correlation energy from
QED-CCSD-1. This sensitivity is increased if the QED-MP2 calcula-
tions are performed on top of Hartree–Fock reference wave functions
evaluated in the absence of the cavity. Hence, it appears that, like
QED-DFT and QED-TDDFT, the QED-MP2 ansatz is not as robust
as QED-CCSD-1 to the description of cavity effects at the mean-field
level. On the other hand, the Rayleigh–Schr€odinger perturbation the-
ory112 presented by Haugland et al. does an excellent job of reproduc-
ing ground-state energies from full QED-CC over a wide range of
cavity frequencies and coupling strengths. This perturbation theory is
general and can be implemented for any electronic structure theory for
which linear-response theory has been formulated.

VI. TRANSFORMATION OF OPERATORS

In Secs. III–V, we have obtained (approximate) eigenstates of
ĤCS, where ĤCS results from a unitary transformation of our original
Hamiltonian in Eq. (1). In the following, we discuss relationships that
hold between the exact eigenstates of ĤCS (which could be obtained,
for example, through full configuration interaction in a complete
single-particle basis) and Ĥp�A. Although it is generally not possible to
obtain the exact eigenfunctions of ĤCS or Ĥp�A, we will work out prac-
tical relationships for the photonic character and the dipole operator
and apply them to expectation values taken with approximate eigen-
functions obtained from the QED-CIS-1 method.

The exact eigenvalues of an operator are preserved under unitary
rotations, while the eigenfunctions of ĤCS are related to the eigenfunc-
tions of Ĥp�A by a unitary transformation. In particular, we have

Ĥp�A ! ĤCS via Û Ĥp�AÛ
†
; (73)

jWIi ! jW0
Ii via Û jWIi; (74)

Ĥp�AjWIi ¼ EI jWIi; (75)

ĤCSjW0
Ii ¼ EI jW0

Ii: (76)
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Therefore, in order for expectation values computed with these trans-
formed eigenstates to have correspondence with the expectation values
computed with the eigenstates of Ĥp�A, we must transform the opera-
tors as follows:

hWI jÔjWIi ¼ hW0
I jÔ

0jW0
Ii; (77)

¼ hWI jÛ
†
Ô

0
Û jWIi; (78)

¼ hWI jÛ
†
Û ÔÛ

†
Û jWIi: (79)

Thus, we see the transformation for operators to use with our trans-
formed eigenstates is also Ô

0 ¼ Û ÔÛ
†
. Specifically, following transfor-

mation of the Hamiltonian from the minimal coupling Hamiltonian in
Eq. (1) to the Pauli–Fierz Hamiltonian in the length gauge and to the
coherent state basis, we must apply the same transformations to opera-
tors for the purpose of computing expectation values with the eigen-
functions of Eq. (30).

Some operators will commute with the operators that provide

these transformations (Û PZW; Û/, and ÛCS) and will be unchanged,

while others will be transformed. It is common to compute the pho-
tonic character of a polaritonic state, and so, here we investigate the

behavior of the photon number operator, N̂ p ¼ b̂
†
b̂ for a single-

photon mode. Furthermore, the dipole moment expectation value of
the polariton system can be of interest,46 so we will also investigate the
behavior of the dipole moment operator l̂:

For a single photonic mode:

Û PZWb̂
†
b̂Û

†

PZW ¼ b̂
†
b̂ þ i

�h

ffiffiffiffiffiffiffiffiffiffiffi

1

2xcav

r

k � l̂ðb̂† � b̂Þ

þ 1

�h2
1

2xcav
ðk � l̂Þ2; (80)

Û/Û PZWb̂
†
b̂Û

†

PZWÛ
†

/ ¼ b̂
†
b̂ � 1

�h

ffiffiffiffiffiffiffiffiffiffiffi

1

2xcav

r

k � l̂ðb̂† þ b̂Þ

þ 1

�h2
1

2xcav
ðk � l̂Þ2; (81)

and

N̂CS ¼ b̂
†
b̂ � 1

�h

ffiffiffiffiffiffiffiffiffiffiffi

1

2xcav

r

k � ðl̂ � hl̂iÞ½ �ðb̂† þ b̂Þ

þ 1

�h2
1

2xcav
k � ðl̂ � hl̂iÞ½ �2; (82)

where N̂CS ¼ Û CSÛ/Û PZWb̂
†
b̂Û

†

PZWÛ
†

/Û
†

CS.
On the other hand, the PZW transformation of the dipole opera-

tor can be shown to preserve the expectation values because the dipole
operator can be shown to commute with l̂ � Â since Â operators only
on photon degrees of freedom, and l̂ must commute with itself.
Similarly, since the phase and coherent state transformations involve
only photon operators and l̂ involves only electron operators, the
dipole operator is unchanged by these transformations, and we have

Û CSÛ /Û PZW l̂Û
†

PZWÛ
†

/Û
†

CS ¼ l̂: (83)

Of course we are not typically able to obtain the exact eigenfunc-
tions for ĤCS; for example, we will perform some truncation in the
single-particle basis and/or in the many-particle basis. We will derive

explicit expressions in the case that we have truncated the many-
particle basis consistent with QED-CIS-1; these expressions are inde-
pendent of the level of truncation of the single-particle basis.

Recalling the form of the QED-CIS-1 wavefunction (49), we will
examine the explicit expressions for the photonic occupation of a given
electronic stateWI that can be defined as

hNCSi ¼ hWI jN̂ CSjWIi

¼ hWI jb̂
†
b̂jWIi �

1
ffiffiffiffiffiffiffiffiffiffiffi

2xcav

p hWI jk � ðl̂ � hl̂iÞðb̂† þ b̂ÞjWIi

þ 1

2xcav
hWI jk � ðl̂ � hl̂iÞ2jWIi: (84)

The first expectation value can be computed as follows:

hWI jb̂
†
b̂jWIi ¼ jc10j

2 þ
X

ia

jc1iaj
2
: (85)

The second expectation value can be computed as follows:

� 1
ffiffiffiffiffiffiffiffiffiffiffi

2xcav

p hWI jk � ðl̂e � hlieÞðb̂
† þ b̂ÞjWIi ¼ � 1

ffiffiffiffiffiffiffiffiffiffiffi

2xcav

p cTHblcc;

(86)

where c denotes the QED-CIS-1 eigenvector for state I and Hblc is the
contribution of the Hamiltonian matrix in Eq. (50) that contains only
the elements given in Eqs. (54) and (55). The third expectation value
can be computed as

1

2xcav
hWI jðk � ðl̂e�hleiÞÞ2jWIi ¼

1

2xcav
cTHdsec; (87)

where Hblc is the contribution of the Hamiltonian matrix in Eq. (50)
that contains only the elements given in Eq. (52).

We plot these various contributions and the total photon occupa-

tion of the QED-CIS-1 ground state of the MgHþ ion as a function of

the fundamental coupling strength k ¼
ffiffiffiffiffiffi

�h
e0V

q

from a photon polarized

purely along the principle axis of the molecule in Fig. 7. Here, we
denote the zeroth-order contribution as arising from Eq. (85), the first-
order contribution as arising from Eq. (86), the second-order contribu-
tion as arising from Eq. (87), and the total as arising from the sum of
these three terms, e.g., Eq. (84).

VII. CONCLUDING REMARKS

Despite the impressive surge of theoretical and experimental
advances in polariton chemistry and molecular polaritonics, many chal-
lenges and opportunities remain to advance the field toward its full
promise. While it may seem daunting to span the chasm that exists
between the majority of polariton experiments (done in the regime of
106 to 109 molecules within the cavity mode volume) to the regime
accessible by even large-scale atomistic methods113 (hundreds of mole-
cules), we assert that all advances in the theoretical treatment of cavity-
molecule interactions provide value toward the goal of understanding
and controlling polariton chemistry. In particular, single- and few-
molecule strong coupling has been experimentally realized with several
different cavity platforms,9,114 and, as the limits of this regime are
expanded, there is an urgent need for rigorous and non-perturbative
quantummechanical methods that can accurately capture modifications
to ground- and excited-state properties and emergent phenomena.
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The techniques described in this review provide such a rigorous founda-
tion, although we should note that there are additional advances
required for plasmonic nanocavities, such as rigorous inclusion of longi-
tudinal scalar potential coupling to capture the material contribution of
plasmon excitation, and inclusion of the modified chemical environ-
ment that molecules experience in the vicinity of plasmonic particles in
the dark.27 Some of these effects are more naturally included in the real-
space Coulomb gauge formulations described in Refs. 28 and 74, which
then leaves us with an intriguing theoretical challenge for formulations
based on Gaussian basis sets and in the length gauge, or Coulomb gauge
formulations with Gaussian basis sets, as reported by Koch and co-
workers.103 Moreover, theoretical approaches (quantum and classical)
can be deployed to approach collective strong coupling from the bottom
up, which may provide valuable insight into some of the phenomena
that are observed in this regime. In this case, the availability of rigorous
methods to benchmark lower-scaling methods (e.g., density functional
based approaches, parameterized and semi-empirical approaches, and
classical force fields) will be paramount. We hope that this tutorial
review will serve to orient researchers toward these varied areas of devel-
opment, as well as to provide the foundation for further development of
ab initioQED approaches and the sound deployment of these methods.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CHE-2100984. J.J.F.
acknowledges support from the Research Corporation for Scientific
Advancement Cottrell Scholar Award. J.J.F. and J.M. acknowledge
the NSF CAREER Award No. CHE-2043215. J.J.F. acknowledges
support from the Center for MAny-Body Methods, Spectroscopies,
and Dynamics for Molecular POLaritonic Systems (MAPOL) under
subcontract from FWP 79715, which is funded as part of the
Computational Chemical Sciences (CCS) program by the U.S.
Department of Energy, Office of Science, Office of Basic Energy

Sciences, Division of Chemical Sciences, Geosciences and
Biosciences at Pacific Northwest National Laboratory (PNNL).
PNNL is a multi-program national laboratory operated by Battelle
Memorial Institute for the United States Department of Energy
under DOE Contract No. DE-AC05–76RL1830.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Jonathan Foley: Software (equal); Writing – original draft (equal).
Jonathan McTague: Software (equal); Writing – review & editing
(supporting). Eugene DePrince: Software (equal); Writing – original
draft (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

REFERENCES
1A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Nat.
Rev. Phys. 1, 19 (2019).
2J. Flick, N. Rivera, and P. Narang, Nanophotonics 7, 1479 (2018).
3P. T€orm€a and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2014).
4D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M.
Whittaker, Nature 395, 53 (1998).

5J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, Phys. Rev. Lett. 93,
036404 (2004).

6J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen,
Angew. Chem., Int. Ed. 51, 1592 (2012).

7D. M. Coles, Y. Yang, Y. Wang, R. T. Grant, R. A. Taylor, S. K. Saikin, A.
Aspuru-Guzik, D. G. Lidzey, J. K.-H. Tang, and J. M. Smith, Nat. Commun. 5,
5561 (2014).

8E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F.
Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T.
W. Ebbesen, Nat. Mater. 14, 1123 (2015).

9R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A.
Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, Nature 535, 127 (2016).

10T. W. Ebbesen, Acc. Chem. Res. 49, 2403 (2016).
11M. Sukharev and A. Nitzan, J. Phys.: Condens. Matter 29, 443003 (2017).
12X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A.
Hutchison, and T. W. Ebbesen, Angew. Chem., Int. Ed. 56, 9034 (2017).

13K. Chevrier, J. M. Benoit, C. Symonds, S. K. Saikin, J. Yuen-Zhou, and J.
Bellessa, Phys. Rev. Lett. 122, 173902 (2019).

14S. K�ena-Cohen and S. R. Forrest, Nat. Photonics 4, 371 (2010).
15A. D. Wright, J. C. Nelson, and M. L. Weichman, J. Am. Chem. Soc. 145,
5982–5987 (2023).

16J. Lather, P. Bhatt, A. Thomas, T. W. Ebbesen, and J. George, Angew. Chem.,
Int. Ed. 58, 10635 (2019).

17C. Climent, J. Galego, F. J. Garcia-Vidal, and J. Feist, Angew. Chem., Int. Ed.
58, 8698 (2019).

18A. D. Dunkelberger, B. S. Simpkins, I. Vurgaftman, and J. C. Owrutsky, Annu.
Rev. Phys. Chem. 73, 429–451 (2022).

19C.-Y. Cheng, N. Krainova, A. N. Brigeman, A. Khanna, S. Shedge, C. Isborn, J.
Yuen-Zhou, and N. C. Giebink, Nat. Commun. 13, 7937 (2022).

20R. K. Yadav, M. Otten, W. Wang, C. L. Cortes, D. J. Gosztola, G. P.
Wiederrecht, S. K. Gray, T. W. Odom, and J. K. Basu, Nano Lett. 20, 5043
(2020).

21R. Pandya, A. Ashoka, K. Georgiou, J. Sung, R. Jayaprakash, S. Renken, L. Gai,
Z. Shen, A. Rao, and A. J. Musser, Adv. Sci. 9, 2105569 (2022).

FIG. 7. Photon occupation of the ground state of the MgHþ ion as a function of the
fundamental coupling strength k. The total photon occupation is computed using
Eq. (84), the zeroth-order contribution comes from Eq. (85), the first-order contribu-
tion comes from Eq. (86), and the second-order contribution comes from Eq. (87).
This calculation is performed at the QED-CIS-1/cc-pVDZ level of theory with a pho-
ton frequency of �hxcav ¼ 4:75 eV. The bond length is fixed at 2.2 Å.
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