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Opiliones (harvestmen) have come to be regarded as an abundant source of model groups for study of historical
biogeography, due to their ancient age, poor dispersal capability, and high fidelity to biogeographic terranes.
One of the least understood harvestman groups is the Paleotropical Assamiidae, one of the more diverse families
of Opiliones. Due to a labyrinthine taxonomy, poorly established generic and subfamilial boundaries, and the
lack of taxonomic keys for the group, few efforts have been undertaken to decipher relationships within this
arachnid lineage. Neither the monophyly of the family, nor its exact placement in the harvestman phylogeny,
have been established. Here, we assessed the internal phylogeny of Assamiidae using a ten-locus Sanger dataset,
sampling key lineages putatively ascribed to this family for five of the ten markers. Our analyses recovered
Assamiidae as a monophyletic group, in a clade with the primarily Afrotropical Pyramidopidae and the southeast
Asian Beloniscidae. Internal relationships of assamiids disfavored the systematic validity of subfamilies, with
biogeography reflecting much better phylogenetic structure than the existing higher-level taxonomy. To assess
whether the Asian assamiids came to occupy Indo-Pacific terranes via rafting on the Indian subcontinent, we
performed divergence dating to infer the age of the family. Our results show that Indo-Pacific clades are ancient,
originating well before the Cretaceous and therefore predate a vicariant mechanism commonly encountered for

Paleotropical taxa.

1. Introduction

Among the arachnid orders, Opiliones (harvestmen) have come to be
regarded as the foremost model system for study of historical biogeog-
raphy. Two decades of molecular phylogenetic study have unveiled high
fidelity between harvestman distributions, phylogenetic relationships,
and timing of cladogenesis, for various taxonomic levels (Boyer et al.,
2007; Derkarabetian et al., 2021a; Giribet et al., 2010), and with few
known cases of transoceanic dispersal (Baker et al., 2020b; Pérez-
Gonzalez et al., 2022; Sharma and Giribet, 2012). As examples, mite
harvestmen (Cyphophthalmi) have been intensely studied as models of
vicariance biogeography, particularly of temperate Gondwanan land-
masses (Baker et al., 2020a; Boyer and Giribet, 2007; Giribet et al., 2012,
2016; Oberski et al., 2018). In the largest harvestman suborder, Lania-
tores, various subfamilies of Gonyleptoiea have featured prominently in
efforts to circumscribe areas of endemism in the Neotropics and examine
latitudinal diversity gradients (Benavides et al., 2021; Bragagnolo et al.,
2015; Castro-Pereira et al., 2021; DaSilva et al., 2016). The geographic
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provincialism exhibited by various harvestman taxa (i.e., families and
superfamilies) has been linked to poor dispersal ability and small species
ranges, possibly as a consequence of narrow niche specificity (Giribet
et al., 2012). As a result, numerous neglected or obscure groups within
Opiliones have prospered from renewed interest and revitalized sam-
pling efforts for biogeographic study.

One exception to this trend is Assamiidae, a group that is broadly
distributed in the Afrotropics, the Indian subcontinent, and Australasia
(Fig. 1). With over 450 described and accepted species (Kury et al.
2022), assamiids exhibit marked morphological diversity, spanning
minute forms that are completely blind (e.g., Irumuinae), to large-
bodied species that exhibit a grossly hypertrophied fourth leg coxa
and scutum in males (e.g., the genera Paktongius and Mysorea) (Fig. 2).
The latter condition is often associated with males of Gonyleptoidea and
the phylogenetic placement of Assamiidae implies convergent evolution
of this mode of sexual dimorphism. A separate type of sexual dimor-
phism that is much less common in Opiliones in seen in females of some
sub-Saharan African genera; whereas females of most harvestmen
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species are unremarkable, those of genera like Binderella exhibit marked
distention of the antero-posterior axis, via elongation of the opisthoso-
mal segments, as well as hypertrophied armature in some cases
(Fig. 2A-C). In less exceptional cases, assamiids are generally recog-
nizable for their relatively short pedipalps, which are held over the
chelicerae (comparably to Cosmetidae, but without the spoon-shape).
However, despite the promise of biogeographic insights and intriguing
patterns of body plan evolution within the group, there is to date no
internal phylogeny of Assamiidae.

The cause of this neglect is largely driven by its convoluted sys-
tematics; there are more than 250 described genera of Assamiidae,
which were divided into 17 subfamilies by Roewer (1912, 1935), with
these higher taxa based on a combination of six highly variable char-
acters. The lack of support for these subfamilies was highlighted by
Starega (1992), and Kury (2007) suggested the existence of at least five
major definable groups of Assamiidae in the Roewerian system: the
Australasian Dampetrinae, the African Erecinae, the blind African Iru-
muinae, the subcontinental Trionyxellinae, and the Indo-Nepalese
Assamiinae. Many of these putative subfamilies occur in both the
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Afrotropics and Australasia (e.g., Dampetrinae, Erecinae), which is
contrary to the pattern exhibited by most Opiliones subtaxa. Kury sug-
gested that no key to the subfamilies could be provided, given how
poorly supported they were (Kury, 2007). Today, this leaves Assamiidae
with a staggering proportion of monotypic genera and relatively large
number of described species for a family of Opilones (e.g., Assamiidae is
the largest family of Opiliones in Africa; (Starega, 1992). Given the
absence of a taxonomic key for these taxa, as well the limited quality of
drawings in Roewer’s descriptions, even identifying specimens to genus
can be an arduous task. As a result, few workers have described new
assamiid species in the past two decades (Bauer and Prieto, 2009; Lotz,
2011; Santos and Prieto, 2010; Zhang and Zhang, 2015; Martens 2022)
and no efforts to assess its internal phylogenetic structure have been
undertaken. Some workers have additionally questioned the monophyly
of the group altogether (Starega, 1992).

The placement of the family in the broader harvestman tree of life is
little better understood. Assamiidae was previously thought to be the
sister group of Gonyleptoidea on the basis of similarities of genitalic
architecture between assamiids and Stygnopsidae, as well as

Fig. 1. (next page). Live habitus of exemplars of
Assamiidae. (A) Podauchenius longipes (Hypo-
xestinae) from Mount Koupé, Cameroon; (B) Fe-
male of an undescribed genus (Polycoryphinae)
from Ototomo Forest, Cameroon; (C) Male of an
undescribed genus (Polycoryphinae), same spe-
cies as in (B); (D) Typhlobunellus formicarum
(Irumuinae), outside Mount Cameroon National
Park, Cameroon; (E) Randilellus transvaalensis
from South Africa; (F) Paraselenca (Selencinae)
from Equatorial Guinea; (G) Male of Binderella
(Polycoryphinae) from Equatorial Guinea; (H)
Female of the same species as in (G); and (I) Fe-
male of Binderella bistriata from Cameroon.
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correspondences of external morphological characters. Molecular
sequence data sampling up to nine assamiid exemplars in Sanger-based
efforts (based on five to ten genes) suggested instead a closer relation-
ship to the largely Afrotropical family Pyramidopidae, which were
thereafter placed in the superfamily Assamioidea (Giribet et al., 2010;
Sharma and Giribet, 2011; Sharma et al., 2017). This relationship was
not recovered in a reanalysis of the ten-locus dataset that included a new
family from southeast Asia (Kury et al., 2019), although alternative
placements of Assamiidae were also not supported in that work. A single
phylogenomic analysis sampling both Assamiidae and Pyramidopidae
recovered only partial support for Assamioidea, as a function of matrix
completeness (Aharon et al., 2019), an instability likely driven by
minimal taxon sampling (Ontano et al., 2021). The identity of the sister
group of Assamiidae has therefore not been ascertained.

To begin addressing the relationships of this diverse family, as well as
its placement within Laniatores, we generated a Sanger dataset for a
subset of assamiid species, using legacy markers for incorporation with
previous sampling efforts. Given the difficulty of identifying assamiids,
we focused our efforts on sampling terminals that could be identified at
least to genus. Here, we present the first molecular phylogeny of Assa-
miidae, sampling key taxa from both the Afrotropics and Australasia.
Leveraging the recent description of several exceptionally preserved
Laniatores fossils from Cretaceous Burmese amber, we infer divergence
times within Laniatores and assess a well-established vicariance hy-
pothesis for the Indo-Pacific: an Afrotropical origin, followed by colo-
nization of the Indo-Pacific via continental drift of the Indian
subcontinent.
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2. Materials and methods
2.1. Taxon sampling and imaging

Specimens were collected from sifted litter in sites across Australasia,
as well as sampled from natural history collections, principally from the
Museum of Comparative Zoology, Cambridge, United States (MCZ) and
the Muséum d’histoire naturelle, Geneva, Switzerland (MHNG). We
selected 59 sequence-grade specimens representing a subset of the pu-
tative subfamilies of Assamiidae, with most of these reliably diagnosable
to genus. We used routine DNA extraction, amplification and sequencing
protocols for partial fragments of two mitochondrial protein-encoding
(16S rRNA and cytochrome c oxidase subunit I), one nuclear protein-
encoding gene (histone H3), and two nuclear ribosomal genes (18S
rRNA, 28S rRNA). To test the monophyly of Assamiidae, as well as its
phylogenetic placement within Laniatores, we included newly
sequenced specimens in a legacy ten-locus dataset that had previously
sampled nine assamiids (Giribet et al., 2010), with further additions of
phylogenetically significant Grassatores lineages (Aharon et al., 2019;
Cruz-Lopez et al., 2016; Kury et al., 2019). Locality and accession data
for all terminals are provided in Supplementary Table S1.

2.2. DNA extraction, PCR, and sequencing
Genomic DNA was extracted from 1 to 4 legs of each specimen using

the Qiagen® DNeasy Blood and Tissue kit, following the manufacturer’s
protocol. Standard PCR reactions, primer selection, and Sanger-

Fig. 2. Body plan disparity in Assamiidae. (A) Female of Binderella bistriata (Polycoryphinae) from Cameroon. (B) Female of undescribed species of Montalenia sp.
(Polycoryphinae) from Gabon. (C) Female of unidentified Erecinae from South Africa. (D) Male of Chilon (Erecinae) from Cameroon. (E) Undescribed species of
Octobunus (Dampetrinae) from Australia. (F) Macrodampetrus bicoloripes (Dampetrinae) from Papua New Guinea. (G) Undescribed species of Typhloburista (Iru-
muinae) from Gabon. (H) Unidentified Selencinae from Liberia. (I) Male of Mysorea thaiensis (Mysoreinae) from Thailand. (J) Male of Paktongius (Polycoryphinae)

from Thailand. (K) Male of Paktongius (Polycoryphinae) from Thailand.
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sequencing protocols used in this study followed Sharma et al. (2011).
Sequences were assembled and cleaned using Geneious® 9.1.8.
Consensus sequences were submitted to BLAST against the NCBI data-
base (https://blast.ncbi.nlm.nih.gov) to identify possible contamina-
tions. Sequences were deposited on GenBank under the accession
numbers provided in Supplementary Table S1.

2.3. Phylogenetic analyses

Sequences were aligned using MAFFT v7.221 (Katoh and Standley,
2013), implementing the L-INS-i option for accuracy. Individual gene
alignments were visually inspected for ambiguously aligned bases.
Alignments of the protein-coding genes were translated into amino acids
on AliView v1.26 (Larsson, 2014) to detect premature stop codons and
ensure alignment by codon. Ambiguous sequences presenting stop co-
dons were treated as pseudogenes and discarded. The final matrix,
consisting of 188 taxa and 7024 bp was assembled on SequenceMatrix
v1.7.8 (Vaidya et al., 2011).

Maximum likelihood phylogenetic analyses were carried out with
IQ-TREE v1.6.10 (Nguyen et al, 2015) using an edge-linked-
proportional partition model with separate models between partitions.
The final alignment was split into 13 partitions, and the best nucleotide
substitution model for each partition was determined using ModelFinder
(Kalyaanamoorthy et al., 2017) implemented in IQ-TREE. We compared
the Bayesian information criterion (BIC) of ten independent IQ-TREE
runs following Zhou et al. (2018) to optimize the tree search. The tree
with the lowest BIC score was selected. Support of the nodes was
assessed with ultrafast bootstrapping (Hoang et al., 2018), also imple-
mented in IQ-TREE.

Bayesian inference analysis was performed using MrBayes v3.2.6
(Ronquist et al., 2012). The partition scheme was determined using
PartitionFinder 2.1.1 (Lanfear et al., 2017), applying the greedy algo-
rithm (Lanfear et al., 2012) and limiting the substitution models to those
implemented in MrBayes. To improve chain mixing and avoid
converging on local optima, we used Metropolis-coupled Markov chain
Monte Carlo (MCMCMC), with two parallel runs, implementing one cold
chain and three incrementally heated chains. The heating parameter was
set to 0.01 to allow swap frequencies from 20 % to 70 %. Two inde-
pendent runs were run for 60 million generations (sampling all the
values every 6,000 generations), with the first 15 million (25 %) dis-
carded as burn-in. The convergence of the chains was assessed by
ensuring ESS values > 200 for all variables reported by MrBayes.
Maximum likelihood analysis was performed at the Bioinformatics
Resource Center computational cluster at UW-Madison, and Bayesian
inference was performed on the CIPRES Science Gateway (Miller et al.,
2010).

2.4. Divergence time estimation

Divergence time estimation was performed using the Bayesian
relaxed molecular clock method implemented in BEAST 2 v2.6.3
(Bouckaert et al., 2014; Drummond et al., 2006). Log normal age cali-
brations priors were assigned to seven nodes (Table 1). We applied a
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conservative calibration scheme for maximum bounds and the most
phylogenetic-near-accurate groups as the minimum bounds (as sug-
gested by Phillips, 2016). Given uncertainty regarding the identity of the
sister group of Opiliones in phylogenomic datasets (Ballesteros et al.,
2022, 2019; Ballesteros and Sharma, 2019; Ontano et al., 2022, 2021;
Sharma et al., 2014), we used the earliest known terrestrial chelicerate
fossils from the early Silurian to constrain the maximum bounds of all
calibration nodes at 437.5 Ma (Waddington et al., 2015).

We used Eophalangium sheari from lower Devonian (Lochkovian) — to
set the minimum age of the crown Opiliones as 411 Ma (Dunlop et al.,
2004, p. 2003). Macrogyion cronus from the upper Carboniferous (Kasi-
movian) was used to set the minimum age of the crown Eupnoi at 305
Ma (Garwood et al., 2011). The same age was used to calibrate the
crown Dyspnoi, based on Ameticos scolos (Garwood et al., 2011). We
used Petrobunoides sharmai to set the minimum prior age at 99 Ma for the
crown group Epedanidae (Selden et al., 2016). We used the same cali-
bration to constrain the crown groups of Beloniscidae, Pyramidopidae,
and Titheidae, based on their recently discovered Burmese amber ex-
emplars Palaeobeloniscus thilolebi, Protopyramidops nalae, and Ellenber-
gellus tuberculatus, respectively; and the stem-group age of
Sandokanidae, based on the recent discovery of the putative sister group
of sandokanids (the fossil Mesokanus oehmkuehnlei; Bartel et al., 2021).
Geological stratigraphy nomenclature follows the International Chro-
nostratigraphic Chart (Cohen et al., 2013).

Partitioning and substitution model implementation for divergence
time estimation followed the one used for MrBayes, except that we ran
the analysis for 400 million generations (sampling every 40,000th
generation), with the first 80 million generations (20 %) discarded as
burn-in. Substitution models were unlinked among partitions with the
trees and clocks models linked; a birth-death model of speciation with a
random starting tree prior were used. Convergence of the chains was
assessed with Tracer 1.7 (Rambaut et al., 2018). The log files from the
two independent runs were combined using LogCombiner v2.4.1 and the
maximum clade credibility tree with mean heights was built using
TreeAnnotator 2.4.1, both inbuilt tools of BEAST. The final chronogram
was visualized and edited using FigTree v1.4.2. Divergence time esti-
mate analyses were also conducted at CIPRES Science Gateway.

2.5. Biogeographic inference and ancestral range reconstruction

The biogeographic history of the group was inferred using the
pruned BEAST chronogram as the input tree for RASP v4.3 (Yu et al.,
2020), preserving only the core Assamiidae (79 terminals) and two
closely related outgroup families (Pyramidopidae and Beloniscidae). We
specified eight geographic areas corresponding to biogeographic realms
and bioregions (Fig. S1). Maximum range size was restricted to three
areas to simplify analysis and interpretation of the results. This
restricted range size also reflects the biology of Assamiidae Opiliones,
which tend to present short-range endemism. The likelihood of ancestral
range estimations were tested under the Dispersal-Vicariance Analysis
(Ronquist, 1997) using S-DIVA (Yu et al., 2010) with 1000 re-
constructions for the final tree.

Table 1

Fossil calibrations applied as constraints.
Clade Fossil Origin Age (Ma) Prior used Reference
Root Eramoscorpius brucensis Brandon Bridge 437.5 Hard bound Waddington et al., 2015
Crown Opiliones Eophalangium sheari Rhynie cherts 411 437.5-411 Dunlop et al., 2003
Crown Eupnoi Macrogyion cronus Montceau-les-Mines 305 437.5-305 Garwood et al., 2011
Crown Dyspnoi Ameticos scolos Montceau-les-Mines 305 437.5-305 Garwood et al., 2011
Crown Epedanidae Petrobunoides sharmai Burmese amber 99 437.5-99 Selden et al., 2016
Stem-Sandokanidae Mesokanus oehmkuehnlei Burmese amber 99 437.5-99 Bartel et al., 2021
Crown Beloniscidae Palaeobeloniscus thilolebi Burmese amber 99 437.5-99 Bartel et al., 2021
Crown Pyramidopidae Protopyramidops nalae Burmese amber 99 437.5-99 Bartel et al., 2021
Crown Tithaeidae Ellenbergellus tuberculatus Burmese amber 99 437.5-99 Bartel et al., 2021
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3. Results
3.1. Assamiidae placement and relationships

Maximum likelihood inference (Fig. 3) of the 10-locus dataset
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recovered a tree topology with support for assamiid monophyly (boot-
strap resampling frequency [BS] = 100 %). Assamiidae was recovered as
the sister group of Pyramidopidae (BS = 78 %), with this clade in turn
sister group to Beloniscidae (BS = 86 %). Relationships of other Lania-
tores clades were comparable to other analyses of this Sanger dataset in
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Fig. 3. Tree topology of Assamiidae inferred under maximum likelihood using IQTREE. Complete tree topologies are provided in Supplementary Fig. S2.
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previous works (Fig. S2) (Aharon et al., 2019; Cruz-Lopez et al., 2016;
Kury et al., 2019; Sharma and Giribet, 2011).

Within Assamiidae, we recovered sub-Saharan species as a clade (BS
= 99 %), nested within the Asian assamiids; a clade of two minute
genera, Arulla and Tarnus, were recovered as the sister group of the
African Assamiidae (BS = 89 %). The small, blind Irumuinae were
recovered as nested within the African clade, as were Polycoryphinae
species with hypertrophied opisthosomas in the female (e.g., Binderella).
The latter were resolved as distantly related to the Asian Polycoryphinae
(e.g., Paktongius). Similarly, Erecinae (represented here by Chilon and
Tarnus) and Hypoxestinae (Bandona and Podauchenius) were not
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recovered as monophyletic, substantiating the disutility of several sub-
family definitions.

Within a large Indo-Pacific clade, a Sri Lankan Trionyxella was
recovered as the sister group of a largely Thai-Malay clade (BS = 86 %),
with the latter comprised of several species with hypertrophied males (e.
g., Paktongius and Mysorea). The last major Asian clade consisted of
Sahul shelf Dampetrinae (BS = 81 %) sister group to Bornean and
southeast Asian Dampetrinae (BS = 70 %), with these in turn sister
group to Thai-Malay Erecinae (the genus Neopygoplus; BS = 99 %).

Bayesian inference analyses (Fig. 4) recovered largely congruent
relationships, with the exception that the Asian Assamiidae were
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Fig. 4. Tree topology of Assamiidae inferred under Bayesian inference using MrBayes. Complete tree topologies are provided in Supplementary Fig. S2.
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recovered as a single clade that was reciprocally monophyletic with the
African Assamiidae, although the Asian clade was not supported (pos-
terior probability [PP] = 0.67). Differences in tree topology and support
values are as depicted in Figs. 3 and 4.

3.2. Divergence dating

Molecular divergence time estimation in BEAST recovered the split
between Assamiidae and Pyramidopidae near the Permo-Triassic
boundary (262 Myr; 95 % highest posterior density interval [HPD]:
213-312 Myr), with the basal diversification of assamiids in the Triassic
(233 Myr; HPD: 189-281 Myr). Diversification of the putative sub-
families and genera of Assamiidae spanned the Jurassic and Cretaceous,
as depicted in Fig. 5. Age estimates of Assamiidae and other Grassatores
families were largely consistent with previous dating efforts (Sharma
and Giribet, 2011; Sharma et al., 2017). Confidence intervals for the
origins Asian Assamiidae clades all predated 90 Myr, approximately the
age of the separation of the Indian subcontinent from eastern Africa.

3.3. Biogeography

The range of distribution of ancestral Assamioidea was estimated to
have been Pangean during the Paleozoic, in an area encompassing the
ancient regions that comprise the present-day Afrotropics, Eastern
Palearctic, and Thai-Malay Peninsula (B + D + E, Fig. 5) ca. 265 Myr.
Assamiidae were reconstructed to have diversified across the super-
continent and their distribution followed the subsequent rifting of the
constituent terranes. During the Upper Triassic the Assamioidea
extended their range distribution and probably occupied the majority of
Eastern Pangea, with the split between Pyramidopidae and Assamiidae
occurring during this time (ca. 235 Ma). The diversification of the lin-
eages kept following the split of the land masses and by the beginning of
Upper Cretaceous all major Assamiidae lineages were well established.
Our results show that these events occurred before the rifting of India
from east Africa (ca. 95 Mya).

4. Discussion

Previous efforts to resolve relationships within Laniatores had
sampled only a handful of assamiid species (Giribet et al., 2010; Sharma
and Giribet, 2011), whereas genomic datasets for the family remain
limited to a single dampetrine transcriptome (Aharon et al., 2019; Fer-
nandez et al., 2017). As the aim of those works was to establish higher-
level relationships between Laniatores families, the limited sampling of
Assamiidae has precluded understanding of their internal relationships.
A previous work that sampled nine species recovered two African ex-
emplars as nested within the remaining Asian taxa, but this result was
not strongly supported (Sharma and Giribet, 2011). Here, we endeav-
ored to increase the sampling of key African and Asian assamiid line-
ages, with the goals of establishing the first look at the internal
relationships of the family and assessing whether the distribution of the
Australasian fauna was attributable to the rifting of India from east Af-
rica (ca. 95 Mya) and its subsequent collision with Eurasia in the
Cretaceous (ca. 45-55 Mya) (Ali and Aitchison, 2008). While sampling
of Assamiidae is greatly limited in this study in proportion to the fam-
ily’s described diversity, we were able to sample a sufficiently large
number of taxa and lineages (the putative subfamilies) that made it
possible to test this biogeographic vicariance hypothesis using diver-
gence time estimation of the Asian taxa.

The internal relationships we recovered for Assamiidae did not place
the Asian and Sahul shelf fauna as a derived clade within the African
taxa, a key prediction of the subcontinental rafting hypothesis. The
ancient ages of the Thai-Malay and Australasian lineages greatly pre-
dated 95 Mya, suggesting that the presence of Assamiidae across the
Paleotropics is instead consistent with a broad ancestral distribution.
This inference is supported by the recent discovery of several modern
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Laniatores families in Burmese amber, such as Pyramidopidae and
Beloniscidae (Selden et al., 2016; Bartel et al, 2021), which we recov-
ered as the sister lineages of Assamiidae. Pyramidopidae were previ-
ously considered a strictly Afrotropical family, with one representative
in the nearby Canary Islands (Sharma et al., 2011). Molecular phylo-
genetic work on small-bodied relictual species recently expanded their
range to include Belize and Israel (Aharon et al., 2019; Cruz-Lopez et al.,
2016), whereas paleontological data showed that their historical range
also extended to Burma, though pyramidopids no longer occur in
southeast Asia (Bartel et al., 2021). Broad ancestral distributions span-
ning multiple biogeographic terranes are also found in armored
harvestman families like Biantidae, Podoctidae, and Triaenonychidae
(Derkarabetian et al., 2021a; Sharma et al., 2017). Thus, the discovery
that Assamiidae are among the oldest facets of Paleotropical leaf-litter
fauna accords with broader biogeographic patterns across Laniatores.
We anticipate that this inference could be validated by the discovery of
assamiid fossils from Burmese amber (ca. 99 Mya); such a discovery
would substantiate that Asian Assamiidae were an established part of
Cretaceous ecosystems in southeast Asia, long before the arrival of the
Indian subcontinent (ca. 45-55 Mya).

The sampling of Assamiidae in this study was greatly limited by the
availability of material that can be reliably identified under the unstable
Roewerian system. Further limitations of this work were incurred by the
unavailability of sequence-grade north Indian and Nepalese fauna
(harboring much of the diversity of the putative subfamily Assamiinae),
and eastern and southern Africa. The inclusion of these lineages is
critical to testing whether subgroups within Assamiidae could accord
with the scenario of rafting on the Indian subcontinent; this mechanism
of vicariance could explain patterns in the Roewerian system where
certain subfamilies are found in both Africa and the Indo-Pacific. Recent
advances in sequence capture strategies offer promising vehicles to
circumvent limitations of legacy datasets. The demonstrable perfor-
mance of ultraconserved elements (UCE) in molecular phylogenetic ef-
forts is especially promising with regard to accessing sequence data in
degraded and aging tissues, as well as providing sufficient recovery of
loci that higher-level relationships can be reliably resolved—often, an
insurmountable roadblock for Sanger datasets of ancient chelicerate
groups (Derkarabetian et al., 2021b, 2019; Starrett et al., 2016). One
potential strategy to overcoming the impediments wrought by the
Roewerian system may be to apply UCE sequencing to all of Roewer’s
type specimens, toward disentangling the maze of monotypic genera
and unstable subfamilies in Assamiidae. Applied broadly across Lania-
tores, this strategy may provide better resolution of the relationships and
composition of Laniatores subfamilies (Aharon et al., 2019; Fernandez
et al., 2017; Sharma and Giribet, 2011).

Future efforts to understand assamiid diversity should emphasize the
sampling of the remaining Roewerian “subfamilies”. Beyond systematics
and biogeographic patterns within this group, a robust understanding of
internal phylogeny will accelerate investigation of body plan evolution
in this morphologically diverse family of harvestmen. Together with a
phylogeny, parametric approaches may also enhance investigations of
trait correlations across Laniatores phylogeny, with emphasis on the
degree of sexual dimorphism and detection of character dependencies
(e.g., Gainett et al., 2014; Kerr et al., 2010; Riesgo et al., 2013; San-
tibanez-Lopez et al., 2017).
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