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Abstract
Although time series in ecosystem metabolism are well characterized in small and medium rivers, patterns in

the world’s largest rivers are almost unknown. Large rivers present technical difficulties, including depth mea-
surements, gas exchange (K, d�1) estimates, and the presence of large dams, which can supersaturate gases. We
estimated reach-scale metabolism for the Hanford Reach of the Columbia River (Washington state, USA), a free-
flowing stretch with an average discharge of 3173 m3 s�1. We calculated K from semi-empirical models and
directly estimated it from tracer measurements. We fixed K at the median value from these calculations (0.5
d�1), and used maximum likelihood to estimate reach-scale, open-channel metabolism. Both gross primary pro-
duction (GPP) and ecosystem respiration (ER) were high (GPP range: 0.3–30.8 g O2 m2 d�1, ER range: 0.8–30.6 g
O2 m2 d�1), with peak GPP and ER occurring in the late summer or early fall. GPP increased exponentially with
temperature, consistent with metabolic theory, while light was seasonally saturating. Annual average GPP, esti-
mated at 1500 g carbon m�2 yr�1, was in the top 2% of estimates for other rivers. GPP and ER were tightly
coupled and 90% of GPP was immediately respired, resulting in net ecosystem production near 0. Patterns in
the Hanford Reach contrast with those in small-medium rivers, suggesting that metabolism magnitudes and pat-
terns in large rivers may not be simply scaled from knowledge of smaller rivers.

Gross primary production (GPP) and ecosystem respiration
(ER), the production and consumption of organic carbon (C),
reflect aggregate metabolic activity of an ecosystem. The magni-
tude of GPP indicates the amount of new organic C entering
the river, while net ecosystem production (NEP) expresses the
degree of heterotrophy and the relative importance of allo-
chthonous vs. autochthonous inputs (Meyer and Edwards 1990;

Hoellein et al. 2013). Seasonal patterns of GPP, ER, and NEP
define the productivity regime of the river (Savoy et al. 2019).
As a result, characterizing reach-scale metabolism is a key
method to understanding the fundamental drivers of river food
webs and biogeochemistry.

The metabolism of small-medium streams and rivers is rea-
sonably well known (Hoellein et al. 2013; Appling
et al. 2018b), but estimates for large rivers are much rarer.
Single-day estimates show that GPP and ER increase with
mean discharge (Q), to a peak of 10 m3 s�1, and then decline
(Hall et al. 2016) and annual GPP and ER increase with annual
solar energy (Bernhardt et al. 2022). Time series metabolism
data show light appears to drive seasonal and day-to-day varia-
tion in GPP, with turbidity controlling light attenuation
(Dodds et al. 2013; Hall et al. 2015). Across streams of all sizes,
autotrophy (i.e., GPP : ER > 1) occurs only occasionally (Quay
et al. 1995; Hoellein et al. 2013; Bernhardt et al. 2022), but
can occur below big dams (Genzoli and Hall 2016). Dams and
their management also influence metabolism via their effects
on turbidity, Q, and algal blooms (Genzoli and Hall 2016;
Deemer et al. 2022). With the exception of Dodds et al. (2013)
and Quay et al. (1995), however, all metabolism estimates are
on channels with Q <1000m�3 s�1. As a result, it is unclear if
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and how metabolic patterns from small rivers scale to truly
large rivers, which we define as the very largest rivers, often
with continental-scale drainages. The metabolic regimes of
such rivers are virtually unknown.

Large lowland rivers (sensu Keith et al. 2022; e.g., the
Columbia, Mississippi, and Yukon in North America) integrate
across huge, sometimes continental-scale, watersheds, with
their activity representing the net effect of watershed land use,
climate, and soils, along with nutrient and C processing in trib-
utaries. Most water flows through such large rivers before
reaching the ocean; the large river is the last opportunity for
nutrient transformations before the water reaches the ocean.
River primary production can also be a large flux of organic
matter to marine environments (Behnke et al. 2023). Moreover,
large rivers host complex food webs, including iconic fishes
(e.g., sturgeon, salmon) and mammals (Keith et al. 2022).
Humans demand many ecosystem services from large rivers:
irrigation, hydroelectric power, food, shipping, industrial
intake, cooling, recreation. Metabolism metrics offer fundamen-
tal information on overall biological activity, allowing us to bet-
ter understand these ecosystems and to better manage them for
a multitude of sometimes competing ecosystem services.

The lack of estimates from large lowland rivers is likely a
result of several difficulties associated with larger channels.
Depth measurements and sensor deployment are more diffi-
cult, although not insurmountable. Gas exchange (K) esti-
mates are more challenging: unlike in small-medium rivers,
measuring K via tracer gas injections is difficult (though not
impossible, Ho et al. 2011). The assumptions behind the one-
station methods (i.e., using continuous dissolved oxygen
[DO] and temperature data from a single station, Odum 1956;
Hall and Hotchkiss 2017) used in small-medium streams may
not be met in large rivers. First, transverse mixing is lower,
and a sensor at a single location may not reflect DO and tem-
perature concentrations of the full channel, bank to bank.
Large rivers often have discontinuities (usually dams) that
break the assumption of a long reach with uniform condi-
tions. In addition, water passing over large dams is typically
super-saturated with gases, including oxygen (O2), because the
pressure of water dropping from a tall height pushes atmo-
spheric gases into the water beyond saturation. As a result,
large dams can interfere with metabolism estimates that rely
on changes in O2 saturation. As a result, researchers who wish
to estimate metabolism in large rivers must first assess whether
one-station assumptions are met and, if not, either employ
two-station methods or adapt existing one-station methods.

Here, we apply existing reach-scale, open-channel, one-
station metabolism tools to a continuous DO and temperature
dataset in the Columbia River, to estimate GPP and ER and
controls on their seasonal variation. To achieve this overall
objective, we first assess metabolism methods best suited for
large rivers, specifically by exploring methods for estimating K
in large rivers and accounting for super-saturation effects of
an upstream dam.

Methods
We estimated continuous open-channel metabolism for >

2 yr in the Hanford Reach of the Columbia River (May 2018
through December 2020), using the one-station method. This
method requires continuous DO and temperature data, along
with reliable estimates of gas exchange (K, d�1). To get these
estimates, we had to account for the effects of an upstream
dam on DO and consider how to estimate K. We then exam-
ined physical attributes: light, temperature, and Q, and how
they covaried with GPP and ER.

Site description
The Columbia River is the fifth-largest river in North America.

It originates in the Canadian Rockies and flows south, into
Washington state (USA), before forming the border between the
states of Washington and Oregon and discharging into the
Pacific Ocean. Flow rates are influenced by mountain snowmelt
and dam operations. The Hanford Reach is a free-flowing
section of the Columbia River, stretching 168 km from the Priest
Rapids Dam near Mattawa, Washington, USA to the McNary
Dam near Pasco, Washington, USA. In the Hanford Reach, the
Columbia is an 8th-order river until its confluence with the Snake
River, which occurs just upstream of the McNary Dam.

We measured metabolism at the Hanford site, 85 km down-
stream of the Priest Rapids Dam and just north of the city of
Richland, Washington (coordinates are 46.3729 N, �119.272 W).
Average annual discharge for this part of the Hanford Reach is
3173 m�3 s�1 and average width is 683m. The surrounding
land use is primarily sagebrush steppe, most of which is part
of the Hanford Reach National Monument or the Saddle
Mountain National Wildlife Refuge (Fritz et al. 2007; Fritz and
Arntzen 2007). The land immediately adjacent to our sensors
is part of the Hanford Nuclear Site (Fig. 1). In-stream habitat is
somewhat homogeneous across the Hanford Reach, with the
bottom composed mostly of gravel and cobble. The river is
generally either constrained to a single channel or splits into
two channels as it moves around islands. Channel width var-
ies tremendously; for example, at average annual Q, transect
widths range from 246 to 1060m.

The phytoplankton population in this reach has not been
assessed since 1979, but at that time, most of the photo-
synthesizing organisms were planktonic. Both planktonic and
benthic populations were composed primarily of diatoms
(Neitzel et al. 1982). There are few emergent plants in the reach
and submergent vegetation is not well characterized. The water
is generally clear, with annual median turbidity < 3 nephelo-
metric turbidity units (Poston et al. 2009). The river has low to
medium nutrient availability, with nitrate concentrations
<0:9 mgL�1 and some locations <0:5 mgL�1 (DOE 2022).

Dam operations and DO
We deployed a HOBO U26 DO logger to measure DO and

temperature every 15 min. The logger was deployed inside a
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completely submerged, perforated polyvinyl chloride (PVC)
pipe that allowed water to flow through while protecting the
sensor. We calibrated the sensor every month and replaced
the sensor cap every 6 months, per manufacturer’s recommen-
dations. We checked and cleaned the data at every download.
We did not check for heterogeneity in DO, because hydrody-
namic analyses of this reach showed full transverse mixing
(see “Hydrodynamics” section).

The Priest Rapids dam releases water into its spillway to aid
in fish migration and for other dam operations, with releases
occurring continuously during the fall and spring. The spill-
way pushes dissolved atmospheric gas into the river water,
thus supersaturating gases when the spillway is operating. The
effects of those supersaturated gases were evident downstream
at our sensor, where DO remained supersaturated for days at a
time, even as it exhibited typical diel patterns of increased DO
during the day.

To check how much the spillway explained the supersatu-
ration of DO, we accessed a continuous record of total dis-
solved gas (TDG), which is collected hourly by Grant County
Public Utilities District (http://www.cbr.washington.edu/dart/)
at Vernitas Bridge, 15 km downstream of the dam. We plotted
the relationship between the spillway flow rate and TDG satu-
ration and fitted a spline curve (Supporting Information Fig.
S1). The relationship suggested that TDG saturation covaried
with spillway flow rate. Next, we measured DO and argon
(Ar) saturation via Membrane Inlet Mass Spectrometry
(MIMS). Ar saturation is influenced by physical processes only,
while DO saturation can be influenced by physical, chemical,
and biological processes. DO and Ar were oversaturated by

nearly the same amount (Supporting Information Fig. S2),
demonstrating that any biological or chemical processes
between the dam and the TDG sensor were insufficient to
influence DO saturation. As a result, the TDG sensor is a rea-
sonable indicator of upstream DO concentrations and further
evidence that all-day DO supersaturation was caused by dam
operations.

ER cannot be reliably estimated when equilibrium con-
centration of gas exceeds that of saturation concentration.
Because some of the DO present at our sensor was a result
of dam operations, as opposed to a reflection of biological
activity, we subtracted DO present because of dam opera-
tions. This correction is based on dissolved gas concentra-
tions near the dam, travel time (τ), and K. The correction
had the effect of lowering Ot at the downstream station to sat-
uration concentration (Osat) in the absence of any biological
change in the reach. We assumed an exponential loss of
supersaturated DO as if it were a tracer gas (Hall and
Ulseth 2019):

Odown, tþτð Þ ¼Osensor, tþτð Þ � Oup,t �Osat,up,t
� �

e�Kτ ð1Þ

where Odown, tþτð Þ is the corrected DO value used in our models,
Osensor, tþτð Þ is the DO concentration reported by the sensor at
the Hanford site (in mg L�1), Oup,t is the DO reported by the
TDG sensor at Vernitas Bridge, Osat,up,t is the DO concentra-
tion at 100% saturation at the Vernitas Bridge, K is tempera-
ture-corrected K600 for O2 and τ is the travel time (d) between
the TDG sensor and the DO sensor at the 300 area, calculated
as reach length divided by average velocity (v). v varied with
Q as v¼0:553� log Qð Þ�3:15, with Q in m3 s�1, as deter-
mined from the Modular Aquatic Simulation System 1D
(MASS1) model (see “Hydrodynamics” section).

We did this correction only for times when DO at the TDG
sensor was >100% and the spillway was operating (i.e., spill-
way Q >0). When spillway daily mean Q >4245m3 s�1, we did
not attempt to estimate metabolism at all, because diel DO
curves at the sensor did not follow modelable patterns, even
with the oxygen correction. Given daily average Q ranging
from 1198 to 7493 when the spillway was operating, τ ranged
from 0.6 to 1.3 d (Supporting Information Fig. S3). At this
range, water was constrained within the river channel. With a
K600 of 0.5 d�1 (see Gas exchange section below), the correc-
tion to DO at the bottom of the reach ranged from < 0.01mg
L�1 when the spillway Q was low, to a maximum of 3.5mg
L�1, when the spillway Q was high (Fig. 2). We corrected the
DO at each time point, with an average daily DO correction
ranging from 0 to 2mg L�1. Although the amount of extra
DO at the sensor generally increased with spillway Q, there
were distinct seasonal patterns, likely because spillway releases
can occur during times of both low and high flows; spillway Q
is not necessarily correlated with total Q. As a result, some-
times high spillway Q corresponded with a long travel time,
allowing more time for extra O2 to escape.

40 km

Hanford Reach
National
Monument

Sensor

N 300 km

Richland

Priest
Rapids
Dam

Fig. 1. Location of Hanford Reach within Washington state, USA, show-
ing the location of the DO sensor and the upstream dam. The dam is
85 km upstream of the sensor.
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Gas exchange
We had three options for estimating K600 (K normalized to

a Schmidt number of 600): modeled based on the DO time
series, empirically measured based on downstream changes in
gas concentrations, and calculated using semi-empirical equa-
tions (Hall and Ulseth 2019). We employed all three methods
after observing apparently implausible estimates in K600

derived from O2 models. Each method resulted in a different
K600 value, and so we examined the sensitivity of metabolism
estimates by fixing K600 at a range of values and examining
resultant changes in the metabolic parameters that we actually
care about: GPP and ER.

K as a free parameter in oxygen models
We modeled K600 as a free parameter, estimated via Bayes-

ian inference using streamMetabolizer (Appling et al. 2017).
This method estimated K600 as a piecewise function of dis-
charge and was partially pooled across days, a method that
can simultaneously estimate metabolism and gas exchange
(Appling et al. 2018a). We tested the effect of varying priors
across two orders of magnitude, but the model returned nearly
identical ranges of K600, regardless of priors. With the K600

values returned by streamMetabolizer, many of the ER esti-
mates were positive, which is impossible. Furthermore, if the
modeled estimates of K600 were correct, the extra DO from
the dam would have escaped before reaching the DO sensor,

but our measured DO data clearly indicates that was not the
case. Lastly, estimates were too high; the gas exchange veloc-
ity (k600) was around 14m d�1, which approaches that of the
Colorado River in the Grand Canyon, a whitewater river.
Because the modeled K600 did not match expectations, we esti-
mated K600 with empirical and predictive methods.

Direct measures of argon to estimate K
Our empirical K600 estimates came from measurements of

downstream Ar decline. Typically, K600 is estimated via pro-
pane or sulfur hexafluoride injections, but large rivers are not
conducive to such techniques (Hall and Ulseth 2019). Instead,
we took advantage of the upstream dam, which effectively
injects atmospheric gases (dinitrogen [N2], O2, and Ar) into
the river continuously when the spillway is running. We sam-
pled dissolved gas concentrations 4 km downstream of the
dam. We then took samples of the same “packet” of water
when it reached the downstream sensor, usually 18–24h later
(travel time plotted in Supporting Information Fig. S3). The
sampling time was based on a relationship between velocity,
estimated with the MASS1 model (see “Hydrodynamics” sec-
tion), and Q at the Priest Rapids USGS gauge (12472800). We
sampled dissolved gas at Q ranging from 1984 to 2926 m3s�1,
and most of our metabolism estimates were made with Q from
2000 to 4000 m3s�1. All of our measurements were thus
within the typical range of Q, albeit not encompassing the full
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Fig. 2. The amount of extra oxygen, that is, amount of oxygen subtracted from sensor values, based on Eq. (1), generally increased with Q at the spill-
way. Each point is the daily average.
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range. Our estimates of K did not vary with Q, however (see
below), despite measurements made over a range of nearly
1000 m3s�1, so we are confident this sampling was adequate.

To sample dissolved gases, we filled 12-mL Exetainers (Labco,
Lampeter, Wales, UK), using a dissolved gas sampler. The sam-
pler was a 3.8-cm diameter PVC pipe, with a 1-cm flexible tube
affixed close to the bottom. The bottom of the PVC was closed
with a rubber stopper. We filled the pipe with water and then
filled the Exetainer from the bottom by placing the flexible tub-
ing on the bottom of the Exetainer and filling to an inverted
meniscus. To prevent biological activity from changing gas con-
centrations, we preserved the sample with 0.1 mL of 50% zinc
chloride. For each sample, we recorded barometric pressure (BP,
mm Hg) and water temperature with a YSI ProODO (YSI, Yellow
Springs). We measured dissolved Ar (Ameas) on the samples
using MIMS following Kana et al. (1994) and Hall and
Madinger (2018). We calculated fractional excess Ar (A) in
samples as A¼ Ameas=Asatð Þ�1. We estimated the downstream
decline for each of 4 separate sampling events using a log-
transformed exponential decay model with variable intercepts
(one for each day) and a completely pooled slope (K). Because
all sample events were close in time, we had no reason to
believe that gas exchange (i.e., K) would vary from day to day.

log At,j
� �¼ log A0,j

� ��Ktþ εt,j ð2Þ

where At,j is A at travel time t downstream and sampling event
j, and A0,j is A at the upstream station at sampling event j. We
fit this model using Bayesian inference because we have prior
information on K600 from other means. Prior probability for K
was K� gamma 3:7,6:7ð Þ; based on moment matching from a
distribution that has a mean=0.55 and SD=0.29 and derives
from empirical estimates from large, flat rivers (Alin
et al. 2011). We used gamma distribution for this prior
because there is no way for K to be negative. We also tested a
minimally informative prior, K� gamma 1,0:1ð Þ. We used
package brms in R (Bürkner 2021).

K predicted from semi-empirical equations
We predicted K600 from three semi-empirical equations,

which are based on a combination of hydraulic parameters
and empirically-derived coefficients. There are a vast array of
these equations; we chose three that were reliable over a wide
range of Q and had been successfully used in a reach-scale
metabolism context (Cox 2003; Dodds et al. 2013). First, we
used an equation from Isaacs and Gaudy Jr. (1968), the same
used by Dodds et al. (2013). Of the models that use simple
hydraulic parameters, this one performs the best (Cox 2003).

K600 ¼4:75
v

z1:5

� �
1:0241 T�20ð Þ ð3Þ

where z is average depth and T is temperature. We used 17�C
for temperature, which gives us K600, because K600 is simply
KO2 at 17

�C.

Next, we applied a model from Parkhurst and Pomeroy
(1972). This model is generally reliable over a wide range of Q
and had the lowest standard error of prediction, compared to
a suite of similar models (Cox 2003).

K600 ¼23:04
1þ0:17F2� �

Svð Þ0:375
z

1:0212 T�20ð Þ ð4Þ

where S is the slope and F is the Froude number, calculated as
F¼ v=

ffiffiffiffiffi
gz

p� �
, where g= acceleration due to gravity. Both S and

F are unitless. As in (3), we used 17�C for T so that it would
return K600.

Finally, we applied a model from Dobbins (1964, 1965).
Like (4), (5) was reliable over a wide range of Q (Cox 2003).

K600 ¼1:7535
CAAdE

0:375

C1:5
4 z

coth
2:751BE0:125� �

C0:5
4

ð5Þ

where CA ¼1:0þF2, Ad ¼9:68þ0:054 T�20ð Þ, E¼ Svg,
B¼0:9760þ0:0137 30�Tð Þ1:5, and C4 ¼0:9þF. As above, we
substituted 17�C for T.

As a final check on gas exchange, we collated estimates
from large rivers and estuaries from Alin et al. (2011). We
compiled all estimates that reported some measure of central
tendency from their Table 5. We estimated the mean and
uncertainty of this estimate by using a bootstrap. The mean
and the median of all the empirical and calculated estimates
was K600 =0.5 d�1 (see “Results” section), and so we fixed K600

at 0.5. One problem with applying a single K600 value is that
in reality, K probably varies day-to-day. However, our sensitiv-
ity analysis demonstrated that as long as K600 is between 0.2
and 1 d�1, it has little effect on GPP and ER estimates,
suggesting that even if K600 was not always exactly 0.5 d�1,
our GPP and ER estimates are nonetheless robust.

Metabolism estimates
We estimated metabolism with the one-station method,

using inverse modeling. This method uses the following equa-
tion from Hall and Hotchkiss (2017):

ΔDO
Δt

¼GPPþERþ K� DOsat�DOð Þð Þ ð6Þ

where DOsat is the concentration of DO at saturation, given
the temperature and BP.

The estimates presented here were estimated via maximum
likelihood, using streamMetabolizer (Appling et al. 2017), with
K600 fixed at 0.5 d�1. In addition to DO and temperature, max-
imum likelihood requires light data, which we estimated based
on our site location, using the calc light function in the
streamMetabolizer package in R version 3.4.4 (Appling
et al. 2017). This function bases light values on the site loca-
tion and time of year. We chose to estimate light in this way,
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because point estimates, while effective at detecting cloud
cover, may not apply to the full 85-km reach.

We also estimated metabolism via Bayesian inference,
where we estimated K from the data. As discussed above,
Bayesian inference returned unexpectedly high estimates of
K600 and ER, and so we chose a fixed K based on other
methods. Because we were only solving for 2 unknowns (GPP
and ER), we did not risk equifinality with maximum likeli-
hood inference (Appling et al. 2018a). Furthermore, models
based on maximum likelihood run far faster than Bayesian
methods. The Bayesian method does produce a full probability
distribution for each day’s GPP and ER, with inferences for
within-day uncertainty, but we did not need those daily
uncertainty estimates to address our research goals. For our
site and data set, maximum likelihood with fixed K was the
most reliable method.

Readers may wonder why we did not use a two-station model
(Hall et al. 2016) to estimate metabolism given that the dam was
close enough to the downstream site (85 km away) to influence
DO concentrations. We lacked a suitable upstream DO sensor for
which to conduct a two-station analysis. The TDG sensor may
have approximated O2 concentrations, but we doubt that this
sensor is accurate for fine-scale O2 dynamics. However, our
one-station approach contains elements of a two station by
correcting for upstream supersaturation.

Hydrodynamics
We used output from the MASS1 model for hydrodynamic

information. MASS1 was calibrated and validated for the Han-
ford Reach (Niehus et al. 2014). In a one-station model, the
reach length (i.e., upstream extent over which the DO data
integrate) varies with velocity (v, m s�1) and thus Q, and we
defined that reach length, Du, as equivalent to 80% turnover
distance, Du ¼1:6v=K (Chapra and Di Toro 1991), where 80%
represents turnover of most O2, but not as much as the long
turnover distance for 95%. Using reach-scale average v from
MASS1 (Richmond and Perkins 2009) and a mean K of 0.5 d�1

(see “Gas Exchange” section), we found that the reach length
always exceeded the distance to the dam ( > 85km). Because
the dam effectively resets gas concentrations and because we
corrected our DO data for dam O2 inputs, the reach length
was the entire distance to the dam.

Although the Columbia River is wide in the Hanford Reach
(average of 683 m), it has sufficient transverse mixing to rea-
sonably assume that the DO data apply to the full river width.
A modeling study of this reach found consistent lateral distri-
bution of TDG (Richmond et al. 2000) and bottle incubations
showed consistent photosynthesis rates across lateral transects
(Neitzel et al. 1982). Similarly, field studies at other Columbia
and lower Snake River dams found that TDG is generally well
mixed across the river within a few kilometers of the dam
(e.g., USACE 2002; Juul 2003), and those results are likely
applicable here. As a result, our estimates of average depth, z,

include the full width of the river, extending upstream to
the dam.

If our assumptions about transverse mixing are incorrect, we
expect only a minor impact on metabolism estimates. Our
metabolism estimates would apply only to the section of river
with the DO sensor, and the DO correction for the dam would
potentially be incorrect, if that section had a different velocity
than the river average. However, metabolism occurs across the
entire width of the river and the Columbia is rather homoge-
neous in its habitats—the river is constrained within a gorge
and its entire width is composed of gravel and cobble. As a
result, we do not expect much heterogeneity in metabolism,
either, and if the river is not well mixed, effects on metabolism
estimates are likely small.

To calculate average depth, we established transects every
0.5 km along the entire Hanford Reach. At each transect, we
used MASS1 to estimate cross-sectional area, width, hydraulic
depth, and hydraulic radius for a typical range of Q. MASS1
uses measured bathymetry at each transect, measured inflow
at the upstream boundary, and water surface elevation at the
downstream boundary to make its estimates at each transect
(Niehus et al. 2014). For each value of Q, we calculated reach-
average depth (z) by taking the average hydraulic radius across
all transects in the reach. We used those values to develop a
Q – z relationship. Finally, we used MASS1 to estimate reach-
scale Q every 15min, based on inflow and water surface eleva-
tion data, and used the Q – z relationship to calculate z.

Statistical inference of metabolism
To understand the fate of GPP and the relationship

between GPP and ER, we estimated the fraction of GPP that is
immediately respired (ARf), which includes autotrophic respi-
ration and some small fraction of heterotrophic respiration
(Hall and Beaulieu 2013). We estimated ARf with quantile
regression at the 0.9 quantile, using the quantreg package in R.

Explanatory variables for GPP included temperature, light,
and Q. We expressed temperature as 1= KB�Tð Þ, where KB is
the Boltzmann constant (8:61�10�5 eV K�1) and T is temper-
ature in Kelvin. By using 1= KB�Tð Þ, we can interpret the
absolute value of the slope of log(GPP) and 1= KB�Tð Þ (Welter
et al. 2015) in the context of metabolic theory (Brown
et al. 2004). We used daily total light, from the National Solar
Radiation Data Base (https://nsrdb.nrel.gov/), in W m�2, for
the light predictor. We converted those values to total daily
light, in kJ m�2 d�1. We also used the light data to calculate
light use efficiency (LUE) by converting GPP to kJ with a con-
version of 1 g O2 =14kJ (Kirk et al. 2021).

To estimate the covariates of GPP, we fit Generalized Least
Squares (GLS) models to GPP, with 1= KB�Tð Þ, light, and Q as
potential explanatory variables, using the using first-order
autoregressive AR(1) correlation structure in the nlme package
in R. GLS allows for autocorrelation in residuals, a common
property in time series. All our explanatory variables were tem-
porally autocorrelated and so we included an auto-correlation
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parameter in each model. We fit each potential driver individ-
ually and in combination and compared AIC scores to rank
the models. We also calculated the R2

lik, a pseudo-r2 developed
for GLS models, using the rr2 package in R (Ives 2019; Ives
et al. 2019). We examined all residuals for homogeneity of
variance, and the residuals from all models reported here met
that assumption. All statistical tests and figures were com-
pleted in R version 4.2.1.

Results
Gas exchange

Measures of gas exchange based on Ar decline, predictions based
upon models, and literature values all converged on K600 between
0.2 and 1 d�1 with a central tendency of 0.5 d�1. Given a
mean depth of 4.8m, the gas exchange velocity k600 (m d�1)
therefore ranged from 1.0 to 4.8m d�1, with a mean near 1.9
m d�1 (Fig. 3). streamMetabolizer provided K600 values that
averaged around 3 d�1 (k600 ¼14 md�1), which we found
unlikely and provided untenable estimates of metabolism.

Estimates of metabolism were insensitive to K
Each method of estimating K gave a distinct range of esti-

mates, but many overlapped, and all were < 1 (Fig. 3), except
for those from the inverse modeling approach (not shown in
figure). Parkhurst and Pomeroy (1972) estimates were lower
than our empirical estimates, while the other two were higher.
The mean and median value was 0.5 d�1.

Estimates of GPP were insensitive to our range in uncer-
tainty in gas exchange; at K600 =0.2, average GPP was 11.4 g
O2 m�2 d�1 and at K600 =3, average GPP was 11.8 g O2 m�2

d�1, a difference of 3.8% (Table 1). The median daily differ-
ence of GPP between K600 =0.2 and K600 =3 was 0.8 g O2 m�2

d�1 and the median daily difference between K600 =0.2 and
K600 =1.0 was 0.2 g O2 m�2 d�1 (Fig. 4). As a result, our GPP
estimates are highly robust. ER estimates were more sensitive
to K600, but especially when K600 > 1. From K600 =0.2 to K600

=3, the difference in ER was 59%, but from K600 =0.2 to K600

=1, the difference in ER was only 9%. The median daily differ-
ence between K600 =0.2 and K600 =3 was 5.2 g O2 m�2 d�1,
but the median daily difference between K600 =0.2 and K600

=1.0 was 1.7 g O2 m�2 d�1 (Fig. 4).
The selection of K600 also influenced the number of

nonsensical ER and GPP estimates. We defined nonsensical
estimates as ER > 0 g O2 m�2 d�1 and GPP < 0g O2 m�2 d�1.
For ER, there were 5 or fewer nonsensical (i.e., positive) esti-
mates when 0.2 ≤K600 ≤1:0. At K600 =3.0, 25% of ER esti-
mates were nonsensical. For GPP, < 2% of estimates were
nonsensical (i.e., negative) for any value of K600, although
there were more nonsensical values at the lowest values of
K600 (Table 1).

Metabolism patterns
GPP ranged from 0.3 to 30.8 g O2 m�2 d�1, with a median

value of 10.5 g O2 m�2 d�1. In general, the lowest GPP occurred
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in winter, with a gradual increase in spring. GPP rose through
summer, peaking in August or September (Fig. 5). ER ranged
from �0.8 to �30.6g O2 m�2 d�1, with a median value of
�10.3 g O2 m�2 d�1 (Fig. 5). The seasonal patterns in ER mir-
rored those of GPP (Fig. 5). Indeed, GPP almost perfectly predicted
ER (jER j¼0:87GPPþ0:94, r2 ¼0:92, SE of slope=0.01).

GPP covaried with 1= KB�Tð Þ and light, but not with Q.
Peak GPP occurred in late summer and early fall, when tem-
peratures were highest (Fig. 6A). GPP increased exponentially
with 1= KB�Tð Þ and the absolute value of the slope of log
(GPP) and 1= KB�Tð Þ was 0.42. GPP and light fit a power law
model with a slope of 0.25, which indicates a loss in efficiency
as light increases. In other words, at low light, GPP increased
rapidly, but at moderate to high light, the rate of increase
attenuated (Fig. 6B). As a result, maximum GPP did not occur
at maximum light; it occurred at maximum temperature
(Fig. 6B). Consistent with this, the power law relationship
between GPP and light suggested that LUE declined as light
increased. Indeed, mean LUE was highest in autumn (2:4�2:5
SD), followed by winter (2:1�2:1), then summer (1:0�0:5
SD), and lowest in spring (0:77�0:3 SD). The best model,
according to AIC and R2 values, included both light and
1= KB�Tð Þ (Table 2). Q was not an effective predictor of GPP
(Fig. 6C).

NEP was nearly 0, reflecting the close relationship between
ER and GPP. It was negative on about half the dates (58%)
and averaged �0.22 g O2 m�2 d�1 (Fig. 6D). On an annual
scale, the Hanford Reach was slightly heterotrophic, but autot-
rophy occurred about half of the time, primarily in spring and
summer, occasionally in autumn, and almost never in the
winter. Quantile regression (Hall and Beaulieu 2013) revealed
that 90% of GPP was respired immediately (within 1d,
Fig. 6D), meaning that even though the reach may be semi-

Table 1. Sensitivity of GPP and ER to a range of K600. Mean GPP
and mean ER refer to the mean of all successfully modeled days.
GPP Removed and ER Removed refer to the number of estimates
removed because they yielded non-sensical estimates (i.e., nega-
tive values of GPP and positive values of ER).

K600

(d�1)
Mean GPP

(g O2 m�2 d�1)
Mean ER

(g O2 m�2 d�1)
GPP

removed
ER

removed

0.2 11.38 �11.85 15 11

0.4 11.39 �11.71 6 5

0.5 11.40 �11.60 5 5

0.6 11.40 �11.47 4 5

0.8 11.42 �11.14 2 3

1.0 11.44 �10.74 2 3

1.5 11.50 �9.51 2 5

2.0 11.58 �8.05 2 24

2.5 11.69 �6.47 2 102

3.0 11.84 �4.84 2 213
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frequently autotrophic, it is not likely to accumulate or export
much organic C derived from photosynthesis.

Discussion
Estimating metabolism in large rivers

A key challenge with estimating metabolism in large
rivers is attaining reasonable estimates of K600. In our case,
metabolism estimates were relatively insensitive to the range
of estimated K. This relative insensitivity is likely a function of
having low K, relative to other rivers (Ulseth et al. 2019). Why
was K so small in the Columbia River and why did K not
change with Q, as typically expected (Appling et al. 2018b)?
The Columbia River is deep, and so a relatively small propor-
tion of its water interacts with the atmosphere, limiting
exchange. As Q increases, turbulence may increase (increasing
K), but so does depth (decreasing K). These two changes likely
cancel each other out, similar to the Klamath River where
increased Q caused idiosyncratic changes to K (Genzoli and
Hall 2016). We note, however, that despite our K estimates
being on the low end, they did vary fivefold (from 0.2 to 1.0
d�1). If we were estimating K for the purpose of estimating gas
fluxes, such as CO2 or CH4, this error would be problematic,
because an uncertainty on gas exchange scales 1:1 with fluxes,
resulting in a five-fold uncertainty.

Estimates of K600 from the DO data themselves, using
streamMetabolizer, were likely far too high and provided non-
sensical estimates of ER. The use of modeling approaches such
as streamMetabolizer to estimate metabolism and gas
exchange concomitantly has been hugely helpful in estimat-
ing riverine metabolism where it is not possible to measure
gas exchange directly, for example, in hundreds of rivers
where the USGS monitors DO (Appling et al. 2018b). Such sta-
tistical tools have allowed large-scale syntheses of annual
metabolism (Bernhardt et al. 2022) that were heretofore not
possible. But our findings in the Columbia River demonstrate
that deriving K600 from O2 models may not always be correct,
even when K600 is low and GPP is high, two scenarios that
should, in theory, promote the use of modeling approaches
for K600 (Hall and Ulseth 2019). We suggest that when investi-
gators wish to generate high-confidence estimates of metabo-
lism time series or gas emission for any particular river they
should question the use of any single method for gas
exchange and instead try multiple approaches to increase con-
fidence in the final estimates of gas exchange and, therefore,
metabolism.

Discontinuities, like dams, are prevalent in large rivers, pre-
senting both benefits and problems. Dams function as a con-
tinuous tracer gas injection when their spillways result in
supersaturation, allowing researchers to estimate K600 empiri-
cally, as we have done here. They also reset gas concentrations
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and define the reach, by providing an upstream boundary. At
the same time, supersaturation of river gases can obscure DO
patterns. We found that applying a DO correction alleviated
this problem. The potential risk with DO correction is mis-
attribution of the source of supersaturation. We are confident
that the extra DO was a result of spillway operations, because
of the tight relationship between supersaturation and spillway

flow. An alternative explanation is that the reach is highly
autotrophic, with GPP exceeding ER to such a high degree
that the combination of nighttime respiration and gas
exchange is insufficient to return the river to equilibrium.
There are physiological constraints to such an explanation,
however; autotrophs must respire. As a result, a completely
biological explanation for continuous oversaturation is
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GPP that is immediately respired, fit with quantile regression at the 0.9 quantile.

Table 2. Coefficients, standard error, AIC, and pseudo-r2 for models that predict log (GPP). KB is the Boltzmann constant, in eV, and T
is temperature in Kelvin.

Model Variable Coefficient SE AIC R2

log GPPð Þ¼1= KB�Tð Þ 1= KB�Tð Þ �0.42 0.06 572 0.68

Intercept 19.24 2.30

log GPPð Þ¼ log lightð Þ Light 0.33 0.02 450 0.73

Intercept �0.77 0.23

log GPPð Þ¼1= KB�Tð Þþ log lightð Þ Light 0.30 0.02 441 0.73

1= KB�Tð Þ �0.22 0.05

Intercept 8.55 2.26

Roley et al. Columbia River metabolism

2470

 19395590, 2023, 11, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.12435, W

iley O
nline Library on [10/01/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



possible, but would be limited to places and times where gas
exchange was low and the biota were respiring a relatively
small proportion of GPP. This scenario may have occurred on
a few dates in the Hanford Reach: even after DO correction,
there were 107 d in which DO remained supersaturated all
day. In most cases, these days were very close to equilibrium,
with daily minimum DO saturation between 100% and 101%.
Nonetheless, this finding suggests that metabolism may con-
tribute in a small way to supersaturated DO concentrations if
NEP is positive and K600 is low.

Dams also create unsteady flow conditions, which violate
the assumptions of one-station metabolism. Others have dealt
with unsteady flow by coupling a two-station metabolism
model with a flow routing model (Pathak and Demars 2023)
or with a Eulerian model (Payn et al. 2017). Although we used
one-station metabolism, our DO corrections accounted for the
lag time between the upstream boundary and the DO sensor.
The lag time was calculated for each time point in our data
(every 15 min). In that sense, we account for variable flow.
Our approach is less computationally intense, but required an
existing, detailed reach-scale hydrologic model that allowed us
to obtain high-confidence reach-scale velocity. In contrast to
our site, Bayesian inference produced reasonable K600 esti-
mates in the Colorado River, when using informed priors
(Payn et al. 2017). Similar to our site, constant K600, based on
empirical data, worked well for the River Otra (Pathak and
Demars 2023).

Finally, reach-scale average depth and velocity are difficult
to obtain in large rivers. Errors in depth scale 1 : 1 with errors
in metabolism, so good depth estimates are critical to accurate
metabolism estimates. Hanford Reach hydrodynamics and
channel dimensions have been well characterized (Perkins
et al. 2004; Richmond and Perkins 2009; Niehus et al. 2014),
allowing us to apply existing models. Such efforts also pro-
vided appropriate data for the semi-empirical K600 calcula-
tions. Other large river reaches may not have similar existing
hydrological information. In summary, estimating metabolism
in large rivers requires additional hydrological and geomor-
phological considerations, along with a healthy dose of skepti-
cism: simply placing a DO and temperature sensor close to a
USGS gauge and hoping that streamMetabolizer works is
insufficient. Prior to embarking on metabolism estimates in
large rivers, we suggest researchers consider the feasibility of
depth measurements, options for estimating K600, discontinu-
ities with the turnover distance of DO, transverse mixing, vari-
able flow, and other unknown unknowns.

Metabolism patterns
Annual GPP and ER exceeded most estimates (Bernhardt

et al. 2022) showing that the Columbia River is one of the
most metabolically active rivers ever measured. Assuming a
1:1 M ratio of O2 :C, average annual metabolism on the 2-yr
time series was GPP=1530 g C m�2 yr�1 and ER=1500 g C
m�2 yr�1. These values are in the upper 2% of GPP and 3% for

ER of the 222 rivers in Bernhardt et al. (2022). The median
values of GPP and ER exceeded all GPP and ER values estimated
in the lower Mississippi River (Dodds et al. 2013) and the Colo-
rado River (Hall et al. 2015). The generally high rates of GPP
and ER are likely due to the low turbidity of the Columbia River,
along with its deep depth: there is more water and resultant
metabolic activity per m2 in the Columbia compared to most
rivers. There is little basis to compare our estimates here with
other findings in the Columbia River. Weekly measurements
of primary production via 14C from 1977 to 1980 were lower
than our measurements, with a maximum value of 6 g O2 m�2

d�1 (Neitzel et al. 1982), compared to our maximum GPP of
30 g O2 m�2 d�1 and median GPP of 10.5 g O2 m�2 d�1. The
lower values from the 14C methods could reflect changes in
production through time, bottle effects, the exclusion of ben-
thic GPP, or the fact that 14C always measures something less
than gross production (Wetzel and Likens 2010).

The seasonal metabolism patterns in the Hanford Reach
were distinct from those in most rivers, which typically exhibit
either a spring peak or a summer peak in GPP (Savoy
et al. 2019), although there are exceptions (Bernhardt
et al. 2022). In the Hanford Reach, GPP and ER peaked during
August and September of 2018 and during September of 2020.
Data are missing from August to October 2019, but the highest
rates occurred just before data loss, in early August. These pat-
terns are consistent with seasonal measurements of 14C uptake
in the Hanford Reach, in which C uptake peaked in summer
and fall (Neitzel et al. 1982). This early fall peak corresponds
with peak temperature, but after peak light availability.

There appears to be a hysteretic pattern with light and
GPP. Spring and fall have the same range of total daily light,
but fall has far higher GPP and higher LUE. We hypothesize
that this delay in response to light occurs because the
upstream reservoir drives metabolism patterns in the Hanford
Reach. As temperatures increase, so do phytoplankton
populations. A larger algal population can fix more C, in
aggregate, than will a smaller population, even if the photo-
synthesis rates of individual cells are not as high as
during times of peak light. As a result, GPP increased with
temperature. The travel time in the Hanford Reach is generally
< 1 d, so if most of the photosynthesis is planktonic, it’s
unlikely that the population is increasing appreciably within
the Hanford Reach unless the plankton have a doubling time
<1 d. Most likely, the planktonic population behind the Priest
Rapids dam increases throughout the summer, peaking in
early fall when temperatures are maximal. The phytoplankton
population in the Hanford Reach likely reflects the dynamics
behind the dam; indeed, phytoplankton density increased in
the Hanford Reach after construction of the Priest Rapids Dam
(Neitzel et al. 1982). In addition, it is possible that submerged
plants and/or benthic algae reach peak biomass and metabo-
lism in the fall, at the end of the growing season. Given the
4.8m average water depth, we expect that most metabolism,
expressed areally, is planktonic.
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When LUE is calculated for streams and rivers from open-
sky irradiance, as we did here, the mean value is 0.5%, with a
range up to 3% (Kirk et al. 2021). We observed an overall
mean LUE of 1.5%, with the autumn mean of 2.4% and some
individual dates > 10%. This high LUE is somewhat surpris-
ing, given the depth of the Columbia River and the resultant
light attenuation. It further suggests that much of the GPP is
planktonic, rather than benthic. The seasonal variation in
LUE potentially reflects both biological and physical drivers.
In winter, light levels are quite low and primary producers
thus must use more of the available light and they may use
various physiological adaptations to do so (e.g., Felip and Cat-
alan 2000). In autumn, light is similar to spring, yet LUE was
much higher. We suggest this higher LUE is a result of higher
algal biomass; i.e., the interaction between light and
temperature.

Light and 1= KB�Tð Þ explained a large fraction of variation
in GPP. The power law model relating light to GPP had a slope
< 1 (0.3), meaning there was a loss in efficiency as light
increased, consistent with the seasonal changes in LUE. Meta-
bolic theory predicts an exponential relationship between
GPP and temperature, with the absolute value of the slope of
log(GPP) and 1= KB�Tð Þ representing the activation energy.
Activation energy for GPP at the cellular level is assumed to be
0.32 eV (Allen et al. 2005) and we calculated a similar slope
(0.4 when 1= KB�Tð Þ was modeled alone and 0.2 when
modeled with light). Although remarkably similar to theory,
this alignment may be coincidental. Ecosystem-level activa-
tion energy can be amplified by biomass accrual and damp-
ened by other limiting factors, such as nutrients or light
(Welter et al. 2015). The interacting effects of light, tempera-
ture, and primary producer population size may have resulted
in model coefficients that aligned with theory. Overall, the
seasonal patterns and the model coefficients suggest that light
has a stronger effect on GPP during winter, early spring, and
late fall, while temperature was the primary driver during
spring, summer, and early fall, when light is saturating.

Metabolism in large lowland rivers
Other large rivers with continuous open-channel metabo-

lism estimates include the Mississippi, Loire, Thames, and
Colorado Rivers (Dodds et al. 2013; Hall et al. 2015; Appling
et al. 2018b; Diamond et al. 2022; Pathak et al. 2022). Of
these, the Mississippi River is most similar in size to the
Columbia and it has two attempts at estimating metabolism.
One is Dodds et al. (2013), who estimated metabolism at
weekly intervals in the Mississippi River near Baton Rouge,
Louisiana. They fit models to data, but with a fixed K calcu-
lated from Isaacs and Gaudy Jr. (1968). This site had a benefit
of no flow obstructions for > 1000 km upstream, meaning it
likely met the assumptions of one-station, open-channel
metabolism. The second estimate was derived from data in
Appling et al. (2018b) at the Mississippi River farther
upstream, at Clinton, Iowa. This site had periods of time with

very high GPP ( > 15gO2m�2 d�1) and low ER (0–5 g O2 m�2

d�1), which is thermodynamically impossible because primary
producers must respire (Hall and Beaulieu 2013). This result
shows that at best some of the assumptions of one-station
metabolism were unmet, perhaps because of the extensive
lock and dam infrastructure along this reach of the
Mississippi. The Clinton site modeled gas exchange as a free
parameter, but values of K600 were low and tightly constrained
at 0.5–1 d�1, close to the value for the Columbia River. In
combination with our observations in the Columbia, these
two examples show that in large rivers, K600 can be low. The
example from Iowa also shows that assumptions of
one-station metabolism can be easily violated.

Columbia River metabolism magnitude and patterns con-
trast with those in other large rivers. The Mississippi and Colo-
rado River had substantially lower GPP and ER (Mississippi
River GPP < 4 g O2 m�2 d�1, jER j <7g O2 m�2 d�1; Colorado
River GPP ranged from 0 to 3 g O2 m�2 d�1, with a mean of
0.8, Hall et al. 2015; Dodds et al. 2013; Appling et al. 2018b).
In the Mississippi River, jER j increased with Q, likely because
higher Q resulted in more allochthonous inputs (Dodds
et al. 2013). Turbidity controlled GPP via its effects on light
transmission in the Colorado River (Hall et al. 2015) and tur-
bidity may have controlled Mississippi River GPP, as well
(Dodds et al. 2013). In both cases, temperature was of second-
ary importance or had minimal predictive power. Both rivers
are more turbid than the Columbia River. In the Loire River,
temperature had a larger effect on GPP than light, but the abi-
otic drivers of metabolism depended somewhat on ecosystem
state (i.e., phytoplankton- or macrophyte-driven, Diamond
et al. 2022). The Thames had a summer peak in productivity
when light and temperature were high (Pathak et al. 2022). A
recent synthesis predicts that a non-turbid river without sea-
sonal canopy cover (such as the Columbia) will have maxi-
mum GPP during the time of maximum incident light
(Bernhardt et al. 2022). The Columbia River deviates from this
broad pattern, but so does the Mississippi River, albeit in a dif-
ferent way. We do not yet understand the governing mecha-
nisms for metabolism in truly large rivers and indeed, those
governing mechanisms may be site-specific.

Autotrophy and coupled respiration
As a whole, streams and rivers are rarely autotrophic

(Hoellein et al. 2013; Bernhardt et al. 2022), because they
receive terrestrial inputs along their length, and those inputs
fuel respiration. The Hanford Reach deviates from this general
pattern: because it is just barely heterotrophic on an annual
scale, GPP exceeds ER on nearly half of the days, and most of
this GPP is immediately respired. Autochthonous production
thus fuels this ecosystem. This deviation from typical streams
likely occurs because the Hanford Reach is effectively discon-
nected from its watershed. The upstream boundary is a dam,
which accumulates organic matter and keeps it out of the
Hanford Reach. In addition, the Hanford Reach has no major
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tributary inputs, because the surrounding landscape receives
just 12–25 cm of rain per year. As a result, allochthonous
inputs in this reach are restricted to those from irrigation
return flows and from vegetation immediately adjacent to the
river. Finally, substrate within the Hanford Reach comprises
cobble, gravel, and boulders, and so likely has minimal C
stored within the channel to cause temporal lags in
respiration.

The lower Mississippi River was strongly heterotrophic on
an annual scale, with a few dates of autotrophy and a weaker
relationship between GPP and ER (Dodds et al. 2013). Simi-
larly, the Amazon River appears to be strongly heterotrophic
(Quay et al. 1995), but the Loire River exhibited heterotrophy
only after shifting from a planktonic-dominated metabolism
to a benthic-dominated ecosystem (Diamond et al. 2022). The
geological context of these rivers is distinct from the Colum-
bia, however. The Klamath River exhibited similar patterns to
the Columbia, with ARf as high as 0.92. Autochthony in the
Klamath was attributed, in part, to downstream export of
organic C (Genzoli and Hall 2016). The Klamath, although
much smaller than the Columbia, shares some key characteris-
tics: it has large dams and flows through a bedrock canyon,
resulting in minimal allochthonous inputs during summer
baseflow.

In addition to geology, the food web may influence the car-
bon balance of rivers; specifically, plankton-dominated rivers
appear more likely to demonstrate autotrophy than benthic-
or plant-dominated food webs. The Murray River, where most
GPP is planktonic, has a tight GPP : ER relationship, with NEP
close to 0 (Oliver and Merrick 2006), similar to the Columbia.
The Loire River was autotrophic on an annual scale when it
was dominated by phytoplankton, but heterotrophic when
the river shifted to plant dominance (Diamond et al. 2022).
The Thames and Seine, also plankton-dominated, are season-
ally autotrophic, but are heterotrophic on an annual scale,
likely because they receive plentiful anthropogenic allo-
chthonous carbon inputs (Escoffier et al. 2018; Pathak
et al. 2022).

Conclusion
So far, truly large rivers appear to be idiosyncratic, with

their metabolism patterns influenced by site-specific condi-
tions, such as geology, food web, dams, climate, and sur-
rounding land use. As more large river reaches are studied,
perhaps distinct regimes will appear. Given that only 36 rivers
are larger than the Columbia, it is also possible that each has
its own metabolic pattern and generalization will elude
us. Based on our experience with the Hanford Reach of the
Columbia River, metabolism in large rivers may require cor-
recting DO data for dam O2 inputs and creative approaches to
estimating K. Our metabolism estimates revealed notably high
rates of GPP and ER, with GPP driven primarily by tempera-
ture and secondarily by light, while ER was almost solely a

function of daily GPP. These patterns contrast with those in
small–medium streams and suggest that the world’s largest riv-
ers require specific attention when studying the carbon cycle
of river networks.

Data availability statement
All data and R code associated with this paper are published

on ESS-DIVE (Roley et al. 2023), available at https://data.ess-
dive.lbl.gov/datasets/doi:10.15485/1985922.
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