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ARTICLE INFO ABSTRACT

Keywords: Context of problem: Crop cultivar mixtures can increase and stabilize productivity; however, their effects on year-
Biodiversity and ecosystem function to-year temporal stability are positive in some cases, and neutral or negative in others. This inconsistency is not
Complementarity

understood, in part because the mechanisms underlying the effects of diversity on stability are not clear, and in
part because we do not understand the role of the abiotic environment on the functioning of crop mixtures.
Objective of research question: To test whether maize cultivar mixtures increase maize productivity and temporal
yield stability compared to monocultures, in benign vs. less benign conditions, our objective was to explore the
role of facilitation in the overall effect of crop diversity.

Methods: We performed two field experiments comparing mixtures of up to eight cultivars to monocultures over
five years at Zhangye with irrigated conditions and with higher organic matter, total nitrogen, available phos-
phorus and available potassium, and over four years at Lishu with rainfed conditions without irrigation, and with
lower soil fertility. Water supply at Zhangye was 18.5% higher than at Lishu and the water supply at Lishu was
dependent on precipitation with greater year-to-year variation.

Results: At the Lishu site, productivity was 18.3% lower than at the Zhangye site, and the temporal stability of
aboveground biomass for cultivar mixtures was 31.5% higher than that of monocultures. This increase in tem-
poral stability in mixtures corresponded to 6.9% greater productivity overall and 48.1% less variation in pro-
ductivity than in monocultures at the Lishu site. Complementarity effects were positive and facilitation was much
more important at the Lishu site. Temporal stability of aboveground biomass was also positively correlated with
complementarity effects (P < 0.05) and facilitation (P < 0.01). There was no evidence of enhanced stability or
facilitation at the Zhangye site.

Conclusions: Our findings emphasize that cultivar mixtures enhance ecosystem functioning under less benign
conditions with lower productivity, in part via facilitation, but not under more productive benign conditions.
Implications or significance: Our study highlights that increasing crop cultivar diversity may better respond to
more abiotically stressful and fluctuating conditions, and provides insight into why crop cultivar mixtures vary in
their effects on stability.

Rainfed agriculture
Temporal stability
Variation in annual productivity

1. Introduction understanding species diversity in natural and agricultural systems
(Tilman et al., 2001; Li et al., 2021; Yan et al., 2021). Similarly, the
Cultivar mixtures are promising approaches to increase crop pro- ecotypic diversity of wild plants can increase community productivity

ductivity at large scales (Yang et al., 2019), and build on advances in our (Atwater and Callaway, 2015; Yang et al., 2015, 2017; Luo et al., 2016).
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A meta-analysis by Raffard et al. (2019) indicates that intraspecific
richness affects ecosystem function at a magnitude similar to that of
species richness. The effects of cultivar mixtures on system productivity
can be positive, neutral, or negative (e.g., Reiss and Drinkwater, 2018).
Cultivar mixtures can also have positive (Creissen et al., 2016; Kong
et al., 2022), or negative effects (Lowry et al., 2020) on the year-to-year
temporal stability of agricultural productivity. For example, mixed
cropping of wheat cultivars with different lodging performances de-
creases the damage to stalks (lodging) compared to the mean of cultivar
monocultures used for the mixture (Kong et al., 2022). This may stabi-
lize yield production through compensation when weaker individuals
are protected from damage (Creissen et al., 2013; Doring and Elsalahy,
2022). Winter barley cultivar mixtures also increased yield stability
under unpredictable environmental conditions (Creissen et al., 2016). In
contrast, Lowry et al. (2020) found that diversity in perennial ryegrass
cultivar mixtures was negatively correlated with stability in a three-year
experiment. These inconsistencies suggest that the mechanism under-
lying how cultivar mixture affects the temporal stability of productivity
is not well understood.

Yield stability is generally obtained by dividing the average yield by
the variation in yield, reflecting the plant community’s resistance and
resilience to stresses (Tilman and Downing, 1994). Previous studies have
shown that biodiversity can increase temporal stability via overyielding,
species asynchrony and portfolio effects (Lehman and Tilman, 2000),
but direct or indirect facilitation provide other likely mechanisms
(Knops et al., 1999; Wright et al., 2017a; b; Wright et al., 2021a; b).
Greater temporal stability in yield may result from greater productivity
(Lietal., 2021), lower variation in productivity (Tilman et al., 2006), or
both. According to the portfolio hypothesis, greater temporal yield sta-
bility may also occur when reduction in variation is greater than the
reduced mean value if biodiversity decreases community productivity
(Lehman and Tilman, 2000; Schindler et al., 2015). However, in cultivar
mixtures, it is still unclear which component (average yield or temporal
yield variation) affects stability of productivity under different envi-
ronmental conditions.

Recent models show that species mixtures may increase ecosystem
stability via complementarity effects (Wang et al., 2021). In contrast,
selection effects, when dominant species in mixtures are the most pro-
ductive species in monocultures, exhibit low tolerance to perturbations,
which are more likely to decrease the stability of productivity (Isbell
etal., 2009; Wang et al., 2021). Complementarity effects occur when the
average performance of individual species or cultivar is higher in mix-
tures than in corresponding monocultures (Loreau and Hector, 2001).
Cultivar mixtures with different traits can contribute to complemen-
tarity, and buffer biotic and abiotic stresses (Fletcher et al., 2019). For
example, dwarf cultivars can support taller cultivars and alleviate lod-
ging (Borg et al., 2018). Mixtures of early maturing tall cultivars can
improve weed control and increase yield stability (Kaut et al., 2009).
Such benefits of cultivar mixtures have been widely reported for lodging
resistance (direct facilitation), disease resistance (indirect facilitation),
and weed control (Mason et al., 2008; Gigot et al., 2013; Borg et al.,
2018).

In our study, in order to compare the effects of mixtures on perfor-
mance among combinations with varied biomass and grain yield, we
standardized the complementarity and selection effects by dividing by
the mean value of corresponding monocultures, i.e., relative comple-
mentarity and selection effects (Craven et al., 2016). Complementarity
effects have generally been thought to function via differences among
species in the way they obtain and use resources (niche partitioning).
However, recently it has become clear that facilitation, which is usually
amalgamated within complentarity effects, is different than niche par-
titioning (Wright et al., 2017a, 2021a). Facilitation is when one species,
or cultivar, increases the performance of other species or cultivars either
directly (e.g., via shade, root exudates) or indirectly (e.g., ameliorating
negative plant soil feedbacks, reducing herbivory) (Callaway, 2007).
Both niche partitioning and facilitation tend to increase species evenness
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and maintain the relative abundance of risk-adverse species.

Variation in cultivar diversity effects may be due to variation in the
abiotic environment, especially if facilitation is an important mecha-
nism for the biodiversity effect. Facilitation tends to be more common
and more intense in relatively low productivity environments (Bertness
and Callaway, 1994; Callaway et al., 2002; Brooker et al., 2008; Blaser
etal., 2013; He et al., 2013). Considering variation in productivity in the
context of biodiversity-ecosystem function (BEF), which is analogous to
intercropping, Mulder et al. (2001) established experimental commu-
nities of bryophytes in monoculture and diverse mixtures in contrasting
living conditions with different humidity and light. They found there
was no positive BEF relationships in high-humidity and low-light con-
ditions. However, community biomass increased with species richness
when bryophyte communities were exposed to drought and high light.
Several lines of evidence indicated that this difference was due to
facilitation. Considering this evidence, stronger positive effects of
cultivar diversity on system productivity might be more likely in less
productive circumstances, such as rainfed crops without irrigation.

Annual rainfall and total water input can affect the traits expressed
by crops, which influences yield (Westerband et al., 2021). For example,
in arid conditions, plants tend to have high leaf mass per area, a
morphological trait that widely used as a good indicator of plant func-
tioning (i.e., photosynthetic and respiratory rates, chemical composi-
tion, resistance to herbivory, etc.), with greater nitrogen content per unit
area (Cernusak et al., 2011). We conducted experiments with mixtures
of different maize cultivars at two sites with different growing condi-
tions and management. The Zhangye site is in Northwest China with
irrigated conditions and with higher soil organic matter, total nitrogen,
available phosphorus and available potassium. The Lishu site is in
Northeast China with rainfed conditions without irrigation, and with
lower soil fertility than the Zhangye site. We investigated year-to-year
stability of crop yield production and the linkage between stability,
complementarity effects, and facilitation. We hypothesized that (1)
cultivar mixtures would increase maize productivity and temporal yield
stability more at Lishu than at Zhangye and (2) increased temporal
stability of productivity would be more correlated with niche parti-
tioning aspects of complementarity at Zhangye, but more correlated
with facilitation at Lishu.

2. Materials and methods
2.1. Site description

Our field experiments were based on maize (Zea mays L.) cultivar
mixtures at Lishu (43°27' N, 124°43'E), Jilin Province, Northeast China,
and at Zhangye (38°85' N, 100°38'E), Gansu Province, Northwest China.
Lishu has a temperate monsoon climate with annual precipitation of
577 mm, average annual temperature of 6.5 °C, and a frost-free period of
115-188 d. Zhangye has a continental climate with annual precipitation
of < 130 mm, average annual temperature of 7.7 °C, and a frost-free
period of 170-180 d.

The experiment at Lishu was conducted over four growing seasons
from 2017 to 2020; maize was cultivated in May and harvested in
October. The mean water supply at Lishu from sowing to maturity
during these years was 509 mm/yr. The 0-20 cm soil layer at the Lishu
site had an initial pH of 5.8, total organic matter (SOM) of 19.1 g kg%,
total nitrogen (TN) of 1.3 g kg~}, available phosphorus (AP) of 16.5 mg
kg™, available potassium (AK) of 46.8 mg kg~*. All plots received 80 kg
ha! N fertilizer as urea, 52 kg ha ! P fertilizer as calcium superphos-
phate and 83 kg ha ™! K fertilizer as potassium sulfate before sowing. An
additional nitrogen fertilizer of 80 kg ha™! as urea was applied at
jointing stage and pre-tasseling stage of maize, respectively, i.e. the
system received a total 240 kg N ha!. The experiment at Zhangye was
conducted over five growing seasons from 2016 to 2020; maize was
sown in the middle of April and harvested in October. The mean water
supply at Zhangye from sowing to maturity (2017-2020 to parallel
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Lishu) was 611 mm/yr, 20% more than at Lishu. Soils in the 0-20 cm
layer at the Zhangye site had a pH of 7.6, total organic matter (SOM) of
20.6 gkg ™}, total nitrogen (TN) of 1.7 g kg ™!, available phosphorus (AP)
of 24.7 mg kg™, and available potassium (AK) of 82.0 mg kg~ . All plots
received 132 kg ha™! N fertilizer as urea, 101 kg ha™! P fertilizer as
triple superphosphate before sowing. An additional nitrogen fertilizer of
198 kg ha™! as urea was applied at jointing stage of maize, i.e. the
system received a total 330 kg N ha™".

2.2. Experimental design

Experiments were arranged in a randomized complete block design
with three blocks in the first year (in 2016 at Zhangye and in 2017 at
Lishu). The blocks and plots were fixed in the subsequent years during
experimental implementation; i.e. a given cultivar combination was
grown in the same plot over the course of the experiment, which allows
the calculation of temporal stability for each plot. Maize cultivars in
mixture were prepared with equal proportions of seed number of each
cultivar and each specific place for the cultivars was chosen randomly.
Seeds were sown individually by hand. We selected eight maize cultivars
with similar growth periods, and sowed and harvested them over two
days, and all cultivars were considered to be highly productive and were
used commonly in the area around the Lishu site. Cultivars were
Zhengdan958 (ZD958), Limin33 (LM33), Xiangyu998 (XY998), Jidan50
(JD50), Liangyu66 (LY66), Jingke968 (JK968), Tiannongjiu (TNJ) and
Xianyu335 (XY335). In each block we established experimental treat-
ments of 8 monocultures, 4 two-cultivar mixtures, 1 four-cultivar
mixture, 1 six-cultivar mixture and 1 eight-cultivar mixture, totaling
45 experimental plots. Each plot was 5.4 x 6.0 m and contained 9 rows
with 30 plants in each row. Detailed cultivar information was shown in
Table S1.

The experiment at Zhangye also used eight maize cultivars with
similar growth period, were sowed and harvested them over three days,
considered to be highly productive and were used commonly in the area
around the Zhangye site. Cultivars were Zhengdan958 (ZD958), Jix-
iangl (JX1), Shendanl6 (SD16), Jinkai2 (JK2), Jinkai6 (JK6), Xia-
nyu335 (XY335), Jinkai7 (JK7), Yuyu22 (YY22) and Jinkai3 (JK3). We
established 8 monocultures, 4 two-cultivar mixtures, 4 four-cultivar
mixtures and 1 eight- cultivar mixture, with all 51 experimental plots.
Each plot size was 2.4 x 6.0 m and contained 4 rows with 25 plants each
row. Detailed cultivar information was shown in Table S2.

2.3. Plant sampling and analysis

For both experiments, a central strip of the individual maize cultivars
in monoculture (5.0 m long x 1.2 m wide at Lishu and 4.0 m long x 1.2
m wide at Zhangye) was hand harvested in each plot for grain yield and
aboveground biomass after full maturity every year. For mixture treat-
ments, all plants in experimental plots were hand harvested separately
and then summed to determine the total biomass and grain yield. After
harvest, we measured plant height, ear height and shoot diameter
characteristics by sampling 10 plants from different individuals in each
experimental plot both in monocultures and in mixtures. The above-
ground samples were dried at 60 °C for 72 h and weighed.

Soil samples were collected from the top 20 cm of the profile using an
auger (10 cm diameter) in 2016 at Zhangye and in 2017 at Lishu. Soil
organic matter (SOM), total soil nitrogen (TN), available soil phosphorus
(AP) and available soil potassium (AK) were determined using standard
protocols (Bao, 2005). Soil pH was measured at a ratio of 1: 2.5 (dry soil:
deionized water).

2.4. Calculations
Total water input, and the water and temperature anomalies, were

calculated based on long term data (1965-2018 year at Lishu and
1990-2020 at Zhangye) and data during the experimental years, i.e.,
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2017-2020 at Lishu, and 2016-2020 at Zhangye. Total water input was
calculated as the sum value of growing season precipitation at Lishu, and
the sum value of whole growing season precipitation and irrigation at
the Zhangye site. The temperature was the average value for the whole
growing season. We used the inverse of the coefficient of variation as a
measure of temporal stability:

S=p/o

where p is the temporal mean of grain yield or biomass in a given plot
during the experimental years (5 years at Zhangye and 4 years at Lishu),
and o refers the temporal standard deviation of grain yield or biomass in
a given plot during the experimental years. Also, we calculated the
temporal stability of productivity using the mean value of three blocks
using fractal stability, and absolute stability based on Eghball and Power
(1995) and Knapp and van der Heijden (2018). Calculations are pre-
sented in the Supporting Information.

We calculated the diversity effects using the additive partitioning
equation from Loreau and Hector (2001).

AY =Yo—Yg =) RY ;M — Y ARYp;M; = Y ARY;M;
= NARYM + Ncov(ARY, M)

In this Equation, the complementarity effect is measured by NARYM,
and the selection effect is measured by Ncov(ARY,M). Specifically, Y, is
the observed yield and biomass of cultivar i in the mixture, Yg is the
expected yield and biomass of cultivar i in the mixture, RY,; = Yo;/M; is
the observed relative yield and biomass of cultivar i in the mixture, A
RYg; is the expected relative yield and biomass of cultivar i in the
mixture, M; is the yield and biomass of cultivar i in the monoculture,
ARY; = RYo; —RYg; is the deviation from expected relative yield and
biomass of cultivar i in the mixture, N is the number of cultivars in the
mixtures.

To allow comparisons among mixtures with variable productivity,
biodiversity effects were standardized to the relative complementarity
effect and selection effect by dividing by the average monoculture grain
yield and biomass of the component cultivars in a mixture (Craven et al.,
2016). The relative complementarity effect and selection effect for each
two-, four-, six- and eight-mixture communities were calculated at each
site.

We used the relative interaction index (RII) to estimate the intensity
of competition and facilitation among cultivars in mixtures (Armas
et al., 2004).

Ymixlum B Ymnnocu]lul‘e

RII =

Ymixlure + Ymunocullure

where Ypixure is the aboveground biomass or grain yield of a maize
cultivar in mixture, and Yponocuiure i the aboveground biomass or grain
yield of the same maize cultivar in monoculture. In this equation, RII has
defined limits from — 1-1, with negative value indicating competition
and positive value indicating facilitation.

Above-ground plant trait plasticity was calculated as follows:

Aboveground trait plasticity = Tt —Tdlnoe
mono

2.5. Statistical analysis

Linear mixed-effect models were used to determine the main effects
of cropping system (mixture vs. monoculture) on grain yield, biomass
and the year-to-year temporal stability at the two experimental sites.
Block, year and experimental site were treated as random effects that
tested the effects of cropping patterns and cultivar number (including
two-, four-, six- and eight-cultivar combination) on grain yield, biomass
and the year-to-year temporal stability at two experimental sites. It is
important to note that year was excluded in the analysis of the year-to-
year temporal stability. For the factor ‘cropping pattern’, the
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monoculture value is the means of the two monocultures with the whole
system considered. Post-hoc Tukey HSD tests were used in linear mixed-
effect models at the 5% probability level. Package ‘nlme’ was used for
linear mixed-effect models (Pinheiro et al., 2017).

To test whether the biodiversity effects (including complementarity
and selection), relative interaction index and trait plasticity were
significantly different from zero, two-sided one-sample Student’ s t-test
was performed for each cultivar mixture treatment and each maize
cultivar separately (two, four, six and eight cultivar mixtures) at each
site. Moreover, linear regressions with mixed-effects models were
applied to examine the relationships between the response variable and

(@)
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the explanatory variables, with different random effects (in parenthe-
ses). These included productivity (including both grain yield and
biomass) and cultivar number (experimental year, maize cultivar com-
bination and block), temporal yield stability and cultivar mixture
number (maize cultivar combination and block), relationships between
temporal deviation and yield mean value (maize cultivar combination,
cultivar mixture number and block), relationships between temporal
yield stability and the relative biodiversity effects (maize cultivar
combination, cultivar mixture number and block), relationships be-
tween temporal yield stability and relative interaction index (maize
cultivar combination, maize cultivar, cultivar mixture number and
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block). We used the function Ime () from package ‘nlme’ to fit the mixed

3. Results

models. Parameters were estimated by restricted maximum likelihood

(REML). All statistical analyses were conducted with R version 4.1.3 (R

Core Team, 2022).
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3.1. Differences in growing conditions between two sites

Total water supply was 18.5% higher at Zhangye than at Lishu.
Windspeed reached higher levels at Lishu, and precipitation and wind
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speed exhibited substantially greater variation at the Lishu site than at
the Zhangye site during the experimental years (Fig. 1a). The CVs for
total water input were 51.9% vs. 6.9% at the stage from sowing to
jointing (stage I), and 50.2% vs. 3.2% at the stage from jointing to tas-
seling (stage II) at the Lishu and Zhangye sites, respectively (Fig. 1b).

(@)

I Monoculture I Mixture
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Wind speed was 93.9% higher at Lishu than that at Zhangye during the
growing season.

The results also exhibited a greater total water input anomaly, i.e.,
the cultivated year data minus average value of long-term water input
data, at the Lishu site than at the Zhangye site (Fig. 1b). However, the

Fig. 3. (a). Means =+ standard errors for tem-
poral stability of biomass and grain yield for
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Zhangye site showed a greater temperature anomaly compared with the
temperature anomaly at Lishu.

3.2. Overyielding in maize cultivar mixtures

Overall, productivity was higher at Zhangye than at Lishu; 22.4% for
aboveground biomass and 20.0% for grain yield. Maize cultivar mix-
tures exhibited 7.0% greater (P < 0.05) aboveground biomass than
monocultures at Lishu and 2.5% greater (P < 0.05) grain yield at
Zhangye (Fig. 1a). In more detail, the aboveground biomass of two- and
six-cultivar mixtures (P < 0.01 and P < 0.001, respectively) were higher
than those of corresponding cultivar monocultures at Lishu. We also
found that the grain yield of two- and four-cultivar mixtures (P < 0.01
and P < 0.001, respectively) were higher than monocultures and that
the aboveground biomass of four-cultivar mixture (P < 0.001) was
higher than those of corresponding monocultures at Zhangye (Fig. 1a).
Moreover, aboveground biomass increased (P < 0.05) with the
increasing number of maize cultivars at Lishu, whereas no such positive
relationships were observed at Zhangye, either for grain yield or
aboveground biomass (Fig. 2b).

3.3. Temporal yield stability in maize cultivar mixture

The average temporal stability of mixtures with two or more culti-
vars was greater than those of corresponding monocultures (P < 0.01),
calculated with aboveground biomass and grain yields, at Lishu but not
at Zhangye (Fig. 3a). We also found that the stabilities of two-, four-, six-,
and eight-cultivar mixtures were higher than those of corresponding
cultivar monocultures for both aboveground biomass and grain yields
(except for two- and six-cultivar mixtures), again at Lishu but not at
Zhangye (Fig. 3a). The average temporal stability of productivity
increased with increasing cultivar number at the Lishu site, both for
aboveground biomass (P < 0.001) and grain yield (P < 0.01), whereas
no such positive relationships were observed at the Zhangye site
(Fig. 3b).

We also calculated the year-to-year mean value and temporal stan-
dard deviation for productivity during the experimental years at two
sites. First, we calculated the year-to-year mean value and temporal
standard deviation for the productivity of monocultures and mixtures.
The temporal standard deviations were lower (P < 0.001 for biomass,
P < 0.01 for grain yield) in mixtures than those in corresponding
monocultures at Lishu. We found year-to-year mean aboveground
biomass was greater (P < 0.05) in mixture than in monoculture at Lishu
(Fig. Sla). Temporal standard deviations were positively (P < 0.05)
correlated with mean grain yields in monocultures rather than in mix-
tures at Lishu (Fig. S1b). Moreover, we calculated the year-to-year mean
value and temporal standard deviation for productivity of each maize
cultivar. We found cultivar mixtures increased the year-to-year mean
biomass (P < 0.01) and average temporal stability (P < 0.01) of maize
cultivar biomass at Lishu (Fig. S2a). However, there was no difference in
temporal standard deviations for both aboveground biomass and grain
yields between monocultures and mixture systems at Zhangye
(Fig. S1a). The temporal standard deviations of each maize cultivar were
positively correlated (P < 0.001) with mean aboveground biomass and
grain yield in mixtures, but not in monocultures (Fig. S2b).

Cultivar mixture significantly increased the temporal stability and
absolute stability that was calculated with the mean value of three
blocks of grain yield and biomass than corresponding monocultures
along cultivar gradients at Lishu, but not at Zhangye (Figs. S3, S5).

Fractal-calculated stability of biomass and grain yield production did
not differ between monocultures and mixtures at the two sites (Fig. S4a).
However, fractal-calculated stability of grain yield increased with the
increasing maize cultivar number at Lishu, but not at Zhangye
(Fig. S4b).
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3.4. Relationships between the year-to-year temporal stability and
complementarity effects

Relative complementarity effects (rCE) and relative selection effects
(rSE) differed between the two experimental sites (Fig. 4a). Most rCEs
were positive at both sites, whereas rSEs were significantly less than
zero. Positive rCEs occurred for the two-, six- and eight-cultivar mixtures
(P < 0.001, P < 0.01 and P < 0.05, respectively) at Lishu, and in two-
and four-cultivar mixtures (P < 0.01 and P < 0.01, respectively) at
Zhangye for aboveground biomass. Grain yield-based rCE was signifi-
cantly positive for the two-cultivar mixtures (P < 0.05) at Lishu and
two-, four- and eight-cultivar mixtures (P < 0.01, P < 0.001 and
P < 0.05, respectively) at Zhangye (Fig. 4a).

Temporal stability was positively correlated with the rCE of biomass
(P < 0.05; Fig. 4b), rather than rSE, at Lishu. The temporal yield sta-
bility was not correlated with rCE or rSE of grain yield and biomass at
Zhangye.

3.5. Relationships between the year-to-year temporal stability of
productivity and the relative interaction index

The relative interaction index (RII) for aboveground biomass and
grain yields differed among maize cultivars at the two experimental sites
(Fig. 5a). Most of the RIIs for maize cultivars were greater than zero,
indicating facilitation, at Lishu. However, Rlls for only two maize cul-
tivars were higher than zero at Zhangye. Specifically, both biomass and
grain yield of ZD958 (P < 0.01 for biomass and P < 0.05 for grain yield)
and LY66 (P < 0.01 both for biomass and grain yield) exhibited signif-
icantly positive RIIs at Lishu, and SD16 (P < 0.001 for biomass and grain
yield) and JK3 (P < 0.001 for biomass and grain yield) had a positive RII
at Zhangye.

Moreover, the temporal stability for aboveground biomass, but not
grain yields, was positively (P < 0.01) correlated with RIIs at Lishu,
indicating positive interactions among cultivars increased the temporal
stability of aboveground biomass (Fig. 5b). However, temporal yield
stability of grain yields and biomass were not related to RIIs at Zhangye
(Fig. 5b).

3.6. Trait plasticity in maize cultivar mixture at two sites

We compared trait plasticity of maize cultivars between mixtures
and monocultures based on plant height, shoot diameter, ear height, ear
height coefficient and shoot height ratio. The trait plasticity of plant
shoot diameter and shoot height ratio between monocultures and mix-
tures in maize cultivars were significantly higher than zero at Lishu
(Fig. 6). However, the trait plasticities of plant height and shoot diam-
eter between monocultures and mixtures in maize cultivars were
significantly lower than zero, the trait plasticities of ear height coeffi-
cient and shoot height ratio between monocultures and mixtures in
maize cultivars were significantly higher than zero at Zhangye (Fig. 6).
In addition, the trait plasticity of plant height of ZD958 and XY998
between monocultures and mixtures were significantly lower than zero,
the trait plasticity of ear height and ear height coefficient of JK968
between monocultures and mixtures in maize cultivars were signifi-
cantly higher than zero at Lishu (Table S3).

At Zhangye, the trait plasticity of plant height of all maize cultivars
between monocultures and mixtures were significantly lower than zero.
The trait plasticity of shoot diameter of ZD958, JX1, JK2 and XY335
between monocultures and mixtures were significantly lower than zero,
and the trait plasticity of shoot diameter of JK3 and YY22 between
monocultures and mixtures were significantly higher than zero. In
addition, both SD16 and JK7 exhibited significantly negative trait
plasticity of ear height, and maize cultivar ZD958, JX1, JK2 and JK3
exhibited a positive trait plasticity of ear height coefficient (Table 54).
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Fig. 4. (a). Means =+ standard errors of relative
diversity effects based on aboveground biomass
and grain yield of two-, four-, six- and eight-
cultivar mixtures at Lishu and Zhangeye. As-
terisks indicate significant differences between
mixtures and zero, using two-sided Student’s t-
test. * P < 0.05, **P < 0.01, ***P < 0.001.
The values under the bars refer to the total
numbers of dataset in given cultivar combina-
tions x years x replicates. (b) Relationships
between relative complementarity effects (rCE)
and average temporal stability in aboveground
biomass and grain yield, and the relationships
between relative selection effects (rSE) and
average temporal stability in biomass and grain
yield. The grey band shows the 95% confidence
interval.
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4. Discussion

Cultivar mixtures of maize increased the temporal stability of pro-
ductivity, for both biomass and grain yield, compared to the same cul-
tivars in corresponding monocultures at Lishu. Maize cultivars were
more productive than monocultures at both sites. However, cultivar
mixtures only increased the temporal stability of productivity at Lishu.
This combination of results is consistent with our first hypothesis -

cultivar mixtures will increase maize productivity and temporal yield
stability at Lishu under less benign and less productive conditions than
at Zhangye under benign and more productive conditions. Our results
are also consistent with other studies that have reported that intraspe-
cific crop biodiversity increases temporal stability (Creissen et al., 2016;
Reiss and Drinkwater, 2018; Yang et al., 2019). In contrast, however,
Brooker et al. (2021) found no statistical interaction between experi-
mentally applied drought and cultivar diversity treatments, concluding
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Fig. 6. Means + standard errors for trait plasticity based on plant height (H), shoot diameter (SD), ear height (EH), ear height coefficient (EHC) and shoot height
ratio (SD/H) for maize cultivars at two sites. n = 312 and n = 480 for Lishu and at Zhangye, respectively. Asterisks indicate trait plasticity significantly greater or less
than zero, using two-sided Student’s t-tests. * P < 0.05, * * P < 0.01, * ** P < 0.001.

that effect cultivar diversity on agroecosystem function did not increase

with drought.

The greater temporal yield stability in mixtures at Lishu resulted
from both greater productivity and lower yield variation compared to

corresponding monocultures (Fig. S1a). However, the lack of a cultivar

diversity effect at Zhangye was mainly due to increases in variation in

the yield of maize cultivars in mixtures, with increasing aboveground
biomass and grain yield production (Fig. S2b). Biodiversity-driven



Y. Su et al.

increases in community productivity can be accompanied by greater
variation in yield (Tilman et al., 2006), however, we found cultivar
mixture simultaneously increased yield production and decreased yield
variation at Lishu. The difference of mixture effects on temporal stability
between the two sites may be related to the difference and variation in
total water supply, fertilizer application rate and soil properties. Maize
cultivars were more productive and variable at Zhangye (irrigated
condition with a relative higher soil fertility than Lishu) compared to
Lishu (rainfed condition with a relative lower soil fertility and fertilizer
application rate than Zhangye). Cultivar mixtures improved temporal
stability for grain yield and aboveground biomass at Lishu where water
supply was more variable and fertilizer inputs and soil properties were
lower than Zhangye (Fig. 1, M & M). In other words, maize cultivars in
mixture had a performance-enhancing effect and a buffering effect in
less productive and more variable growing conditions. Temporal sta-
bility analysis will improve over more years. However, previous studies
have also used 3-4 year field experiments to calculate temporal stability
in both ecological and agronomy research. For example, Bocci et al.
(2020) and Kong et al. (2022) conducted field trials over four years and
three years, respectively, to calculate temporal stability of wheat
(agronomy research). Wu et al. (2022) found that the complex shifts in
complementarity and competitive intensities are likely to be the key
mechanisms that maintain temporal stability in species-diverse agri-
culture by conducting a 3-year field experiment. Lowry et al. (2020)
conducted a 3-year field experiment to study the productivity and sta-
bility of ryegrass. Therefore, although we have only 4-5 years of data in
this study, the comprehensive analysis of temporal stability based on
maize cultivar diversity allows conclusions that are as robust as many in
the literature.

Our results are consistent with the two major “insurance effects”:
originally proposed by Yachi and Loreau (1999). Biodiversity tends to
enhance ecosystem stability by providing insurance or portfolio effects
when species differ in their responses to environmental fluctuations
(Yachi and Loreau, 1999; Thibaut and Connolly, 2013) or by including
individuals with higher resistance to perturbations. This can occur
directly through complementarity, which includes niche differentiation
and/or facilitation (Wright et al., 2014, 2017a). Complementarity tends
to increase community evenness and keep the relative abundance of
intolerant individuals, contributing to greater stability (Wang et al.,
2021). We found significantly positive complementarity effects in maize
cultivar mixtures (Fig. 4a). Here, relative complementarity effects,
rather than selection effects, were positively correlated with temporal
stability of aboveground biomass of maize cultivar mixture at Lishu
(Fig. 4b). Our results were consistent with previous studies (Isbell et al.,
2009; Wang et al., 2021), which showed that temporal stability in
productivity was also strongly related to complementarity among
species.

Importantly, most RIIs for maize cultivars were higher than zero at
Lishu, whereas RIIs for only two maize cultivars were higher than zero at
Zhangye (Fig. 5a). The higher RIIs for maize cultivars at Lishu could be
caused by reduced intraspecific competition in cultivar mixture, but
they are likely to de driven to a large degree by facilitation at Lishu,
whereas yield advantages at Zhangye were more likely due to niche
partitioning. Our results contribute to a growing body of evidence and
theory for the importance of facilitation as a driver of biodiversity
ecosystem function relationships (Mulder et al., 2001; Brooker et al.,
2021; Wright et al., 2017b, 2021b). For example, Wright et al. (2021b)
found that six or eight species were suppressed by drought when in
monocultures, but not when in diverse mixtures. A likely mechanism for
this is facilitation. Often, facilitation is not separated from niche parti-
tioning in the broader context of complementarity. However, niche
partitioning is a broader use of resources or an avoidance of competi-
tion. In contrast, facilitation is the improved performance of a species or
a cultivar because of the presence of another species or cultivar, and
unlike niche partitioning indicates some degree of interdependence
within the natural or agricultural systems (Callaway, 1998, 2007).
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Moreover, we also found a positive correlation between temporal sta-
bility for aboveground biomass and relative interaction index of maize
cultivar at Lishu (Fig. 4b), which supports our second hypothesis, i.e.,
the enhanced temporal yield stability is partly related to the facilitation
component of complementarity at Lishu.

Plastic responses by crop cultivars can affect interactions among
mixture components and might buffer the negative effects of variable
environments on productivity and decrease competition (Matias et al.,
2018; Wainwright et al., 2019). In our study, maize cultivars showed a
significantly positive trait plasticity in plant shoot diameter and shoot
height ratio, and negative trait plasticity in ear height and ear height
coefficient at Lishu (Fig. 6, Table S3). In contrast, maize cultivar showed
significantly negative trait plasticity in plant height and shoot diameter,
and positive trait plasticity in the ear height coefficient and shoot height
ratio at Zhangye (Fig. 6, Table S4). Positive trait plasticity between
mixtures and monocultures indicated that increasing trait values of
cultivars in mixtures than in monocultures and vice versa. Previous
studies have found that the resistance of maize to stalk lodging is posi-
tively correlated with plant ear height and the ear height coefficient,
whereas it is negatively correlated to plant shoot diameter (Novacek
et al., 2013). In our case, Lishu was variable in precipitation and had
higher wind speeds in the growth periods during the experimental years
(Fig. 1a). The positive trait plasticities of shoot diameter and shoot
height ratio, and the negative trait plasticities of ear height and ear
height coefficient for maize cultivars could produce intraspecific facili-
tation in cultivar mixtures, which may further buffer wind effects on
lodging for maize cultivars in mixtures and maintain whole system yield
production at Lishu.

We experimentally manipulated cultivar diversity, which is directly
related to genotypic diversity and indirectly related to phenotypic di-
versity. We do not know all of the ways that cultivar diversity may have
been expressed as phenotypic diversity (but see Tables S1, S2), but how
genotypic, or species, diversity is manifest in phenotypes is important
for understanding BEF relationships in general. For example, Madritch
and Hunter (2004) found that within-species variation among individual
trees in the phenotypic expression of litter chemistry affected carbon
and nitrogen fluxes during decomposition. Models suggest that pheno-
typic variance corresponds with the ability of different species to react to
variation in the environment (Norberg et al., 2001), and variation
among cultivars or genotypes might do the same. Norberg et al. (2001)
also suggested that long-term ecosystem function might increase with
high phenotypic variance among species. Krause et al. (2014) argue that
mapping microbial phenotypic traits to genotypes might explain the
effects of the latter on ecosystem function. Detailed analysis of traits
expressed by our cultivars and correlating them to their responses in
monocultures and mixtures might provide even more insight into the
role of intraspecific diversity in ecosystem function.

5. Conclusions

In conclusion, our results indicated that cultivar mixtures can
enhance both crop production and temporal yield stability, especially
under fluctuating or relatively high stressful conditions. To a large de-
gree this positive cultivar effect may be driven by facilitation. Our re-
sults also suggest that cultivar mixtures might better adapt to fluctuating
conditions via greater complementarity and facilitation, which in turn
will increase long-term sustainability. Our findings also help to under-
stand why cultivar mixtures enhances temporal stability in some cases
but not in other cases. In sum, our results indicate that cultivar mixtures
can increase crop productivity at large scales, much like the effect of
species diversity.
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