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Abstract—Consider a user who wants to store a file across
multiple servers such that at least ¢ servers are needed to
reconstruct the file and any z colluding servers cannot learn
more than a fraction o of the file. Unlike traditional secret-
sharing models that assume the availability of secure channels
at no cost, we assume that the user can only transmit data to
the servers through a public channel and that the user and each
server share an individual secret key of length n bits. For a fixed
key length n, we characterize the fundamental trade-off between
the privacy leakage parameter « and the file length that the user
can store in the servers. Furthermore, for the optimal trade-off
between « and the file length, we determine (i) the minimum
amount of local randomness needed by the user, (i7) the minimum
amount of public communication from the user to the servers,
and (7i7) the minimum storage requirement at the servers.

I. INTRODUCTION

Centralizing sensitive information storage puts the entire
database at risk of being compromised, in the case of a
data breach. Adopting a decentralized storage strategy can
provide resilience against data breaches and avoid having a
single point of entry for hackers. For instance, secret sharing
[2], [3] offers an effective solution to securely store data
among L servers, such that any coalition of t < L servers
can reconstruct the file by pooling their information but any
coalition of at most ¢ — 1 compromised servers cannot learn
any information, in an information-theoretic sense, about the
file. Applications of secret sharing to secure distributed storage
have been extensively studied in a variety of contexts [4]-[12].
As motivated in [13]-[16], the servers could be distinct cloud
storage service providers, since companies may outsource data
storage to reduce operating costs.

In this paper, we consider a user who wants to store a
file across L servers such that (i) any coalition of ¢ < L
servers who combine their information can reconstruct the file,
and (i7) any z colluding servers cannot learn more than a
fraction « of the file. This introduces a trade-off between «
and the maximum file length, that the user can store. In our
model, unlike traditional secret sharing models [2], [3], no
information-theoretically secure channels are available cost-
free. Instead, the user communicates with each server through
a one-way public channel, and shares with each server a secret
key, comprising a uniformly distributed sequence of n bits.
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Our main contribution is to establish the fundamental trade-
off between the privacy leakage « and the file length that the
user can store. Additionally, for the optimal trade-off between
« and the file length, we determine the minimum amount of
local randomness needed by the user, the minimum amount of
public communication, and the minimum amount of storage
requirements at the servers. As discussed in Section III-B, our
4

study reveals two distinct regimes when o > % and when

a < % Additionally, when o = 0, i.e., in the absence of
privacy leakage, our results recover those of the previous study
in [1].

The most challenging aspect of our study is to establish
converse results for the maximum file size that the user can
store, the optimal amount of local randomness needed by
the user, and the optimal amount of public communication
between the user and servers. Unlike conventional secret
sharing models, our model requires considering in our analysis
shared secret keys, open communication between all parties,
and a joint design of the share creation phase and the share
distribution phase. Indeed, conventional secret sharing models
treat these two phases separately, focusing only on the creation
phase of the shares and assuming that the secure communi-
cation phase occurs through information-theoretically secure
channels without any cost. Then, we propose an achievable
scheme that separates the distribution of the shares to the
servers (via a one-time pad) from the generation of the shares
(using the secret sharing scheme from [23]), and establish
the optimality of this coding strategy by showing that its
performance matches our converse results.

The paper is organized as follows. Section II provides a
formal statement of the problem. Section III presents our main
results. Finally, Section IV provides concluding remarks. Some
proofs are omitted due to space constraints.

II. PROBLEM STATEMENT

Notation: For any a € N*, define [1,a] = [1,a] N N. For
r € R, define [z]* £ max(0, ). For a given set S, let 29
denote the power set of S. Let also )X denote the Cartesian
product.

Consider L servers indexed by £ 2 [1, L] and one user.
Assume that Server [ € £ and the user share a secret key
K; € K = {0,1}", which is a sequence of n bits uniformly
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distributed over {0,1}". The L keys are assumed to be
jointly independent. For any )V C L, we use the notation

Ky £ (Ky)yey~

(M)

(27

(R)

Definition 1. A (27", 2" Viez, (277 Viez) private

storage strategy consists of

« A file F' owned by the user, which is uniformly distributed
over F = {0, 1}7'(F) and independent from the keys K;

o A sequence of local randomness R owned by the user,
which is uniformly distributed over R 2 {0,1}"" and
independent from all other random variables;

e L encoding functions h; : R x K x F — M, where
l €L and M; £ {0, 1}T1(M);

o L servers with storage space rl(s) bits for Server | € L;

e L encoding functions g; : M; x K — §;, where [ € L
and S 2 {0,1}77;

o 2 decoding function f4 : XleA S; — F, where A C L;

and operates as follows:

1) The user publicly sends to Server [ € L the message
M; = hy(R, K, F). We use the notation M = (M;)e..

2) Server | € L stores S; £ g,(M;, K;).

3) Any subset of servers A C L can compute
F(A) 2 f4(S4) an estimate of F, where S4 2 (S))1e4.

Definition 2. Fix t € [1,L], z € [1,t — 1] and a €
[0,1] N Q. Then, 7F) is («,t, z)-achievable if there exists a
(2"'(F) 2 (27'l(M )iers (2”1( )iec) private file storage strat-
egy such that

max  H(F|F(A)) =0, (Reliability) (1)

VACL:|A|>t
vugnﬁlﬂ%\gz w <, (Privacy leakage) 2)
I(F; M) =0. (Security) 3)

The set of all (a,t,z)-achievable lengths v¥) is denoted by
Cr(a,t, 2).

(1) means that any subset of servers with size greater than or
equal to ¢ is able to perfectly recover the file F', (2) means that
any subset of servers with size smaller than or equal to z can
learn at most a fraction « of the file, and (3) means that the
public communication does not leak any information about the
file. For a fixed «, our main objective is to determine, under
the constraints (1)-(3), the maximal file length that the user
can store in the servers given that the secret keys shared with
the servers have length n. Next, another of our objectives is
to determine (i) the minimum amount of local randomness at
the user, (ii) the minimum storage requirement at the servers,
and (iii) the minimum amount of public communication from
the user to the servers that are needed to achieve the largest
file rate in Cr(c, t, z). To this end, we introduce the following
definition.

Definition 3. Fix o € [0,1]NQ, t € [1, L] and z € [1,t—1].
For ") in Cp(a,t,z), let Q(r'")) be the set of tuples
T 2 (" e, (]
(QT(F) , 2"(R>, (2'”!“L iess (27”1( )ier) private file storage strat-
egy that (a,t, z)-achieves r'F). Then, define

ier) such that there exists a

r£F)(oz, t,z) 2 sup r(F), 4)

r(F)eCr(a,t,z)

T’l(]:[)(a,t,z) = inf rl(M),l eL, (5)
’ Teo(r{") (a,t,2))
T(EM,Z (a,t,2) = inf ZTI(M), (6)

Teo(r{" (a,t,2)) les

rif, ™

inf

r{f) (o, t,2) =
Teo(r{) (a,t,z))

inf r®lecL. ®)

it 2) &
Te0(r{") (a,t,z))

rﬁF)(a,t,z) is the largest file size that the user can pri-

vately store under the constraints (1)-(3). Then, rfkR) (o, t, 2),
rl(i\f)(a,t,z), T%{i(a,t,z), and r,(ks)(a,t,z), l € L, corre-
spond to the least amount of local randomness, the minimum
amount of public communication to Server [, the minimum
amount of public communication to all the servers, and the
minimum storage size required at Server [, respectively, needed

for the user to achieve 7" (a, t, 2).

IIT. MAIN RESULTS
A. Impossibility results
Let a € [0,1]NQ, t € [1,L] and z € [1,t — 1].
Theorem 1. (Converse on the file length). We have
t—z )
,t ] n.
1l-a

Proof. See Appendix A. O

r,&F)(a,t, z) < min <

Theorem 1 means that it is impossible for the user to store
a file of length larger than min () f:z , t) n bits.

Theorem 2. (Converse on storage size requirement at the
server). We have

r$(a,t,2) > n V€ L.
Proof. See Appendix B. O

Theorem 2 means that Server [ € £ needs a storage capacity
of at least n bits.

Theorem 3. (Converse on the total amount of public commu-
nication to the servers). We have

l—a 1 ,
max (t—z[’ t) L x T&F)(Oé,t, z) < T%Q(a,t, z). (9
Proof. See Appendix C. O

Theorem 3 means that it is impossible for the user to

store a file of length riF)(a, t, z) if the public communication
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sum length to the servers is smaller than max (i:‘;, %) L x

7“§<F)(04, t, z) bits.

Theorem 4. (Converse on the amount of public communica-
tion to an individual server). Consider the following condition

YU,V C L, |Z/{\: |V|:> I(F;Mu,Ku) = I(F; Mv,Kv).
(10

(10) indicates that any two sets of colluding servers that have
the same size have the same amount of information about the
file F. If (10) holds, then we have

l1—a 1 (F
max , = ) X7y
t—z 't

Proof. See Appendix D. O

)(a,t, z) < M) (o, t,2),Vl € L.

L,*

Note that (9) corresponds to leakage symmetry and had
already been introduced in the context of secret sharing under
the denomination uniform secret sharing [22]. Under the con-
dition (9), Theorem 4 means that it is impossible for the user to
store a file of length TSKF) if the public communication length to

" (o, t, z) Dits.

l—a %) X Ty

Server [ € L is smaller than max ( s

Theorem 5. (Converse on the amount of required local
randomness at the users). We have
— at]t
[z — at] ()

(R)
* 7ta 2 T —
rs(a,t, 2) P

(o, t, 2). (1D

The proof of Theorem 5 is omitted due to space constraints.
Theorem 5 means that it is impossible for the user to store a

file of length i) (o, t, z) if the amount of its local randomness
+
is smaller than %rgm)(a,t, 2) bits.

B. Capacity result

Theorem 6. Let oo € [0,1]NQ, t € [1, L] and =z € [1,t —1].
3 M S

There exists a (2T(F) , 2T(R), (2Tz( ))l€L7 (2Tf ))le[;) private file

storage strategy that (a,t, z)-achieves rFsuch that,

t —
r(F) = min (Z,t> n,
l1-a

_ +
11—«
rl(s) =n,Vl € L,

TI(M) =n,Vl € L.

3

Note that Theorem 6 recovers the result in [1] when o = 0,
i.e., in the absence of privacy leakage.

From Theorem 6, we observe two distinct regimes for .
When o > % (respectively av < %), the user can store a file
of size at most nt bits (respectively f:—én bits) such that any
set of servers larger than or equal to ¢ can reconstruct the
file, and any set of servers smaller than or equal to z can
learn at most a fraction « of the file. Moreover, if the user
stores a file of length f:zn bits (respectively nt bits), then the

optimal storage capacity at each server is n bits, the minimum
amount of local randomness needed by the user is Z:’jo“fn
bits (respectively 0 bits), and the optimal amount of public

communication from the user to all the servers is L x n bits.

C. Coding strategy for the achievability of Theorem 6

1) Review of secret sharing with privacy leakage: Let a €
[0,1]NQ, t € [1,L] and z € [1,t — 1].

Definition 4. An («,t, z)- secret sharing scheme consists of

o A secret S uniformly distributed over {0, 1}"<;

e A stochastic encoder e {0,1}™ x {0,1}™ —
{0,1}+L (S, R) + (H;)1ec, which takes as input the
secret S and a randomization sequence R uniformly
distributed over {0,1}" and independent of S, and
outputs L shares (H;);ec. of length ngy. For any S C L,
we define HS = (Hl)les;

and satisfies the two conditions

max H S HI == (), ReC()veI ablllty 12
max 1 S Ii < ()éli 1 . ] llvacy leakage 13

Theorem 7. ( [23]) For a fixed secret length ng, there exists
an (a,t,z)-secret sharing scheme such that the length of a
share ngp, and the length of the randomization sequence n.,
satisfy

-« 1) [z —at]t
Ngy, MNp = —MNg.

Ngp = max | ——, —
oh (t—z t t— 2z

2) Achievability scheme for Theorem 6: Consider a file F

such that () = |F|= min ( {=2,

t) n. Then, the user forms
(H))ier with an («,t, z) secret sharing scheme taken from
Theorem 7 applied to F'. By Theorem 7, for [ € £, the length

of a share is |H;|= max( bz

l—a

l—«
t—z?

%)xmin( ,t)n:n,and

. . . _ +
the length of the randomization sequence is n, = ezat]” o

t—=z
min ( t=z

1—a’
form M; £ H; ® K; and publicly send it to Server [, where
@ denotes bitwise modulo-two addition. Upon receiving M,
Server [ stores S; = K;@®M; = H,. The analysis of the coding
scheme is omitted due to space constraints.

t) n. Hence, since |K;|= n,l € L, the user can

IV. CONCLUDING REMARKS

We considered storing a file across L servers, ensuring that
any set of at least ¢ servers can reconstruct the file and any set
of z colluding servers cannot learn more than a fraction « of
the file. Hence, our model introduces a trade-off between the
privacy leakage parameter v and the file length that the user
can store on the servers. In contrast to traditional secret shar-
ing, our model did not assume the existence of information-
theoretically secure channels. Instead, the user communicates
with the servers over a public channel and shares a secret key
of length n with each server. For a given n, we characterized
the optimal trade-off between the file length that the user
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can store and the privacy leakage parameter a. Additionally,
when this optimal trade-off is achieved, we established the
minimum amount of local randomness needed by the user,
the minimum amount of publication communication, and the
minimum storage requirement at the servers.

APPENDIX A

PROOF OF THEOREM 1
. . (M) ()
Consider an arbitrary (2”<F),2’"(R) (2" Nier, (2 ier)

private file storage strategy that («,t, z)-achieves r(¥)

n(t—z)

11—«

Proof. Let A,U C L such that |A|= ¢, |U|= 2, and U C A.
We have
P @ g

®)
< H(F|M, Ky) + aH(F)

= I(F(A); FIM, Ky) + H(F|M, Ky, F(A) + aH(F)

Lemma 1. We have r{" (o, t,2) <

—~

c A~

= I[(F(A); F|M,Ky) + aH(F)

(d)
< I(M,K 4, F|M, Ky) + aH(F)

=I(K4; F|M,Ky) + aH(F)

~

—~
)
~

IS IA

I(KA;K£7F|KM)+OZH(F)
' 1(

II‘Q

K Kr|Ky) + oH(F)
H(K 4|Ky) + aH(F)

H(Kqu) +aH(F)

n(t —z) +aH(F)
=n(t —z) + ar®),

where (a) holds by uniformity of the file F, (b) holds by (2),
(¢) holds by (1), (d) holds by the data processing inequality,
(e) holds by the chain rule and the data processing inequality
because M is a function of (F,R, K. ), (f) holds by inde-
pendence between R and (F, K.), (g) holds by independence
between F and K., (h) holds because U C A, (i) holds
because the keys are uniformly dlstnbuted and |[A\U|=t — z.

Then, from (14) we have r(F) < "(t z) | Finally, note that
(14) is valid for any private file storage strategy and, in partic-
ular, for a file storage strategy that achieves rf'(a,t,2). O

Hr

||<°

(14)

U £ () in the proof of Lemma 1, one can also

By choosm%
(a,t,2z) < nt.

prove that r*

APPENDIX B

PROOF OF THEOREM 2

Consider an arbitrary (2T(F),2T(R) (2”( ))1657(2 §s>)l€£)

private file storage strategy that («,t, z)-achieves r(F)
Server [ € £ must store the key K at the beginning of the

protocol. Hence, we must have rl(,s*)(oz,t, z) > |Ki|l=n

APPENDIX C

PROOF OF THEOREM 3

Consider an arbitrary (2T(F),2’“(R) (2r< ))leu (2r l(S))leﬁ)

private file storage strategy that («,t, z)-achieves (¥
Using Definition 1, (1), and (2), one can prove the following
lemma.

Lemma 2. For T C L and S C L\T such that |T|= z and
|S|=1t — z, we have

ZH M;)

les

(1—a)H(F). (15)

Then, we have
L
r(F)
t—z
@ L

t—=z

PP

TCL SCT®
|T|=2|S|=t—=

2y Y Yaon

TCL SCT° les

H(F)

|T =2 |S|=t—=
(d) 1 L—z-1
2 H(M
v D Py DOF. (010
TCL leTe
|T|==2
(e) 1 1
=y H (M)
v Y B DD DY (010
TCL 1eT
ITI=L~

()

> H(M;)

el

1 [L—z2-1\/ L-1
Toa\t—z-1)\—2-1

<— (16)
where (a) holds by uniformity of F, (b) holds with
A L (IN"Y/L—z 1
72 A7) ({77) . (c) holds by (15), (d) holds by [21,
Lemma 3.2], (e) holds by a change of variable in the sum,
(f) holds by a change of variable in the sum.
Since (16) is valid for any private file storage strategy, we
have

1—
Lia r,(‘F)

P (a,t,2) < 7‘(M)(cu,t7 z).

) (17)

Similar to (17), one can prove using Lemma 2 with T £,

L
?rg)(a,t, z) < 7’%@ (a,t, 2).
APPENDIX D

PROOF OF THEOREM 4

Consider an arbitrary (2T(F)72T(R), (2le))1€£, (2" l(s))leg)

private file storage strategy that (c,t, z)-achieves r(¥). Fix
lel.
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Using (10), (1), and (2), one can prove the following lemma.

Lemma 3. Let F be the set of all the functions f:[1,t —z+
2] — [0,1] that are non-decreasing and such that f(1) =
aH(F), f(t—z+2) = f(t—z+1) = H(F). Then, we have

HOMD) 2 pi SRFG D) £~ S+ )

Then, for f € F and fT the concave envelope of f, we
have

S+ 1)~ 1) - £+ )"
X_: 2fT(i+1)— fT() — fH(i +2)]
S D) — ) — (P 2) — f )]
=1
S @) - )~ (-2 2) — fH (-2 1))
D) - ) )
9 (H(F) - aH(F))/(t - 2)
— H(F)(1 - )/(t - 2). ()

where (a) holds by [1,
frt—=+2) =

(17) and (18)], (b) holds because
[Ht—241) = H(F),and £*(2)— F*(1) >
(fT(t—z+1)—f*(1))/(t—z) by concavity of fT, (c) holds
because ft(t — 2+ 1) = H(F) and f(1) = «H(F).

Then, by Lemma 3, the uniformity of £, and (18), we have

™ > H(M)
1 _
> rmtJ. (19)
—Z

Since (19) is valid for any private file storage strategy, we have

1—
ariF)(a, t,z)

P < rl(f)(a,uz).

Similarly, by modifying Lemma 3, one can prove that

1
grfﬂF)(a,t, z) < rl(l\*/l)(a,t, z).
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