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ABSTRACT
We study the use of spike-and-slab priors for consistent estimation of the number of change points and their
locations. Leveraging recent results in the variable selection literature, we show that an estimator based
on spike-and-slab priors achieves optimal localization rate in the multiple offline change point detection
problem. Based on this estimator, we propose a Bayesian change point detection method, which is one
of the fastest Bayesian methodologies. We demonstrate through empirical work the good performance
of our approach vis-a-vis some state-of-the-art benchmarks. Interestingly, despite having a Gaussian noise
assumption, our approach ismore robust tomisspecificationof the error terms than the competingmethods
in numerical experiments. Supplementary materials for this article are available online.
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1. Introduction

Change point detection has received considerable attention in
the statistical literature for several decades. Assume we observe
a vector of independent random variables Y = (Y1, . . . ,YT)�
according to the linear model

Yt = ft + εt for 1 ≤ t ≤ T, (1)

where f t is a right continuous function with an unknown num-
ber K of change points, and εt’s are independent random vari-
ables with E(εt) = 0 for all t. The main goal of offline change-
point detection is to simultaneously estimateK and the locations
of the change points of f t. A natural assumption is that f t (i.e.,
the conditional mean) is sparse, in the sense that there are only
a small number of change-points. We further assume that f t is
piecewise-constant (i.e., a right continuous step function). These
modeling choices lead to a low-dimensional parametric model
that is interpretable, can fit nonstationary time-series, and is
suitable for prediction.

The literature on change point detection includes a large
number of frequentist methods. Most of these methodologies
rely on a test statistic to detect parametric changes in the dis-
tribution of the observables and model selection techniques
to determine the number of parameters defining the signal f t.
Some examples of test statistics include the likelihood ratio and
the CUSUM statistic (Page 1954). The model selection step
typically relies on either an �0 or an �1 penalty. The penalty is
included directly through a penalized likelihood or via an infor-
mation criterion such as AIC and BIC. Consequently, several
variable selection methodologies have a conceptual analogue
in change point detection: for example, the Dantzig selector of
Candes et al. (2007) has the same rationale as the multiscale
SMUCE estimator of Frick, Munk, and Sieling (2014); the total
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variation denoising (Rudin, Osher, and Fatemi 1992) and the
fused LASSO procedure (Tibshirani et al. 2005) share the same
penalty with the LASSO (Tibshirani 1996). Other frequentist
methods for univariate change point detection include the wild
binary segmentation of Fryzlewicz (2014) based on the CUSUM
statistics, and various algorithms for �0 penalized change point
detection (Friedrich et al. 2008; Rigaill 2010; Killick, Fearnhead,
and Eckley 2012; Maidstone et al. 2017).

From the Bayesian perspective, popular change point detec-
tion methods rely on product partition models (Barry and Har-
tigan 1992, 1993). However, the use of MCMC to approximate
the posterior distributions of these models is challenging (Chib
1996, 1998), and much research has focused on alternatives to
MCMC: Fearnhead (2006) proposed two algorithms to perform
direct simulation from the posterior distribution (one to do
exact simulation from the posterior and one using an approxi-
mate version); Rigaill, Lebarbier, and Robin (2012) derived exact
formulas for the posterior distribution. Recent works take an
empirical Bayes approach to set the prior distributions (Du, Kao,
and Kou 2016; Liu, Martin, and Shen 2017). Liu, Martin, and
Shen (2017) is more general, allowing to recover piecewise poly-
nomial signals. To the best of our knowledge, Bayesian variable
selection procedures such as the horseshoe prior (Carvalho, Pol-
son, and Scott 2010) and the spike-and-slab prior (Mitchell and
Beauchamp 1988), have not been studied in this setting. Recent
works used the horseshoe prior for trend filtering (Faulkner and
Minin 2018; Kowal, Matteson, and Ruppert 2019) but not to
explicitly infer K and the change points locations.

In this article, we study spike-and-slab priors for offline mul-
tiple change point detection. Starting from a baseline f 0, we
model each increment through the operator �fi = fi − fi−1 for
1 ≤ i ≤ T and introduce latent binary variables (Z1, . . . ,ZT)�
to indicate whether �fi corresponds to a change point or not.
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The prior distribution on the increment �fi under Zi = 0 is
a distribution “concentrated” around 0 (or a point mass) called
spike. The prior distribution for �fi under Zi = 1 is a diffused
distribution called slab. The choice of which distributions to
use for the spike, the slab, and the model space, has been a
subject of extensive research; see Bhadra et al. (2019) for a recent
review. We use the shrinking and diffusing prior of Narisetty
andHe (2014), which consists of Gaussian spike-and-slab priors
with sample size dependent prior variances. The reasons for
this choice are (i) Narisetty and He (2014) proved one of the
strongest selection consistency results in the Bayesian variable
selection literature, and (ii) Chen and Walker (2019) recently
proposed a methodology for fast Bayesian variable selection
employing this prior and not requiring MCMC.

Here, we make the following contributions to the change
point detection literature. (i) We show how to employ spike-
and-slab priors for change point detection and propose a fast
algorithm capable of detecting change points from thousands of
observations in under a second. (ii) We establish that a mod-
ified estimator based on the shrinking and diffusing prior is
consistent and achieves optimal localization rates of multiple
change points. (iii) Through simulations, we show that our
procedure is competitive with state-of-the-art methodologies. A
salient feature of our proposed method is that it does not rely on
MCMC, avoiding the risk of MCMC chains failing to converge.
Additionally, in numerical experiments, it is highly robust to
misspecification of the noise term, a situation where many state-
of-the-art benchmarks fail by substantially overestimating the
number of change points. This is somewhat surprising given that
the method is developed under the Gaussian noise assumption.

While in this article we study the univariate change point
detection problem, methods for change point detection have
also been studied for other types of data beyond univariatemean
change point detection and settings more general than (1). Pein,
Sieling, and Munk (2017) considered change point detection
with heterogeneous noise. Carlstein (1988), Rizzo and Székely
(2010), Zou et al. (2014),Matteson and James (2014), and Padilla
et al. (2019a, 2019b, 2019c) developed nonparametric change
point methods that can detect arbitrary changes in distribu-
tion. Cho and Fryzlewicz (2015), Cho (2016), and Wang and
Samworth (2018) focused on high-dimensional change point
estimators. Aue et al. (2009), Avanesov and Buzun (2018), and
Wang, Yu, and Rinaldo (2021) studied covariance change point
detection. Fearnhead and Rigaill (2018) considered methods
for change point detection combining a robust loss with the �0
penalty. Vanegas, Behr, and Munk (2022) proposed a multiscale
method for quantile change point detection.Here, we focused on
a simpler setting because spike-and-slab priors were not studied
in the change point detection context, and, as stated by Wang,
Yu, and Rinaldo (2020), the estimators built for (1) are often the
building blocks for more complex settings.

The rest of the article is organized as follows. Section 2
describes the model, conditions on the parameters, and intro-
duces the algorithm. Section 3 presents our main results on
consistency. We present simulation studies in Section 4 to illus-
trate how our proposal fares with alternatives. Section 5 includes
applications to microarray and ion channel data. Section 6 con-
cludes with a discussion on the use of spike-and-slab priors for
multiple change point detection.

2. Method

We assume that (εt)1:T are independent Gaussian random
variables with mean zero and known variance σ 2. Let C∗ :=
{η1, . . . , ηK} ⊂ {1, . . . ,T} denote the set of change points of the
piecewise-constant right continuous signal f t, we can write this
as

ft =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ0 if t ≤ η1 − 1
μ1 if η1 ≤ t ≤ η2 − 1
...
μK if ηK ≤ t ≤ T,

(2)

and assume that f0 = μ0 = 0. Further technical conditions on
f t will be given in Section 3. We include a discussion on how to
handle unknown σ and f0 �= 0 later in the section.

Basad.cp change point detection.Aworkingmodel employing
spike-and-slab priors is as follows:

Yt|ft , σ 2 ∼ N (ft , σ 2)
�ft|σ 2,Zt = 0, τ 20,T ∼ N (0, σ 2τ 20,T),
�ft|σ 2,Zt = 1, τ 21,T ∼ N (0, σ 2τ 21,T),
pr(Zt = 1) = 1 − pr(Zt = 0) = qT ,

(3)

for t from 1 to T, �ft = ft − ft−1, and τ 20,T , τ
2
1,T , and qT are

hyperparameters that depend on T, with τ 21,T � τ 20,T . The
rationale behind this set-up is that the posterior probability of
Zt = 1 should be high for t ∈ C∗; vice versa, the posterior
probability of Zt = 0 should be high for t /∈ C∗. A natural
change point detection procedure is to employ the posterior
probabilities of Zt to determine if t is a change point or not, for
example classifying t as a change point if the posterior exceeds
a certain threshold. We elaborate on this selection rule later.
The assignment of the same prior for �f1 follows from the
assumption that the mean process starts at zero.

A relevant difference with variable selection comes from
the fact that while covariates are not ordered, in change point
detectionwe generallywant to avoid classifying consecutive time
instances as change points. We expect this behavior because it
is a common feature in the change point detection literature.
Most of the procedures employ minimum spacing conditions,
that is, the distance between consecutive change points is lower
bounded by a quantity � > 0, such that |ηj − ηj+1| >

�. Minimum spacing conditions are used both in the finite
sample implementations of the estimators and in the proofs of
consistency. We will introduce a procedure to avoid consecutive
change points.

The model (3), which we will refer to as basad.cp, is the ana-
logue of the basad variable selection procedure of Narisetty and
He (2014) to change point detection. The sample size dependent
hyperparameters τ 20,T , τ

2
1,T and qT, are the salient feature of (3).

We require that asT → ∞, τ 20,T → 0 and τ 21,T → ∞. In variable
selection, a shrinking τ 20,T ensures that the marginal posterior
probability of including (excluding) an active (inactive) covari-
ate converges to one as sample size increases. Increasing τ 21,T
and qT allows for the consistent estimation of the number of
active covariates and consistent model selection. Narisetty and
He (2014) proved that the penalization achieved through τ 21,T
and qT is equivalent to an explicit �0 penalty. We will show in
Section 3 that these parameters play a similar role for achieving
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consistent estimation of K and η1, . . . , ηK . A similar asymp-
totic result holds despite the settings being very different: in
high-dimensional variable selection, the number of covariates
grows at a rate faster than the number of samples; in change
point detection, the number of piecewise increments is equal or
smaller than the sample size.

Another key feature of the methodology of Narisetty and
He (2014) is that they employ the marginal posterior proba-
bilities pr(Zt = 1|Y , σ 2) to select the active parameters in
the finite sample implementation (to prove consistency they
employ pr(Z|Y , σ 2), with Z = (Z1, . . . ,ZT)�). The idea is
motivated by computational reasons, given that one can sample
from the marginals with a Gibbs sampler, which is not available
for pr(Z|Y , σ 2). Furthermore, theMCMC targeting pr(Z|Y , σ 2)
has a much larger space of models and struggles to explore it,
for example, Fearnhead (2006) and Rigaill, Lebarbier, and Robin
(2012). For this reason, we will employ marginals for change
point detection.

We classify a time instance t as a change point if pr(Zt =
1|Y , σ 2) is larger than a certain threshold. In this case, the
estimated number of change points K̂ is the number of marginal
posterior probabilities larger than the chosen threshold. The
model selected using 0.5 as a threshold corresponds to the
median probability model of Barbieri and Berger (2004), who
also proved that it is the optimal predictivemodel. An alternative
strategy to select the change points would be to first rank the�ft
based on pr(Zt = 1|Y , σ 2), and then select the top K̂ (the model
size) increments according to a given information criteria. We
do not investigate this strategy and leave it for future work. We
further stress that, under our selection rule, it is likely that there
will be consecutive time instances such that pr(Zt = 1|Y , σ 2) >

0.5, that is, consecutive points could be “classified” as change
points. We deal with this issue after introducing an alternative
methodology to compute pr(Zt = 1|Y , σ 2).

Solo.cp change point detection.Chen andWalker (2019) intro-
duced a sequential procedure based on a misspecification of
basad that admits marginal posterior probabilities in closed
form. Their method, called solo spike-and-slab, has asymptotic
properties and empirical accuracy similar to basad, while being
substantially faster. While our setting can be seen as a partic-
ular instance of the linear regression framework of Chen and
Walker (2019), there is an advantage in deriving the closed form
marginal pr(Zt = 1|Y , σ 2) for the setting considered in this
article because we will be able to simplify certain calculations
further.We do this following the same steps of Chen andWalker
(2019). Suppose we are interested in testing whether a time
instance j is a change point and consider the following model:

Yt|ft , σ 2 ∼ N (ft , σ 2), t = 1 . . . ,T,
�fj|σ 2,Zj = 0, τ 20,T ∼ N (0, σ 2τ 20,T),
�fj|σ 2,Zj = 1, τ 21,T ∼ N (0, σ 2τ 21,T),
�fi|σ 2, τ 2T ∼ N (0, σ 2τ 2T), i ∈ {1 . . . ,T}\{j},
pr(Zj = 1) = 1 − pr(Zj = 0) = qT ,

(4)
where τ 2T is an additional sample size dependent hyperparam-
eter. Thus, we place a spike-and-slab prior on a single change
point at a time (in this case �fj), and place conjugate Gaus-
sian priors on the remaining terms. The tuning parameter τ 2T
controls the shrinkage across time instances. The advantage

of model (4) is that it allows us to write the marginal poste-
rior probabilities in closed-form. First, we can marginalize out
�f−j := (�f1, . . . ,�fj−1,�fj+1, . . . ,�fT)� in the likelihood
L(Y|�f−j,�fj, σ 2) to compute the marginal likelihood

L(Y|�fj, σ 2) ∝ exp

⎧⎨⎩−�f 2j (T − j − ∑T
j+1 n′

i)γj,j + 2�fjy′′
j,j

2σ 2

⎫⎬⎭
(5)

where we have integrated out the random vector �f−j using
the conjugate prior distribution given in (4). The parameters
n′
j+1, . . . , n

′
T , γj,j and y′′

j,j are function of the hyperparameters of
the prior on�f−j and dataY1:T , and are computed recursively as
follows. Initialize n′

T = τ 2T/(τ 2T + σ 2), ȳ′
T = yT , and compute

recursively for i = T − 1 to j + 1

n′
i = τ 2T(T − i − 1 − ∑T

k=i+1 n′
k)

2

τ 2T(T − i − 1 − ∑T
k=i+1 n′

k) + σ 2
, and

y′
i =

∑T
t=i yt − ∑T

k=i+1 n′
ky

′
k

T − i − 1 − ∑T
k=i+1 n′

k
. (6)

Then, set γ1,j, and for i = 1 to j compute

n′′
i,j = τ 2T

τ 2Tγi,j(T − i − 1 − ∑T
k=j+1 n′

k) + σ 2
,

y′′
i,j =

T∑
t=i

yt −
T∑

k=i+1
n′
ky′

k −
(
T − i − 1 −

T∑
k=j+1

n′
k

)
i−1∑
k=1

n′′
k,jγk,jy′′

k,j, (7)

γi+1,j = 1 −
(
T − i − 1 −

T∑
k=j+1

n′
k

)( i∑
k=1

n′′
k,jγ

2
k,j

)
.

Despite the involved notation, simple calculations lead to the
definitions of parameters in (6) and (7). The basic idea is first
to marginalize �fT , then �fT−1, then continue sequentially to
�fj+1. This first step leads to the definition of the parameters
in (6). In the second step, we first marginalize �f1 and then
recursively integrate out the remaining parameters until �fj−1.
This second step leads to the definition of the parameters in (7).
Equations (6)–(7), together with the priors on �f−j, define a
vector of weights: observations recorded at time points closer
to j have a higher weight than those further away from j. Essen-
tially, what we have done is marginalizing two GaussianMarkov
random fields (GMRF) of order 1 with parameter τ 2T , one to the
left and one to the right of j; see Rue andHeld (2005) for an intro
to GMRFs.

Notice that the quantities {n′
i} can be computed in O(T) as

follows. First, we compute and store the quantities⎛⎝y′
i,

T∑
k=i+1

n′
k,

T∑
k=i+1

n′
ky′

k,
T∑
t=i

yt

⎞⎠ , i = T, . . . , 1,

which can be done inO(T). Then a single pass using (6) allows us
to obtain {n′

i} with O(T) cost. As for (7), we start by computing
T∑

k=j+1
n′
k for j = T − 1, . . . , 1.
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Next, for a fix j, we calculate n′′
i,j for i = 1, . . . , i. Then we store

and compute(
γi,j,

i−1∑
k=1

n′′
k,jγk,jy′′

k,j,
i∑

k=1
n′′
k,jγ

2
k,j

)
, i = 1, . . . , j.

Hence, the calculations in (7) can be done in O(T2).
Given themarginal likelihoodL(Y|�fj, σ 2), we can compute

the marginal posterior distribution of �fj through Bayes rule:

�fj|Y , σ 2, qT , τ 20,T , τ
2
1,T ∼ (1 − qT)ω0,jN(μ0,j, ξ 20,j)

+ qTω1,jN(μ1,j, ξ 21,j), (8)

where the parameters are defined as follows, for k ∈ {0, 1}:

μk,j = y′′
j,j

(T − j − 1 − ∑T
k=j+1 n′

k)γj,j + τ−2
k,Tσ 2

,

ξk,j = σ 2

(T − j − 1 − ξTk=j+1n
′
k)γj,j + τ−2

k,Tσ 2
, (9)

ω0,j = exp
{

1
2σ 2

y′′2
j,j

(T − j − 1 − ∑T
k=j+1 n′

k)γj,j + τ−2
k,Tσ 2

}
{

τ−2
k,T

(T − j − 1 − ∑T
k=j+1 n′

k)γj,j + τ−2
k,Tσ 2

}1/2

.

The parameters above are all we need in order to compute
pr(Zj = 1|Y , σ 2), which corresponds to

pr(Zj = 1|Y , σ 2) = qTω1,j

qTω1,j + (1 − qT)ω0,j
. (10)

Here, qT is the sparsity inducing parameter. Given (10), we fol-
low the same procedure described for basad.cp: a time instance
is declared a change point if pr(Zj = 1|Y , σ 2) exceeds the
prespecified threshold. In practice, we would not be interested
only in a single time instance j, so one needs to compute (10) for
j in 1 to T. That is, we need to consider T models.

Equations (5), (8), and (10) are the analogues to (7), (11)
and (19) in Chen and Walker (2019). Similarly, the definitions
of parameters in (9) are the analogues of (12)–(14) from Chen
and Walker (2019). The differences arise because their defini-
tions rely on a matrix of covariates and require several matrix
multiplications and inversions. Importantly here, we can write
analytically all the formulas and bypass the need for thesematrix
operations.

Solo.cp notably differs from approaches based on generalized
likelihood ratio, such as the CUSUM statistics. While CUSUM-
based methods fit two constant means model (to the left and to
the right of j), solo.cp seeks for evidence for a jump in mean at
time j after having accounted for all possible variations from 1
to j – 1 and j + 1 to T. This is done through the random vector
�f−j, which we integrate out when computing the marginal
likelihood. This difference is an essential feature of solo.cp and
enables the detection ofmultiple change points. The idea is that a
change inmean at time ηi will bemarginalized out before getting
to time ηi+1, as long as ηi+1 and ηi are not “too close”. Such
minimum spacing condition is standard in the literature.

In Section 4, we will show empirically that solo.cp is more
robust to misspecification of the noise model and outliers than
competitors. We conjecture that this property follows from the
feature described above and the shrinkage implicit in Bayesian
estimators. “Outliers” are shrunk toward multiple local means:
An observation at time j contributes to estimating (or marginal-
izing) all increments from �f1 to �fj. A potential drawback of
this construction is that changes of very small magnitude are
integrated out. Both hypotheses will be tested numerically.

Implementation. Regardless of whether we compute pr(Zi =
1|Y , σ 2) through basad.cp or solo.cp, we propose the use of
a post-processing step to avoid the detection of consecutive
change points. This involves a rule that defines when two or
more estimates will be considered as “consecutive”, and a selec-
tion rule to determine which estimates to keep.

In detail, let Ĉ0 := {η̂1, . . . , η̂K̂0
} be the set of points such that

pr(Zi = 1|Y , σ 2) > 0.5. Now, fix � ∈ N, and partition Ĉ0 into
nonempty subsets Ĉ0

1, . . . , Ĉ0
K̂ such that for all η ∈ Ĉ0

i there
exists at least one η′ ∈ Ĉ0

i (if Ĉ0
i\{η} �= ∅) such that |η−η′| ≤ �

and no η′′ ∈ Ĉ0\Ĉ0i such that |η−η′′| ≤ �. Hence, the partition
defines the notion of “consecutive change points”. Finally, within
each subset Ĉ0

i, choose the point

ηi = argmax
η∈Ĉ0

i
pr(Zη = 1|Y , σ 2).

The estimated set of change points is Ĉ := {η1, . . . , ηK̂}.
A few remarks. First, the length of the partition determines

the number of estimated change points K̂. Second, we need an
extra parameter� to define the partition of Ĉ0. The sensitivity of
the two methods to � is studied in the supplementary material
(SM). Lastly, we pick the time instance having the maximum
marginal posterior probability within each subset and classify
it as the change point. Whereas this is an arbitrary criterion,
choosing the point that maximizes a given test statistics is stan-

Algorithm 1 Spike-and-slab change point detection
Inputs: Y, T, �, σ
Output: Ĉ, K̂
1. Compute P(Z1 = 1|Y, σ 2), . . . ,P(ZT = 1|Y, σ 2)

If basad.cp

• Approximate P(Z1 = 1|Y, σ 2), . . . ,P(ZT = 1|Y, σ 2)
with the Gibbs sampler defined in Narisetty and He
(2014).

If solo.cp for i − 1, . . . ,T do

• Compute posterior parameters (9)
• Compute P(Zi = 1|Y, σ 2) through (10).

2. Define Ĉ0 := {i : P(Zi = 1|Y, σ 2) > 0.5}
3. Partition Ĉ0 into subsets of nonconsecutive change points

Ĉ0
1, . . . , Ĉ0

K̂ (see the main text)
4. Set Ĉ := {ηi = argmax

η∈Ĉ0
i
P(Zη = 1|Y, σ 2), for i = 1, . . . , K̂}

https://doi.org/10.1080/10618600.2023.2182312
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dard in the change point detection literature; for example, Fry-
zlewicz (2014).

Algorithm 1 summarizes our methodologies. An input of
the algorithm is σ , as it is commonly done in the change-point
literature; for example, Fryzlewicz (2014), Fang, Li, and Sieg-
mund (2020), and Fearnhead and Rigaill (2018). In the setting
considered (piece-wise constant signal, Gaussian noise), there
aremany good estimators of the standard deviation, see Fang, Li,
and Siegmund (2020). For example, wbs (Fryzlewicz 2014) and
r-fpop (Fearnhead and Rigaill 2018) employ themedian absolute
deviation estimator, ebpiece of Liu, Martin, and Shen (2017)
uses the fused LASSO residuals standard deviation computed
through the “one standard error” rule (Tibshirani et al. 2005).

Both basad.cp and solo.cp can be easily extended to unknown
σ . This instance is considered both by Narisetty and He
(2014) and Chen and Walker (2019): one simply includes an
inverse gamma prior in (3) and (4). solo.cp remains analytically
tractable: the difference is that (8) is a mixture of Student’s t-
distributions, whose parameters can be written in closed form.
In this article, we do not study solo.cp and basad.cpwith inverse-
gamma priors, but with the fused LASSO residuals standard
deviation computed through the “one standard error” rule.

In this section, we considered a mean-process starting at
zero. In the case f0 �= 0, we can treat it as an unknown and
assigning to it a Gaussian prior with mean μ0 and variance τ 20 .
These hyperparameters will generally be different to the prior
on the increments (�fi)i≥1 because f 0 is not an increment but a
baseline mean. The choice of μ0 and τ 20 can be based on prior
information and how informative we want the prior to be. To
prove the theory, we will assume that f0 = 0 holds and use
the same prior in numerical experiments. If the assumption is
violated, then pr(Z1 = 1|Y , σ 2) → 1 with high probability.

So far, we considered a setting where the number of obser-
vations collected at a given point t (nt) is equal to one (case
nt = 1), which is the standard in the literature. In applications,
this may not be the case (case nt > 1). This situation could arise
if multiple observations are collected at once, or if observations
are collected at distinct time points, but the reported data are
binned into time intervals. To our knowledge, there are few
methods in the literature dealingwith this situation (Padilla et al.
2019b). The extension of basad.cp and solo.cp to the case nt > 1
is straightforward. Parameters (6), (7), and (9) can be written
in closed form, including an adjustment done through nt for all
t. The explicit formulas are provided in the SM, where we also
show numerically that the case nt > 1 is particularly beneficial
in terms of empirical performance for the two methodologies
discussed in this section.

3. Theory

In this section, we provide some theoretical support for the
method that we study in this article. We show that for the task
of multiple change point detection, a modified version of the
estimator described in (3) (basad.cp) based on the spike-and-
slab variable selection framework of Narisetty and He (2014)
leads to optimal localization rates of the change points. Specif-
ically, for the case of a bounded number of change points,
under a slightly weaker signal-to-noise condition than the wild
binary segmentation and �0 based methods, we attain optimal

localization rates. We also show in the SM that this optimality is
preserved in the single change point detection framework if we
consider a version of the solo.cp estimator. All the proofs can be
found in the SM.

We consider a modified version of the basad.cp estimator
defined as follows. Let m ∈ N with m ≤ T and consider
�1, . . . ,�m a partition of {1, . . . ,T} such that |�j| = T/m for
all j ∈ {1, . . . ,m}. Let Ỹ ∈ Rm satisfy

Ỹj = 1
|�j|1/2

∑
i∈�j

Yi,

for j = 1, . . . ,m. We also define

f̃j = 1
|�j|1/2

∑
i∈�j

fi,

for j = 1, . . . ,m. It is convenient to rewrite (3) for the data vector
Ỹ as

Ỹ | f̃ , σ 2 ∼ N
(
f̃ , σ 2Im

)
,

�f̃j | σ 2,Zj = 0, τ 20,m ∼ N
(
0, σ 2τ 20,m

)
,

�f̃j | σ 2,Zj = 1, τ 21,m ∼ N
(
0, σ 2τ 21,m

)
,

pr(Zj = 1) = 1 − pr(Zj = 0) = qm,
j = 1 . . . ,m,

(11)

where qm, τ0,m, τ1,m > 0. Furthermore, �f̃1 = f̃1, and �f̃j =
f̃j − f̃j−1 for j = 2, . . . ,m.

The goal is to define an estimator Ĉ ⊂ {1, . . . ,T} of C∗. We
do this by first defining an estimator C̃ relying on the indexes
of the partition 1, . . . ,m, then we use C̃ to construct our actual
estimator. First, let Z̃ ∈ {0, 1}m be such that

Z̃j :=
{

1 if pr
(
Zj = 1 | Ỹ , σ 2) > 0.5,

0 otherwise,

and C̃ = {j : Z̃j = 1}. The set C̃ is then used to construct
Ĉ ⊂ {1, . . . ,T} as follows:
• If i ∈ Ĉ then there exists a j ∈ C̃ with i ∈ �j.
• If j ∈ C̃ then for a unique i ∈ Ĉ we have that i ∈ �j.

The construction of Ĉ is used to map the estimates condi-
tioned on the transformed data to the actual time indices we are
trying to infer. Our results show that Ĉ defined by the modified
estimator based on Ỹ and C̃ attains optimal localization rates
for estimating C∗. This result exploits Theorem 4.1 in Narisetty
and He (2014) which provides a consistency result for linear
model estimation with the shrinking and diffusing prior. Before
arriving at this result, we now make the following modeling
assumption.

Assumption 1. Let κ be the minimum jump size, thus,

κ := min
j∈C∗ |fj − fj−1|.

Then we require that κ2T/(σ 2 logT) → ∞, as T → ∞. Fur-
thermore, we impose the followingminimum spacing condition

� := min
j�=j′, j,j′∈C∗ |j − j′| ≥ c1σ 2 logT

κ2 ,

for a large enough c1 > 0, and require that K := |C∗| = O(1).
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Assumption 1 can be thought as a signal-to-noise-ratio
condition. In fact, Assumption 1 is a weaker condition than
Assumption 2 from Wang, Yu, and Rinaldo (2020) which states
that

� ≥ cσ 2 log1+ξ T
κ2 ,

for positive constants c and ξ . However, the framework inWang,
Yu, and Rinaldo (2020) allows the possibility that K diverges
whereas here we require that K = O(1). We are now ready to
state the main result of this section.

Theorem 1. Suppose that Assumption 1 holds. Then for a con-
stant c0 > 0 the estimator Ĉ satisfies

pr

(
|Ĉ| = K, max

η∈C∗ min
η̂∈Ĉ

|η̂ − η| ≤ c0σ 2 logT
κ2

)
→ 1,

as T → ∞, provided that τ 20,m = o(1/m), qm � 1/m ,
and τ 21,m � m1+3δ for some δ > 1, and m such that m �
κ2T/(σ 2 logT).

Notably, Theorem 1 shows that the maximum a posteri-
ori estimator constructed based on the model (11) attains a
localization rate of order logT/κ2. As Wang, Yu, and Rinaldo
(2020) showed, this localization rate is minimax optimal up to a
logarithm factor. Importantly, our guarantee on the localization
rate holds under the minimum signal-to-noise ratio condition
possible; see Lemmas 1–2 in Wang, Yu, and Rinaldo (2020).
Also, notice that provided that logT/(κ2�) → 0, then in the
language of change point detection, the estimator Ĉ is consistent
(Wang, Yu, and Rinaldo 2020).

We highlight that Theorem 1 requires σ 2 to be known. How-
ever, this is not restrictive. In fact, if σ 2 is misspecified by some
σ̂ 2 �= σ 2, as in Remark 2 in Narisetty and He (2014), the
conclusion of Theorem 1 will still hold provided that c1σ 2 ≤
σ̂ 2 ≤ c2σ 2 for some positive constants c1 and c2. The latter can
easily be attained in practice provided that σ̂ 2 is a consistent
estimator of σ 2. A simple consistent estimator can be found
by splitting the data in two sets, one consisting of odd t and
the other of even t.We mentioned in the previous section a few
possible estimators. Finally, we can use the estimate as input to
our method along with the other half of the data.

We stress that in practice we use the fast method described in
the previous section based on a misspecification of (11). In the
SM, we show that such surrogate procedure still enjoys a local-
ization guarantee in the case of single change point detection.

One another note, we remark that the estimator studied in
this section required specifying the parameter m that describes
the number of elements in the partition used to construct Ỹ .
The intuitive reason for this construction is that in change point
detection, unlike variable selection, no estimator can detect the
exact locations of the change points with high probability, see
Wang, Yu, and Rinaldo (2020). Hence, by using averages over
small intervals and treating the resulting signal as the input to
the basad.cp, we can expect to perform variable selection exactly
with high probability and then translate this into optimal change
point localization.

Finally, if the number of observations collected at a given
point t is nt and nt � n for all t, then it is possible to construct a

variant of Ĉ that attains a localization rate of order logT/(κ2n).
This agrees with the intuition that having multiple observations
per time t can help with the estimation of the change points.

4. Simulations

We rely on simulations to explore the ability of the solo.cp and
basad.cp estimators to accurately estimate K and change point
locations η1, . . . , ηK . We consider realistic scenarios designed
to capture the variability encountered in applications, varying
the conditional mean f t and the distribution of the error terms
(εt)1:T . We compare basad.cp and solo.cp with several state-of-
the-art methods: wbs (Fryzlewicz 2014), ebpiece (Liu, Martin,
and Shen 2017), smuce (Frick, Munk, and Sieling 2014), and pelt
(Killick, Fearnhead, and Eckley 2012). Details of each imple-
mentation are given in the SM. All code to reproduce the results
in this section is available at https://github.com/lorenzocapp/
solocp_experiments. The methodology is available as an R pack-
age available for download at https://github.com/lorenzocapp/
solocp.

Our empirical comparisons assess the accuracy of the dif-
ferent estimators with the following criteria. We consider the
statistic K − K̂ to measure how well each estimator recov-
ers the true number of change points. We consider an order-
invariantHausdorffmetric d(Ĉ, C∗) = d(Ĉ|C∗)+d(C∗|Ĉ), where
d(Ĉ|C∗) = max

η∈C∗ min
x∈Ĉ

|x−η| and d(C∗|Ĉ) = max
η∈Ĉ

min
x∈C∗|x−η| are

respectively the one-sided Hausdorff distances. We use d(Ĉ, C∗)
to assess the overall accuracy of the estimators in recovering the
true change points locations η1, . . . , ηK . We employ d(Ĉ, C∗) in
lieu of d(Ĉ|C∗), being the latter insensitive to overestimation.
Lastly, for all η ∈ C∗ we calculate min

x∈Ĉ
|x − η|, and report

the proportion of points that are at distance zero, one, two,
and equal or greater than three. We refer to this criterion as
the normalized empirical distribution and denote it by |̂η −
η|/K. It is a finer measure than the Hausdorff distance of the
change point location estimation accuracy. Since this criterion
is also insensitive to overestimation, we include the reciprocal
|η − η̂|/K̂. The unnormalized version of this criterion is also
considered by Fryzlewicz (2014).

Here, we focus on the setting where one observation is avail-
able per time point (nt = 1). Experiments for nt > 1 can
be found in the SM. We consider three test signals and four
error distributions. The first signal f t is called BLOCKS (K =
11,T = 2048), a standard benchmark for change point detection
procedures (e.g., used by Fryzlewicz 2014), the second test signal
is calledTEETH (K = 4,T = 140), the third signal is called FMS
(K = 6,T = 497), used Fryzlewicz (2014) and Fearnhead and
Rigaill (2018) is characterized by some very narrow spacing and
varying intensity. We consider four distributions for the error
terms: Gaussian, Laplace, Student’s t, and amixture of Gaussians
(to mimic the presence of outliers one of the two components
has a larger variance). Change point locations of the test signals
and the parameters of the error terms are fully specified in the
SM. For each combination (ft , εt), we sample 100 datasets and
report the average value for each criterion considered. Figure 1
plots examples of datasets sampled for each scenario, along with
the true test signals in red.

https://github.com/lorenzocapp/solocp_experiments
https://github.com/lorenzocapp/solocp_experiments
https://github.com/lorenzocapp/solocp
https://github.com/lorenzocapp/solocp
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Figure 1. Examples of datasets for the 12 scenarios considered and true test signals. First row panels depict sample datasets alongwith the BLOCKS test signal (red), second
row panels sample datasets along with the TEETH test signal (red), third row panels sample datasets along with the FMS test signal (red). Columns depict different noise
models.

We consider the solo.cp algorithm with τ 20,T = T−1, τ 21,T =
T. For the basad.cp algorithm, we employ the default choices
of the parameters given by Narisetty and He (2014): τ 20,T =
σ̂ 2(10T)−1, τ 21,T = σ̂ 2 logT. For both solo.cp and basad.cp,
we use q = 0.1, and � = 2, that is, we are preventing the
algorithm from detecting consecutive change points. Pelt also
has the minimum spacing parameter �, which we set equal to
two aswell. The parameters τ 20,T , τ 21,T are set following the results
of Section 3. The theory in this article does not provide guidance
on the choice of � and q. We study the robustness of the solo.cp
algorithm to these parameters’ choices in the SM.

The procedures basad.cp, solo.cp, and ebpiece have σ̂ as an
input. Here, we computed it from the residuals of the fused
LASSO (Tibshirani et al. 2005; implemented in the genlasso
R package available on CRAN). We input the same σ̂ in pelt
and smuce for a fair comparison. In the BLOCKS signal datasets,
we initialize the ebpieceMCMC from the estimates of the fused
LASSO (“one standard deviation rule”), otherwise it is not pos-
sible to achieve convergence in a reasonable time. This can be
seen by the very poor performance of the method which can be
due to the fact that the chains “get stucked” into local modes.

Tables 1 summarizes |̂η−η|/K, |η−η̂|/K̂, K−K̂, K̂, d(Ĉ, C∗),
and the mean computing time for the four scenarios considered

for the BLOCKS test signals, Table 2 for the TEETH test signals,
and Table 3 for the FMS test signals. The basad.cpmethod is not
included in Tables 1 and 3 because it was not computationally
feasible to approximate the posterior distributions with MCMC
in these datasets.

The procedures wbs, smuce, and pelt achieve the best overall
performance according to |η−η̂|/K̂, suggesting that they recover
very well C∗; their performance under Gaussian noise scenarios
is excellent. The criteria |η − η̂|/K̂, d(Ĉ, C), and K − K̂ suggest
that wbs and smuce tend to overestimate the number of change
points. The problem is extremely severe in the presence of
outliers and with Student’s t-distributed errors. pelt is the fastest
method and the best performing one in the FMS scenario.

ebpiece recovers well K̂ in the BLOCKS andTEETH scenarios
but it does not seem to recover well the exact locations of the
change points (|̂η − η|/K and |η − η̂|/K̂). It underestimates the
number of change points in the FMS scenario. In the BLOCKS
signals, theMCMCchain converges only when the fused LASSO
is used as initialization. Essentially, we are starting the chain
where we would want the posterior samples to concentrate. If we
use the default initialization of the chain used in (Liu, Martin,
and Shen 2017), the MCMC chain fails to converge within 30
min (computing time between brackets in Table 1).
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Table 1. Hausdorff distance, empirical distributions, and estimation bias in K of the procedures considered for the BLOCKS test signals.

|̂η − η|/̂K |η − η̂|/̂K
Noise Method 0 1 2 ≥ 3 0 1 2 ≥ 3 K − K̂ d(Ĉ,C∗) time

Mixt. Gaussians ebpiece 0.12 0.1 0.07 0.71 0.15 0.12 0.08 0.64 −1.67 228.15 72.23 (1457.72)
pelt 0.48 0.21 0.1 0.21 0.37 0.16 0.08 0.39 3.97 147.67 0
smuce 0.38 0.16 0.07 0.39 0.16 0.07 0.03 0.73 15.73 301.44 0.02
solo.cp 0.4 0.15 0.06 0.38 0.44 0.17 0.07 0.32 −0.77 116.28 0.45
wbs 0.5 0.2 0.1 0.2 0.21 0.09 0.05 0.65 17.62 289.08 0.11

Gaussian ebpiece 0.22 0.13 0.09 0.56 0.17 0.12 0.09 0.62 3.09 170.13 78.66 (1484.33)
pelt 0.59 0.21 0.09 0.1 0.6 0.22 0.09 0.09 −0.02 12.24 0
smuce 0.55 0.19 0.08 0.18 0.6 0.21 0.09 0.1 −0.93 44.12 0.02
solo.cp 0.51 0.19 0.07 0.24 0.48 0.18 0.07 0.28 0.82 89.79 0.43
wbs 0.57 0.21 0.1 0.12 0.57 0.21 0.1 0.12 0 17.22 0.11

Laplace ebpiece 0.12 0.08 0.05 0.75 0.13 0.11 0.07 0.7 −1.38 264.18 85.95 (1648.14)
pelt 0.43 0.2 0.1 0.27 0.42 0.19 0.1 0.28 0.35 69.73 0
smuce 0.36 0.17 0.08 0.39 0.33 0.15 0.07 0.45 1.41 180.96 0.02
solo.cp 0.35 0.14 0.06 0.46 0.38 0.16 0.06 0.4 −0.79 114.72 0.43
wbs 0.42 0.19 0.09 0.3 0.39 0.18 0.09 0.34 1.17 124.53 0.1

Student’s t ebpiece 0.11 0.08 0.04 0.77 0.15 0.11 0.07 0.67 −2.91 277.52 77.74 (1537.1)
pelt 0.46 0.21 0.09 0.24 0.38 0.18 0.08 0.37 2.62 141.76 0
smuce 0.37 0.17 0.08 0.38 0.25 0.11 0.06 0.58 6.11 255.3 0.02
solo.cp 0.36 0.15 0.06 0.44 0.4 0.17 0.07 0.36 −0.95 113.22 0.43
wbs 0.44 0.2 0.1 0.26 0.3 0.14 0.07 0.49 6.21 215.14 0.1

Average statistics computed over 100 simulations for solo.cp, ebpiece (Liu, Martin, and Shen 2017), smuce (Frick, Munk, and Sieling 2014), wbs (Fryzlewicz 2014), and pelt
(Killick, Fearnhead, and Eckley 2012). For |̂η − η|/K and |η − η̂|/̂K the higher the number in the zero column the better. Conversely, for d(Ĉ,C∗) the lower the better. For
K − K̂ , the closer to the zero the better. We report in bold the methods with best empirical performance and those within 10% of the best. The method basad.cp is not
included since it required a computing time longer than 2 hr. We include between brackets the computing time for ebpiece if initialized with the in-built procedure (see text
for a discussion). Average time is reported in seconds.

Table 2. Hausdorff distance, empirical distributions, and estimation bias in K of the procedures considered for the TEETH test signals.

|̂η − η|/̂K |η − η̂|/̂K
Noise Method 0 1 2 ≥ 3 0 1 2 ≥ 3 K − K̂ d(Ĉ,C∗) time

Mixt. Gaussian ebpiece 0.27 0.16 0.11 1.13 0.28 0.18 0.12 1.09 −0.91 18.03 12.13
pelt 0.84 0.09 0.05 0.02 0.7 0.08 0.06 0.17 1.06 7.53 0
smuce 0.8 0.1 0.06 0.03 0.5 0.08 0.05 0.37 2.94 13.77 0.01
solo.cp 0.76 0.06 0.04 0.13 0.8 0.06 0.05 0.09 −0.12 17.36 0.01
wbs 0.88 0.08 0.04 0.01 0.42 0.06 0.04 0.48 5.79 15.14 0.04

basad.cp 0.73 0.09 0.05 0.13 0.75 0.09 0.05 0.11 −0.03 16.68 55.82
Gaussian ebpiece 0.48 0.31 0.12 0.1 0.47 0.3 0.13 0.11 0.32 4.59 12.24

pelt 0.95 0.04 0.01 0 0.87 0.04 0.01 0.08 0.92 3.34 0
smuce 0.96 0.04 0 0 0.95 0.04 0 0 0.02 0.53 0.01
solo.cp 0.94 0.04 0.01 0.01 0.9 0.03 0.01 0.06 0.31 3.41 0.01
wbs 0.96 0.04 0 0 0.93 0.04 0 0.03 0.17 1.5 0.04

basad.cp 0.86 0.09 0.01 0.04 0.86 0.09 0.01 0.04 0.01 4.38 67.99
Laplace ebpiece 0.3 0.13 0.09 1.12 0.31 0.17 0.1 1.05 −0.78 23.03 9.66

pelt 0.78 0.14 0.04 0.04 0.69 0.12 0.05 0.14 0.73 6.55 0
smuce 0.76 0.14 0.04 0.05 0.69 0.13 0.04 0.13 0.56 6.67 0.01
solo.cp 0.67 0.11 0.02 0.19 0.76 0.13 0.03 0.07 −0.45 20.48 0.01
wbs 0.77 0.14 0.04 0.04 0.66 0.13 0.04 0.17 1.05 7.79 0.03

basad.cp 0.65 0.13 0.04 0.18 0.74 0.15 0.04 0.07 -0.44 18.66 51.71
Student’s t ebpiece 0.31 0.16 0.07 1.17 0.31 0.18 0.08 1.13 −0.85 17.53 11.69

pelt 0.81 0.12 0.04 0.03 0.66 0.1 0.05 0.19 1.14 8.07 0
smuce 0.8 0.13 0.04 0.03 0.6 0.1 0.05 0.26 1.81 9.98 0.01
solo.cp 0.73 0.09 0.03 0.15 0.78 0.09 0.04 0.09 −0.21 15.56 0.01
wbs 0.83 0.12 0.04 0.01 0.55 0.09 0.04 0.32 2.97 10.98 0.04

basad.cp 0.69 0.12 0.04 0.15 0.7 0.13 0.04 0.13 -0.06 15.5 52.98

Average statistics computed over 100 simulations for solo.cp, basad.cp, ebpiece (Liu, Martin, and Shen 2017), smuce (Frick, Munk, and Sieling 2014), wbs (Fryzlewicz 2014),
and pelt (Killick, Fearnhead, and Eckley 2012). For |̂η−η|/K and |η− η̂|/̂K the higher the number in the zero column the better. Conversely, for d(Ĉ,C∗) the lower the better.
For K − K̂ , the closer to the zero the better. We report in bold the methods with best empirical performance and those within 10% of the best. Average time is reported in
seconds.

solo.cp performs well in all scenarios, being consistently the
best Bayesian method. It is not as accurate as the frequentist
methods in recovering the exact location of the change points
(|̂η − η|/K). In particular in the BLOCKS and FMS scenarios,
the reason seems to be that solo.cp underestimates K. On the
other hand, it is the fastest Bayesianmethod and the algorithm is
extremely robust to themisspecification of the error terms, being
consistently among the best in terms of |η − η̂|/K̂ and d(Ĉ, C∗).

In these TEETH scenarios, computation times are comparable
to the state-of-the-art frequentist methods. The results of solo.cp
are very robust to the choices of q and �; see SM.

Like ebpiece, solo.cp underestimates the number of change
points in the FMS scenario across error distributions. In the FMS
scenario, the high values of d(Ĉ, C∗) andK−K̂ are due to the fact
that both ebpiece and solo.cp do not detect the first change point,
the onewith the smallestmagnitude. This effectmay be linked to
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Table 3. Hausdorff distance, empirical distributions, and estimation bias in K of the procedures considered for the FMS test signals.

|̂η − η|/̂K |η − η̂|/̂K
Noise Method 0 1 2 ≥ 3 0 1 2 ≥ 3 K − K̂ d(Ĉ,C∗) time

Mixt. Gaussians ebpiece 0.1 0.07 0.05 1.34 0.25 0.16 0.13 1.01 −3.77 95.78 18.12
pelt 0.59 0.14 0.07 0.22 0.47 0.11 0.06 0.37 1.88 71.33 0
smuce 0.41 0.14 0.06 0.4 0.25 0.08 0.05 0.62 4.42 118.72 0.08
solo.cp 0.36 0.06 0.03 0.56 0.74 0.12 0.05 0.09 −3.05 93.87 0.05
wbs 0.57 0.14 0.06 0.23 0.29 0.07 0.04 0.6 7.22 117.14 0.04

Gaussian ebpiece 0.22 0.09 0.06 0.68 0.38 0.17 0.12 0.37 −2.25 88.62 20.15
pelt 0.68 0.13 0.06 0.12 0.68 0.13 0.06 0.13 0.06 16.45 0
smuce 0.52 0.12 0.07 0.29 0.59 0.13 0.08 0.2 −0.71 17.86 0.08
solo.cp 0.52 0.08 0.03 0.38 0.81 0.11 0.04 0.05 −2.04 86.99 0.05
wbs 0.68 0.13 0.07 0.12 0.68 0.13 0.07 0.12 0.01 14.3 0.04

Laplace ebpiece 0.23 0.15 0.06 0.56 0.32 0.24 0.12 0.32 −1.58 75.25 19.94
pelt 0.76 0.11 0.05 0.08 0.7 0.1 0.05 0.15 0.68 28.63 0
smuce 0.75 0.11 0.05 0.09 0.63 0.09 0.04 0.23 1.48 59.13 0.09
solo.cp 0.6 0.1 0.02 0.29 0.8 0.13 0.02 0.05 −1.45 85.08 0.04
wbs 0.76 0.1 0.04 0.09 0.65 0.09 0.04 0.22 1.38 43.43 0.04

Student’s t ebpiece 0.23 0.17 0.06 0.53 0.35 0.25 0.1 0.3 −1.49 75.79 19.08
pelt 0.76 0.12 0.05 0.08 0.7 0.11 0.04 0.14 0.56 23.07 0
smuce 0.72 0.13 0.04 0.12 0.62 0.11 0.03 0.24 1.26 47.9 0.08
solo.cp 0.6 0.11 0.02 0.28 0.79 0.14 0.02 0.06 −1.36 87.35 0.05
wbs 0.72 0.13 0.05 0.1 0.59 0.11 0.04 0.25 1.71 42.8 0.04

Average statistics computed over 100 simulations for solo.cp, ebpiece (Liu, Martin, and Shen 2017), smuce (Frick, Munk, and Sieling 2014), wbs (Fryzlewicz 2014), and pelt
(Killick, Fearnhead, and Eckley 2012). For |̂η − η|/K and |η − η̂|/̂K the higher the number in the zero column the better. Conversely, for d(Ĉ,C∗) the lower the better. For
K − K̂ , the closer to the zero the better. We report in bold the methods with best empirical performance and those within 10% of the best. Average time is reported in
seconds.

the better robustness to outliers of the two methodologies. Very
small effects are shared among multiple random means, which
are integrated out, hence, even more challenging to detect. In
this scenario, solo.cp outperforms ebpiece and its performance is
comparable to smuce in terms of |̂η − η|/K.

basad.cp achieves a performance comparable to solo.cp in the
TEETH scenarios. This is expected given that both methods are
based on the shrinking and diffusing priors of Narisetty and
He (2014). A similar performance is achieved at a much higher
computational cost.

In Section 2, we attributed the robustness of solo.cp and
basad.cp to their peculiar construction that involves multiple
random increments and shrinkage estimators. A competing
hypothesis is that the spike prior on a candidate change point
is more flexible than a sharp l0 penalty, allowing for small
fluctuations in the signal. This would not be desirable because,
under the default spike prior hyperparameter τ 20,T = T−1, the
spike prior would degenerate into a point mass at 0, that is,
allowing for no fluctuations. We investigate this hypothesis
repeating the analysis for the BLOCKS signals for a range
of prior hyperparameters τ 20,T(T−1,T−2,T−3,T−4) (Table S4,
supplementary material). Results are robust to a varying τ 20,T ,
essentially ruling out this hypothesis. Another hypothesis is
that the robustness is due to the postprocessing (steps 3 and
4 in Algorithm 1). We similarly repeat the BLOCKS signals
simulation study for � = 1 (Table S2 SM). We observe a small
increase in the number of false positives, leaving solo.cp as the
most accurate method in the misspecified scenarios. We stress
that the effect of the post processing is minimal: the results
presented in the section were obtained with � = 2, which
simply prevents consecutive change points from being detected.
Most of the methodologies included here have such a minimum
spacing constraint.

5. Applications

We analyze two real datasets (aCGH and Ion channel data)
to compare solo.cp to alternative methodologies built under
the same assumptions (Gaussian iid noise, piecewise constant
mean). In particular, we compare solo.cp to wbs. We will
acknowledge the limitations of our analyses and possible
solutions at the end of each subsection.

5.1. Array Comparative Genomic Hybridization (aCGH)
Data

Genomic alternations happen in the development of tumors.
Studying these alternations, for example determining the copy-
number variations, is important for understanding cancer
and also used for its diagnosis. Array Comparative Genomic
Hybridization (aCGH) is a popular method that generates this
type of data (Schena et al. 1995). We analyze an aCGH dataset
of individuals with a bladder tumor collected by Stransky et al.
(2006). The dataset is publicly available in the R package ecp
(James and Matteson 2014), and includes 43 individuals and
2215 locations. The goal of the analysis is to detect changes in the
copy-number. The underlying assumption is that alternations
are constant within a segment. Segments involved in the tumor
should be equally affected across patients.

While we could repeat the analysis for all the patients, we
include only two in this manuscript for parsimony. The number
of samples is approximately identical to the BLOCKS test signal,
hence we use the same parameters for solo.cp (τ 20,T =T−1,
τ 21,T =T, τ 2T =T−1/2, q= 0.1, �= 5) and σ̂ 2 equal to the
variance of the residuals of the fused LASSO (tuning parameter
chosen by one-standard-error rule). We compare the results of
solo.cp with wbs (default implementation). The left column of
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Figure 2. aCGH data. Copy number variations of patients having a bladder tumor recorded at n = 2215 sites by Stransky et al. (2006). First row depicts the observations for
Patient 3, second row depicts the observations for Patient 7. First column includes the change points estimated by solo.cp (red), second column the ones estimated bywbs
(blue).

Figure 2 depicts the estimates of the solo.cp change points, the
right column depicts the one obtained with wbs. The two rows
refer to the two different patients.

Both methods seem to recover more change points than the
number of blocks identified through a visual inspection of the
data. There are a few points where the change point corresponds
to a single observation, not an entire segment along the genome.
We would need further research to determine if these points can
be classified as outliers. However, solo.cp appears more parsimo-
nious: K̂ = 19 for Patient 3 and K̂ = 13 for Patient 7, while wbs
estimates K̂ = 49 for Patient 3 and K̂ = 36 for Patient 7. The
results are consistent with what we observed in the simulation
section. We also note that both methods ignore autocorrelation.
Sequences may exhibit some serial dependence because nearby
genomic segments are known to be associated. The autocorrela-
tion in the noise process could lead to overestimation. Recently,
methods robust to this serial dependence has been proposed
(Cho and Fryzlewicz 2020; Romano et al. 2021). The method
of Cho and Fryzlewicz (2020) returns K̂ = 14 for Patient 3 and
K̂ = 2 for Patient 7.

5.2. Ion Channels Data

Ion channels are a class of proteins expressed by all cells that
create pathways for ions (charged particles) to pass through the
otherwise impermeable cell membrane. The opening of these
pathways is essential for cell operations in the nervous system, in
themuscles, and in the pancreas. The study of ion channels plays
a fundamental role in the development of new drugs (Alexander,
Mathie, and Peters 2008). The patch clamp technique is an elec-
trophysiological tool for understanding ion channel behavior. It
is used to measure ionic currents from single living cells or tis-
sues (Neher and Sakmann 1995). Electrophysiologists use glass
microelectrodes to gain access to cells expressing ion channels.
Through the microelectrode, a voltage is applied, forming a
voltage clamp, and the current passing across the cell membrane
through the ion channels is measured.

We consider a dataset produced by the Steinem Lab (Institute
of Organic and Biomolecular Chemistry, University of Göttin-
gen), recently analyzed by Vanegas, Behr, and Munk (2022),
measuring a single ion channel of the bacterial porin PorB, a
bacterium that plays a role in the pathogenicity of Neisseria
gonorrhoeae. The experiment design includes a technique that
induces local dependencies of the error terms (Pein, Sieling, and
Munk 2017). To remove these dependencies, we follow the same
approach of Vanegas, Behr, and Munk (2022), subsampling
every 11th observation. The original dataset includes 600,000
time instances. We analyze a portion of the dataset of length
32,511. After subsampling, the dataset is composed of 2956 time
points. Figure 3 depicts the dataset.

Figure 3 suggests that the noise variance when the channels
are open is much higher than when they are closed. This feature
of ion channel data is known as open channel noise (Neher
and Sakmann 1995). The methods studied in this article, and
considered in Section 4, do not assume error heterogeneity. The
first column of Figure 3 depicts a naive application of solo.cp
(τ 20,T = T−1, τ 21,T = T, τ 2T = T−1/2, q = 0.1,� = 5) and
wbswhere we estimate a single global variance ignoring variance
heterogeneity. This leads to overestimation on the change points.

The second column depicts an attempt to account for the
heteroscedasticity due to the open channel noise phenomena.We
estimate the sample variance when the ion channels are open
(we approximate it considering the observations above 0.2). We
input to both methods this sample variance and reestimate the
change points (for solo.cp same parameters as before; forwbs, we
set θ0 set to 3). Now, K̂ is 12 for both methods and the locations
of the change points seem reasonable by visual inspection. A few
isolated points are not detected as change points (approximately
around 1100 and 2900). We note though that the result of wbs
largely depends on other tuning parameters (e.g θ0), while the
estimates of solo.cp are very robust to the choices of all the
parameters that are not σ̂ 2.

There are methods in the literature that are robust to het-
erogeneous variance (Killick and Eckley 2014; Pein, Sieling,
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Figure 3. Ion data. Ion channel data recorded at the Steinem lab (Insitute of Organic and Biomolecular Chemistry, University of Göttingen) at n = 2956 time instances. First
row depicts the change points estimated through solo.cp, second row depicts the change points estimated through wbs. Estimates in the first column are obtained using
“default” estimates of the sample standard deviation, which means the standard deviation of the residuals obtained from the fused LASSO (one standard error rule) for
solo.cp, and the median absolute deviation estimates for wbs. Estimates in the second column are obtained using the sample standard deviation of observations taking
values larger than 0.2 (to approximate when ion channels are open).

and Munk 2017). These can be directly deployed and do not
require the extra step of understanding how to estimate the
input variance. An application of HSMUCE (Pein, Sieling, and
Munk 2017) to this dataset gives K̂ equal to 25. Further study
and domain knowledge is required to determine whether extra
change points are justified.

6. Discussion

We studied spike-and-slab priors for change point detection
leveraging recent results in the variable selection literature. We
chose to work with a prior having both the spike-and-slab
component defined by Gaussian distributions and sample size-
dependent hyperparameters. We established that an estimator
based on this prior distribution is consistent and achieves opti-
mal localization rates of multiple change points. Furthermore,
the use of this prior allowed us to propose a fast Bayesian change
point estimator based on a slightlymisspecifiedmodel. A version
of the fast estimator achieves the optimal rate in the single
change point problem. In simulations, its empirical accuracy is
comparable to state-of-the-art benchmarks. Its salient features
are being one of the fastest Bayesian methods available (no
MCMC required) and being robust to misspecification of the
error model in numerical experiments. The latter property is
somewhat surprising, given that we only considered Gaussian
noise in the method development and in the theory. We showed
these features in simulation studies, displaying situations where
our estimator performs well while many competing methods
severely overestimate the number of change points.

There is a rich literature on change point detection for
settings more general than the one considered in this article.
Nevertheless, our results are promising and suggest that it is
worth investigating the use of spike-and-slab priors in change

point detection for more general settings, such as settings with
unknown variance, heterogeneous errors, and different types of
dependence.

The first area of future work is to further improve the com-
putational performance of the solo.cp algorithm. The main bot-
tleneck of the algorithm is the computation of the parameters
in (9). The computing time of solo.cp is comparable to those of
frequentist estimators for small sample sizes up to thousands of
observations. A possible strategy to tackle the large T scenario
is to design a more efficient (possibly approximate) version of
solo.cp that provides a preliminary data partition, then apply
the regular algorithm to the different chunks. For larger sample
sizes, we expect numerical and memory issues to arise, such
as floating point collapse and lack of memory to compute all
quantities necessary for the procedure.

The second area of research is the detection of higher-order
changes, such as in piecewise-linear signals. A version of the
solo.cp algorithm for piecewise-linear change point detection is
readily available (as well as higher-order changes). However, our
preliminary results suggest that a vanilla version of this estimator
does not work well in this setting. Liu, Martin, and Shen (2017)
suggest that a possible explanation is that one cannot fix the prior
means at zero in this setting.

Supplementary Materials

The supplementary material file contains the following sections:

(S1) Localization rate of the fast Bayesian estimator in single change point
setting;

(S2) Simulations with nt > 1;
(S3) Extension of solo.cp to the case nt > 1;
(S4) Notation for proofs;
(S5) Auxiliary lemmas for proof of Theorem 1;
(S6) Proof of Theorem 1;
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(S7) Proof of Theorem S1;
(S8) Details of the simulation scenarios and the implementations;
(S9) Sensitivity of solo.cp to the choices of �, q and τ 20,T .
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