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We investigate sequential change point estimation and detection in Received 21 October 2022
univariate nonparametric settings, where a stream of independent Revised 7 September 2023
observations from sub-Gaussian distributions with a common vari-  Accepted 17 October 2023
ance factor and piecewise-constant but otherwise unknown means
are collected. We develop a simple CUSUM-based methodology that Online ch .

e nline change point
provably control the probability of false alarms or the average run detection; cumulative sum
length while minimizing, in a minimax sense, the detection delay. statistics
We allow for all the model parameters to vary in order to capture a
broad range of levels of statistical hardness for the problem at hand.

We further show how our methodology is applicable to the case in
which multiple change points are to be estimated sequentially.

KEYWORDS

1. INTRODUCTION

We investigate what may arguably be regarded as one of the most basic nonparametric
online change point settings, whereby a sequence of independent, univariate sub-
Gaussian random variables with known variance factor and unknown piecewise-con-
stant means are observed sequentially. We seek to determine in an online manner, that
is, each time we acquire a new observation, whether the data collected so far provide
sufficient evidence to conclude that the mean of the distribution has changed at the pre-
sent time or in the near past. The quality of any online procedure deployed for such a
task is characterized based on the type I error, that is, the probability of incorrectly
declaring that a change has taken place, and on the delay it incurs before correctly iden-
tifying a change point. Ideally, a good online procedure should guarantee a small false
alarm probability while suffering only a minimal detection delay. It should be intuitively
clear that these two features are at odds with each other: A procedure with a small
probability of false alarm is likely to react slowly to even relatively big changes in the
mean of the underlying distribution, thus producing a large detection delay. Vice versa,
a methodology that is very sensitive to fluctuations in the data is unlikely to reliably dis-
criminate between noise and signal and is thus prone to raising false alarms. In order to
characterize this tradeoff, we keep track explicitly of all the parameters affecting the
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difficulty of the change point detection task, such as the sub-Gaussian variance factor,
the magnitude and time of the distributional change and the targeted type I error. Our
goal is to develop an online procedure that provably works under the most unfavorable
settings for which inference is just barely possible.

We begin by formalizing the problem with a general assumption used throughout.

Assumption 1.1. Assume that {X;,X5,...} is a sequence of independent random varia-
bles with unknown means E(X;) = f;,i = 1,2, ... and such that sup,_, , |[IXill,, <o

We recall that for a random variable X, its Orlicz-{/,-norm is defined as
X[y, = inf{t > 0: E{exp(X*/£*)} <2}.

At first, we consider the change point model for which the means of the observations
change after collecting A—an unknown number of observations, by an unknown
amount k, as described in the next assumption. Extension to models allowing for mul-
tiple change points will be discussed in Section 3.

Assumption 1.2. Assume that there exists a positive integer A > 1 such that
fim = fa A farr =farz =
In addition, let
K= |fa — fas1l-

We will write the probability of any event with respect to any distribution consistent
with Assumptions 1.1 and 1.2 as PA{-} and, similarly, we will use Ex{-} for the corre-
sponding expectation. With a slight abuse of notation, we describe the case in which
the observations have constant means by setting A = oo and will use the corresponding
notation Po{-} and E..{-}. With this notation, we remark that the change point is A +
1 and A is the sample size of the observations from the pre-change distribution.

Our main goal is to design an online procedure that is provably able to detect a change
point soon after time A and with a controlled false alarm probability, denoted throughout
as o.. In detail, an online change point detection procedure is an extended stopping time ¢
taking values in N U {oo} with respect to the natural filtration generated by the data. The
false alarm probability of an online change point procedure is given as

]P’A{? < A} forany A < oo and P, {f < oo} otherwise,
and the detection delay is the random variable
F-A),

which is only defined provided that A < co. We will develop procedures that guarantee
that (i) Poo1? < oo} < &, for a user-defined target false alarm probability o or EOO@ >
y for a user-defined average run length value y, and (ii) that, at the same time, for all
A < oo, (- A). is minimal.

The setting described in Assumptions 1.1 and 1.2 allows one to completely character-
ize the hardness of the problem—measured both by the false alarm probability and the
detection delay—as a function of the upper bound ¢ on the fluctuations, the target
probability of false alarm o, the pre-change sample size A and the jump size «.
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Intuitively, the difficulty of the change point detection task is increasing in ¢ and
decreasing in A, o and x. To formally capture this important aspect of the problem, we
implicitly assume a sequence of change point models with respect to which the data
may have originated. Accordingly, the parameters defining the statistical task at hand,
namely the quadruple (A, q, 0'2,K>, are not fixed but should be instead viewed as
sequences, expressing a spectrum of levels of difficulty of the problem we are inter-
ested in.
We make the following contributions:

e We develop a CUSUM-based procedure with a false alarm probability control,
yielding a detection delay of order

a*k % log (A/o) (1.1)
with probability at least 1 — o, for all A < oo satisfying the signal-to-noise ratio condition
Ax*o*=log (A/w). (1.2)

Interestingly, the above expression matches exactly the signal-to-noise ratio quantity
for the offline version of the same change point detection problem, as demonstrated for
example in Wang, Yu, and Rinaldo (2020). We elaborate further on this connection
later on in Section 4.2.

e  We show that a straightforward modification of our procedure guarantees that,
for any target average run length y > A, E,,(f) > 7 and, at the same time, with
probability 1 —y~! the detection delay is of order o’k 2log(y), for all A<y
such that Ax?6~%>log ().

e We construct lower bounds indicating that the magnitude of the detection delay
(1.1) is minimax rate-optimal whenever the signal-to-noise ratio condition (1.2)
is in effect.

e We generalize our procedure to the case of multiple change points and show
that, in this setting, the signal-to-noise condition (1.2) is in fact necessary for
online change point localization.

e  We discuss variants of our methodology that incur smaller computational costs.
Chen, Wang, and Samworth (2020) mentioned that the computational cost of an
online procedure should be of linear order of the number of time points. We
would like to emphasize that this claim holds when both the before and after
change point distributions are exactly known, which is essentially the situation
discussed in Chen, Atev, and Lerman (2009). On the contrary, in our paper, we
deal with sub-Gaussian distributions with unknown means. In this situation, we
are not aware of nor expect to see any theoretically justified methods with linear
order computational costs.

The paper is organized as follows. Section 1.1 provides a review of related work on
online and offline change point detection. The main algorithms are then presented in
Section 2. In particular, Section 2.1 contains the theoretical guarantees of the main algo-
rithm, Section 2.2 discusses the variants, and some practical implementation aspects are
investigated in Section 2.3. Extensions to multiple change points settings are the subject
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of Section 3. Section 4 then provides a lower bound on the detection delay which shows
that our algorithm is nearly optimal. The paper concludes with a discussion in
Section 6. All the proofs are deferred to the Appendices.

1.1. Relevant literature

Wald (1945), as a prelude of the sequential analysis, kicked off the statistical research
on online change point detection problems. A famous extension of Wald (1945) is the
CUSUM statistic proposed in Page (1954). The optimality of Wald (1945) and Page
(1954) was, to the best of our knowledge, studied first in Lorden (1971), which showed
that among all the estimators which have average run lengths lower bounded by 7, the
optimal detection delay rate is of order log(y)/KL(Fy,F;), as y — oo, where KL(-,-) is
the Kullback-Leiber divergence. Moustakides (1986) and Ritov (1990) reiterated this
minimax result and showed that in the optimality framework studied in Lorden (1971),
the CUSUM statistic is optimal. Similar results have also been derived in the same
framework using a change-of-measure argument under more general assumptions in Lai
(1981), Lai (1998), and Lai (2001), among others. In almost all of the second half of the
20th century, the research on online change point detection focused on optimizing the
expected delay time. The motivations back then were mainly from the manufactory sec-
tor, with quality control as the center applications. The data studied were mainly uni-
variate sequences, and the results were almost all asymptotic. We refer readers to Lai
(1995, 2001) for comprehensive reviews.

Before proceeding, we would like to emphasize that there is a fundamental difference
between the optimality results derived in the aforementioned work and the ones devel-
oped by us in Section 4. In short, when considering the minimax lower bounds, the
previous work only allows the change point location to vary and the optimality is
derived in an asymptotic sense, by letting the lower bound of the average run length
diverge. In this paper, we let all model parameters vary with the location of the change
point when deriving the minimax lower bounds and allow for fixed sample arguments.

The second act of online change point research was kicked off by Chu, Stinchcombe,
and White (1996), who formally stated the existence of “noncontamination” data that
one has a training data set of size m, that is, X; ~ Fy,i = 1,...,m. The theoretical results
built upon the above assumption are asymptotic in the sense that one lets m grow
unbounded. One can control the type I error with this noncontamination condition.
Since Chu, Stinchcombe, and White (1996), a large number of papers have been pro-
duced in this line of work, including univariate mean change (e.g., Aue and Horvath
2004; Kirch 2008), linear regression coefficients change (e.g., Aue, Horvath, and
Reimherr 2009; Huskovd and Kirch 2012), multivariate mean and/or variance change
(e.g., Mei 2010), univariate nonparametric change (e.g., Huskova, Kirch, and Meintanis
2010; Hlavka et al. 2016; Desobry, Davy, and Doncarli 2005), and Bayesian online
change point detection (e.g., Fearnhead and Liu 2007), to name but a few. More recent
work includes He et al. (2018), which studied the sequential change point detection in a
sequence of random graphs. Kirch and Weber (2018) used estimating equations as a
unified framework to include the location shift, linear regression, and autoregressive
online change point detection. Kurt, Yilmaz, and Wang (2018) converted different high-
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dimensional and/or nonparametric data to a univariate statistic and used geometric
entropy minimization methods to define an acceptance region. Chen (2019) constructed
similarity measures via K-nearest neighbor estimators and then proposed a counting-
based statistic to conduct sequential change point detection. Dette and Gosmann (2020)
proposed a general framework for sequential change point detection case and obtained
a limiting distribution of the proposed statistics. The framework can be used to handle
high-dimensional and nonparametric cases. Gosmann, Kley, and Dette (2019) exploited
a likelihood ratio based method and shared similar core techniques with Dette and
Gosmann (2020). Keshavarz, Michailidis, and Atchade (2018) considered online change
point detection in a sequence of Gaussian graph models and obtained asymptotic type I
and II error controls. Chen, Wang, and Samworth (2020) considered online change
point detection in a sequence of Gaussian random vectors where the mean changes
over time. Comprehensive monographs and survey papers include Siegmund (2013),
Tartakovsky, Nikiforov, and Basseville (2014), and Namoano et al. (2019).

We would like to mention Maillard (2019). This paper is the most relevant paper to
ours, to the best of our knowledge, and has heavily inspired our paper. Maillard (2019)
studied a univariate online mean change point detection problem and deployed the
Laplace transform to control the probabilities of the events, on which the fluctuations
are contained within desirable ranges, although the arguments thereof remain doubtful.
Given the large probability events established based on the Laplace transforms, type I
error controls and large probability detection delays were studied. A claim on the phase
transition and robust analysis under multiple change points scenario were also available
in Maillard (2019). There are a number of differences between this paper and Maillard
(2019): (i) Instead of using the Laplace transform to establish large probability events,
we summon the concentration inequalities for sub-Gaussian random variables, the
union bound results, and the peeling arguments. It was pointed out in the Discussion
in Maillard (2019), other more advanced tools including the peeling arguments may
improve the results by changing logarithmic terms to iterative logarithmic terms. We
are, however, skeptical about the feasibility of such claim. (ii) In addition to the type I
errors, which are available in Maillard (2019), we also provide average run length results
and a parallel set of results by setting a lower bound for the average run lengths. This is
a common practice in applications and is widely used in the existing literature (e.g., Lai
1981). (iii) Despite that Maillard (2019) has much more modern arguments than papers
in the 20th century, the results are presented in a more restrictive way. For instance,
the “phase transition” and “detectability” are presented as a property of the location of
the change point only. In this paper, we will exploit a signal-to-noise ratio, which is a
function of the jump size, the variance and the change point location jointly. This setup
enables further studies of high-dimensional data problems.

An important aspect of our problem that sets it aside from many of the contributions
in the area is the fact that our procedure is not sensitive to the values of the pre- and
post-change means, but only to their difference. Formally, we consider composite null
and alternative hypotheses for the pre- and post-change distributions, respectively. This
feature, combined with the nonparametric nature of our sub-Gaussianity assumption,
which is not enough to specify likelihood functions, poses additional and significant
challenges compared to the simpler case in which the pre- and post-change distributions
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are known. From a statistical standpoint, it prevents us from relying on likelihood-
ratio-type procedures, which are analytically simpler and have optimality properties.
Computationally, it requires us to reevaluate our test statistic over past observations,
adding to the computational burden and thus making the design of sequential proce-
dures challenging.

2. DETECTION DELAY AND TYPE | ERROR CONTROLS

We are going to consider a simple online procure, described in Algorithm 1, that keeps
track of the running maximum of the standard CUSUM statistics, formally defined
next, and declares that a change point has occurred as soon as its value exceeds a pre-
specified, time-dependent threshold. Later in the paper, we will discuss different variants
of this simple method, but they all share this basic core principle.

Definition 1 (CUSUM statistic). Given a sequence {X;},_, , ~C R and a pair of inte-
gers 1 <s < t, we define the CUSUM statistic and its population version as

(%) Sn- () 2

~

st —

I=1 I=s+1
and
1/2 s 1/2 _t
t—s s
Dgi =\ —— - ,
: ‘(r) Y-l 2/
respectively.

Algorithm 1. Online change point detection vis CUSUM statistics
INPUT:{X,},_,, CR{b,u=23..}CR.
t — 1,FLAG <0
while FLAG = 0 do
t—t+1;

t—1 R
s=1

end while
OUTPUT: .

Algorithm 1 scans through the data sequence using the CUSUM statistic and a
sequence of prespecified positive threshold values. For any time point ¢ > 2, as long as

there exists an integer s € [1,¢), such that the corresponding CUSUM statistic D,
exceeds the threshold b;, we decide that a change in mean has occurred prior to the
current time point t. Algorithm 1 is written in the way that it will never terminate if
there is no change point declared. In practice, Algorithm 1 is terminated based on a
stopping rule decided by the user and our theory accommodates this.

In the rest of this section, we will first focus on one version of the detection proced-
ure, providing its detection delay and type I error control in Section 2.1. We will then
discuss two other common alternative procedures, together with their performances and
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connections among all three procedures in Section 2.2. To conclude this section, we will
discuss some practical issues in Section 2.3.

2.1. Analysis of Algorithm 1

In this section, we analyze the performance of Algorithm 1. Here and in the rest of the
paper, we adopt a high-dimensional framework of reference, whereby we implicitly
assume a sequence of change point models with respect to which the data may have ori-
ginated. Accordingly, the parameters defining the statistical task at hand, namely the
pre-change sample size A when it is finite, the variance parameter g, the magnitude x
of the change and the false alarm probability o are not fixed but are instead allowed to
vary, in order to express a spectrum of levels of difficulty of the problem we are inter-
ested in. This is of course a convenient mathematical formalization and is not intended
to represent any real-life situation. Since our theoretical guarantees will be formulated
based on finite sample bounds, this formalism does not pose any issue.

We begin by specifying the signal-to-noise ratio condition that we will require in our
analysis.

Assumption 2.1. There exists a sufficiently large absolute constant Csyg > 0 such that
AKk*6™2 > Csnr log (A /o).

It is worth emphasizing that the above condition should be interpreted as a constraint
that is expected to be satisfied for all values of the parameters (A, %, K, o) simultan-
eously. For example, assume the type I error level o and the jump size parameter x to
be fixed. Then, the above condition will constrain how large the variance parameter a2
is allowed to be in relation to A and, vice versa, how small A can be with respect to o°.
We will refer to any relationship that holds among (A,0? k,), such as the one
expressed in Assumption 2.1, as a scaling.

In our main result, we show that using the CUSUM statistic and under the signal-to-
noise ratio condition in Assumption 2.1, Algorithm 1 is able to detect the change point
with a detection delay of order up to ¢’k *log (A/a), with probability at least 1 — o,
using time-varying thresholds of order ¢log'/?(t/a). This rate is minimax optimal, as
we show in Section 4.

Theorem 2.2. Consider the settings described in Assumption 1.1. Let o € (0,1) and t be
the stopping time returned by Algorithm 1 with inputs {X,},_, , —and {b;},_, ; , where

b =2alog3(t/q). (2.1)
If A = oo, then
Poo{t < oo} <. (2.2)
Under Assumption 1.2, we have
PA{T <A} <o, (2.3)
for any A > 1. If Assumptions 1.2 and 2.1 both hold, then
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—~ Zlog (A
IP’A{A<t§A+CdGOgK§m} >1-—u0, (2.4)

where C4 > 0 is an absolute constant with Cy < Csngr.

Remark 1. In relation to the procedure described in Lorden (1971), a direct conse-
quence of combining Theorem 2.2 above and Theorem 2 in Lorden (1971) is the fol-
lowing. For k€ {1,2,..,}, let fx be the output of applying Algorithm 1 to
{Xi, Xi1,...} and let t, = min{t; + k—1, k=1,2,...}. We have that the average run
length of 7, satisfies Fo(z,) > 1/o.

The proof of Theorem 2.2 is given in Section B. In our proofs, we have not optimized
the constants, which we conjecture can be made smaller through a more refined ana-
lysis. As for the tuning parameter b, used by the procedure, we have made the multi-
plicative constant 23/2 explicit, though any number larger than 2 can be used: See (18).
In practice, since usually the variance parameter ¢ is unknown, we recommend calibrat-
ing the values of b, via simulations, assuming the availability of data from a pre-change
distribution, as it is often the case in applications.

The guarantee (2.2) implies that, in the absence of any change points, the procedure
will continue indefinitely with probability at least 1 — . On the other hand, when a
change point does exist, as assumed in Assumption 1.2, the bound (2.3) guarantees that
the false alarm probability of our procedure is no larger than o, regardless of the actual
value of the change point. Additionally, under the scaling on the signal-to-noise ratio
given in Assumption 2.1, (2.4) provides a high-probability bound on the detection delay
of order 0?2 log (A/), which is increasing in ¢ and A and decreasing in « and . In
particular, combining (2.4) with Assumption 2.1, we can see that the smaller a—the tol-
erance on the type I error—is, the larger the required signal-to-noise ratio and the
detection delay are. As suggested by the minimax lower bound given below in
Proposition 4.1, our detection delay bound appears to be optimal. We refer readers to
Section 4 for a detailed discussion of the optimality of our results and their relation to
the existing literature. Finally, we remark the expression of detection delay bound is
nearly identical to the one of the localization error found by Wang, Yu, and Rinaldo
(2020) for the problem of estimating the change points in offline settings, which too is
nearly minimax rate-optimal. While this result may not be surprising, it is far from
obvious.

Theorem 2.2 could be equivalently stated using stopping times leading to a more
practical interpretation. Such formulation is better suited to accommodate real-life situa-
tions, where the experiment cannot continue indefinitely and is instead ultimately ter-
minated based on a predefined, possibly random, stopping rule. Specifically, the proof
of Theorem 2.2 also implies that, with probability at least 1 — o and uniformly over all
finite random times T, it holds that

o t>TifA=ocoorif T<A,
° A<?§A+Cd_6210g(A/a), ifT>A—|—CdazloigA/a),

K2
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Whenever T happens to be between A and A + Cyo°k 2log (A/x), then the proced-
ure is only guaranteed to not raise a false alarm with probability at least 1 — o, at any
time prior to and including A but may not be able to reach the correct decision that a
change point has occurred since there are not enough observations between A and T to
make such a determination.

The proof of Theorem 2.2, as well as of most of the results in the paper, relies in a
fundamental way on an auxiliary result given in Lemma A.1, which shows that, with
probability at least 1—o, the maximal CUSUM statistic process t¢&
{2,3,...} b—>max15$<tﬁs,t does not exceed the curved boundary of the form
t—232g/log (t)/o. The proof also shows that, for any fixed t > 2, the order of

max,<,D; is no larger than o/loglog(t/a) with probability at least 1—a.
Interestingly, the iterated logarithmic scaling does not appear to apply to the maximal
CUSUM process, but only to the CUSUM maximum at any fixed time t.

Theorem 2.2 shows that Algorithm 1 can detect the change point with probability at
least 1 — o, provided that

Ak*c* = log (A/w),
as required in Assumption 1.2. In fact, this condition is essentially necessary for our
procedure. More precisely, in our next result we show that if

Ax*c*<log (A/w), (2.5)

then, with probability at least 1 — o, Algorithm 1 will never terminate and therefore will
be unable to reliably detect a change point. That is, under the scaling (2.5), our proced-
ure only delivers type I error control but is virtually powerless. We conjecture that the
scaling in Assumption 1.2 is required by any online procedure in order to guarantee a
false alarm probability smaller than o and at the same time, non-trivial power (which in
our problem would correspond to a probability no smaller than 1 — « of terminating in
a finite time when there exists a change point).

Proposition 2.3. Fix an o € (0,1) and let Assumptions 1.1 and 1.2 hold. Assume in add-
ition that for any o € (0,1), there exists a positive constant csng > 0 such that

Ak*6™% < csnr log (A /o). (2.6)

Let t be the stopping time returned by Algorithm 1 with inputs {Xi}—1, . and
{01}y 5> where

b = Cyalog?(t/a), t>2,
with C, > 0 being sufficiently large. Then,

]P’A(? < 00) < a.

2.2. Variations of Algorithm 1

The framework for online change point detection we have analyzed so far is based on
controlling the false alarm probability o, and the magnitude of the detection delay of



SEQUENTIAL ANALYSIS (&) 447

our procedure depends on the choice of the target probability; see (2.4). An alternative
approach, considered in the literature and frequently adopted in practice, is to impose
the weaker requirement that, for a target value y > O,EOO@ > 7. That is, the expected
false detection time, or average run length, of an online procedure should be no smaller
than y when in fact there is no change point. In practical applications in which the pre-
change point distribution is known or can be estimated from historical data, online
procedures are often calibrated through simulations by choosing y according to this cri-
terion (e.g., Lorden 1971; Lai 2001).

Below we show how Algorithm 1 can be tuned to yield this type of false alarm con-
trol, as well as a high probability bound on the detection delay when there is in fact a
change point, where the magnitude of the detection delay scales logarithmically with 7.

Proposition 2.4. Consider the settings described in Assumption 1.1. Let y > 2 and t be
the stopping time returned by Algorithm 1 with inputs {X;},_, , —and {b;},_, 5 , where

b = Gyolog {2+ 1)} (27)
for an absolute constant C, > 0. If A = oo, then,
Ex(f) 2 7.
Under Assumption 1.2, if
9> A and Ax’6™% > Csnglog (7), (2.8)

where Csnr > 0 is an absolute constant, then
2

where C4 > 0 is an absolute constant.

The proof of Proposition 2.4 is in Appendix B. Just like with Theorem 2.2, it is
immediate to formulate a version of Proposition 2.4 that is based on stopping times.
For brevity, we refrain from providing details.

It is illustrative to compare the guarantees afforded by Theorem 2.2 and Proposition
2.4 when a change point exists. In this case, the signal-to-noise ratio condition defined
in Assumption 2.1 is replaced by the analogous conditions shown in (2.8), where it is
crucial that y is an upper bound on A. In terms of the upper bounds on the detection
delay, the difference is between log(y) and log(A/«). When 7 is of the same order as
A, then these two detection delay upper bounds differ by a factor log(1/x), which is of
constant order in the fixed confidence settings where o is held constant. In terms of the
values of the probability bounds, the difference is between y~!
gests that, as long as

and o. This further sug-

p=o”', p>A and 7y=A,

these two strategies are equivalent in terms of controlling the detection delay. This con-
nection has been studied before in a slightly different form, see e.g., Lai (1998).
In Proposition 2.4, if Assumption 1.2 holds but (2.8) does not, especially if y < A,

then we can only reach the conclusion that Ea(f) > 7, but no longer guarantee the



448 Y. YU ET AL.

control on the type I error or on the detection delay. This is because the values of the
threshold b,, defined in (2.7), is constant with respect to ¢ and only depends on 7.

In another variant of Algorithm 1 that is often used in practice, researchers may only
wish to control the false alarm probability over any interval of a prespecified length.
This strategy may be preferred for computational reasons, as the computational cost of
the procedure can be directly controlled by selecting an appropriate interval length,
especially when training can easily be done with historical data. Below, we provide a
parallel result to Theorem 2.2. To that effect, we require a new definition of the
CUSUM statistic in Definition 2 and slightly modify Algorithm 1, resulting in
Algorithm 2, whose computational cost is of order O(f), when proceeding to time
point ¢.

Definition 2. Given data {X;},_,, ~CR and a triplet of integers 1 <e<s<t, we
define the CUSUM statistic and its population counterpart as

~

t—s 12 &
Do = {(s—e)(t—e)} ZEZHXI_{(t—s t—e} ISZHXI
and
D:‘{L} S i Va6 =g Zﬁ,
(s—e)(t—e I=e+1 ls+1
respectively.

Algorithm 2. Online change point detection 2.
INPUT:{X,},_,, CR,w>2b,>0.
t — 1,FLAG <~ 0
while FLAG = 0 do
t—t+1;

FLAG =1 - Hs max{t—w+1,1} ﬂ{ﬁmaX{t—W»O}»S’f = bW};
end while
OUTPUT:t.

Proposition 2.5. Consider the settings described in Assumption 1.1. Let o € (0,1) and t
be the stopping time returned by Algorithm 2 with inputs {X;},_,, ,w>2 and

b, = 2'2clog'/?(2w? /o). Then, when A = oo,

supIP’oo(v <t< v+w) <.
v>1

If Assumptions 1.2 and 2.1 hold and
w > C,a*log 2w /o) ™2, (2.9)
with an absolute constant C,, > 0 then with an absolute constant C4 > 0,
]P’{G— A), > Cy0*log (2w2/oc)1<_2} < a.

The proof of Proposition 2.5 can be found in Appendix B. The strategy used in prov-
ing Proposition 2.5 can be seen as a mixture of the strategies used in Theorem 2.2 and
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Proposition 2.4: Instead of controlling the type I error over the whole time course, it is
enough to only control the type I error over intervals of length w. Comparing with
Proposition 2.4, the advantage here is that, if w < A, we will be able to provide a high-
probability bound on the detection delay. As for Theorem 2.2, the advantage here is the
same as that in Proposition 2.4, that it might be handier in tuning parameter selection,
while the price it pays is here that, when w < A, then there is no guarantee that 7 > A,
that is, preventing false alarms.

2.3. Practical and computational issues

In this section, we are to discuss two practical issues for the CUSUM statistics—based
online procedures discussed above.

The first issue is the choice of tuning parameters. In Algorithm 1, we need a
sequence of tuning parameters {b;}, whose theoretically justified value is
23261log /% (t/a); see (2.1). The quantity o is specified by the user, but the sub-Gaussian
parameter ¢ remains unknown. In some situations, the practitioner has access to inde-
pendent copies of data generated from a model with no change points. Then, one may
wish to set a limit of time, say T, and estimate the empirical type I errors over the time
course {1,...,T}, in order to tune the thresholds. In this sense, the first variant we
mentioned in Section 2.2 is handier. The tuning parameter can be chosen by setting the
average run length equal to a pre-specified 7.

The second practical issue is computational complexity. The CUSUM statistic given
in Definition 1 can be rewritten as

-t B2

Using this equivalent expression, for each time f, one can store all partial sums
{37, X;}'_, and the computational cost of Algorithm 1 is therefore of order O(t) but
the storage is also of order O(f). As an alternative, one may elect to recalculate the
CUSUM statistic every time, in which case there is no requirement on storage but the

computational cost increases to be of order O(#?).

To reduce the computational burden, a very simple strategy is to avoid calculating
the maximal values of the CUSUM statistics at all integer pairs 1 <s < t and instead
consider only pairs that are at a certain distance in time, say h >0, a prespecified par-
ameter picked by the user. The window width /4 can be regarded as the user’s maximal
tolerance on accuracy. More precisely, at each time ¢ > 2, instead of maximizing the
values of the CUSUM statistics over all integers s € [1,¢), one could just calculate

Dy_p,s, for

0.2

h=———— d t>h
k2 log (A) an ”
Then, in Algorithm 1, it would only be enough to check if Dy_p.; exceeds an appro-
priate threshold. The computational complexity of this alternative is of order O(¢) and
the storage cost is of order O(1). The caveat of this alternative is that one needs to
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carefully tune h, which is required to essentially have the same order of the magnitude

as the detection delay. To address this issue, we propose to compute D only over a
geometrically increasing sequence of values for A, a tuning strategy that will only incur
in an additional computational cost of order O{ log (t)} when proceeding to time point
t. The detailed procedure is given in Algorithm 3. As it turns out, this strategy is not
only computationally convenient, but it yields the same nearly optimal theoretical guar-
antees of Theorem 2.2, as shown next.

Algorithm 3. Online change point detection—varying h.
INPUT:{X,},_,, CR{b,u=12,..,} CR.
t— 1,FLAG <0
while FLAG = 0 do
t—t+1;
J — Llog(r)/log (2)};
j =0
while j <] and FLAG = 0 do
Jejt+ L
s5j—t—27h
FLAG — 1{135j,t > bt};
end while

end while
OUTPUT: t.

Corollary 2.6. Consider the settings described in Assumption 1.1. Let o € (0,1) and t be
the stopping time returned by Algorithm 3 with inputs {X,},_, , —and {b;},_, ; , where

by =22glog*(t/a), t>2.
If A = oo, then
IP’OO{? < oo} < o
Under Assumption 1.2, we have
IP’A{? < A} < a,
for any A > 1. If Assumtions 1.2 and 2.1 both hold, then

R 2og (A
P{A<t§A+CdL§N)}z1—a,
K

for all A > 1, where C;4 > 0 is an absolute constant satisfying Cy < Csnr.

3. MULTIPLE CHANGE POINTS

It is relatively straightforward to extend our methodology and analysis to deal with mul-
tiple change points. In this setting, the analyst still collects data sequentially and, with
each new data point, makes a decision as to whether there exists evidence supporting
the presence of a change point in the near past. But, unlike the single change point case



SEQUENTIAL ANALYSIS (&) 451

considered in the previous sections, the procedure is restarted each time a new change
point is declared, until the experiment is terminated. In order to accommodate for the
presence of multiple change points, we need a refined setup.

Assumption 3.1. Assume that there exists a collection of change points 1 =5, <, <
7, < ..., such that

S = =fp-1 = k€ N*,
where i # 1y, for each k € N*. Let

A = inf (1, —
klenN*(Vlk Mi-1)

and, for each k € N,
Kk = |k = Hip |-
Finally, set k = infyen- Kk, assumed to be strictly positive.

In Assumption 3.1, the minimal spacing between two consecutive change points A
and the minimal jump size x are natural generalizations of the analogous quantities
defined in Assumption 1.2 and indeed coincide with them when there is only one
change point.

Algorithm 4 is an immediate generalization of Algorithm 1 and amounts to repeat-
edly applying Algorithm 1 as soon as a new change point is found. Below we will dem-
onstrate that, under the signal-to-noise ratio condition described in Assumption 3.2,
given a prespecified confidence level o € (0,1), the input parameters {b,,u = 2,3,...}
of the algorithm can be chosen so that, with probability at least 1 — «,

the procedure will not declare any change point if in fact there is none;

if there are change points, then, for any stopping time T with respect to the nat-
ural filtration induced by the data, the procedure will not return any change
point if T <, and will estimate the sequence {n,...ngx}={L...T}N
{N} k=1, .. of true change points prior to T. Furthermore, in the former case,

the detection delays will be of order O{azxj_2 log(A/a)}, j=1,...K, with high

probability. It is worth noting that the number K will in general be random if
the stopping time T is not deterministic.

Algorithm 4. Online change point detection—multiple change points.
AXutuera . CRAbeuu=2,3,..,e=0,1,..,u=1} CR,C=10
INPUT: e« 0,t +— 1,FLAG < 0. ’
while there is a new data point do
t—t+1;

=1
FLAG=1- ] H{De,s,t < be,t};
s=1
if FLAG =1 then
C— CU{t};
FLAG « 0;
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et
end if
end while
OUTPUT: C.

The signal-to-noise condition that we required for the case of multiple change points
is as follows.

Assumption 3.2. Assume that for any o € (0,1), there exists a sufficiently large abso-
lute constant Cgyr > 0 such that

AKk*6™% > Cong log (A/a).

Assumptions 2.1 and 3.2 are identical in appearance, though, of course, the meaning
of the quantities A and x are different depending on the settings. In the main result of
this section, we generalize the findings in (2.4) to the settings involving multiple change
points, deriving essentially the same false alarm and detection delay bounds as in the
only one change point case. In order to allow for a more transparent statement, we
have expressed our results in terms of a uniform choice of stopping times for terminat-
ing the experiment.

Theorem 3.3. Consider the settings described in Assumption 1.1. Let o € (0,1) and C be
the output of Algorithm 4 with inputs {X;},_, , = and {b,,u = 2,3,...}, where

b, = 4clog(t/a), Yu=2,3,... (3.1)
The following holds with probability at least 1 — o, uniformly over all choices of finite
stopping times T with respect to the natural filtration generated by {X;},_, , .

o If the random variables {X,},_, ,  have constant means, then C = (.
e Under Assumptions 3.1 and 3.2, let K = |{1,..., T} N{nuk=1,2,..}. If K = 0,

then
cCn{1,...T}=0.
If K > 1, there exists an absolute constant C; > 0 satisfying Cy < Csnr such that
~ ~ a?log (A/a
C— {/fla-“)tK—l} or {t\l,...,tK} lfOST—nK<Cd#,
= k
{?1, ...,?K} otherwise,
where we set ﬁl, ...,?K_l} = () when K= 1. Furthermore,
- 2log (A/a
0<T—n < cd%g/), Vk=1,.,K,
k

where, if C = {t1, ..., tx_1}, we define ty = T.

The proof of Theorem 3.3 is in Section B and repeatedly uses the proof and results
of Theorem 2.2, therefore the proof of Theorem 3.3 holds for any fixed time point T,
including random finite stopping times 7. In fact, Lemma 3 in Howard et al. (2018)
also shown such equivalence in the context of sequential testing.
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One of the key steps in the proof is to show that, for any k > 1,

2
k

2
og?k—nkgcd%M<A/4. (3.2)

Once a change point is declared, the procedure is restarted afresh using the latest
change point estimate as the new initial time. Due to the last display, we are guaranteed
that the new starting point of the procedure, namely t;, is only slightly delayed, by an
amount no larger than A/4 from the ideal starting point ;. The constant of 1/4 is not
special and could be replaced by any constant smaller than 1/2. Equivalently, the next

change point will be detected starting from ; precisely, we have that

Mk+1 —t = i1 — M — Gk — 1) > 3A/4.

As demonstrated in our proof, this delay is sufficient, under the signal-to-noise con-
dition in Assumption 3.2, to ensure that the procedure is able to detect the next change
point #;,, and to localize it with a detection delay no larger than Cya’k;?, log(A/a).

It is important to notice that the quantity K in the theorem statement is itself a ran-
dom variable. Furthermore, the theorem only guarantees that the procedure will be able
to identify, with probability at least 1 — o all the K true change point in the interval
{1,...,T} as long as T — ng > Cyo*k;*log (A/a). If this condition is not satisfied, that
is, when the difference between the kth time point and the stopping time is too small in
relation to the assumed signal-to-noise ratio Assumption 3.2, there is not guarantee that
the procedure will detect the last change point . This is not surprising: The data col-
lected in such a short amount of time between the last-detected change point and T
may not in general contain enough information to support that decision.

4, OPTIMALITY
4.1. A Lower Bound on the Detection Delay

In this section, we show that the detection delay bounds derived in Theorem 2.2 are
essentially sharp. Toward this end, we adapt to our settings existing techniques for
deriving minimax optimality from the literature on change point analysis which, how-
ever, only apply asymptotically and under parametric assumption. In particular,
Theorem 1 of Lorden (1971) shows that, assuming independent Gaussian instead of
sub-Gaussian data,
2
inf sup esssup Ea{(t = A)F|X1, ... Xa} ~ %%(V)

t A>1

, as y— oo.

where the infimum is taken over all change point estimators ¢ such that E(£) > 7.
The last display bears clear similarities with the high-probability delay bounds in
Section 2 and, in particular, with the guarantees obtained in Proposition 2.4.

In our next non-asymptotic result, we formally show that the upper bound on the
detection delay of Theorem 2.2 is in fact in agreement, with a minimax lower bound on
the expected detection delay. The proof adapts arguments used in Theorem 2 of Lai
(1998).
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Proposition 4.1. Assume that {X;},_, , is a sequence of independent Gaussian random
variables satisfying E(X;) = f;, Var(X;) = * and Assumption 1.2. Denote the joint distri-
bution of {Xi},_, , . as Pcqa. For o € (0,1), consider the class of change point estima-
tors

D(a) ={T: T is a stopping time with respect to the natural filtration
and satisfies Poo (T < 00) < o}.

Then for all o, k and o such that 2k*Ac™2 > log (A/a) and
1—c; > o+ a4 (3.3)

with an absolute constant ¢, > 0, it holds that, for any change point time A,

2
_inf sup Ep{(f— A)+} > zo-?log (%) (3.4)

t€D(a) Pig,a

Remark 2. The constants in (3.3) have not been optimized and are likely to be
improvable.

In the context of multiple change points, the lower bound in Proposition 4.1 further
yields that the signal-to-noise ratio condition in Assumption 3.2 is almost necessary to
guarantee a consistent change point localization. As remarked after the statement of
Theorem 3.3, with probability at least 1 — o, under this condition, the kth estimated
change point is at a distance of no more than A/4 from the kth largest true change
point, see (3.2). In contrast, whenever Assumption 3.2 is violated in such a way that

K*AJa* < log(A/a)/2, (3.5)
then (3.4) implies that

inf?ep(“) supp, EP{G— A)+}
A

Thus the expected detection delay is larger than A and, therefore, the true change
point cannot be consistently estimated.
Overall, we may conclude that the online multiple change point detection problem is

> 1.

impossible under the low signal-to-noise ratio condition k*A/¢*log (A/). In contrast,
a slightly larger signal-to-noise ratio k*A/g?>log(A/x) is sufficient to guarantee, as
shown in Theorem 3.3, that the change points can be accurately estimated with prob-
ability no smaller than the prescribed nominal level of 1 — a. A similar phase transition
phenomenon occurs for the offline mean change localization problem, see Wang, Yu,
and Rinaldo (2020). In fact, the phase transition boundary is nearly identical in both
the online and offline settings.

4.2. Connections with Offline Change Point Detection Problems

A closely related area is the offline change point detection, where one has data {X,-}iT:1
and seeks change point estimators {7} C {1,...,T}. The online and offline change



SEQUENTIAL ANALYSIS (&) 455

point analysis shares many similarities. The offline change point results we list below
can be found in Wang, Yu, and Rinaldo (2020).

The signal-to-noise ratio and the phase transition. Let A be the minimal spacing
between two consecutive change points in the offline setting. We remark that in both
online and offline problems, the signal-to-noise ratio is of the same form x*A/¢*. In
both problems, the parameter spaces can be partitioned into feasibility and infeasibility
regimes by this signal-to-noise ratio. In Wang, Yu, and Rinaldo (2020), it is shown that
in the univariate offline change point detection problem, both the lower and upper
bounds on the signal-to-noise ratio are of order log (T).

When deriving the estimation error, since one has collected all the data in advance in
the offline setting, the signal-to-noise ratio is lower bounded by log(T) and as a result,
the estimation error only depends on the model parameters. This is not the case in the
online setting, where the total number of data points examined is also a random vari-
able. In this case, additional information is needed. In Theorem 2.2, we choose to con-
trol the upper bound of the type I error o. As a result, the estimation error, that is, the
detection delay, is a function also of a.

5. EXPERIMENTS

To validate the theoretical results presented in this paper, we consider the empirical
performance of Algorithm 1 with choices of {b;} guided by Theorem 2.2. Since the
main focus of our theoretical results lies in the theoretical optimality in terms of rates,
we sacrifice the sharpness in terms of constants for presentational convenience. It can
be seen from Appendix A that, we have used more conservative {b;} in Theorem 2.2.
To demonstrate the numerical performances, guided by the results in Appendix A, we

consider the thresholds
212
41 — =21
\/ os{ g} 2o
in Algorithm 1.

As competitors we consider the thresholding rule from Theorem 6 in Maillard (2019)
(M). We also compare against Chen (2019). For comparing with the latter, we consider
its three different statistics, including the “original” (ORI) which specifies the original
edge-count scan statistic, the weighted edge-count scan statistic (W), and the general-
ized edge-count scan statistic (G). These statistics are calibrated using 300 Monte Carlo
simulations where in each simulation we generate a sequence ¥, ..., 7,00 ~ N (0,0%). All

our comparisons with Chen (2019) are done with the R package gStream (Chen and
Chu 2019).
With regard to generating the data, we set T = 400 and construct y € R” as

LN, t<A,
VAN ), t> A

with A € {50,000} and ¢ € {0.1,0.5,1,0.8,1.2}.
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Table 1. Numerical results.

o o Method PFA DD o 4 Method PFA DD
0.05 0.1 Alg 1 0.04 0.00 0.1 0.1 Alg 1 0.00 0.00
0.05 0.1 M 0.02 0.00 0.1 0.1 M 0.00 0.00
0.05 0.1 ORI 0.06 7.89 0.1 0.1 ORI 0.10 7.28
0.05 0.1 w 0.08 7.46 0.1 0.1 w 0.10 6.82
0.05 0.1 G 0.04 7.73 0.1 0.1 G 0.06 711
0.05 0.5 Alg 1 0.04 4.81 0.1 0.5 Alg 1 0.07 4.60
0.05 0.5 M 0.00 533 0.1 0.05 M 0.02 4.92
0.05 0.5 ORI 0.04 17.10 0.1 0.05 ORI 0.12 15.65
0.05 0.5 w 0.02 17.32 0.1 0.05 w 0.08 16.67
0.05 0.5 G 0.04 18.11 0.1 0.05 G 0.08 16.78
0.05 0.8 Alg 1 0.06 11.77 0.1 0.8 Alg 1 0.12 9.53
0.05 0.8 M 0.02 15.59 0.1 0.8 M 0.10 14.24
0.05 0.8 ORI 0.05 120.48 0.1 0.8 ORI 0.10 94.25
0.05 0.8 w 0.03 145.13 0.1 0.8 w 0.07 87.28
0.05 0.8 G 0.03 152.29 0.1 0.8 G 0.10 99.37
0.05 12 Alg 1 0.05 27.16 0.1 12 Alg 1 0.06 23.08
0.05 1.2 M 0.01 80.09 0.1 1.2 M 0.03 66.52
0.05 12 ORI 0.03 241.10 0.1 12 ORI 0.08 209.31
0.05 1.2 w 0.02 249.46 0.1 1.2 w 0.13 237.14
0.05 12 G 0.03 253.77 0.1 12 G 0.12 226.48

For both metrics the numbers are obtained by avergaing over 100 Monte Carlo simulations.
PFA, probablity of false alarm; DD, detection delay.

As for the performance of different methods, we consider the choices o € {0.05,0.1}.
Then for each choice of o and with v = 0o, we report the proportion of false alarms
(PFA) in 100 Monte Carlo trials, where we run each competing method up to T=400.
Furthermore, when A =50, denoting by t; the output of a method across the i=
1,2,...,100 Monte Carlo trials, we report the detection delay defined as

1000

1 .
DD = m;(mlnﬁi, T}—A),. (5.1)

The results in Table 1 show that, overall, the best performance is attained by
Algorithm 1 followed by Maillard (2019). This is reflected in both PFA and DD.

6. DISCUSSION

We have investigated various aspects of online mean change point estimation with sub-
Gaussian, independent variates. In our analysis, we have adopted finite sample settings
and allowed for the model parameters to vary so as to express all the sources of statis-
tical hardness in the problem. We have presented simple but effective algorithms for
online change point localization based on classical CUSUM process that are provably
nearly optimal. We have also identified combinations of model parameters for which
the change point estimation task is impossible and showed that our procedure succeeds
over nearly all the other combinations, including those for which the problem is most
difficulty and barely solvable. Interestingly, the online estimation rates and phase transi-
tion boundaries we determine are nearly identical to those holding in the offline set-
tings; see Wang, Yu, and Rinaldo (2020). The framework we established in this paper
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can be used to study different high-dimensional problems. This will be left as future
work.

In order to control the fluctuations of the CUSUM statistics, we have adopted two
different approaches. Theorems 2.2 and 3.3 rely on peeling arguments, as detailed in
Lemmas A.1 and A.2. In contrast, the results in Section 2.2 rely on simpler union
bound arguments. Interestingly, even using peeling, we were only able to establish that
the CUSUM statistic process

t

{W}/ S (%i-f)

I=s+1

[ — sup maxj<s<;
£>2

>

has fluctuations of order \/{log () + log (o) }/t. One may have expected to see a better

dependence on t, such as in 4/ log log (¢). However, the above CUSUM process does
not have a clear martingale structure. As a result, peeling techniques only yield crossing
boundaries that scale like /log(¢), albeit with better constants than those of the same
order stemming from union bound arguments. Since we have not made attempts to
optimize constants, both approaches—peeling and union bounds (or Bonferroni-type
arguments)—deliver the same localization rates in our settings.
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APPENDICES

We include all the technical details and some additional simulation results in the Appendices.

APPENDIX A. CONCENTRATION INEQUALITIES

Lemma A.1. For any a > 0, it holds that

P{Hs,teN, t>1, sellt):

() "S- i) sw —ﬁ).

=1 I=s+1
> 23/2010g1/2(t/oc)} <

Proof. It holds that for any sequence {¢ > 0},

]P{Hs,teN, t>1, selt): ‘(%)1/2; (Xi—f1)
o) Zewerle)

=s+1
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(tt‘—j)m;(xl - {W}/,Z(Xl =

(tt‘—ss)mij(xl—ﬁ - {W}/Z (=) 2 ac}

=1 I=s+1

I

IP{ max max

<<yt 1<s<t

j=1

o

2 max P{ max
2<t< ! 1<s<t

j=1

<

NE

2 <<t 2 <<t

? max P{W| =g} <> 29" max P{|W|> el
T =

.
I

where W is a mean zero sub-Gaussian random variable with || WHI/,2 < ¢. Now put

& = V20[2log () + 3log log (t) + log { log () + log (2)} — 2log log (2) — log (2] vz

Due to the sub-Gaussianity, we have that for any { > 0,P{|W| > {} < 2exp (-27'(*/d?) (e.g.,
(2.9) in Wainwright 2019). Therefore,

IP{Hs,tGN, t>1, selt): ’(tj)l/zg(?ﬁ -fi)
{wa) S

> 3:}
I=s+1
o0

< max exp[(2j + 2)log (2) — 2log (t) — 3log log (¢) — log { log (¢) + log (2)}

+2]l:olg 1;5;(2) + log (a)]
< ZeXp {(2j +2)log (2) - 2jlog (2) — 3log (j) — log {(j + 1) log (2)}

=
+2log log (2) + log (o)}

> 2¥"2]og?2 > 1
< - < <
<O G logz = 21 =

j=1 j=1

For simplicity, we let
& = 22alog2(t/a),
which satisfies that for any + > 2 and « € (0,1),

2’2 log'/2(t /o) > V2[2log (t) + log log (t) + log { log (t) + log (2)} — 2log log (2) — log («)] /2.
(A1)
This completes the proof. O

Lemma A.2. For any a > 0, it holds that

172 &
P{He,s,tEN, e>0, s>et>s: ’{%}/ Z(Xl—fl)

I=e+1
t
{it) 2 =)

I=s+1

> 4olog1/2(t/oc)} <o
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Proof. For any integer triplet (e, s, £), 0 < e < s < ¢, any sequence {&.; > 0}, let

Glers,t {‘ VES

l=e+1
{ } 1=, s+1

> Sest}
- {G(e)s) ) > 8est}

We have that

P{3e,s,t €N, €>0, s>et>s: Glest)}
<P{3steN, e=0, s>et>s: G0,s1)}
+P{3s,t €N, e>1, s>et>s: Glest)}
=(I)+ ().

As for (I), it follows from Lemma A.1 that, with ¢, ; defined as

€05t = st = V/20[2log (t) + 3log log (¢) + log {log (t) + log (2)}
—2log log (2) + log(2) — log (oc)]l/z,

we have that

(I) < aj2.
As for (IT), we have that
() S { max max max G(e,s,t) > se,s,,}
<t<ytl 1<e<t—1e<s<t

< Z IP’{ max max max G(es,t) > ae)s,,}
m=l

V<<t gm<ecomtl e<s<t

oo
—|—Z]P’{ max max max G(e,s,t) > & ,}

V<<t Y <e<t e<s<t

( 2]2’"2f“+2fzfzf> max P{G(e,s,t)}
e<s<t
V<t<2tt

2Y72 max P{G(es,t)}.
e<s<t
2J<t<it!
For any e >0, let
ot = st = /20[3log (t) + 3log log (¢) + log {log (t) + log (2)}
+3log (2) — 2log log (2) — log (oc)]l/z.
Due to the sub-Gaussianity, we have that
(I) < a/2.
For simplicity, we let
& = 4alog/?(t/a),
such that
4log'/?(t/o) > 2'/?[31og (t) + 3log log (t) + log { log (t) + log (2)}
+31log (2) — 2log log (2) — log («)]"/2.
We therefore completes the proof. O

(A.2)
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APPENDIX B. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2.2. This proof consists of four steps. In Step 1 we define a large probabil-

ity event, where the rest of the proof is conducted. In Step 2 we conclude the claims on type I

error controls. In Step 3 we change the detection delay upper bounding problem to upper bound-

ing the delay with respect to an easier to handle quantity t*. In Step 4 we conclude the proof.
Step 1. Define the event

B:{Vs,teN, t>1, selt):

I=1
~{rs) 3

< bt}.
I=s+1
It follows from Lemma A.l1 that P{B} > 1 — a. Throughout the proof we assume that the

event B holds. R
For any s,t € N,1 < s < ¢, it holds that ‘Ds,t — Dy

(%S)l/zi(xl -fi)

< by, which implies that
D+ b > Dy, > D,y — by (B.1)

Step 2. For any t < A, we have that D;; = 0, for all s € [1,¢). Thus, using (B.1), we conclude
that, 7 > ¢ and, therefore that 7 > A. We have now shown (2.2) and (2.3). R

Step 3. Now we consider any ¢ > A. If there exists s € [1,¢) such that Ds; > b;, then d =
T—A<t—A. Thus, d <f-A, where

t=min{t > A,3s € [A, t),D, > b},

and any upper bound on ¢ will also be an upper bound on d. Thus, our task becomes that of
computing a sharp upper bound on f. To that effect, notice that, when A <'s < t,

1/2 1/2
t—s t—s
Dy =A[— —wl=A—) &
s, t <i s ) 1y = 1] (i s ) K

and, because of (B.1) again,

As a result, we obtain that < t*, where

s\ 12
t*:min{t>A: max {A(—) x—zb,}zo}.
s€[A, 1) ts

Step 4. Write for convenience m =1t"—A, so that d <m. Recalling that b, =
232g1log /2 (t/a), we seek the smallest integer m such that

max  |Ax] MTA=S 1/2—25/2010 V2 {(m 4 A)Ja}| >0
s€[A, m+A) (m + A)S & ’
which is equivalent to finding the smallest integer m such that
+A)
a2 — 32 S A A 0.
se[g,l?n)iA) { K A s og{(m+A)/a}| >
In turn, the above task corresponds to that of computing the smallest integer m such that

’ +A)
AZK— i 325(m41 A
62>s€[g,1r1nn+A) [ m+A—s Og{(m+ )/O(}

- 32#10;;{(;% +A)/a},



SEQUENTIAL ANALYSIS (&) 461

or, equivalently, such that

Aic?
m 32—’;2— log {(m + A)/a}| > Alog {(m + A)/a}, (B.2)
under Assumption 2.1.
Let C; be an absolute constant large enough and also upper bounded by Csng. The claimed
result now follows once we show that that the value

m* = [Cylog (A/a)a? k]
satisfies (B.2). To see this, assume for simplicity that C,log (A/x)c?k™2 is an integer; if not, the
proof only requires trivial modifications. We first point out that m* < A because of Assumption
2.1 and the fact that C; < Csnr. Now, the lefthand side of inequality (B.2) is equal, for this
choice of m, to

A o? Cylog (A/a)a? /12 + A
Cdlog(A/“)ﬁ—Cd;log(A/oc)log{ alog( /cx) / }

Using again Assumption 2.1 and the fact that m* <A, the second term in the previous
expression is upper bounded by

(B.3)

2C
=4 Alog (A/a),
Csnr

due to the fact that 2log (x) > log (2x),x > 2. Thus, the quantity in (B.3) is lower bounded by

Alog (A/2) (% - é—i) > 2Alog (A/2) > Alog (2A/5) > Alog ((m" + A) /),

where the first inequality is justified by first choosing a large enough C; and then choosing Csnr
larger than C, and the second and third inequalities follow from log(A/a) > 0 and m* < A,
respectively. Thus, combining the last display with (B.2) and (B.3) yields (2.4). O

Proof of Proposition 2.3. It follows from Step 1 in the proof of Theorem 2.2 that on the
event B, it holds that

Dy, < Dy, +2%%alog"?(t/a), 1<s<t.

It follows from Step 2 in the proof of Theorem 2.2 that we only need to consider ¢t > A. This
leaves us two situations: s < A and s > A. In fact in both these two situations, one only needs to
deal with the case s = A, therefore we only show s > A here.

When A < s <t, we have D, ; = kA{(t — s)/ts}l/2 and therefore on the event B, we have that

A<s<t T OA<s<t ts

< KA(%S)I/2 +2326log 2 (t/a) < kAY? + 232G log /2 (t/a) < by,

1/2
~ t—
max D < max kA (—S> + 232G 1og V2 (t /o)

where the last inequality follows from (2.6). We therefore completes the proof. =]
Proof of Proposition 2.4. This proof consists of three steps. In Step 1 we define a large prob-
ability event, where the rest of the proof is conducted. We also conclude the control on the aver-
age run length. In Step 2 we change the detection delay upper bounding problem to upper
bounding the delay with respect to an easier to handle quantity t*. In Step 3 we conclude the
proof.
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Step 1. Define the event

S

()" -f)

I=1
< bt}

1-P{C} < (y+1) max P{HseNﬂ[l)f)i ‘(t_s>l/2i(xl_ﬁ)

te{2, .., 742} ts =

_{ﬁ}l/zi(ﬁﬁ—flﬂ >0

I=s+1

C:{te{z,...,y+2}, seNN[L1):

~{rim) 3

I=s+1

We have that

b? _
< (P +1)’P{W| > b} <2(y+ 1) exp (—2—;2) =(p+1)7

where W is a mean zero sub-Gaussian random variable with [[WI|, < ¢ and the Hoeffding
inequality (e.g., (2.9) in Wainwright 2019).
Therefore we have that

e 742
X 1
B =3 P20 2 Y PE2 020+ 0PE>+22 0+ )(1- 2 ) =2
=2 =2
Step 2. We have that
P{t>y+2}=P{C} >1-(y+1)7,
When y > max{A — 2,1}, it holds that

P{d>0}>1—-(y+1)"".

For any t > A, if there exists s € [1,#) such that Dy > by, then d < t — A. Tt suffices to find
f=min{t: t>A,3s€ (A1),Ds; > b},

and any upper bound on ¢ will also be an upper bound on d, when the signal-to-noise ratio con-
dition in (2.8) is satisfied. Then, our task becomes that of computing a sharp upper bound on ¢.
To that effect, notice that, when A <s < t,

1/2 1/2
t—s t—s
Ds,t:A(T> |#1—H2|2A(t—s) K,
1/2
. t—
Do > A(—S) K — by
ts

As a result, we obtain that < t*, where

1/2
t_
Ly —min{t>A: maxSE(A)t){A<ts) K—Zb,} 20}.
s

Step 3. Write for convenience m = t — A, so that d < m. Recalling that

b, = 61/20'10g1/2{21/3(y + 1)},

and on the event C,

we seek the smallest integer m such that
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max  |Ax] MTAZS v -2 x 6Y%glog2{2'3(y+1)}| >0
s€[A, m+A) (m+A)s ’

which is equivalent to finding the smallest integer m such that
m+A)
N’i? - 240 2(71 23+ 1)} >0
se[?,li’iA){ : m+ A - og {27 + 1)}
In turn, the above task corresponds to that of computing the smallest integer m such that

+A)
A*i? i 24 25(””71 21300 11
tA"K >S€[£I’1r1nn+m{ am+A_Sog{ (y+1)}
A A
= 240'2%1055 220+ 1)},

or, equivalently, such that

Ax 1/3 1/3

[24 2 log{ (v+ 1)} > Alog {2 (y+1)}. (B.4)

Let C, be a large enough absolute constant. The claimed result now follows once we show that
the value

m* = [ Cyo*k*log {21/3(y + 1)}]

satisfies (B.4). To see this, assume for simplicity that C,o?k 2log {2'/3(y + 1)} is an integer; if
not, the proof only requires trivial modifications. Now, the lefthand side of inequality (B.4) is
equal, for this choice of m, to

C log{21/3(y +1 )}A— Cio’x™2 log2{21/3(y + 1)} (B.5)

Using again (2.8), the second term in the previous expression is upper bounded by

écﬁi Alog {21/3(*/ + 1)},

SNR

due to the fact that 2log (x) > log {2'/3(x +1)},x > 2. Thus, the quantity in (B.5) is lower
bounded by

Alog{21/3(y + 1)} (%— éC;) > 2Alog{21/3(y + 1)} > Alog {21/3(~/+ 1)},

SNR

where the first inequality is justified with first choosing a large enough C, then a large enough

Csnr- Thus we conclude the proof with a large enough absolute constant C; > 0. O
Proof of Proposition 2.5. When A = oo, assuming that fi =f, =... and letting e,, =
max{t—7+ 1, 1}, we have that

supP(v <t <v+7)

v>1

< sup]P’{EIs eNNwv+y), teNNe, ,,t—1]: ﬁe%,,s,t > by}
v>1
<yP{W]> b} <o,

where W is a mean zero sub-Gaussian random variable with [|[W||, <o and satisfies that
any { > 0,P{|W| > {} < 2exp (=27'(%/d?).

When Assumption 1.2 is imposed, we consider ¢ > A. For any A < t < A 4 7/2, if there exists
s € [1,t) such that D, s > b,, then d <t — A. It suffices to find

t=min{t: A<t<A+79/2,Dr,a,> b},
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and any upper bound on f will also be an upper bound on d, when (2.9) is satisfied. Thus, our
task becomes that of computing a sharp upper bound on ¢. To that effect, notice that, when A =
s<t<A+7v/2, we have

t—AYA—t+y) 2 t— A A=t +9))?
Diyas— {M} ey — 11| = {M} .
v Y
In addition, it holds that

P{G}) =P{3t € (A A+7/2): Drsas—Deand > by} < 3/27 <
Therefore on the event G,
- t—A)A -t 172
Drovas > {M} K—b,.

As a result, we obtain that < t*, where

N 12
t*—min{te(A,Aer/Z): {%ﬁ“)} K—zb},zo}.

Write for convenience m = t, — A, so that d < m. Due to the form of b,, we seek the smallest
integer m such that

1/2
{M} Kk —22alog/?(2y%a7!) > 0.
1

We now to show that m = [Cy02 log (y/a)x™2] satisfies the above. Due to (2.9), we have that
(y —m)/y >1/2, then
m(y —m)
b
which completes the proof. O

K2 > k2m)2 > 2*2glog/?(2y%07"),

Proof of Corollary 2.6. This proof consists of four steps. In Step 1 we define a large probability
event, where the rest of the proof is conducted. In Step 2 we conclude the claims on type I error
controls. In Step 3 we change the detection delay upper bounding problem to upper bounding the
delay with respect to an easier to handle quantity t*. In Step 4 we conclude the proof.

Step 1. Define the event

B= {Vs,t EN, t>1, s {t=2°..,t—2lls®/lg@]} .

-0~ s S | <)

I=1 I=s+1
It follows from Lemma A.l1 that P{B} > 1 — a. Throughout the proof we assume that the
event B holds. R
For any s,t € N,1 < s < t, it holds that ‘Ds,t — D; | < by, which implies that

D+ b, > D > Dy — by. (B.6)

For any t > 1, we have that
S(t) = {t=2°,...,t = 2lls(®)/lg )]}
__ Step 2. For any t <A, we have that D;; =0, for all s € S(t). Using (25), we conclude that
t > A and therefore that t > A.

Step 3. Now we consider ¢ > A. If there exists s € S(¢) such that IA)s,t > by, then d <t—A.
Thus, d < t — A, where
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t = min{t > A,3s € [A,t),D;, > b},

and any upper bound on ¢ will also be an upper bound on d, when the signal-to-noise ratio con-
straint specified by Assumption 2.1 is satisfied. Thus, our task becomes that of computing a sharp
upper bound on . To that effect, notice that, when A <s < ¢,

1/2 1/2
t—s t—s
DSJ:A( P > |H1_H2|:A(7) K,
s ts

As a result, we obtain that < t*, where
f=min[t>A: max
se [A,0ns) { () -2, >0}
Step 4. Write for convenience m=t—A, so that d<m. Recalling that b, =
23251og /2(t/a), we seek the smallest integer m such that

m+A-s\'"? 5/2 1/2
max Ak mtA)s —2%glog "*{(m+ A)/a}| >0,

s€[A, m+A)NS(m+A)
which is equivalent to

+A)
A2 — 3002 A A 0.
sE[A,m«I%lZ;)ir)T(S(MJfA) |: * 7 m+A—s Og{(m+ )/O(} Z

In turn, the above task corresponds to that of computing the smallest integer m such that
+A
2 S A) o (m A)/oc}].

m+A—s
Since [A,m+A)NSm+A)={m+A-2, j=0,..,|log(m)/log(2)|}, in the following
we consider two cases.
Case 1. If log (m)/log(2) is an integer, then it follows from identical arguments in the proof
of Theorem 2.2 that

A% > min {320
s€[A, m+A)NS(m+A)

+A)

Az 2 i 2 zs(m—l A

A se[A,ﬂlesm |:3 d m+A—s og{(m+A)/o}

A A

= 32¢? %k,g{(m +A)/a}.

Case 2. If log(m)/log(2) is not an integer, then |log(m)/log(2)| < log(m)/log(2). This
means

A*2 > min {3202 s(m + A)

selA, m+A)NS(r) mlog {(m + A)/“}}
Al +4)
m

> 3202 )log{(m+A)/o<}.

Both cases lead to finding the smallest integer m such that

m{?z’; - log {(m +A)/a}] > Alog {(m+ A)/o}.

It follows from the identical arguments in the proof of Theorem 2.2 that we complete the
proof. o
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Proof of Theorem 3.3. This proof consists of four steps. In Step 1 we define a large probabil-
ity event, where the rest of the proof is conducted. In Step 2 we conclude the claims on type I
error controls. In Step 3 we derive the detection delay upper bounds.

Step 1. To prove the theorem, it is sufficient (in fact, equivalent) to show that the claim holds
true simultaneously over all deterministic stopping times. Toward that end, define the event

E= {Ve,s,tGN, e>0, s>e t>s: ’{(S_g)_(;_e)}l/zz(Xl—ﬁ)
I=e+1
t
e 12
_{(tfs)(t—e)} Z (X —fi)| < bt}-

I=s+1
Then, under &, the fluctuations of the CUSUM process are controlled uniformly at any time f,
including any stopping (in fact, more generally, random) time T. It follows from Lemma A.2 that

P{€} >1-o.
On the event &, for any 0 < e < s < t, it holds that

De,s,t - De,s,t < bz»

which implies that

De,s,t + be,t > Be,s,t > De,s,t - be,t- (B7)
In addition, due to Assumption 3.2, we have that

2
cdﬂ%w < A/4. (B.8)

Then it suffices to show that

i. for any refresh starting point of the algorithm e and any interval (e, ¢] not containing any
true change points, on the event &£, there is no detected change point;
ii. on the event &, we can detect 1, with delay upper bounded by Cy0? log (A/o)K;>.

Step 2. As for (i), it holds automatically due to the definition of the event £. The claim (i)
leads to that ; > 1.

Step 3. As for (ii), we prove by induction. When k=0, we have T = e = 0, then n,; —ty >
A > 3A/4. 1t follows from identical arguments in the proof of Theorem 2.2 that

c*log (A/q) .

d :?1 - < Cq4

K1
Due to (B.8), we have that 7, — T > 3A /4, then due to Algorithm 4, the procedure restarts by
setting e =f,. For a general k > 1, if i — f;_, > 3A/4, then it follows from from identical argu-

ments in the proof of Theorem 2.2 that

c*log (A/q)
2 b

di =ty — 1 < Cy
Ky

which completes the proof. O

Proof of Proposition 4.1. Throughout the proof we will assume for simplicity that 7 log( )
is an integer. This proof consists of four steps. In Step 1 we apply the change of variable argu-
ment and deal with the event when the sum of Z;’s are upper bounded. In Step 2, we deal with
the harder event when the sum of Z;s are lower bounded. The two events are combined in Step
3 and the proof is concluded in Step 4.
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Step 1. For any # and v, let P" be the restrictions of a distribution P to F,, i.e., the o-field
generated by the observations {X;}} ;. For any v > 1 and n > v, we have that

dPn n
T oy(35).

K, 0,00 i=v+1

where P, ; ~ indicates the joint distribution under which there is no change point and

- +
ZI:LZMI(XI._M)
o 2

For any v > 1, define the event

&,—{V<T<1/+ log<> ZZ< log<)}
i=v+1

Py o0 (Ev) :J exp <Z z) APy 6,00 < exp {(3/4)log (v/0) } P 5,00 (E))

i=v+1

2
< exp {(3/4)log (I//OC)}P,QU,OO{I/ <T<v+ %log (g) } (B.9)

< AM4g3/ap, ,,OO{I/ <T< 1/+ log (V)}

where the first two inequalities follow from the definition of &,.
Step 2. For any v > 1 and T € D(«), since {T > v} € F,_;, we have that

a? v L
]P)K,g,y{z/ <T< 1/+ﬁlog (;), ZZi > (3/4)log(1/a) | T > 1/}

i=v+1

Then we have

v+t
< esssup IP’,\-,,,,U{ max Z Z; > (3/4)log(v/a) |Xi, .‘.,XU}

2
1<t<T5log ()—1 i=v+1
v+t

< esssup ]P’,C,U,V[ Z {Z; = x*/(26%)} > (3/4)log (v/2)

1<l<“ log() Limpt1

“ 1og (¥ |X X
——log | — | — X1, ...,
22 & o 262 ! v

< esssup IP’K,(,)V[ max VZ {Z; = k*/(26%)} > (1/2) log (v/a) |X,, ...,Xl,}

2
1<t<Z5log ()1 i=p11

z(izl"g(V) P{-%g:g”/“)}=;‘—;log<§)exp{—log<u/a>}<a1/4

where the fourth inequality follows from Hoeffding’s inequality and a union bound argument,
and the last inequality holds for all small enough o such that

220672 > log (v/a)o*/%.
We therefore let

P ={Po,: 2*va"2 > log (v/a)a®/*}.
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Since the upper bound is independent of v, x and g, it holds that
T
sup Py, ,,{I/ <T< z/—l——log( ) Z Z; > (3/4)log(v/a) | T > 1/} < o'/4
Py, 6,0 €EP i=v+1

which leads to

sup IP’M,,,{V< T<1/-|- a? 10g( ) Z Zi > ( 3/4)log(1//oc)} <ol (B.10)

Py6,0EP i=v+1

Combining (B.9) and (B.10), we have

sup Pyoo y<T<V+ log(y>
Py, 6,0 EP
3/4,-3/4 o v 1/4
<A P g0V < T < v+ —log | — + o/,
o 2i2 o

Step 3. We now have, for any change point time A,

(B.11)

inf?eD(a) suApEPIP’K - A{t -A> —log (A/oc)}

. ~ a? A
= 1nf7€D(a) , sup []P’,C,J,A{At > A} - ]P’,M,A{A <t<A —}—ﬁlog <§> H

s, AEP

2
e 14 34 3/4 " o A
> 1nft€D(a sup [1 o — o NP s A <TE <A+ 32 log ( ; ) }]

) P nEP

A
>¢ — sup inf Ay _3/4]I”K(00{A<t<A+—log( )}ZC

~ P s, AEP
teD(a)

where the first 1nequahty is due to the definition of the class of D(a) of stopping times (which in
particular implies that P, , A{f < A} = Po.(f < A) <P (f < 00) < a); the second inequality
holds for an absolute constant ¢; > 0, provided that

l—c >oa+ acl/ 4
and the final inequality holds provided that
A
sup inf Pkam{A<t<A+—log( )}Soc/A (B.12)

-~ 5, AEP
teD(@)

and that o'/*A™"/* < ¢; — ¢, with ¢>0 being an absolute constant.
Step 4. It now suffices to show that (B.12) holds. We now prove by contradiction and assume
that

A
sup inf IEDKUOC{A<t<A+—log< >}>a/A,

Ten(z o
which implies that there exists t € D() such that
- o’ A
inf Py 5009 A A+—log|— A,
Inf Py, oo{ <t < +2K2 0g<a)} > o/
which contradicts with the definition of D(«) that

Prooolt < o0} <ot

We therefore conclude the proof. O



Table C1. Numerical results.
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o 4 Method PFA DD o 4 Method PFA DD

0.05 0.1 M 0.02 0.00 0.1 0.1 M 0.00 0.00
0.05 0.1 M2 0.08 0.00 0.1 0.1 M2 0.10 0.00
0.05 0.1 M3 0.10 0.00 0.1 0.1 M3 0.00 0.00
0.05 0.5 M 0.00 533 0.1 0.05 M 0.02 4.92
0.05 0.5 M2 0.04 3.78 0.1 0.0 M2 0.1 3.28
0.05 0.5 M3 0.00 6.45 0.1 0.05 M3 0.00 5.66
0.05 0.8 M 0.02 15.59 0.1 0.8 M 0.10 14.24
0.05 0.8 M2 0.10 12.92 0.1 0.8 M2 11.84 8.78
0.05 0.8 M3 0.00 22.96 0.1 0.8 M3 20.38 8.78
0.05 1.2 M 0.01 80.09 0.1 1.2 M 0.03 66.52
0.05 1.2 M2 0.04 73.6 0.1 1.2 M2 0.11 51.21
0.05 1.2 M3 0.00 754 0.1 1.2 M3 0.00 5136

For both metrics the numbers are obtained by averaging over 100 Monte Carlo simulations.
PFA, probability of false alarm; DD, detection delay.

APPENDIX C. ADDITIONAL EXPERIMENTS: VARIATIONS OF MAILLARD (2019)

Following an anonymous referee’s comment, we conclude with a simple experiment consisting of
variations of the method from Maillard (2019). Recall the notation in Maillard (2019). For t, >

1, let

Maillard (2019) proposes to raise an alarm at  with

where

1
by = 6\/2 (‘ +
N

Kty 41):t,

T h-t

X.
s=t+1

T=inf{t>1: 3se [L1)s.t.] foss—Hs1)al = bs,eh

1

D (e ().

t—

We refer to this procedure as M in the prequel. In this section, we consider two variations

thereof.

The first variation, referred as M2, consists of replacing b;,, with

L ) (1 +%) log (—2(t_ 1;\/t_—1)

The second variation, namely M3, replaces b, ; with

1
0.90\/2 (7 +
s t

oo

1
_+_
t—s

—-S

) (1 +%) log (2(t— 1ix/t—_1>

For the setting considered in Section 5, the results collected in Table C1 show that M2 and
M3 do not lead to a desired PFA similar to the prespecified a. Thus, at least to us, it is unclear
how to improve the detection method from Maillard (2019). In particular, small changes in the
criterion from Maillard (2019) lead to significant changes in the PFA but no substantial improve-

ment in the detection delay.
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