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ABSTRACT 
We investigate sequential change point estimation and detection in 
univariate nonparametric settings, where a stream of independent 
observations from sub-Gaussian distributions with a common vari
ance factor and piecewise-constant but otherwise unknown means 
are collected. We develop a simple CUSUM-based methodology that 
provably control the probability of false alarms or the average run 
length while minimizing, in a minimax sense, the detection delay. 
We allow for all the model parameters to vary in order to capture a 
broad range of levels of statistical hardness for the problem at hand. 
We further show how our methodology is applicable to the case in 
which multiple change points are to be estimated sequentially.
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1. INTRODUCTION

We investigate what may arguably be regarded as one of the most basic nonparametric 
online change point settings, whereby a sequence of independent, univariate sub- 
Gaussian random variables with known variance factor and unknown piecewise-con
stant means are observed sequentially. We seek to determine in an online manner, that 
is, each time we acquire a new observation, whether the data collected so far provide 
sufficient evidence to conclude that the mean of the distribution has changed at the pre
sent time or in the near past. The quality of any online procedure deployed for such a 
task is characterized based on the type I error, that is, the probability of incorrectly 
declaring that a change has taken place, and on the delay it incurs before correctly iden
tifying a change point. Ideally, a good online procedure should guarantee a small false 
alarm probability while suffering only a minimal detection delay. It should be intuitively 
clear that these two features are at odds with each other: A procedure with a small 
probability of false alarm is likely to react slowly to even relatively big changes in the 
mean of the underlying distribution, thus producing a large detection delay. Vice versa, 
a methodology that is very sensitive to fluctuations in the data is unlikely to reliably dis
criminate between noise and signal and is thus prone to raising false alarms. In order to 
characterize this tradeoff, we keep track explicitly of all the parameters affecting the 
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difficulty of the change point detection task, such as the sub-Gaussian variance factor, 
the magnitude and time of the distributional change and the targeted type I error. Our 
goal is to develop an online procedure that provably works under the most unfavorable 
settings for which inference is just barely possible.

We begin by formalizing the problem with a general assumption used throughout.

Assumption 1.1. Assume that fX1, X2, :::g is a sequence of independent random varia-
bles with unknown means EðXiÞ ¼ fi, i ¼ 1, 2, ::: and such that supi¼1, 2, ::: kXikw2

� r:

We recall that for a random variable X, its Orlicz-w2-norm is defined as

kXkw2
¼ inf t > 0 : Ef exp ðX2=t2Þg � 2

� �
:

At first, we consider the change point model for which the means of the observations 
change after collecting D—an unknown number of observations, by an unknown 
amount j, as described in the next assumption. Extension to models allowing for mul-
tiple change points will be discussed in Section 3.  

Assumption 1.2. Assume that there exists a positive integer D � 1 such that

f1 ¼ � � � ¼ fD 6¼ fDþ1 ¼ fDþ2 ¼ � � � :

In addition, let

j ¼ jfD − fDþ1j:

We will write the probability of any event with respect to any distribution consistent 
with Assumptions 1.1 and 1.2 as PDf�g and, similarly, we will use EDf�g for the corre-
sponding expectation. With a slight abuse of notation, we describe the case in which 
the observations have constant means by setting D ¼ 1 and will use the corresponding 
notation P1f�g and E1f�g: With this notation, we remark that the change point is Dþ
1 and D is the sample size of the observations from the pre-change distribution. 

Our main goal is to design an online procedure that is provably able to detect a change 
point soon after time D and with a controlled false alarm probability, denoted throughout 
as a. In detail, an online change point detection procedure is an extended stopping time bt 
taking values in N [ f1g with respect to the natural filtration generated by the data. The 
false alarm probability of an online change point procedure is given as

PD bt � D
� �

for any D <1 and P1 bt <1f g otherwise;

and the detection delay is the random variable

bt − Dð Þ
þ, 

which is only defined provided that D <1: We will develop procedures that guarantee 
that (i) P1 bt <1f g � a, for a user-defined target false alarm probability a or E1ðbtÞ �
c for a user-defined average run length value c, and (ii) that, at the same time, for all 
D <1, ðbt − DÞþ is minimal.

The setting described in Assumptions 1.1 and 1.2 allows one to completely character-
ize the hardness of the problem—measured both by the false alarm probability and the 
detection delay—as a function of the upper bound r on the fluctuations, the target 
probability of false alarm a, the pre-change sample size D and the jump size j. 
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Intuitively, the difficulty of the change point detection task is increasing in r and 
decreasing in D, a and j. To formally capture this important aspect of the problem, we 
implicitly assume a sequence of change point models with respect to which the data 
may have originated. Accordingly, the parameters defining the statistical task at hand, 
namely the quadruple ðD, a, r2, jÞ, are not fixed but should be instead viewed as 
sequences, expressing a spectrum of levels of difficulty of the problem we are inter-
ested in.

We make the following contributions:

� We develop a CUSUM-based procedure with a false alarm probability control, 
yielding a detection delay of order

r2j−2 log ðD=aÞ (1.1) 

with probability at least 1 − a, for all D <1 satisfying the signal-to-noise ratio condition

Dj2r−2� log ðD=aÞ: (1.2) 

Interestingly, the above expression matches exactly the signal-to-noise ratio quantity 
for the offline version of the same change point detection problem, as demonstrated for 
example in Wang, Yu, and Rinaldo (2020). We elaborate further on this connection 
later on in Section 4.2.

� We show that a straightforward modification of our procedure guarantees that, 
for any target average run length c � D,E1ðbtÞ � c and, at the same time, with 
probability 1 − c−1 the detection delay is of order r2j−2 log ðcÞ, for all D � c 

such that Dj2r−2� log ðcÞ:
� We construct lower bounds indicating that the magnitude of the detection delay 

(1.1) is minimax rate-optimal whenever the signal-to-noise ratio condition (1.2)
is in effect.

� We generalize our procedure to the case of multiple change points and show 
that, in this setting, the signal-to-noise condition (1.2) is in fact necessary for 
online change point localization.

� We discuss variants of our methodology that incur smaller computational costs. 
Chen, Wang, and Samworth (2020) mentioned that the computational cost of an 
online procedure should be of linear order of the number of time points. We 
would like to emphasize that this claim holds when both the before and after 
change point distributions are exactly known, which is essentially the situation 
discussed in Chen, Atev, and Lerman (2009). On the contrary, in our paper, we 
deal with sub-Gaussian distributions with unknown means. In this situation, we 
are not aware of nor expect to see any theoretically justified methods with linear 
order computational costs.

The paper is organized as follows. Section 1.1 provides a review of related work on 
online and offline change point detection. The main algorithms are then presented in 
Section 2. In particular, Section 2.1 contains the theoretical guarantees of the main algo-
rithm, Section 2.2 discusses the variants, and some practical implementation aspects are 
investigated in Section 2.3. Extensions to multiple change points settings are the subject 
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of Section 3. Section 4 then provides a lower bound on the detection delay which shows 
that our algorithm is nearly optimal. The paper concludes with a discussion in 
Section 6. All the proofs are deferred to the Appendices.

1.1. Relevant literature

Wald (1945), as a prelude of the sequential analysis, kicked off the statistical research 
on online change point detection problems. A famous extension of Wald (1945) is the 
CUSUM statistic proposed in Page (1954). The optimality of Wald (1945) and Page 
(1954) was, to the best of our knowledge, studied first in Lorden (1971), which showed 
that among all the estimators which have average run lengths lower bounded by c, the 
optimal detection delay rate is of order log ðcÞ=KLðF0, F1Þ, as c!1, where KLð�, �Þ is 
the Kullback–Leiber divergence. Moustakides (1986) and Ritov (1990) reiterated this 
minimax result and showed that in the optimality framework studied in Lorden (1971), 
the CUSUM statistic is optimal. Similar results have also been derived in the same 
framework using a change-of-measure argument under more general assumptions in Lai 
(1981), Lai (1998), and Lai (2001), among others. In almost all of the second half of the 
20th century, the research on online change point detection focused on optimizing the 
expected delay time. The motivations back then were mainly from the manufactory sec-
tor, with quality control as the center applications. The data studied were mainly uni-
variate sequences, and the results were almost all asymptotic. We refer readers to Lai 
(1995, 2001) for comprehensive reviews.

Before proceeding, we would like to emphasize that there is a fundamental difference 
between the optimality results derived in the aforementioned work and the ones devel-
oped by us in Section 4. In short, when considering the minimax lower bounds, the 
previous work only allows the change point location to vary and the optimality is 
derived in an asymptotic sense, by letting the lower bound of the average run length 
diverge. In this paper, we let all model parameters vary with the location of the change 
point when deriving the minimax lower bounds and allow for fixed sample arguments.

The second act of online change point research was kicked off by Chu, Stinchcombe, 
and White (1996), who formally stated the existence of “noncontamination” data that 
one has a training data set of size m, that is, Xi � F0, i ¼ 1, :::, m: The theoretical results 
built upon the above assumption are asymptotic in the sense that one lets m grow 
unbounded. One can control the type I error with this noncontamination condition. 
Since Chu, Stinchcombe, and White (1996), a large number of papers have been pro-
duced in this line of work, including univariate mean change (e.g., Aue and Horv�ath 
2004; Kirch 2008), linear regression coefficients change (e.g., Aue, Horv�ath, and 
Reimherr 2009; Huskov�a and Kirch 2012), multivariate mean and/or variance change 
(e.g., Mei 2010), univariate nonparametric change (e.g., Huskov�a, Kirch, and Meintanis 
2010; Hl�avka et al. 2016; Desobry, Davy, and Doncarli 2005), and Bayesian online 
change point detection (e.g., Fearnhead and Liu 2007), to name but a few. More recent 
work includes He et al. (2018), which studied the sequential change point detection in a 
sequence of random graphs. Kirch and Weber (2018) used estimating equations as a 
unified framework to include the location shift, linear regression, and autoregressive 
online change point detection. Kurt, Yilmaz, and Wang (2018) converted different high- 
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dimensional and/or nonparametric data to a univariate statistic and used geometric 
entropy minimization methods to define an acceptance region. Chen (2019) constructed 
similarity measures via K-nearest neighbor estimators and then proposed a counting- 
based statistic to conduct sequential change point detection. Dette and G€osmann (2020) 
proposed a general framework for sequential change point detection case and obtained 
a limiting distribution of the proposed statistics. The framework can be used to handle 
high-dimensional and nonparametric cases. G€osmann, Kley, and Dette (2019) exploited 
a likelihood ratio based method and shared similar core techniques with Dette and 
G€osmann (2020). Keshavarz, Michailidis, and Atchade (2018) considered online change 
point detection in a sequence of Gaussian graph models and obtained asymptotic type I 
and II error controls. Chen, Wang, and Samworth (2020) considered online change 
point detection in a sequence of Gaussian random vectors where the mean changes 
over time. Comprehensive monographs and survey papers include Siegmund (2013), 
Tartakovsky, Nikiforov, and Basseville (2014), and Namoano et al. (2019).

We would like to mention Maillard (2019). This paper is the most relevant paper to 
ours, to the best of our knowledge, and has heavily inspired our paper. Maillard (2019) 
studied a univariate online mean change point detection problem and deployed the 
Laplace transform to control the probabilities of the events, on which the fluctuations 
are contained within desirable ranges, although the arguments thereof remain doubtful. 
Given the large probability events established based on the Laplace transforms, type I 
error controls and large probability detection delays were studied. A claim on the phase 
transition and robust analysis under multiple change points scenario were also available 
in Maillard (2019). There are a number of differences between this paper and Maillard 
(2019): (i) Instead of using the Laplace transform to establish large probability events, 
we summon the concentration inequalities for sub-Gaussian random variables, the 
union bound results, and the peeling arguments. It was pointed out in the Discussion 
in Maillard (2019), other more advanced tools including the peeling arguments may 
improve the results by changing logarithmic terms to iterative logarithmic terms. We 
are, however, skeptical about the feasibility of such claim. (ii) In addition to the type I 
errors, which are available in Maillard (2019), we also provide average run length results 
and a parallel set of results by setting a lower bound for the average run lengths. This is 
a common practice in applications and is widely used in the existing literature (e.g., Lai 
1981). (iii) Despite that Maillard (2019) has much more modern arguments than papers 
in the 20th century, the results are presented in a more restrictive way. For instance, 
the “phase transition” and “detectability” are presented as a property of the location of 
the change point only. In this paper, we will exploit a signal-to-noise ratio, which is a 
function of the jump size, the variance and the change point location jointly. This setup 
enables further studies of high-dimensional data problems.

An important aspect of our problem that sets it aside from many of the contributions 
in the area is the fact that our procedure is not sensitive to the values of the pre- and 
post-change means, but only to their difference. Formally, we consider composite null 
and alternative hypotheses for the pre- and post-change distributions, respectively. This 
feature, combined with the nonparametric nature of our sub-Gaussianity assumption, 
which is not enough to specify likelihood functions, poses additional and significant 
challenges compared to the simpler case in which the pre- and post-change distributions 
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are known. From a statistical standpoint, it prevents us from relying on likelihood- 
ratio-type procedures, which are analytically simpler and have optimality properties. 
Computationally, it requires us to reevaluate our test statistic over past observations, 
adding to the computational burden and thus making the design of sequential proce-
dures challenging.

2. DETECTION DELAY AND TYPE I ERROR CONTROLS

We are going to consider a simple online procure, described in Algorithm 1, that keeps 
track of the running maximum of the standard CUSUM statistics, formally defined 
next, and declares that a change point has occurred as soon as its value exceeds a pre-
specified, time-dependent threshold. Later in the paper, we will discuss different variants 
of this simple method, but they all share this basic core principle.

Definition 1 (CUSUM statistic). Given a sequence fXtgt¼1, 2, ::: � R and a pair of inte-
gers 1 � s < t, we define the CUSUM statistic and its population version as

bDs, t ¼
t − s

ts

� �1=2Xs

l¼1
Xl −

s
tðt − sÞ

� �1=2 Xt

l¼sþ1
Xl

�
�
�
�
�

�
�
�
�
�

and

Ds, t ¼
t − s

ts

� �1=2Xs

l¼1
fl −

s
tðt − sÞ

� �1=2 Xt

l¼sþ1
fl

�
�
�
�
�

�
�
�
�
�
, 

respectively.

Algorithm 1. Online change point detection vis CUSUM statistics 
INPUT:fXugu¼1, 2, ::: � R, fbu, u ¼ 2, 3, :::g � R:

t  1, FLAG 0
while FLAG ¼ 0 do 

t  t þ 1; 

FLAG ¼ 1 −
Qt−1

s¼1
1 bDs, t � bt

n o

;

end while
OUTPUT: t.

Algorithm 1 scans through the data sequence using the CUSUM statistic and a 
sequence of prespecified positive threshold values. For any time point t � 2, as long as 
there exists an integer s 2 ½1, tÞ, such that the corresponding CUSUM statistic bDs, t 
exceeds the threshold bt, we decide that a change in mean has occurred prior to the 
current time point t. Algorithm 1 is written in the way that it will never terminate if 
there is no change point declared. In practice, Algorithm 1 is terminated based on a 
stopping rule decided by the user and our theory accommodates this.

In the rest of this section, we will first focus on one version of the detection proced-
ure, providing its detection delay and type I error control in Section 2.1. We will then 
discuss two other common alternative procedures, together with their performances and 
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connections among all three procedures in Section 2.2. To conclude this section, we will 
discuss some practical issues in Section 2.3.

2.1. Analysis of Algorithm 1

In this section, we analyze the performance of Algorithm 1. Here and in the rest of the 
paper, we adopt a high-dimensional framework of reference, whereby we implicitly 
assume a sequence of change point models with respect to which the data may have ori-
ginated. Accordingly, the parameters defining the statistical task at hand, namely the 
pre-change sample size D when it is finite, the variance parameter r, the magnitude j 

of the change and the false alarm probability a are not fixed but are instead allowed to 
vary, in order to express a spectrum of levels of difficulty of the problem we are inter-
ested in. This is of course a convenient mathematical formalization and is not intended 
to represent any real-life situation. Since our theoretical guarantees will be formulated 
based on finite sample bounds, this formalism does not pose any issue.

We begin by specifying the signal-to-noise ratio condition that we will require in our 
analysis.

Assumption 2.1. There exists a sufficiently large absolute constant CSNR > 0 such that

Dj2r−2 � CSNR log ðD=aÞ:

It is worth emphasizing that the above condition should be interpreted as a constraint 
that is expected to be satisfied for all values of the parameters ðD, r2, j, aÞ simultan-
eously. For example, assume the type I error level a and the jump size parameter j to 
be fixed. Then, the above condition will constrain how large the variance parameter r2 

is allowed to be in relation to D and, vice versa, how small D can be with respect to r2:

We will refer to any relationship that holds among ðD, r2, j, aÞ, such as the one 
expressed in Assumption 2.1, as a scaling. 

In our main result, we show that using the CUSUM statistic and under the signal-to- 
noise ratio condition in Assumption 2.1, Algorithm 1 is able to detect the change point 
with a detection delay of order up to r2j−2 log ðD=aÞ, with probability at least 1 − a, 
using time-varying thresholds of order r log 1=2ðt=aÞ: This rate is minimax optimal, as 
we show in Section 4.  

Theorem 2.2. Consider the settings described in Assumption 1.1. Let a 2 ð0, 1Þ and bt be 
the stopping time returned by Algorithm 1 with inputs fXtgt¼1, 2, ::: and fbtgt¼2, 3, :::, where

bt ¼ 23=2r log 1=2ðt=aÞ: (2.1)  

If D ¼ 1, then

P1 bt <1f g < a: (2.2)  

Under Assumption 1.2, we have

PD bt � D
� �

< a, (2.3) 

for any D � 1. If Assumptions 1.2 and 2.1 both hold, then
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PD D < bt � Dþ Cd
r2 log ðD=aÞ

j2

� �

� 1 − a, (2.4) 

where Cd > 0 is an absolute constant with Cd < CSNR:

Remark 1. In relation to the procedure described in Lorden (1971), a direct conse-
quence of combining Theorem 2.2 above and Theorem 2 in Lorden (1971) is the fol-
lowing. For k 2 f1, 2, :::, g, let btk be the output of applying Algorithm 1 to 
fXk, Xkþ1, :::g and let bt� ¼ minfbtk þ k − 1, k ¼ 1, 2, :::g: We have that the average run 
length of bt� satisfies E0ðbt�Þ � 1=a:

The proof of Theorem 2.2 is given in Section B. In our proofs, we have not optimized 
the constants, which we conjecture can be made smaller through a more refined ana-
lysis. As for the tuning parameter bt used by the procedure, we have made the multi-
plicative constant 23=2 explicit, though any number larger than 2 can be used: See (18). 
In practice, since usually the variance parameter r is unknown, we recommend calibrat-
ing the values of bt via simulations, assuming the availability of data from a pre-change 
distribution, as it is often the case in applications. 

The guarantee (2.2) implies that, in the absence of any change points, the procedure 
will continue indefinitely with probability at least 1 − a: On the other hand, when a 
change point does exist, as assumed in Assumption 1.2, the bound (2.3) guarantees that 
the false alarm probability of our procedure is no larger than a, regardless of the actual 
value of the change point. Additionally, under the scaling on the signal-to-noise ratio 
given in Assumption 2.1, (2.4) provides a high-probability bound on the detection delay 
of order r2j−2 log ðD=aÞ, which is increasing in r and D and decreasing in a and j. In 
particular, combining (2.4) with Assumption 2.1, we can see that the smaller a—the tol-
erance on the type I error—is, the larger the required signal-to-noise ratio and the 
detection delay are. As suggested by the minimax lower bound given below in 
Proposition 4.1, our detection delay bound appears to be optimal. We refer readers to 
Section 4 for a detailed discussion of the optimality of our results and their relation to 
the existing literature. Finally, we remark the expression of detection delay bound is 
nearly identical to the one of the localization error found by Wang, Yu, and Rinaldo 
(2020) for the problem of estimating the change points in offline settings, which too is 
nearly minimax rate-optimal. While this result may not be surprising, it is far from 
obvious. 

Theorem 2.2 could be equivalently stated using stopping times leading to a more 
practical interpretation. Such formulation is better suited to accommodate real-life situa-
tions, where the experiment cannot continue indefinitely and is instead ultimately ter-
minated based on a predefined, possibly random, stopping rule. Specifically, the proof 
of Theorem 2.2 also implies that, with probability at least 1 − a and uniformly over all 
finite random times T, it holds that

� bt > T if D ¼ 1 or if T � D,

� D < bt � Dþ Cd
r2 log ðD=aÞ

j2 , if T > Dþ Cd
r2 log ðD=aÞ

j2 :
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Whenever T happens to be between D and Dþ Cdr
2j−2 log ðD=aÞ, then the proced-

ure is only guaranteed to not raise a false alarm with probability at least 1 − a, at any 
time prior to and including D but may not be able to reach the correct decision that a 
change point has occurred since there are not enough observations between D and T to 
make such a determination.

The proof of Theorem 2.2, as well as of most of the results in the paper, relies in a 
fundamental way on an auxiliary result given in Lemma A.1, which shows that, with 
probability at least 1 − a, the maximal CUSUM statistic process t 2
f2, 3, :::g 7!max1�s<tbDs, t does not exceed the curved boundary of the form 
t 7! 23=2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ðtÞ=a

p
: The proof also shows that, for any fixed t � 2, the order of 

max1�s<tbDs, t is no larger than r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log ðt=aÞ

p
with probability at least 1 − a:

Interestingly, the iterated logarithmic scaling does not appear to apply to the maximal 
CUSUM process, but only to the CUSUM maximum at any fixed time t.

Theorem 2.2 shows that Algorithm 1 can detect the change point with probability at 
least 1 − a, provided that

Dj2r−2 � log ðD=aÞ, 

as required in Assumption 1.2. In fact, this condition is essentially necessary for our 
procedure. More precisely, in our next result we show that if

Dj2r−2� log ðD=aÞ, (2.5) 

then, with probability at least 1 − a, Algorithm 1 will never terminate and therefore will 
be unable to reliably detect a change point. That is, under the scaling (2.5), our proced-
ure only delivers type I error control but is virtually powerless. We conjecture that the 
scaling in Assumption 1.2 is required by any online procedure in order to guarantee a 
false alarm probability smaller than a and at the same time, non-trivial power (which in 
our problem would correspond to a probability no smaller than 1 − a of terminating in 
a finite time when there exists a change point).

Proposition 2.3. Fix an a 2 ð0, 1Þ and let Assumptions 1.1 and 1.2 hold. Assume in add-
ition that for any a 2 ð0, 1Þ, there exists a positive constant cSNR > 0 such that

Dj2r−2 � cSNR log ðD=aÞ: (2.6)  

Let bt be the stopping time returned by Algorithm 1 with inputs fXtgt¼1, 2, ::: and 
fbtgt¼2, 3, :::, where

bt ¼ Cbr log 1=2ðt=aÞ, t � 2, 

with Cb > 0 being sufficiently large. Then,

PD bt <1ð Þ < a:

2.2. Variations of Algorithm 1

The framework for online change point detection we have analyzed so far is based on 
controlling the false alarm probability a, and the magnitude of the detection delay of 
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our procedure depends on the choice of the target probability; see (2.4). An alternative 
approach, considered in the literature and frequently adopted in practice, is to impose 
the weaker requirement that, for a target value c > 0,E1ðbtÞ � c: That is, the expected 
false detection time, or average run length, of an online procedure should be no smaller 
than c when in fact there is no change point. In practical applications in which the pre- 
change point distribution is known or can be estimated from historical data, online 
procedures are often calibrated through simulations by choosing c according to this cri-
terion (e.g., Lorden 1971; Lai 2001).

Below we show how Algorithm 1 can be tuned to yield this type of false alarm con-
trol, as well as a high probability bound on the detection delay when there is in fact a 
change point, where the magnitude of the detection delay scales logarithmically with c.

Proposition 2.4. Consider the settings described in Assumption 1.1. Let c � 2 and bt be 
the stopping time returned by Algorithm 1 with inputs fXtgt¼1, 2, ::: and fbtgt¼2, 3, :::, where

bt ¼ Cbr log 1=2 21=3ðcþ 1Þ
n o

(2.7) 

for an absolute constant Cb > 0. If D ¼ 1, then,

E1ðbtÞ � c:

Under Assumption 1.2, if

c � D and Dj2r−2 � CSNR log ðcÞ, (2.8) 

where CSNR > 0 is an absolute constant, then

PD D < bt � Dþ Cd
r2 log ðcÞ

j2

� �

� 1 − c−1, 

where Cd > 0 is an absolute constant.

The proof of Proposition 2.4 is in Appendix B. Just like with Theorem 2.2, it is 
immediate to formulate a version of Proposition 2.4 that is based on stopping times. 
For brevity, we refrain from providing details.

It is illustrative to compare the guarantees afforded by Theorem 2.2 and Proposition 
2.4 when a change point exists. In this case, the signal-to-noise ratio condition defined 
in Assumption 2.1 is replaced by the analogous conditions shown in (2.8), where it is 
crucial that c is an upper bound on D. In terms of the upper bounds on the detection 
delay, the difference is between log ðcÞ and log ðD=aÞ: When c is of the same order as 
D, then these two detection delay upper bounds differ by a factor log ð1=aÞ, which is of 
constant order in the fixed confidence settings where a is held constant. In terms of the 
values of the probability bounds, the difference is between c−1 and a. This further sug-
gests that, as long as

c�a−1, c � D and c�D, 

these two strategies are equivalent in terms of controlling the detection delay. This con-
nection has been studied before in a slightly different form, see e.g., Lai (1998).

In Proposition 2.4, if Assumption 1.2 holds but (2.8) does not, especially if c < D, 
then we can only reach the conclusion that EDðbtÞ � c, but no longer guarantee the 
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control on the type I error or on the detection delay. This is because the values of the 
threshold bt, defined in (2.7), is constant with respect to t and only depends on c.

In another variant of Algorithm 1 that is often used in practice, researchers may only 
wish to control the false alarm probability over any interval of a prespecified length. 
This strategy may be preferred for computational reasons, as the computational cost of 
the procedure can be directly controlled by selecting an appropriate interval length, 
especially when training can easily be done with historical data. Below, we provide a 
parallel result to Theorem 2.2. To that effect, we require a new definition of the 
CUSUM statistic in Definition 2 and slightly modify Algorithm 1, resulting in 
Algorithm 2, whose computational cost is of order O(t), when proceeding to time 
point t.

Definition 2. Given data fXtgt¼1, 2, ::: � R and a triplet of integers 1 � e < s < t, we 
define the CUSUM statistic and its population counterpart as

bDe, s, t ¼
t − s

ðs − eÞðt − eÞ

� �1=2 Xs

l¼eþ1
Xl −

s − e
ðt − sÞðt − eÞ

� �1=2 Xt

l¼sþ1
Xl

�
�
�
�
�

�
�
�
�
�

and

De, s, t ¼
t − s

ðs − eÞðt − eÞ

� �1=2 Xs

l¼eþ1
fl −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − e

ðt − sÞðt − eÞ

r Xt

l¼sþ1
fl

�
�
�
�
�

�
�
�
�
�
, 

respectively.

Algorithm 2. Online change point detection 2. 
INPUT:fXugu¼1, 2, ::: � R, w � 2, bw > 0:

t  1, FLAG 0
while FLAG ¼ 0 do 

t  t þ 1;

FLAG ¼ 1 −
Qt−1

s¼maxft−wþ1, 1g 1 bDmaxft−w, 0g, s, t � bw

n o

;

end while
OUTPUT:t.

Proposition 2.5. Consider the settings described in Assumption 1.1. Let a 2 ð0, 1Þ and bt 
be the stopping time returned by Algorithm 2 with inputs fXtgt¼1, 2, :::, w � 2 and 
bw ¼ 21=2r log 1=2ð2w2=aÞ. Then, when D ¼ 1,

sup
v�1
P1 v < bt � vþ w
� �

< a:

If Assumptions 1.2 and 2.1 hold and

w > Cwr2 log ð2w2=aÞj−2, (2.9) 

with an absolute constant Cw > 0 then with an absolute constant Cd > 0,

P ðbt − DÞþ � Cdr
2 log ð2w2=aÞj−2

n o

< a:

The proof of Proposition 2.5 can be found in Appendix B. The strategy used in prov-
ing Proposition 2.5 can be seen as a mixture of the strategies used in Theorem 2.2 and 
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Proposition 2.4: Instead of controlling the type I error over the whole time course, it is 
enough to only control the type I error over intervals of length w. Comparing with 
Proposition 2.4, the advantage here is that, if w < D, we will be able to provide a high- 
probability bound on the detection delay. As for Theorem 2.2, the advantage here is the 
same as that in Proposition 2.4, that it might be handier in tuning parameter selection, 
while the price it pays is here that, when w < D, then there is no guarantee that bt > D, 
that is, preventing false alarms.

2.3. Practical and computational issues

In this section, we are to discuss two practical issues for the CUSUM statistics–based 
online procedures discussed above.

The first issue is the choice of tuning parameters. In Algorithm 1, we need a 
sequence of tuning parameters fbtg, whose theoretically justified value is 
23=2r log 1=2ðt=aÞ; see (2.1). The quantity a is specified by the user, but the sub-Gaussian 
parameter r remains unknown. In some situations, the practitioner has access to inde-
pendent copies of data generated from a model with no change points. Then, one may 
wish to set a limit of time, say T, and estimate the empirical type I errors over the time 
course f1, :::, Tg, in order to tune the thresholds. In this sense, the first variant we 
mentioned in Section 2.2 is handier. The tuning parameter can be chosen by setting the 
average run length equal to a pre-specified c.

The second practical issue is computational complexity. The CUSUM statistic given 
in Definition 1 can be rewritten as

bDs, t ¼
t

sðt − sÞ

� �1=2 s
t

Xt

i¼1
Xi −

Xs

i¼1
Xi

�
�
�
�
�

�
�
�
�
�
:

Using this equivalent expression, for each time t, one can store all partial sums 
f
Ps

i¼1 Xig
t
s¼1 and the computational cost of Algorithm 1 is therefore of order O(t) but 

the storage is also of order O(t). As an alternative, one may elect to recalculate the 
CUSUM statistic every time, in which case there is no requirement on storage but the 
computational cost increases to be of order Oðt2Þ:

To reduce the computational burden, a very simple strategy is to avoid calculating 
the maximal values of the CUSUM statistics at all integer pairs 1 � s < t and instead 
consider only pairs that are at a certain distance in time, say h > 0, a prespecified par-
ameter picked by the user. The window width h can be regarded as the user’s maximal 
tolerance on accuracy. More precisely, at each time t � 2, instead of maximizing the 
values of the CUSUM statistics over all integers s 2 ½1, tÞ, one could just calculate 
bDt−h, t, for

h�
r2

j2 log ðDÞ
and t > h:

Then, in Algorithm 1, it would only be enough to check if bDt−h, t exceeds an appro-
priate threshold. The computational complexity of this alternative is of order O(t) and 
the storage cost is of order O(1). The caveat of this alternative is that one needs to 
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carefully tune h, which is required to essentially have the same order of the magnitude 
as the detection delay. To address this issue, we propose to compute bDt−h, t only over a 
geometrically increasing sequence of values for h, a tuning strategy that will only incur 
in an additional computational cost of order Of log ðtÞg when proceeding to time point 
t. The detailed procedure is given in Algorithm 3. As it turns out, this strategy is not 
only computationally convenient, but it yields the same nearly optimal theoretical guar-
antees of Theorem 2.2, as shown next.

Algorithm 3. Online change point detection—varying h. 
INPUT:fXugu¼1, 2, ::: � R, fbu, u ¼ 1, 2, :::, g � R:

t  1, FLAG 0
while FLAG ¼ 0 do 

t  t þ 1;

J  b log ðtÞ= log ð2Þc;
j 0;

while j < J and FLAG ¼ 0 do 
j jþ 1;

sj  t − 2j−1;

FLAG ¼ 1 bDsj, t > bt

n o

;

end while  
end while

OUTPUT: t.

Corollary 2.6. Consider the settings described in Assumption 1.1. Let a 2 ð0, 1Þ and bt be 
the stopping time returned by Algorithm 3 with inputs fXtgt¼1, 2, ::: and fbtgt¼2, 3, :::, where

bt ¼ 23=2r log 1=2ðt=aÞ, t � 2:

If D ¼ 1, then

P1 bt <1f g < a:

Under Assumption 1.2, we have

PD bt � D
� �

< a, 

for any D � 1. If Assumtions 1.2 and 2.1 both hold, then

P D < bt � Dþ Cd
r2 log ðD=aÞ

j2

� �

� 1 − a, 

for all D � 1, where Cd > 0 is an absolute constant satisfying Cd < CSNR:

3. MULTIPLE CHANGE POINTS

It is relatively straightforward to extend our methodology and analysis to deal with mul-
tiple change points. In this setting, the analyst still collects data sequentially and, with 
each new data point, makes a decision as to whether there exists evidence supporting 
the presence of a change point in the near past. But, unlike the single change point case 
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considered in the previous sections, the procedure is restarted each time a new change 
point is declared, until the experiment is terminated. In order to accommodate for the 
presence of multiple change points, we need a refined setup.

Assumption 3.1. Assume that there exists a collection of change points 1 ¼ g0 < g1 <

g2 < :::, such that

fgk−1 ¼ � � � ¼ fgk−1 ¼ lk, k 2 N�, 

where lk 6¼ lkþ1 for each k 2 N�: Let

D ¼ inf
k2N�
ðgk − gk−1Þ

and, for each k 2 N�,
jk ¼ jlk − lkþ1j:

Finally, set j ¼ infk2N� jk, assumed to be strictly positive.

In Assumption 3.1, the minimal spacing between two consecutive change points D 

and the minimal jump size j are natural generalizations of the analogous quantities 
defined in Assumption 1.2 and indeed coincide with them when there is only one 
change point.

Algorithm 4 is an immediate generalization of Algorithm 1 and amounts to repeat-
edly applying Algorithm 1 as soon as a new change point is found. Below we will dem-
onstrate that, under the signal-to-noise ratio condition described in Assumption 3.2, 
given a prespecified confidence level a 2 ð0, 1Þ, the input parameters fbu, u ¼ 2, 3, :::g

of the algorithm can be chosen so that, with probability at least 1 − a,

� the procedure will not declare any change point if in fact there is none;
� if there are change points, then, for any stopping time T with respect to the nat-

ural filtration induced by the data, the procedure will not return any change 
point if T � g1 and will estimate the sequence fg1, :::, gKg ¼ f1, :::, Tg \
fgkgk¼1, 2, ::: of true change points prior to T. Furthermore, in the former case, 

the detection delays will be of order O r2j−2
j log ðD=aÞ

n o
, j ¼ 1, :::K, with high 

probability. It is worth noting that the number K will in general be random if 
the stopping time T is not deterministic.

Algorithm 4. Online change point detection—multiple change points. 

INPUT: fXugu¼1, 2, ::: � R, fbe, u, u ¼ 2, 3, :::, e ¼ 0, 1, :::, u − 1g � R, C ¼ ;
e 0, t  1, FLAG 0:

:

while there is a new data point do 
t  t þ 1;

FLAG ¼ 1 −
Qt−1

s¼1
1 bDe, s, t � be, t

n o

;

if FLAG ¼ 1 then 
C  C [ ftg;
FLAG 0;
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e t
end if  

end while
OUTPUT: C.

The signal-to-noise condition that we required for the case of multiple change points 
is as follows.

Assumption 3.2. Assume that for any a 2 ð0, 1Þ, there exists a sufficiently large abso-
lute constant CSNR > 0 such that

Dj2r−2 � CSNR log ðD=aÞ:

Assumptions 2.1 and 3.2 are identical in appearance, though, of course, the meaning 
of the quantities D and j are different depending on the settings. In the main result of 
this section, we generalize the findings in (2.4) to the settings involving multiple change 
points, deriving essentially the same false alarm and detection delay bounds as in the 
only one change point case. In order to allow for a more transparent statement, we 
have expressed our results in terms of a uniform choice of stopping times for terminat-
ing the experiment. 

Theorem 3.3. Consider the settings described in Assumption 1.1. Let a 2 ð0, 1Þ and C be 
the output of Algorithm 4 with inputs fXtgt¼1, 2, ::: and fbu, u ¼ 2, 3, :::g, where

bu ¼ 4r log 1=2ðt=aÞ, 8u ¼ 2, 3, :::: (3.1)  

The following holds with probability at least 1 − a, uniformly over all choices of finite 
stopping times T with respect to the natural filtration generated by fXtgt¼1, 2, ::::

� If the random variables fXtgt¼1, 2, ::: have constant means, then C ¼ ;:
� Under Assumptions 3.1 and 3.2, let K ¼ jf1, :::, Tg \ fgk, k ¼ 1, 2, :::gj. If K ¼ 0, 

then

C \ f1, :::, Tg ¼ ;:

If K � 1, there exists an absolute constant Cd > 0 satisfying Cd < CSNR such that

C ¼
fbt1, :::,btK−1g or fbt1, :::,btKg if 0 � T − gK < Cd

r2 log ðD=aÞ

j2
k

,

fbt1, :::,btKg otherwise;

8
><

>:

where we set fbt1, :::,btK−1g ¼ ; when K¼ 1. Furthermore,

0 � btk − gk � Cd
r2 log ðD=aÞ

j2
k

, 8k ¼ 1, :::, K, 

where, if C ¼ fbt1, :::,btK−1g, we define btK ¼ T:

The proof of Theorem 3.3 is in Section B and repeatedly uses the proof and results 
of Theorem 2.2, therefore the proof of Theorem 3.3 holds for any fixed time point T, 
including random finite stopping times T. In fact, Lemma 3 in Howard et al. (2018) 
also shown such equivalence in the context of sequential testing.
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One of the key steps in the proof is to show that, for any k � 1,

0 � btk − gk � Cd
r2 log ðD=aÞ

j2
k

< D=4: (3.2) 

Once a change point is declared, the procedure is restarted afresh using the latest 
change point estimate as the new initial time. Due to the last display, we are guaranteed 
that the new starting point of the procedure, namely btk, is only slightly delayed, by an 
amount no larger than D=4 from the ideal starting point gk. The constant of 1/4 is not 
special and could be replaced by any constant smaller than 1/2. Equivalently, the next 
change point will be detected starting from btk; precisely, we have that

gkþ1 −btk ¼ gkþ1 − gk − ðbtk − gkÞ > 3D=4:

As demonstrated in our proof, this delay is sufficient, under the signal-to-noise con-
dition in Assumption 3.2, to ensure that the procedure is able to detect the next change 
point gkþ1 and to localize it with a detection delay no larger than Cdr

2j−2
kþ1 log ðD=aÞ:

It is important to notice that the quantity K in the theorem statement is itself a ran-
dom variable. Furthermore, the theorem only guarantees that the procedure will be able 
to identify, with probability at least 1 − a all the K true change point in the interval 
f1, :::, Tg as long as T − gK � Cdr

2j−2
k log ðD=aÞ: If this condition is not satisfied, that 

is, when the difference between the kth time point and the stopping time is too small in 
relation to the assumed signal-to-noise ratio Assumption 3.2, there is not guarantee that 
the procedure will detect the last change point gK. This is not surprising: The data col-
lected in such a short amount of time between the last-detected change point and T 
may not in general contain enough information to support that decision.

4. OPTIMALITY

4.1. A Lower Bound on the Detection Delay

In this section, we show that the detection delay bounds derived in Theorem 2.2 are 
essentially sharp. Toward this end, we adapt to our settings existing techniques for 
deriving minimax optimality from the literature on change point analysis which, how-
ever, only apply asymptotically and under parametric assumption. In particular, 
Theorem 1 of Lorden (1971) shows that, assuming independent Gaussian instead of 
sub-Gaussian data,

inf
bt

sup
D�1

esssup ED ðbt − DÞ
þ
jX1, :::, XD

� �
�

r2 log ðcÞ
j2 , as c!1:

where the infimum is taken over all change point estimators bt such that E1ðbtÞ � c:

The last display bears clear similarities with the high-probability delay bounds in 
Section 2 and, in particular, with the guarantees obtained in Proposition 2.4.

In our next non-asymptotic result, we formally show that the upper bound on the 
detection delay of Theorem 2.2 is in fact in agreement, with a minimax lower bound on 
the expected detection delay. The proof adapts arguments used in Theorem 2 of Lai 
(1998).
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Proposition 4.1. Assume that fXigi¼1, 2, ::: is a sequence of independent Gaussian random 
variables satisfying EðXiÞ ¼ fi, VarðXiÞ ¼ r2 and Assumption 1.2. Denote the joint distri-
bution of fXigi¼1, 2, ::: as Pj, r, D. For a 2 ð0, 1Þ, consider the class of change point estima-
tors

DðaÞ ¼ fT : T is a stopping time with respect to the natural filtration
and satisfies P1ðT <1Þ � ag:

Then for all a, j and r such that 2j2Dr−2 � log ðD=aÞ and

1 − c1 > aþ a1=4, (3.3) 

with an absolute constant c1 > 0, it holds that, for any change point time D,

inf
bt2DðaÞ

sup
Pj, r, D
EP ðbt − DÞþ

n o

�
r2

2j2 log
D

a

� �

: (3.4) 

Remark 2. The constants in (3.3) have not been optimized and are likely to be 
improvable. 

In the context of multiple change points, the lower bound in Proposition 4.1 further 
yields that the signal-to-noise ratio condition in Assumption 3.2 is almost necessary to 
guarantee a consistent change point localization. As remarked after the statement of 
Theorem 3.3, with probability at least 1 − a, under this condition, the kth estimated 
change point is at a distance of no more than D=4 from the kth largest true change 
point, see (3.2). In contrast, whenever Assumption 3.2 is violated in such a way that

j2D=r2 < log ðD=aÞ=2, (3.5) 

then (3.4) implies that

infbt2DðaÞ supPj, r, D EP ðbt − DÞþ

n o

D
> 1:

Thus the expected detection delay is larger than D and, therefore, the true change 
point cannot be consistently estimated.

Overall, we may conclude that the online multiple change point detection problem is 
impossible under the low signal-to-noise ratio condition j2D=r2�log ðD=aÞ: In contrast, 
a slightly larger signal-to-noise ratio j2D=r2� log ðD=aÞ is sufficient to guarantee, as 
shown in Theorem 3.3, that the change points can be accurately estimated with prob-
ability no smaller than the prescribed nominal level of 1 − a: A similar phase transition 
phenomenon occurs for the offline mean change localization problem, see Wang, Yu, 
and Rinaldo (2020). In fact, the phase transition boundary is nearly identical in both 
the online and offline settings.

4.2. Connections with Offline Change Point Detection Problems

A closely related area is the offline change point detection, where one has data fXig
T
i¼1 

and seeks change point estimators fbgkg � f1, :::, Tg: The online and offline change 
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point analysis shares many similarities. The offline change point results we list below 
can be found in Wang, Yu, and Rinaldo (2020).

The signal-to-noise ratio and the phase transition. Let D be the minimal spacing 
between two consecutive change points in the offline setting. We remark that in both 
online and offline problems, the signal-to-noise ratio is of the same form j2D=r2: In 
both problems, the parameter spaces can be partitioned into feasibility and infeasibility 
regimes by this signal-to-noise ratio. In Wang, Yu, and Rinaldo (2020), it is shown that 
in the univariate offline change point detection problem, both the lower and upper 
bounds on the signal-to-noise ratio are of order log ðTÞ:

When deriving the estimation error, since one has collected all the data in advance in 
the offline setting, the signal-to-noise ratio is lower bounded by log ðTÞ and as a result, 
the estimation error only depends on the model parameters. This is not the case in the 
online setting, where the total number of data points examined is also a random vari-
able. In this case, additional information is needed. In Theorem 2.2, we choose to con-
trol the upper bound of the type I error a. As a result, the estimation error, that is, the 
detection delay, is a function also of a.

5. EXPERIMENTS

To validate the theoretical results presented in this paper, we consider the empirical 
performance of Algorithm 1 with choices of fbtg guided by Theorem 2.2. Since the 
main focus of our theoretical results lies in the theoretical optimality in terms of rates, 
we sacrifice the sharpness in terms of constants for presentational convenience. It can 
be seen from Appendix A that, we have used more conservative fbtg in Theorem 2.2. 
To demonstrate the numerical performances, guided by the results in Appendix A, we 
consider the thresholds

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 log
2t2

sðt − sÞ

� �

− 2 log ðaÞ

s

in Algorithm 1.
As competitors we consider the thresholding rule from Theorem 6 in Maillard (2019) 

(M). We also compare against Chen (2019). For comparing with the latter, we consider 
its three different statistics, including the “original” (ORI) which specifies the original 
edge-count scan statistic, the weighted edge-count scan statistic (W), and the general-
ized edge-count scan statistic (G). These statistics are calibrated using 300 Monte Carlo 
simulations where in each simulation we generate a sequence ~y1, :::, ~y100 � Nð0, r2Þ: All 
our comparisons with Chen (2019) are done with the R package gStream (Chen and 
Chu 2019).

With regard to generating the data, we set T ¼ 400 and construct y 2 RT as

yt �
Nð0, r2Þ, t < D,
Nð1, r2Þ, t � D,

�

with D 2 f50,1g and r 2 f0:1, 0:5, 1, 0:8, 1:2g:
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As for the performance of different methods, we consider the choices a 2 f0:05, 0:1g:
Then for each choice of a and with v ¼ 1, we report the proportion of false alarms 
(PFA) in 100 Monte Carlo trials, where we run each competing method up to T¼ 400. 
Furthermore, when D¼ 50, denoting by bt i the output of a method across the i ¼
1, 2, :::, 100 Monte Carlo trials, we report the detection delay defined as

DD ¼
1

100

X1000

i¼1
ðminfbt i, Tg − DÞþ: (5.1) 

The results in Table 1 show that, overall, the best performance is attained by 
Algorithm 1 followed by Maillard (2019). This is reflected in both PFA and DD.

6. DISCUSSION

We have investigated various aspects of online mean change point estimation with sub- 
Gaussian, independent variates. In our analysis, we have adopted finite sample settings 
and allowed for the model parameters to vary so as to express all the sources of statis-
tical hardness in the problem. We have presented simple but effective algorithms for 
online change point localization based on classical CUSUM process that are provably 
nearly optimal. We have also identified combinations of model parameters for which 
the change point estimation task is impossible and showed that our procedure succeeds 
over nearly all the other combinations, including those for which the problem is most 
difficulty and barely solvable. Interestingly, the online estimation rates and phase transi-
tion boundaries we determine are nearly identical to those holding in the offline set-
tings; see Wang, Yu, and Rinaldo (2020). The framework we established in this paper 

Table 1. Numerical results.
a r Method PFA DD a r Method PFA DD

0.05 0.1 Alg 1 0.04 0.00 0.1 0.1 Alg 1 0.00 0.00
0.05 0.1 M 0.02 0.00 0.1 0.1 M 0.00 0.00
0.05 0.1 ORI 0.06 7.89 0.1 0.1 ORI 0.10 7.28
0.05 0.1 W 0.08 7.46 0.1 0.1 W 0.10 6.82
0.05 0.1 G 0.04 7.73 0.1 0.1 G 0.06 7.11
0.05 0.5 Alg 1 0.04 4.81 0.1 0.5 Alg 1 0.07 4.60
0.05 0.5 M 0.00 5.33 0.1 0.05 M 0.02 4.92
0.05 0.5 ORI 0.04 17.10 0.1 0.05 ORI 0.12 15.65
0.05 0.5 W 0.02 17.32 0.1 0.05 W 0.08 16.67
0.05 0.5 G 0.04 18.11 0.1 0.05 G 0.08 16.78
0.05 0.8 Alg 1 0.06 11.77 0.1 0.8 Alg 1 0.12 9.53
0.05 0.8 M 0.02 15.59 0.1 0.8 M 0.10 14.24
0.05 0.8 ORI 0.05 120.48 0.1 0.8 ORI 0.10 94.25
0.05 0.8 W 0.03 145.13 0.1 0.8 W 0.07 87.28
0.05 0.8 G 0.03 152.29 0.1 0.8 G 0.10 99.37
0.05 1.2 Alg 1 0.05 27.16 0.1 1.2 Alg 1 0.06 23.08
0.05 1.2 M 0.01 80.09 0.1 1.2 M 0.03 66.52
0.05 1.2 ORI 0.03 241.10 0.1 1.2 ORI 0.08 209.31
0.05 1.2 W 0.02 249.46 0.1 1.2 W 0.13 237.14
0.05 1.2 G 0.03 253.77 0.1 1.2 G 0.12 226.48

For both metrics the numbers are obtained by avergaing over 100 Monte Carlo simulations.
PFA, probablity of false alarm; DD, detection delay.
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can be used to study different high-dimensional problems. This will be left as future 
work.

In order to control the fluctuations of the CUSUM statistics, we have adopted two 
different approaches. Theorems 2.2 and 3.3 rely on peeling arguments, as detailed in 
Lemmas A.1 and A.2. In contrast, the results in Section 2.2 rely on simpler union 
bound arguments. Interestingly, even using peeling, we were only able to establish that 
the CUSUM statistic process

t 7! sup
t�2

max1�s<t
s

tðt − sÞ

� �1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
�
�

�
�
�
�
�
, 

has fluctuations of order 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f log ðtÞ þ log ðaÞg=t

p
: One may have expected to see a better 

dependence on t, such as in 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log ðtÞ

p
: However, the above CUSUM process does 

not have a clear martingale structure. As a result, peeling techniques only yield crossing 
boundaries that scale like 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log ðtÞ

p
, albeit with better constants than those of the same 

order stemming from union bound arguments. Since we have not made attempts to 
optimize constants, both approaches—peeling and union bounds (or Bonferroni-type 
arguments)—deliver the same localization rates in our settings.
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APPENDICES

We include all the technical details and some additional simulation results in the Appendices.

APPENDIX A. CONCENTRATION INEQUALITIES

Lemma A.1. For any a > 0, it holds that

P
�

9s, t 2 N, t > 1, s 2 ½1, tÞ :
t − s

ts

� �1=2Xs

l¼1
ðXl − flÞ −

s
tðt − sÞ

� �1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
�
�

�
�
�
�
�

> 23=2r log 1=2ðt=aÞ

�

� a:

Proof. It holds that for any sequence fet > 0g,

P
�

9s, t 2 N, t > 1, s 2 ½1, tÞ :

�
�
�
�

�
t − s

ts

�1=2Xs

l¼1
ðXl − flÞ

−
�

s
tðt − sÞ

�1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
� � et

�
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�
X1

j¼1
P
�

max
2j�t<2jþ1

max
1�s<t

�
�
�
�

�
t − s

ts

�1=2Xs

l¼1
ðXl − flÞ −

�
s

tðt − sÞ

�1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
� � et

�

�
X1

j¼1
2j max

2j�t<2jþ1
P
�

max
1�s<t

�
�
�
�

�
t − s

ts

�1=2Xs

l¼1
ðXl − flÞ −

�
s

tðt − sÞ

�1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
� � et

�

�
X1

j¼1
2j max

2j�t<2jþ1
tPfjWj � etg �

X1

j¼1
22jþ1 max

2j�t<2jþ1
PfjWj � etg, 

where W is a mean zero sub-Gaussian random variable with kWkw2
� r: Now put

et ¼
ffiffiffi
2
p

r 2 log ðtÞ þ 3 log log ðtÞ þ log log ðtÞ þ log ð2Þ
� �

− 2 log log ð2Þ − log ðaÞ
� �1=2

:

Due to the sub-Gaussianity, we have that for any f > 0,P jWj � ff g < 2 exp ð−2−1f2=r2Þ (e.g., 
(2.9) in Wainwright 2019). Therefore,

P
�

9s, t 2 N, t > 1, s 2 ½1, tÞ :

�
�
�
�

�
t − s

ts

�1=2Xs

l¼1
ðXl − flÞ

−
�

s
tðt − sÞ

�1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
� � et

�

�
X1

j¼1
max

2j�t�2jþ1
exp½ð2jþ 2Þ log ð2Þ − 2 log ðtÞ − 3 log log ðtÞ − log f log ðtÞ þ log ð2Þg

þ2 log log ð2Þ þ log ðaÞ�

�
X1

j¼1
exp fð2jþ 2Þ log ð2Þ − 2j log ð2Þ − 3 log ðjÞ − log fðjþ 1Þ log ð2Þg

þ2 log log ð2Þ þ log ðaÞg

� a
X1

j¼1

22jþ2 log 22
22jj3ðjþ 1Þ log 2

� a
X1

j¼1

1
jðjþ 1Þ

� a:

For simplicity, we let

et ¼ 23=2r log 1=2ðt=aÞ, 

which satisfies that for any t � 2 and a 2 ð0, 1Þ,

23=2 log 1=2ðt=aÞ �
ffiffiffi
2
p
½2 log ðtÞ þ log log ðtÞ þ log log ðtÞ þ log ð2Þ

� �
− 2 log log ð2Þ − log ðaÞ� 1=2 :

(A.1) 
This completes the proof.                                                                                     w

Lemma A.2. For any a > 0, it holds that

P
�

9e, s, t 2 N, e � 0, s > e, t > s :

�
�
�
�

t−s
ðs−eÞðt−eÞ

n o1=2 Xs

l¼eþ1
ðXl − flÞ

− s−e
ðt−sÞðt−eÞ

n o1=2 Xt

l¼sþ1
ðXl − flÞ > 4r log 1=2ðt=aÞ

�

� a:

�
�
�
�
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Proof. For any integer triplet (e, s, t), 0 � e < s < t, any sequence fee, s, t > 0g, let

Gðe, s, tÞ ¼
��
�
�
�

t−s
ðs−eÞðt−eÞ

n o1=2 Xs

l¼eþ1
ðXl − flÞ

− s−e
ðt−sÞðt−eÞ

n o1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
� > ee, s, t

�

¼ Gðe, s, tÞ > ee, s, t
� �

:

We have that

P 9e, s, t 2 N, e � 0, s > e, t > s : Gðe, s, tÞ
� �

� P 9s, t 2 N, e ¼ 0, s > e, t > s : Gð0, s, tÞ
� �

þP 9s, t 2 N, e � 1, s > e, t > s : Gðe, s, tÞ
� �

¼ ðIÞ þ ðIIÞ:

As for (I), it follows from Lemma A.1 that, with e0, s, t defined as

e0, s, t ¼ e
ð1Þ
t ¼

ffiffiffi
2
p

r½2 log ðtÞ þ 3 log log ðtÞ þ log f log ðtÞ þ log ð2Þg
−2 log log ð2Þ þ log ð2Þ − log ðaÞ�1=2, 

we have that

ðIÞ � a=2:

As for (II), we have that

ðIIÞ �
X1

j¼1
P max

2j�t<2jþ1
max

1�e<t−1
max
e<s<t

Gðe, s, tÞ > ee, s, t
n o

�
X1

j¼1

Xj−1

m¼0
P max

2j�t<2jþ1
max

2m�e<2mþ1
max
e<s<t

Gðe, s, tÞ > ee, s, t
n o

þ
X1

j¼1
P max

2j�t<2jþ1
max

2j�e<t
max
e<s<t

Gðe, s, tÞ > ee, s, t
n o

<
X1

j¼1

Xj−1

m¼0
2j2m2jþ1 þ 2j2j2j

 !

max
2j�t<2jþ1

e<s<t
PfGðe, s, tÞg

�
X1

j¼1
23jþ2 max

2j�t<2jþ1
e<s<t
PfGðe, s, tÞg:

For any e > 0, let

ee, s, t ¼ e
ð2Þ
t ¼

ffiffiffi
2
p

r½3 log ðtÞ þ 3 log log ðtÞ þ log f log ðtÞ þ log ð2Þg
þ3 log ð2Þ − 2 log log ð2Þ − log ðaÞ�1=2

:

Due to the sub-Gaussianity, we have that

ðIIÞ � a=2:

For simplicity, we let

et ¼ 4r log 1=2ðt=aÞ, 

such that

4 log 1=2ðt=aÞ � 21=2½3 log ðtÞ þ 3 log log ðtÞ þ log f log ðtÞ þ log ð2Þg
þ3 log ð2Þ − 2 log log ð2Þ − log ðaÞ�1=2

:
(A.2) 

We therefore completes the proof.                                                                          w
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APPENDIX B. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2.2. This proof consists of four steps. In Step 1 we define a large probabil-
ity event, where the rest of the proof is conducted. In Step 2 we conclude the claims on type I 
error controls. In Step 3 we change the detection delay upper bounding problem to upper bound-
ing the delay with respect to an easier to handle quantity t�: In Step 4 we conclude the proof. 

Step 1. Define the event

B ¼

�

8s, t 2 N, t > 1, s 2 ½1, tÞ :

�
�
�
�

t−s
ts
� �1=2X

s

l¼1
ðXl − flÞ

− s
tðt−sÞ

n o1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
� < bt

�

:

It follows from Lemma A.1 that PfBg > 1 − a: Throughout the proof we assume that the 
event B holds. 

For any s, t 2 N, 1 � s < t, it holds that bDs, t − Ds, t

�
�
�

�
�
� < bt , which implies that

Ds, t þ bt > bDs, t > Ds, t − bt: (B.1)  

Step 2. For any t � D, we have that Ds, t ¼ 0, for all s 2 ½1, tÞ: Thus, using (B.1), we conclude 
that, bt > t and, therefore that bt > D: We have now shown (2.2) and (2.3). 

Step 3. Now we consider any t > D: If there exists s 2 ½1, tÞ such that bDs, t > bt , then d ¼
bt − D � t − D: Thus, d � ~t − D, where

~t ¼ minft > D, 9s 2 D, tÞ, bDs, t > btg,
h

and any upper bound on ~t will also be an upper bound on d. Thus, our task becomes that of 
computing a sharp upper bound on ~t: To that effect, notice that, when D � s < t,

Ds, t ¼ D
t − s

ts

� �1=2

jl1 − l2j ¼ D
t − s

ts

� �1=2

j, 

and, because of (B.1) again,

bDs, t � D
t − s

ts

� �1=2

j − bt:

As a result, we obtain that ~t � t�, where

t� ¼ min
�

t > D : max
s2½D, tÞ

�

D

�
t − s

ts

�1=2

j − 2bt

�

� 0
�

:

Step 4. Write for convenience m ¼ t� − D, so that d � m: Recalling that bt ¼

23=2r log 1=2ðt=aÞ, we seek the smallest integer m such that

max
s2½D, mþDÞ

�

Dj

�
mþ D − s
ðmþ DÞs

�1=2

− 25=2r log 1=2fðmþ DÞ=ag

�

> 0, 

which is equivalent to finding the smallest integer m such that

max
s2½D, mþDÞ

�

D2j2 − 32r2 sðmþ DÞ

mþ D − s
log fðmþ DÞ=ag

�

> 0:

In turn, the above task corresponds to that of computing the smallest integer m such that

D2 j2

r2 > min
s2½D, mþDÞ

�

32
sðmþ DÞ

mþ D − s
log fðmþ DÞ=ag

�

¼ 32
Dðmþ DÞ

m
log fðmþ DÞ=ag, 
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or, equivalently, such that

m
Dj2

32r2 − log ðmþ DÞ=a
� �

� �

> D log ðmþ DÞ=a
� �

, (B.2) 

under Assumption 2.1.
Let Cd be an absolute constant large enough and also upper bounded by CSNR: The claimed 

result now follows once we show that that the value

m� ¼ dCd log ðD=aÞr2j−2e

satisfies (B.2). To see this, assume for simplicity that Cd log ðD=aÞr2j−2 is an integer; if not, the 
proof only requires trivial modifications. We first point out that m� � D because of Assumption 
2.1 and the fact that Cd � CSNR: Now, the lefthand side of inequality (B.2) is equal, for this 
choice of m, to

Cd log ðD=aÞ
D

32
− Cd

r2

j2 log ðD=aÞ log
Cd log ðD=aÞr2=j2 þ D

a

� �

: (B.3) 

Using again Assumption 2.1 and the fact that m� � D, the second term in the previous 
expression is upper bounded by

2Cd

CSNR
D log ðD=aÞ, 

due to the fact that 2 log ðxÞ � log ð2xÞ, x � 2: Thus, the quantity in (B.3) is lower bounded by

D log ðD=aÞ
Cd

32
−

2Cd

CSNR

� �

� 2D log ðD=aÞ � D log ð2D=aÞ � D log ðm� þ DÞ=að Þ, 

where the first inequality is justified by first choosing a large enough Cd and then choosing CSNR 
larger than Cd, and the second and third inequalities follow from log ðD=aÞ � 0 and m� � D, 
respectively. Thus, combining the last display with (B.2) and (B.3) yields (2.4).                      w

Proof of Proposition 2.3. It follows from Step 1 in the proof of Theorem 2.2 that on the 
event B, it holds that

bDs, t < Ds, t þ 23=2r log 1=2ðt=aÞ, 1 � s < t:

It follows from Step 2 in the proof of Theorem 2.2 that we only need to consider t > D: This 
leaves us two situations: s � D and s � D: In fact in both these two situations, one only needs to 
deal with the case s ¼ D, therefore we only show s � D here. 

When D � s < t, we have Ds, t ¼ jDfðt − sÞ=tsg1=2 and therefore on the event B, we have that

max
D�s<t

bDs, t � max
D�s<t

jD
t − s

ts

� �1=2

þ 23=2r log 1=2ðt=aÞ

� jD t−s
ts
� �1=2

þ 23=2r log 1=2ðt=aÞ � jD1=2 þ 23=2r log 1=2ðt=aÞ < bt , 

where the last inequality follows from (2.6). We therefore completes the proof.                      w

Proof of Proposition 2.4. This proof consists of three steps. In Step 1 we define a large prob-
ability event, where the rest of the proof is conducted. We also conclude the control on the aver-
age run length. In Step 2 we change the detection delay upper bounding problem to upper 
bounding the delay with respect to an easier to handle quantity t�: In Step 3 we conclude the 
proof. 
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Step 1. Define the event

C ¼

�

t 2 f2, :::, cþ 2g, s 2 N \ ½1, tÞ :

�
�
�
�

t−s
ts
� �1=2X

s

l¼1
ðXl − flÞ

− s
tðt−sÞ

n o1=2 Xt

l¼sþ1
ðXl − flÞ < bt

�

:

�
�
�
�

We have that

1 − PfCg � ðcþ 1Þ max
t2f2, :::, cþ2g
P
�

9s 2 N \ ½1, tÞ :

�
�
�
�

�
t − s

ts

�1=2Xs

l¼1
ðXl − flÞ

−
�

s
tðt−sÞ

�1=2 Xt

l¼sþ1
ðXl − flÞj � bt

�

� ðcþ 1Þ2PfjWj > btg � 2ðcþ 1Þ2 exp
�

−
b2

t
2r2

�

¼ ðcþ 1Þ−1, 

where W is a mean zero sub-Gaussian random variable with kWkw2
� r and the Hoeffding 

inequality (e.g., (2.9) in Wainwright 2019).
Therefore we have that

E1ðbtÞ ¼
X1

t¼2
Pfbt � tg �

Xcþ2

t¼2
Pfbt � tg � ðcþ 1ÞPfbt > cþ 2g � ðcþ 1Þ

�

1 −
1

cþ 1

�

¼ c:

Step 2. We have that

P bt > cþ 2g ¼ PfCg � 1 − ðcþ 1Þ−1,
�

When c > maxfD − 2, 1g, it holds that

Pfd > 0g � 1 − ðcþ 1Þ−1
:

For any t > D, if there exists s 2 ½1, tÞ such that bDs, t > bt , then d � t − D: It suffices to find

~t ¼ minft : t > D, 9s 2 ðD, tÞ, bDs, t > btg, 

and any upper bound on ~t will also be an upper bound on d, when the signal-to-noise ratio con-
dition in (2.8) is satisfied. Then, our task becomes that of computing a sharp upper bound on ~t:

To that effect, notice that, when D � s < t,

Ds, t ¼ D
t − s

ts

� �1=2

jl1 − l2j ¼ D
t − s

ts

� �1=2

j, 

and on the event C,

bDs, t � D
t − s

ts

� �1=2

j − bt:

As a result, we obtain that ~t � t�, where

t� ¼ min t > D : maxs2ðD, tÞ D
t − s

ts

� �1=2

j − 2bt

( )

� 0

( )

:

Step 3. Write for convenience m ¼ t − D, so that d � m: Recalling that

bt ¼ 61=2r log 1=2 21=3ðcþ 1Þ
n o

, 

we seek the smallest integer m such that
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max
s2½D, mþDÞ

�

Dj

�
mþ D − s
ðmþ DÞs

�1=2

− 2� 61=2r log 1=2f21=3ðcþ 1Þg
�

> 0, 

which is equivalent to finding the smallest integer m such that

max
s2½D, mþDÞ

�

D2j2 − 24r2 sðmþ DÞ

mþ D − s
log f21=3ðcþ 1Þg

�

> 0:

In turn, the above task corresponds to that of computing the smallest integer m such that

tD2j2 > min
s2½D, mþDÞ

�

24r2 sðmþ DÞ

mþ D − s
log f21=3ðcþ 1Þg

�

¼ 24r2 Dðmþ DÞ

m
log f21=3ðcþ 1Þg, 

or, equivalently, such that

m
Dj2

24r2 − log 21=3ðcþ 1Þ
n o� �

> D log 21=3ðcþ 1Þ
n o

: (B.4) 

Let C0d be a large enough absolute constant. The claimed result now follows once we show that 
the value

m� ¼⎾Cd0r
2j−2 log 21=3ðcþ 1Þ

n o

e

satisfies (B.4). To see this, assume for simplicity that C0dr
2j−2 log 21=3ðcþ 1Þ

� �
is an integer; if 

not, the proof only requires trivial modifications. Now, the lefthand side of inequality (B.4) is 
equal, for this choice of m, to

C0d log 21=3ðcþ 1Þ
n o

D

24
− C0dr

2j−2 log 2 21=3ðcþ 1Þ
n o

: (B.5) 

Using again (2.8), the second term in the previous expression is upper bounded by

2C0d
CSNR

D log 21=3ðcþ 1Þ
n o

, 

due to the fact that 2 log ðxÞ � log f21=3ðxþ 1Þg, x � 2: Thus, the quantity in (B.5) is lower 
bounded by

D log 21=3ðcþ 1Þ
n o C0d

24
−

2C0d
CSNR

� �

� 2D log 21=3ðcþ 1Þ
n o

� D log 21=3ðcþ 1Þ
n o

, 

where the first inequality is justified with first choosing a large enough Cd, then a large enough 
CSNR: Thus we conclude the proof with a large enough absolute constant Cd > 0: w

Proof of Proposition 2.5. When D ¼ 1, assuming that f1 ¼ f2 ¼ ::: and letting ec, t ¼

maxft − cþ 1, 1g, we have that

sup
v>1
Pðv � bt � vþ cÞ

� sup
v>1
P 9s 2 N \ ðv, vþ cÞ, t 2 N \ ec, t , t − 1½ � : bDec, t , s, t > bc

n o

� c2P jWj > bc

� �
� a, 

where W is a mean zero sub-Gaussian random variable with kWkw2
� r and satisfies that 

any f > 0,P jWj � ff g < 2 exp ð−2−1f2=r2Þ:

When Assumption 1.2 is imposed, we consider t > D: For any D < t < Dþ c=2, if there exists 
s 2 ½1, tÞ such that bDec , s, t > bc, then d � t − D: It suffices to find

~t ¼ minft : D < t < Dþ c=2, bDt−c, D, t > bcg, 
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and any upper bound on ~t will also be an upper bound on d, when (2.9) is satisfied. Thus, our 
task becomes that of computing a sharp upper bound on ~t: To that effect, notice that, when D ¼
s < t < Dþ c=2, we have

Dt−c, D, t ¼
ðt − DÞðD − t þ cÞ

c

� �1=2

jl1 − l2j ¼
ðt − DÞðD − t þ cÞ

c

� �1=2

j:

In addition, it holds that

PfGg ¼ P 9t 2 ðD, Dþ c=2Þ : jbDt−c, D, t − Dt−c, D, tj > bc

n o

� c=2ac−2 < a:

Therefore on the event G,

bDt−c, D, t �
ðt − DÞðD − t þ cÞ

c

� �1=2

j − bc:

As a result, we obtain that ~t � t�, where

t� ¼ min t 2 ðD, Dþ c=2Þ :
ðt − DÞðD − t þ cÞ

c

� �1=2

j − 2bc � 0

( )

:

Write for convenience m ¼ t� − D, so that d � m: Due to the form of bc, we seek the smallest 
integer m such that

mðc − mÞ
c

� �1=2

j − 23=2r log 1=2 2c2a−1
� �

> 0:

We now to show that m ¼ dCdr
2 log ðc=aÞj−2e satisfies the above. Due to (2.9), we have that 

ðc − mÞ=c � 1=2, then

mðc − mÞ
c

j2 � j2m=2 > 23=2r log 1=2 2c2a−1
� �

, 

which completes the proof.                                                                                      w

Proof of Corollary 2.6. This proof consists of four steps. In Step 1 we define a large probability 
event, where the rest of the proof is conducted. In Step 2 we conclude the claims on type I error 
controls. In Step 3 we change the detection delay upper bounding problem to upper bounding the 
delay with respect to an easier to handle quantity t�: In Step 4 we conclude the proof. 

Step 1. Define the event

B ¼

�

8s, t 2 N, t > 1, s 2 ft − 20, :::, t − 2b log ðtÞ= log ð2Þcg :

t−s
ts
� �1=2X

s

l¼1
ðXl − flÞ −

s
tðt − sÞ

� �1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
�
�

�
�
�
�
�

< bt

�

:

It follows from Lemma A.1 that PfBg > 1 − a: Throughout the proof we assume that the 
event B holds. 

For any s, t 2 N, 1 � s < t, it holds that bDs, t − Ds, t

�
�
�

�
�
� < bt , which implies that

Ds, t þ bt > bDs, t > Ds, t − bt: (B.6)  
For any t � 1, we have that

SðtÞ ¼ ft − 20, :::, t − 2b log ðtÞ= log ð2Þcg:

Step 2. For any t � D, we have that Ds, t ¼ 0, for all s 2 SðtÞ: Using (25), we conclude that 
bt > D and therefore that bt > D:

Step 3. Now we consider t > D: If there exists s 2 SðtÞ such that bDs, t > bt , then d � t − D:

Thus, d � ~t − D, where
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~t ¼ minft > D, 9s 2 ½D, tÞ, D̂s, t > btg, 

and any upper bound on ~t will also be an upper bound on d, when the signal-to-noise ratio con-
straint specified by Assumption 2.1 is satisfied. Thus, our task becomes that of computing a sharp 
upper bound on ~t: To that effect, notice that, when D � s < t,

Ds, t ¼ D
t − s

ts

� �1=2

jl1 − l2j ¼ D
t − s

ts

� �1=2

j, 

and, because of (B.6) again,

bDs, t � D
t − s

ts

� �1=2

j − bt:

As a result, we obtain that ~t � t�, where

t� ¼ min t > D : max
s2 D, tÞ\SðtÞ D t−s

tsð Þ
1=2

j−2bt

� �
�0

� �
:

�

Step 4. Write for convenience m ¼ t − D, so that d � m: Recalling that bt ¼

23=2r log 1=2ðt=aÞ, we seek the smallest integer m such that

max
s2½D, mþDÞ\SðmþDÞ

�

Dj

�
mþ D − s
ðmþ DÞs

�1=2

− 25=2r log 1=2fðmþ DÞ=ag

�

> 0, 

which is equivalent to

max
s2½D, mþDÞ\SðmþDÞ

�

D2j2 − 32r2 sðmþ DÞ

mþ D − s
log fðmþ DÞ=ag

�

> 0:

In turn, the above task corresponds to that of computing the smallest integer m such that

D2j2 > min
s2½D, mþDÞ\SðmþDÞ

�

32r2 sðmþ DÞ

mþ D − s
log fðmþ DÞ=ag

�

:

Since ½D, mþ DÞ \ Sðmþ DÞ ¼ fmþ D − 2j, j ¼ 0, :::, b log ðmÞ= log ð2Þcg, in the following 
we consider two cases.

Case 1. If log ðmÞ= log ð2Þ is an integer, then it follows from identical arguments in the proof 
of Theorem 2.2 that

D2j2 > min
s2½D, mþDÞ\SðtÞ

�

32r2 sðmþ DÞ

mþ D − s
log fðmþ DÞ=ag

�

¼ 32r2 Dðmþ DÞ

m
log fðmþ DÞ=ag:

Case 2. If log ðmÞ= log ð2Þ is not an integer, then b log ðmÞ= log ð2Þc < log ðmÞ= log ð2Þ: This 
means

D2j2 > min
s2½D, mþDÞ\SðtÞ

�

32r2 sðmþ DÞ

mþ D − s
log fðmþ DÞ=ag

�

> 32r2 Dðmþ DÞ

m
log fðmþ DÞ=ag:

Both cases lead to finding the smallest integer m such that

m
Dj2

32r2 − log ðmþ DÞ=a
� �

� �

> D log ðmþ DÞ=a
� �

:

It follows from the identical arguments in the proof of Theorem 2.2 that we complete the 
proof.                                                                                                                w
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Proof of Theorem 3.3. This proof consists of four steps. In Step 1 we define a large probabil-
ity event, where the rest of the proof is conducted. In Step 2 we conclude the claims on type I 
error controls. In Step 3 we derive the detection delay upper bounds. 

Step 1. To prove the theorem, it is sufficient (in fact, equivalent) to show that the claim holds 
true simultaneously over all deterministic stopping times. Toward that end, define the event

E ¼

�

8e, s, t 2 N, e � 0, s > e, t > s :

�
�
�
�

t−s
ðs−eÞðt−eÞ

n o1=2 Xs

l¼eþ1
ðXl − flÞ

− s−e
ðt−sÞðt−eÞ

n o1=2 Xt

l¼sþ1
ðXl − flÞ

�
�
�
� < bt

�

:

Then, under E, the fluctuations of the CUSUM process are controlled uniformly at any time t, 
including any stopping (in fact, more generally, random) time T. It follows from Lemma A.2 that

PfEg > 1 − a:

On the event E, for any 0 � e < s < t, it holds that

bDe, s, t − De, s, t

�
�
�

�
�
� < bt , 

which implies that
De, s, t þ be, t > bDe, s, t > De, s, t − be, t: (B.7) 

In addition, due to Assumption 3.2, we have that

Cd
r2 log ðD=aÞ

j2 � D=4: (B.8) 

Then it suffices to show that

i. for any refresh starting point of the algorithm e and any interval ðe, t� not containing any 
true change points, on the event E, there is no detected change point;

ii. on the event E, we can detect gk with delay upper bounded by Cdr
2 log ðD=aÞj−2

k :

Step 2. As for (i), it holds automatically due to the definition of the event E: The claim (i) 
leads to that btk > gk:

Step 3. As for (ii), we prove by induction. When k¼ 0, we have btk ¼ gk ¼ 0, then g1 −bt0 �

D � 3D=4: It follows from identical arguments in the proof of Theorem 2.2 that

d1 ¼ bt1 − g1 � Cd
r2 log ðD=aÞ

j2
1

:

Due to (B.8), we have that g2 −bt1 � 3D=4, then due to Algorithm 4, the procedure restarts by 
setting e ¼ bt1: For a general k � 1, if gk −btk−1 � 3D=4, then it follows from from identical argu-
ments in the proof of Theorem 2.2 that

dk ¼ btk − gk � Cd
r2 log ðD=aÞ

j2
k

, 

which completes the proof.                                                                                      w

Proof of Proposition 4.1. Throughout the proof we will assume for simplicity that r2

2j2 log 1
a

� �

is an integer. This proof consists of four steps. In Step 1 we apply the change of variable argu-
ment and deal with the event when the sum of Zi’s are upper bounded. In Step 2, we deal with 
the harder event when the sum of Zi’s are lower bounded. The two events are combined in Step 
3 and the proof is concluded in Step 4. 
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Step 1. For any n and �, let Pn be the restrictions of a distribution P to F n, i.e., the r-field 
generated by the observations fXig

n
i¼1: For any � � 1 and n � �, we have that

dPn
j, r, �

dPn
j, r,1

¼ exp
Xn

i¼�þ1
Zi

 !

, 

where Pj, r,1 indicates the joint distribution under which there is no change point and

Zi ¼
l2 − l1

r2 Xi −
l1 þ l2

2

� �

:

For any � � 1, define the event

E� ¼ � < T < � þ
r2

2j2 log
1
a

� �

,
XT

i¼�þ1
Zi <

3
4

log
�

a

� �( )

:

Then we have

Pj, r, �ðE�Þ ¼

ð

E�

exp
XT

i¼�þ1
Zi

 !

dPj, r,1 � exp ð3=4Þ log ð�=aÞ
� �
Pj, r,1ðE�Þ

� exp ð3=4Þ log ð�=aÞ
� �
Pj, r,1 � < T < � þ

r2

2j2 log
�

a

� �( )

� D3=4a−3=4Pj, r,1 � < T < � þ
r2

2j2 log
�

a

� �( )

,

(B.9) 

where the first two inequalities follow from the definition of E�:

Step 2. For any � � 1 and T 2 DðaÞ, since fT � �g 2 F �−1, we have that

Pj, r, �

�

� < T < � þ
r2

2j2 log
�

�

a

�

,
XT

i¼�þ1
Zi � ð3=4Þ log ð1=aÞ j T > �

�

� esssup Pj, r, �

�

max
1�t� r2

2j2log ð�
a
Þ−1

X�þt

i¼�þ1
Zi � ð3=4Þ log ð�=aÞ jX1, :::, X�

�

� esssup Pj, r, �

�

max
1�t� r2

2j2log ð�
a
Þ−1

X�þt

i¼�þ1
fZi − j2=ð2r2Þg � ð3=4Þ log ð�=aÞ

−
r2

2j2 log
�

�

a

�
j2

2r2 jX1, :::, X�

�

� esssup Pj, r, �

�

max
1�t� r2

2j2log ð�
a
Þ−1

X�þt

i¼�þ1
fZi − j2=ð2r2Þg � ð1=2Þ log ð�=aÞ jX1, :::, X�

�

�
r2

2j2 log
�

�

a

�

exp
�

−
ð1=2Þ log 2ð�=aÞ

r2

2j2 log ð�
a
Þ j2

r2

�

¼
r2

2j2 log
�

�

a

�

exp f− log ð�=aÞg � a1=4, 

where the fourth inequality follows from Hoeffding’s inequality and a union bound argument, 
and the last inequality holds for all small enough a such that

2j2�r−2 � log ð�=aÞa3=4:

We therefore let

P ¼ fPj, r, � : 2j2�r−2 � log ð�=aÞa3=4g:
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Since the upper bound is independent of �, j and r, it holds that

sup
Pj, r, �2P

Pj, r, � � < T < � þ
r2

2j2 log
�

a

� �

,
XT

i¼�þ1
Zi � ð3=4Þ log ð�=aÞ j T � �

( )

� a1=4, 

which leads to

sup
Pj, r, �2P

Pj, r, � � < T < � þ
r2

2j2 log
�

a

� �

,
XT

i¼�þ1
Zi � ð3=4Þ log ð�=aÞ

( )

� a1=4 (B.10) 

Combining (B.9) and (B.10), we have

sup
Pj, r, �2P

Pj, r, � � < T < � þ
r2

2j2 log
�

a

� �( )

� D3=4a−3=4Pj, r,1 � < T < � þ
r2

2j2 log
�

a

� �( )

þ a1=4:

(B.11) 

Step 3. We now have, for any change point time D,

infbt2DðaÞ sup
Pj, r, D2P
Pj, r, D

�

bt − D �
r2

2j2 log ðD=aÞ

�

¼ infbt2DðaÞ sup
Pj, r, D2P

�

Pj, r, Dfbt > Dg − Pj, r, D

�

D < bt < Dþ
r2

2j2 log
�

D

a

���

� infbt2DðaÞ sup
Pj, r, D2P

�

1 − a − a1=4 − D3=4a−3=4Pj, r,1fD < bt < Dþ
r2

2j2 log
�

D

a

���

� c1 − sup
bt2DðaÞ

inf
Pj,r,D2P

D3=4a−3=4Pj, r,1

�

D < bt < Dþ
r2

2j2 log
�

D

a

��

� c:

where the first inequality is due to the definition of the class of DðaÞ of stopping times (which in 
particular implies that Pj, r, D bt � Dg ¼ P1ðbt � DÞ � P1ðbt <1Þ � a

�
); the second inequality 

holds for an absolute constant c1 > 0, provided that

1 − c1 > aþ a1=4;

and the final inequality holds provided that

sup
bt2DðaÞ

inf
Pj,r,D2P
Pj, r,1 D < bt < Dþ

r2

2j2 log
D

a

� �� �

� a=D (B.12) 

and that a1=4D−1=4 < c1 − c, with c > 0 being an absolute constant.
Step 4. It now suffices to show that (B.12) holds. We now prove by contradiction and assume 

that

sup
bt2DðaÞ

inf
Pj,r,D2P
Pj, r,1 D < bt < Dþ

r2

2j2 log
D

a

� �� �

> a=D, 

which implies that there exists bt 2 DðaÞ such that

inf
D�1
Pj, r,1 D < bt < Dþ

r2

2j2 log
D

a

� �� �

> a=D, 

which contradicts with the definition of DðaÞ that

Pj, r,1 bt <1g < a:
�

We therefore conclude the proof.                                                                           w
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APPENDIX C. ADDITIONAL EXPERIMENTS: VARIATIONS OF MAILLARD (2019)

Following an anonymous referee’s comment, we conclude with a simple experiment consisting of 
variations of the method from Maillard (2019). Recall the notation in Maillard (2019). For t2 >

1, let

lðt1þ1Þ:t2
¼

1
t2 − t1

Xt2

s¼t1þ1
Xs:

Maillard (2019) proposes to raise an alarm at bt with

bt ¼ infft > 1 : 9s 2 1, tÞs:t:jl0:s�lðsþ1Þ:tj � bs, tg,
�

where

bs, t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1
s
þ

1
t − s

� �

1þ
1
t

� �

log
2ðt − 1Þ

ffiffiffiffiffiffiffiffiffiffi
t − 1
p

a

� �s

:

We refer to this procedure as M in the prequel. In this section, we consider two variations 
thereof.

The first variation, referred as M2, consists of replacing bs, t with

1:1r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1
s
þ

1
t − s

� �

1þ
1
t

� �

log
2ðt − 1Þ

ffiffiffiffiffiffiffiffiffiffi
t − 1
p

a

� �s

:

The second variation, namely M3, replaces bs, t with

0:9r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1
s
þ

1
t − s

� �

1þ
1
t

� �

log
2ðt − 1Þ

ffiffiffiffiffiffiffiffiffiffi
t − 1
p

a

� �s

:

For the setting considered in Section 5, the results collected in Table C1 show that M2 and 
M3 do not lead to a desired PFA similar to the prespecified a. Thus, at least to us, it is unclear 
how to improve the detection method from Maillard (2019). In particular, small changes in the 
criterion from Maillard (2019) lead to significant changes in the PFA but no substantial improve-
ment in the detection delay.
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