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A bstr a ct  —   We  st u d y  t h e    m ulti v a ri at e   n o n p a r a  m et ri c  c h a n g e
p oi nt  d et e cti o n  p r o bl e  m,   w h e r e  t h e  d at a  a r e  a  s e q u e n c e  of i n d e-
p e n d e nt  p - di  m e n si o n al  r a n d o  m  v e ct o rs    w h os e  dist ri b uti o n s  a r e
pi e c e  wis e- c o nst a nt   wit h   Li ps c hit z  d e nsiti es  c h a n gi n g  at  u n k n o  w n
ti  m es,  c all e d  c h a n g e  p oi nts.    We  q u a ntif y t h e  si z e  of  t h e  dist ri b u-
ti o n al c h a n g e at a n y c h a n g e  p oi nt   wit h t h e s u p r e  m u  m  n o r  m of t h e
diff e r e n c e  b et  w e e n t h e c o r r es p o n di n g  d e nsiti es.   We a r e c o n c e r n e d
wit h t h e l o c ali z ati o n t as k  of esti  m ati n g t h e  p ositi o n s  of t h e c h a n g e
p oi nts.  I n  o u r  a n al ysis,    w e  all o  w  f o r  t h e    m o d el   p a r a  m et e rs  t o
v a r y   wit h t h e t ot al  n u  m b e r  of ti  m e  p oi nts, i n cl u di n g t h e   mi ni  m al
s p a ci n g  b et  w e e n  c o n s e c uti v e  c h a n g e  p oi nts  a n d  t h e    m a g nit u d e
of  t h e  s  m all est  dist ri b uti o n al  c h a n g e.    We  p r o vi d e  i nf o r  m ati o n-
t h e o r eti c  l o  w e r   b o u n ds   o n   b ot h  t h e  l o c ali z ati o n   r at e   a n d  t h e
mi ni  m al  si g n al-t o- n ois e  r ati o   r e q ui r e d  t o   g u a r a nt e e   c o nsist e nt
l o c ali z ati o n.    We  f o r  m ul at e   a   n o v el   al g o rit h  m   b as e d   o n   k e r n el
d e n sit y esti  m ati o n t h at  n e a rl y  a c hi e v es t h e   mi ni  m a x l o  w e r  b o u n d,
s a v e  p ossi bl y  f o r  l o g a rit h  m  f a ct o rs.    We  h a v e  p r o vi d e d  e xt e n si v e
n u  m e ri c al  e vi d e n c e  t o  s u p p o rt  o u r  t h e o r eti c al  fi n di n gs.

I n d e x    Ter  ms —   M ulti v a ri at e,   n o n p a r a  m et ri c,   k e r n el   d e n sit y
esti  m ati o n,   C  U S  U  M,  bi n a r y  s e g  m e nt ati o n.

I.  I N  T  R  O  D  U  C  T I  O  N

W E  S T  U  D  Y t h e  n o n p ar a  m etri c   m ulti v ari at e c h a n g e p oi nt
d et e cti o n  pr o bl e  m,   w h er e   w e  ar e  gi v e n  a  s e q u e n c e  of

i n d e p e n d e nt r a n d o  m  v e ct ors  { X  (t)} T
t = 1 ⊂  R p wit h  u n k n o  w n

distri b uti o n s  { P t }
T
t = 1 s u c h  t h at,  f or  a n  u n k n o  w n  s e q u e n c e  of

c h a n g e  p oi nts  { η k } K
k = 1 ⊂  {  2 , . . . ,  T }  wit h  1  =  η 0 <  η 1 <

. . .   <  ηK ≤  T  <  η K  + 1 =  T  +  1  ,  w e  h a v e

P t =  P t −  1 if  a n d  o nl y if  t ∈  {  η 1 , . . . ,  ηK } .  ( 1)

O ur  g o al  is  t o  a c c ur at el y  esti  m at e  t h e  n u  m b er  of  c h a n g e
p oi nts  K  a n d t h eir l o c ati o n s.

C h a n g e  p oi nt  l o c ali z ati o n  pr o bl e  m s  of  t his  f or  m  aris e  i n
a  v ari et y  of  a p pli c ati o n  ar e as,  i n cl u di n g  fi n a n c e  [ 1]  a n d  [ 2],
e c o n o  mi cs  [ 1 8],  n e ur o s ci e n c e  [ 9]  a n d  [ 3 5],  cli  m at ol o g y  [ 1 5],

M a n us cri pt  r e c ei v e d    M a y  1 1,  2 0 2 0;  r e vis e d  S e pt e  m b er  1 6,  2 0 2 1;  a c c e pt e d
N o v e  m b er  8,  2 0 2 1.   D at e  of  p u bli c ati o n   D e c e  m b er  2,  2 0 2 1;  d at e  of c urr e nt  v er-
si o n  F e br u ar y  1 7,  2 0 2 2.   T his   w or k   w as s u p p ort e d i n  p art  b y   N S F  u n d er   Gr a nt
D  M S  2 0 1 5 4 8 9  a n d i n  p art  b y t h e   E n gi n e eri n  g  a n d  P h ysi c al  S ci e n c es   R es e ar c h
C o u n cil   ( E P S  R  C)   u n d er    Gr a nt    E P/  V 0 1 3 4 3 2/ 1.  (  C orr es p o n di n g   a ut h or:
Os c ar   H er n a n    M a dri d   P a dill a.)

Os c ar    H er n a n    M a dri d   P a dill a  is    wit h  t h e    D e p art  m e nt   of   St atisti cs,    U ni-
v ersit y  of   C alif or ni a  at   L os   A n g el es,   L os   A n g el es,   C  A  9 0 0 9 5   U S  A  ( e-  m ail:
os c ar.  m a dri d  @st at. u cl a. e d u).

Yi   Y u is   wit h t h e   D e p art  m e nt  of  St atisti cs,   U ni v ersit y  of   War  wi c k,   C o v e ntr y
C  V 4  7  A L,   U.  K.  ( e-  m ail:  yi. y u. 2  @  w ar  wi c k. a c. u k).

D ar e n    Wa n g is   wit h t h e   D e p art  m e nt  of   A C  M S,   U ni v ersit y  of   N otr e   D a  m e,
N otr e   D a  m e,  I  N  4 6 5 5 6   U S  A  ( e-  m ail:  d  w a n g 2 4  @ n d. e d u).

Al ess a n dr o    Ri n al d o  is    wit h  t h e    D e p art  m e nt   of   St atisti cs   a n d    D at a   S ci-
e n c e,    C ar n e gi e    M ell o n    U ni v ersit y,    B a k er    H all    C ar n e gi e    M ell o n    U ni v ersit y,
Pitts b ur g h,  P A  1 5 2 1 3   U S  A  ( e-  m ail:  ari n al d o  @ c  m u. e d u).

C o  m  m u ni c at e d  b y   E.   G assi at,   Ass o ci at e   E dit or f or  Pr o b a bilit y  a n d  St atisti cs.
C ol or   v ersi o ns   of   o n e   or    m or e   fi g ur es  i n  t his   arti cl e   ar e   a v ail a bl e   at
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bi ol o g y [ 1 6] a n d [ 3 4],   m e di c al s ci e n c e s [ 2 5] a n d [ 2 8], t o  n a  m e
b ut  a  f e  w.    As  a  c o n cr et e  e x a  m pl e,    w e  c o nsi d er  st o c k  pri c e
d at a, r a n gi n g fr o  m J a n- 1- 2 0 1 6 t o   A u g- 1 1- 2 0 1 9 a n d  c o n sisti n g
of  2 0  c o  m p a ni es   wit h  hi g h est  a v er a g e  st o c k  pri c es  fr o  m  t h e
S  & P 5 0 0   m ar k et.   A p pl yi n g t h e  c h a n g e  p oi nt  d et e cti o n   m et h o d
t o  b e  pr o p os e d i n t his  p a p er,   w e ar e a bl e t o  d et e ct a  n u  m b er  of
c h a n g e  p oi nts,  all  of   w hi c h  c orr es p o n d t o  s o  m e  k e y  d at es  i n
t h e   U S-  C hi n a tr a d e   w ar.  F or i nst a n c e, t h e  d at e   D e c- 2 1- 2 0 1 7 is
a  d et e ct e d  c h a n g e  p oi nt  a n d it is  cl o s e t o  J a n  2 0 1 8,   w h e n   Mr.
Tr u  m p i  m p os e d t hr e ats  a n d t ariffs t o   C hi n a.  F or   m or e  d et ails
a b o ut t his  d at a  a n al ysis,  s e e  S e cti o n   V-  B.

D u e t o t h e  hi g h  d e  m a n d fr o  m r e al-lif e  a p pli c ati o n s,  c h a n g e
p oi nt  d et e cti o n  is  a   w ell- est a blis h e d  t o pi c  i n  st atisti cs    wit h  a
ri c h  lit er at ur e.  S o  m e  e arl y  eff orts  i n cl u d e  s e  mi n al    w or k s  b y
Wal d  [ 5 3],   Ya o  [ 5 7],    Ya o  a n d   A u  [ 5 9],    Ya o  a n d   D a vis  [ 5 8].
M or e  r e c e ntl y, t h e  c h a n g e  p oi nt  d et e cti o n  lit er at ur e  h as  b e e n
br o u g ht   b a c k  t o   t h e   s p otli g ht   d u e  t o   si g ni fi c a nt    m et h o d-
ol o gi c al  a n d  t h e or eti c al  a d v a n c es,  i n cl u di n g    A u e  et  al.  [ 4],
Killi c k  et   al.  [ 3 1],   Fr y zl e  wi c z   [ 2 0],   Fri c k  et   al.  [ 1 9],
C h o [ 1 3],    Wa n g  a n d  S a  m  w ort h [ 5 6],    Wa n g  et  al.  [ 5 5],   Ver z e-
l e n et al.  [ 5 2], a  m o n g   m a n y ot h ers, i n diff er e nt as p e cts of p ar a-
m etri c  c h a n g e  p oi nt  d et e cti o n  pr o bl e  ms.  S e e    Wa n g  et  al.  [ 5 4]
f or  a   m or e  c o  m pr e h e n si v e r e vi e  w.

M o st  of t h e  e xiti n g r es ults i n t h e  c h a n g e  p oi nt l o c ali z ati o n
lit er at ur e  r el y  o n  p ar a  m etri c  ass u  m pti o ns  o n  t h e  u n d erl yi n g
distri b uti o n s   a n d   o n  t h e   n at ur e   of  t h eir   c h a n g e s.    D es pit e
t h e  p o p ul arit y  a n d  a p pli c a bilit y  of  p ar a  m etri c  c h a n g e  p oi nt
d et e cti o n    m et h o d s, it  is  als o  i  m p ort a nt t o  d e v el o p   m or e  g e n-
er al   a n d   fl e xi bl e  c h a n g e   p oi nt  l o c ali z ati o n   pr o c e d ur es  t h at
ar e   a p pli c a bl e   o v er  l ar g er,   p ossi bl y   n o n p ar a  m etri c,   cl ass es
of  distri b uti o ns.   S e v er al  eff orts  i n  t his   dir e cti o n  h a v e  b e e n
r e c e ntl y    m a d e  f or  u ni v ari at e  d at a.  P ei n  et  al.  [ 4 3]  pr o p o s e d
a  v ersi o n  of  t h e  S  M  U  C E  al g orit h  m  ( Fri c k  et  al.  [ 1 9])  t h at
is  s e nsiti v e  t o    m e a n  c h a n g es,  b ut  r o b ust  t o  c h a n g es  i n  v ari-
a n c e;    Z o u  et  al.  [ 6 2]  i ntr o d u c e d   a   n o n p ar a  m etri c  esti  m at or
t h at  c a n  d et e ct  g e n er al  distri b uti o n s  s hifts;  as  a n  e xt e n si o n
of    Z o u  et  al.  [ 6 2],    H a y n e s  et   al.  [ 2 7]   si  m pli fi e d  t h e  l o ss
f u n cti o n  i n    Z o u  et   al.  [ 6 2]  a n d   a d o pt e d  t h e   pr u n e d  e x a ct
li n e ar  ti  m e   al g orit h  m  (  Killi c k  et   al.  [ 3 1])  t o  i  m pr o v e  t h e
c o  m p ut ati o n al   ef fi ci e n c y;   P a dill a  et   al.  [ 3 9]   c o nsi d er e d   a
n o n p ar a  m etri c  pr o c e d ur e  f or  s e q u e nti al  c h a n g e  p oi nt  d et e c-
ti o n;  F e ar n h e a d  a n d   Ri g aill  [ 1 7]  f o c us e d  o n  u ni v ari at e   m e a n
c h a n g e   p oi nt   d et e cti o n   c o nstr u cti n g   a n   esti  m at or   t h at   is
r o b u st  t o   o utli ers;   J ul a    Va n e g as  et   al.  [ 3 0]   pr o p os e d   a n
esti  m at or   f or   d et e cti n g   c h a n g es   i n   pr e-s p e ci fi e d   q u a ntil es
of   t h e   g e n er ati v e    m o d el;   a n d   P a dill a  et   al.  [ 3 9]   d e v el-
o p e d  a   n o n p ar a  m etri c  v ersi o n  of   bi n ar y  s e g  m e nt ati o n  ( e. g.
S c ott   a n d    K n ott  [ 4 7])   b a s e d   o n  t h e    K ol  m o g or o v – S  mir n o v
st atisti c.
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I n    m ulti v ari at e   n o n p ar a  m etri c   s etti n gs,  t h e   lit er at ur e   o n
c h a n g e  p oi nt a n al y sis is  c o  m p ar ati v el y li  mit e d.   Arl ot  et  al.  [ 3]
c o nsi d er e d  a  p e n ali z e d  k er n el  l e ast  s q u ar es  esti  m at or,  ori gi-
n all y  pr o p o s e d  b y   H ar c h a o ui  a n d   C a p p é [ 2 6], f or   m ulti v ari at e
c h a n g e p oi nt pr o bl e  m s a n d d eri v e a n or a cl e i n e q u alit y.   G arr e a u
a n d    Arl ot  [ 2 1]  o bt ai n e d  a n  u p p er  b o u n d  o n  t h e  l o c ali z ati o n
r at e   aff or d e d   b y   t his    m et h o d,    w hi c h   is   f urt h er  i  m pr o v e d
c o  m p ut ati o n all y  i n    C eliss e  et   al.  [ 8].    We  r e  m ar k  t h at  t his
m et h o d is a  v er y c o n v e ni e nt a n d  g e n er al n o n p ar a  m etri c c h a n g e
p oi nt  d et e cti o n   m et h o d.   T h e t h e or eti c al  g u ar a nt e es  ar e  s h o  w n
b as e d  o n  a tr a n sf or  m ati o n of t h e  ori gi n al  d at a i nt o a  u ni v ari at e
m e a n c h a n g e p oi nt d et e cti o n,   wit h t h e j u  m p si z e c orr e s p o n di n g
t o  t h e    m a xi  m u  m   m e a n  dis cr e p a n c y  ( e. g.   Gr ett o n  et  al.  [ 2 4]),
t h er ef or e t h e  n o n p ar a  m etri c a n d   m ulti v ari at e c o  m pl e xit y of t h e
pr o bl e  m s ar e  n ot  dir e ctl y s h o  w n. I n  a d diti o n, a s  p oi nt e d  o ut i n
G arr e a u  a n d   Arl ot [ 2 1], t h e  s u c c ess r eli es  o n  a  pr o p er  c h oi c e
of  t h e  e  m b e d di n g.    M att es o n  a n d  J a  m e s  [ 3 6]  als o  pr o p o s e d
a    m et h o d ol o g y  f or    m ulti v ari at e  n o n p ar a  m etri c  c h a n g e  p oi nt
l o c ali z ati o n  a n d  s h o  w  t h at  it  c a n   c o n sist e ntl y  esti  m at e  t h e
c h a n g e  p oi nts.   Z h a n g  et  al.  [ 6 1]  pr o vi d e d  a  c o  m p ut ati o n all y-
ef fi ci e nt   al g orit h  m,   b as e d   o n   a   pr u ni n g  r o uti n e   b as e d   o n
d y n a  mi c   pr o gr a  m  mi n g.    C h e n  [ 1 0]   pr o p o s e d   a    m ulti v ari at e
c h a n g e  p oi nt  t esti n g    m et h o d  b as e d  o n  a  gr a p h- b as e d  t esti n g
t e c h ni q u e  ( e. g.   C h e n  a n d   Z h a n g  [ 1 1]  a n d   C h e n  et  al.  [ 1 2]),
f o c u si n g  o n  t h e  li  miti n g  distri b uti o n  of  a  t est  st atisti c  i n  a n
as y  m pt oti c  s e ns e.

I n  t his  p a p er    w e  i n v esti g at e  t h e    m ulti v ari at e  c h a n g e  p oi nt
l o c ali z ati o n  pr o bl e  m i n f ull y  n o n p ar a  m etri c s etti n gs   w h er e t h e
u n d erl yi n g  distri b uti o n s  ar e  o nl y  ass u  m e d  t o  h a v e  pi e c e  wis e
a n d u nif or  ml y (i n  T  , t h e t ot al n u  m b er of ti  m e  p oi nts)   Li p s c hit z
c o nti n u o us  d e nsiti es  a n d  t h e    m a g n it u d es  of  t h e  distri b uti o n al
c h a n g es  ar e    m e as ur e d   b y  t h e  s u pr e  m u  m   n or  m   of  t h e   dif-
f er e n c es  b et  w e e n  t h e  c orr es p o n di n g  d e nsiti es.    We  f or  m all y
i ntr o d u c e  o ur   m o d el  n e xt.

Ass u  m pti o n  1  (  M o d el  S etti n g):  L et  { X  (t)} T
t = 1 ⊂  R p b e  a

s e q u e n c e  of  i n d e p e n d e nt  v e ct ors  s atisf yi n g  ( 1).   Ass u  m e  t h at,
f or  e a c h  t  =  1  , . . . ,  T ,  t h e   distri b uti o n  P t h a s  a   b o u n d e d
L e b es g u e  d e nsit y  f u n cti o n  f t :  R p →  R  s u c h t h at

m a x
t = 1  ,...,  T

f t (s 1 ) −  f t (s 2 )  ≤  C Li p s 1 −  s 2 ,  ( 2)

f or  all  s 1 , s2 ∈  X  ,  w h er e X  ⊂  R p is t h e  u ni o n  of t h e s u p p orts
of  all  t h e  d e n sit y  f u n cti o n s  f t ,  ·  r e pr es e nts  t h e 2 - n or  m,
a n d  C Li p >  0  is  a n  a b s ol ut e  c o n st a nt.    We  l et

∆  =     mi n
k = 1  ,...,  K + 1

{ η k −  η k −  1 }  ≤  T

d e n ot e  t h e    mi ni  m al   s p a ci n g   b et  w e e n   a n y  t  w o   c o ns e c uti v e
c h a n g e  p oi nts.  F or  e a c h  k  =  1  , . . . ,  K,  w e  s et

κ k =  s u p
z ∈  R p

f η k
( z ) −  f η k −  1 (z )  =  f η k

−  f η k −  1  ∞

a s  t h e  si z e  of  t h e  c h a n g e  at  t h e  k t h  c h a n g e  p oi nt.  Fi n all y,
w e l et

κ  =  mi n
k = 1  ,...,  K

κ k >  0 , ( 3)

b e t h e   mi ni  m al  s u c h  c h a n g e.
T h e u nif or  m   Li p s c hit z c o n diti o n ( 2) is a r at h er   mil d r e q uir e-

m e nt  o n  t h e  s  m o ot h n ess  of  t h e  u n d erl yi n g  d e nsiti es.   T h e  u s e
of t h e s u pr e  m u  m  dist a n c e is  a  n at ur al c h oi c e i n  n o n p ar a  m etri c

d e nsit y  esti  m ati o n s etti n gs ( e. g.   Ts y b a k o v [ 4 9]). If   w e  ass u  m e
t h e  d o  m ai n  X  t o  b e  c o  m p a ct,  t h e n  t h e  s u pr e  m u  m  dist a n c e
is  str o n g er  t h a n  t h e  L 1 dist a n c e  (t ot al   v ari ati o n   dist a n c e).
T h u s,  If  t h e  d o  m ai n  X  is  c o  m p a ct,  t h e n   wit h o ut  a n y  f urt h er
a ss u  m pti o n s  o n t h e  f u n cti o n  f (·), it  h ol d s t h at

f 1 ≤  V ol(  X  )  f ∞ ,

w hil e  a  r e v ers e i n e q u alit y   wit h  c o n st a nts i n d e p e n d e nt  of  f (·)
is  n ot  a v ail a bl e.    D u e  t o  t his  o b s er v ati o n,   w e  s e e  t h at  if  o n e
ass u  m es  f 1 ≥  κ ,  t h e n  it   al  w a ys   h ol ds  t h at  f ∞ ≥
κ / V ol(  X  ).    O n e  c a n  j u st  si  m pl y  a p pl y   o ur  t h e or y  a n d  t h e
r es ults  f oll o  w.

C o  m p ari n g   t h e   s u pr e  m u  m   dist a n c e    wit h   t h e
K ol  m o g or o v – S  mir n o v dist a n c e,   w e  n oti c e t h at t h e l att er is  n ot
y et   wi d el y  u s e d i n t h e t h e or eti c al a n d  a p pli e d lit er at ur e. I n t h e
m ulti v ari at e   g o o d n ess-  of- fit  lit er at ur e,   P ol o ni k  [ 4 4]   p oi nt e d
o ut  t h at  t h e    m ulti v ari at e    K ol  m o g or o v – S  mir n o v  dist a n c e  “ is
n ot  e n o u g h  t o  a  g o o d n e ss- of- fit  t e st  t o  b e  c o n sist e nt  a g ai n st
all  ( o r  at  l e a st  a  l a r g e  cl a ss)   of  alt er n ati v e s ”.    As  f or  t h e
g o o d n e ss- of- fit t e st,  P ol o ni k [ 4 4]  ar g u e d t h at t h e  ri g ht  c h oi c e
of  a  t est  st atisti c  s h o ul d  b e  b as e d  o n  t h e  l e v el  s ets,   w hi c h  is
i n t ur n  b as e d  o n t h e  s u pr e  m u  m  dist a n c e.

T h e   m o d el  p ar a  m et ers  ∆  a n d  κ  ar e  all o  w e d t o  c h a n g e   wit h
t h e t ot al n u  m b er of ti  m e p oi nts T  .   T his   m o d eli n g c h oi c e all o  ws
us  t o  c o nsi d er  c h a n g e  p oi nt    m o d els  f or    w hi c h  it   b e c o  m es
i n cr e asi n gl y  dif fi c ult t o i d e ntif y  a n d  esti  m at e t h e  c h a n g e  p oi nt
l o c ati o ns  a c c ur at el y  as   w e  a c q uir e   m or e  d at a.  F or  si  m pli cit y,
w e    will  n ot  e x pli citl y  e x pr ess  t h e  d e p e n d e n c e  of  ∆  a n d  κ
o n  T  i n  o ur  n ot ati o n.   T h e  di  m e n si o n  p  is  i nst e a d  tr e at e d  as
a  fi x e d  c o nst a nt,  as  is  c ust o  m ar y  i n  n o n p ar a  m etri c lit er at ur e.
We    will  r ef er  t o  a n y  r el ati o n s hi p  a  m o n g  ∆  a n d  κ  t h at  h ol d s
as  T  t e n d s t o i n fi nit y  as  a p ar a  m et er  s c ali n g  of t h e   m o d el i n
Ass u  m pti o n  1.

T h e  c h a n g e  p oi nt  l o c ali z ati o n  t as k  c a n  b e  f or  m all y  st at e d
as f oll o  ws.    We  s e e k t o  c o nstr u ct  c h a n g e  p oi nt  esti  m at ors  1  <
η̂ 1 < . . .   <  η̂ K ≤  T  of  t h e tr u e  c h a n g e  p oi nts  { η k } K

k = 1 s u c h
t h at,   wit h  pr o b a bilit y t e n di n g t o  1  as  T  →  ∞  ,

K  =  K  a n d  m a x
k = 1  ,...,  K

|η̂ k −  η k |  ≤  ,

w h er e  =  (T,  ∆  ,  κ).   We s a y t h at t h e c h a n g e  p oi nt esti  m at ors

{ η̂ k }
ˆK
k = 1 ar e  c o n sist e nt if t h e  a b o v e  h ol d s   wit h

li  m
T  →  ∞

/ ∆  =  0  . ( 4)

We  r ef er t o  as t h e  l o c ali z ati o n  err or  a n d  t o  t h e  s e q u e n c e
{  / ∆  }  as t h e l o c ali z ati o n r at e.

A.  S u  m  m a r y  of t h e   R es ults

T h e  c o ntri b uti o n s  of t his  p a p er  ar e  a s  f oll o  ws.

• We  s h o  w  t h at  t h e  dif fi c ult y  of  t h e  l o c ali z ati o n  t as k  c a n
b e  c o  m pl et el y  c h ar a ct eri z e d  i n  t er  m s  of  t h e  si g n al-t o-
n ois e  r ati o  κ p + 2 ∆  .  S p e ci fi c all y,  t h e  s p a c e  of  t h e    m o d el
p ar a  m et ers  (T,  ∆  ,  κ)  c a n  b e  s e p ar at e d i nt o  a n  i nf e asi bl e
r e gi o n,  c h ar a ct eri z e d  b y t h e  s c ali n g

κ p + 2 ∆  1 ( 5)

a n d   w h er e  n o  al g orit h  m is  g u ar a nt e e d t o  pr o d u c e  c o nsis-
t e nt  e sti  m at or s  of t h e  c h a n g e  p oi nts ( s e e   L e  m  m a  2),  a n d
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a  f e asi bl e  r e gi o n, i n   w hi c h

κ p + 2 ∆  l o g1  + ξ (T  ),  f or  a n y  ξ  >  0 .  ( 6)

U n d er  t h e  f e asi bl e  s c ali n g,    w e  d e v el o p  t h e    M  N P  (  m ul-
ti v ari at e  n o n p ar a  m etri c)  c h a n g e  p oi nt  esti  m at or,  gi v e n i n
Al g orit h  m 1, t h at is  pr o v a bl y c o nsist e nt.   T h e g a p b et  w e e n
( 5)   a n d  ( 6)  is   a   p ol y-l o g arit h  mi c  f a ct or  i n  T  ,  w hi c h
i  m pli es t h at  o ur  pr o c e d ur e is  c o nsist e nt  u n d er  n e arl y  all
s c ali n g s f or   w hi c h t his t as k is  f e asi bl e.

• We   s h o  w  t h at  t h e  l o c ali z ati o n   err or   a c hi e v e d   b y  t h e
M  N P  pr o c e d ur e  is   of   or d er  l o g (T  )κ −  ( p + 2 ) a cr o ss  t h e
e ntir e  f e asi bilit y  r e gi o n   gi v e n  i n  ( 6);  s e e    T h e or e  m   1.
We  v erif y  t h at  t his  r at e  is  n e arl y    mi ni  m a x  o pti  m al  b y
d eri vi n g   a n  i nf or  m ati o n-t h e or eti c  l o  w er   b o u n d   o n  t h e
l o c ali z ati o n  err or,  s h o  wi n g  t h at  if  κ p + 2 ∆  ζ T ,  f or  a n y
s e q u e n c e  { ζ T }  s atisf yi n g  li  mT  →  ∞ ζ T =  ∞  ,  t h e n  t h e
l o c ali z ati o n  err or is l ar g er t h a n κ −  ( p + 2 ) ,  u p t o  c o n st a nts;
s e e   L e  m  m a 3. I nt er e sti n gl y, t h e d e p e n d e n c e o n t h e di  m e n-
si o n  p  is  e x p o n e nti al,  a n d    m at c h es  t h e  o pti  m al  d e p e n-
d e n c e  i n  t h e    m ulti v ari at e   d e n sit y   esti  m ati o n   pr o bl e  m s
ass u  mi n g    Li ps c hit z- c o nti n u o us   d e nsiti es.    We   el a b or at e
o n  t his   p oi nt  f urt h er  i n   S e cti o n  III-  B.    T h e   n u  m eri c al
e x p eri  m e nts i n  S e cti o n   V  c o n fir  m t h e  g o o d  p erf or  m a n c e
of  o ur  al g orit h  m.

• T h e    M  N P  e sti  m at or  is   a   pr o c e d ur e  f or   n o n p ar a  m etri c
c h a n g e p oi nt l o c ali z ati o n i n   m ulti v ari at e s etti n g s t h at r u n s
i n  p ol y n o  mi al  ti  m e  a n d  c a n  b e  c o nsi d er e d  a    m ulti v ari-
at e  n o n p ar a  m etri c  e xt e nsi o n  of  t h e  bi n ar y  s e g  m e nt ati o n
m et h o d ol o g y ( S c ott  a n d   K n ott [ 4 7])  a n d its,  v ari a nt   wil d
bi n ar y s e g  m e nt ati o n ( Fr y zl e  wi c z [ 2 0]).   T h e   M  N P esti  m a-
t or  d e pl o y s a  v ersi o n  of t h e   C  U S  U  M st atisti c ( P a g e [ 4 1])
b as e d  o n  k er n el  d e nsit y  esti  m at ors.    We r e  m ar k t h at s o  m e
of  o ur  a u xili ar y  r es ults  o n  c o n sist e n c y  of  k er n el  d e n sit y
e sti  m at ors  ar e  o bt ai n e d t hr o u g h  n o n-tri vi al  a d a pt ati o n  of
e xisti n g t e c h ni q u es t h at  all o  w f or  n o n-i.i. d.  d at a  a n d   m a y
b e  of i n d e p e n d e nt i nt er e st.

T h e  r est  of t h e  p a p er is  or g a ni z e d  as f oll o  ws.  I n  S e cti o n  II
w e i ntr o d u c e t h e    M  N P  pr o c e d ur e  a n d i n  S e cti o n III   w e  st u d y
its c o n sist e n c y a n d o pti  m alit y. S e cti o n I  V pr es e nts a dis c u ssi o n
of  c h oi c e  of t u ni n g  p ar a  m et ers i n  pr a cti c e.  Si  m ul ati o n  e x p er-
i  m e nts  d e  m o n str ati n g t h e  eff e cti v e n ess  of t h e    M  N P  al g orit h  m
a n d its c o  m p etiti v e p erf or  m a n c e r el ati v e t o e xisti n g pr o c e d ur es
ar e r e p ort e d i n  S e cti o n   V.   T h e  pr o ofs a n d t e c h ni c al  d et ails  ar e
l eft i n t h e   A p p e n di c es.

II.    M E  T  H  O  D  O  L  O  G  Y

O ur  pr o c e d ur es f or  c h a n g e  p oi nt  d et e cti o n  a n d l o c ali z ati o n
is  a  n o n p ar a  m etri c e xt e nsi o n  of t h e tr a diti o n al   C  U S  U  M st atis-
ti c  a n d it  r eli es  o n  k er n el  d e n sit y  esti  m at ors.

D e fi niti o n   1  (  M ulti v ari at e    N o n p ar a  m etri c    C  U S  U  M):  L et
{ X  (i)} T

i= 1 b e  a  s a  m pl e i n  R p .  F or  a n y i nt e g er tri pl et (s, t, e )
s atisf yi n g  0  ≤  s  <  t  <  e  ≤  T  a n d   a n y  x  ∈  R p ,  t h e
m ulti v ari at e  n o n p ar a  m etri c   C  U S  U  M  st atisti c is  d e fi n e d  as t h e
f u n cti o n

x  ∈  R p →

Y s, e
t (x )  =

(t −  s )(e  −  t)

e  −  s
f̂ s + 1  , t,  h (x ) − f̂ t + 1  , e,  h(x )  ,

Al g o rit h  m 1  M ulti v ari at e   N o n p ar a  m etri c   C h a n g e  P oi nt   D et e c-
ti o n.    M  N P ((s, e ), { (α r ,  βr )} R

r = 1 , τ,  h)

I  N P  U  T:  S a  m pl e  { X  (t)} e
t =  s ⊂  R p ,   c oll e cti o n   of  i nt er v als

{ (α r ,  βr )} R
r = 1 ,  t u ni n g   p ar a  m et er  τ  >  0  a n d   b a n d  wi dt h

h  >  0 .
f o r  r  =  1  , . . . ,  R d o

(s r , er )  ←  [s, e ] ∩  [α r ,  βr ]
if  e r −  s r >  2 h −  p +  1  t h e n

b r ←  a r g   m a x s r +  h −  p ≤  t ≤  e r −  h −  p Y s r , er
t

a r ←  Y s r , er
b r

el s e
a r ←  −  1

e n d if
e n d  f o r
r ∗ ←  a r g   m a x r = 1  ,...,  R a r

if  a r ∗ >  τ  t h e n
a d d  b r ∗ t o t h e  s et  of  esti  m at e d  c h a n g e  p oi nts
M  N P  ((s, b r ∗ ), { (α r ,  βr )} R

r = 1 , τ)
M  N P  ((b r ∗ +  1  , e), { (α r ,  βr )} R

r = 1 , τ)
e n d if

O  U  T P  U  T:  T h e  s et  of  esti  m at e d  c h a n g e  p oi nts.

w h er e

f̂ s, e,  h (x )  =
h −  p

e  −  s

e

i=  s + 1

k
x  −  X  (i)

h
( 7)

a n d  k (·)  is  a  k er n el f u n cti o n (s e e  e. g.  P ar z e n,  1 9 6 2). I n  a d di-
ti o n,  d e fi n e

Y s, e
t =  m a x

i= 1  ,...,  T
Y s, e

t (X  (i))  . ( 8)

R e  m ar k  1:  T h e st atisti c  Y s, e
t c a n  b e s e e n  as a n  esti  m at or  of

s u p
z ∈  R p

Y s, e
t (z )  .

Al g orit h  m  1  b el o  w  pr es e nts  a    m ulti v ari at e  n o n p ar a  m etri c
v ersi o n  of  t h e  u ni v ari at e  n o n p ar a  m etri c  c h a n g e  p oi nt  d et e c-
ti o n    m et h o d   pr o p os e d  i n   P a dill a  et   al.  [ 4 0],    wil d   bi n ar y
s e g  m e nt ati o n ( Fr y zl e  wi c z [ 2 0])  a n d  bi n ar y s e g  m e nt ati o n (  B S)
( e. g.  S c ott  a n d   K n ott  [ 4 7]).   T h e  r es ulti n g  pr o c e d ur e  c o n sists
of r e p e at e d  a p pli c ati o n  of t h e   B S  al g orit h  m  o v er r a n d o  m ti  m e
i nt er v als  a n d  usi n g  t h e    m ulti v ari at e  n o n p ar a  m etri c    C  U S  U  M
st atisti c  i n    D e fi niti o n   1.    T h e  i n p uts   of    Al g orit h  m   1   ar e   a
s e q u e n c e  { X  (t)} t = 1  ,...,  T of  r a n d o  m  v e ct ors  i n  R p ,  a  t u ni n g
p ar a  m et er  τ  >  0  a n d  a  b a n d  wi dt h  h  >  0 .   D et ail e d t h e or eti c al
r e q uir e  m e nts  o n  t h e  v al u es  of  τ  a n d  h  ar e  dis c uss e d  b el o  w
i n   S e cti o n  III,  a n d   S e cti o n  I  V   off ers  g ui d a n c e   o n   h o  w  t o
s el e ct  t h e  m  i n  pr a cti c e.  I n  p arti c ul ar, t h e  l e n gt hs  of  t h e  s u b-
i nt er v als ar e  of  or d er at l e ast h −  p ,  w h er e h  >  0  is t h e  v al u e  of
t h e  b a n d  wi dt h  us e d  t o  d e fi n e  t h e    m ulti v ari at e  n o n p ar a  m etri c
C  U S  U  M  st atisti c.   T his is t o  e ns ur e t h at  e a c h  s u b-i nt er v al   will
c o nt ai n  e n o u g h  p oi nts t o  yi el d  a  r eli a bl e  d e nsit y  esti  m at or.

F urt h er  m or e, i n   Al g orit h  m 1   w e s c a n t hr o u g h all ti  m e p oi nts
b et  w e e n  s r +  h −  p a n d  e r −  h −  p i n t h e i nt er v al (s r , er ).  T his is
d o n e f or t e c h ni c al r e as o ns, t o a v oi d   w or ki n g   wit h i nt er v als t h at
h a v e i ns uf fi ci e nt  d at a,   w hi c h   w o ul d  b e t h e  c as e   w h e n  e r −  s r

is  s  m all.
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Fi n all y, t h e  c o  m p ut ati o n al  c ost  of t h e  al g orit h  m is  of  or d er
O  (T 2 R  · k e r n el) ,  w h er e R  is t h e  n u  m b er  of r a n d o  m i nt er v als
a n d  “ k er n el ”  st a n ds  f or  t h e  c o  m p ut ati o n al  c ost  of  c al c ul ati n g
t h e  v al u e  of  t h e  k er n el  f u n cti o n  e v al u at e d  at  o n e  d at a  p oi nt.
T h e   d e p e n d e n c e   o n  t h e   di  m e nsi o n  p  is   o nl y  t hr o u g h  t h e
e v al u ati o n  of  t h e  k er n el  f u n cti o n.    A d diti o n all y,    Al g orit h  m  1
h as  t h e    w orst- c as e    m e  m or y  c o ns u  m pti o n  of  or d er  O  (T 2 R  ).
We   hi g hli g ht  t h at   o ur    m et h o d  is  i n d e e d   c o  m p ut ati o n all y
i nt e nsi v e    w hi c h  c a n  b e  a  pr o bl e  m  i n  pr a cti c e.    O n e  p ossi bl e
w a y  t o   o v er c o  m e  t his  is  t o  u s e   p ar all el  c o  m p uti n g,  as  t h e
c al c ul ati o ns   of  { Y s, e

t }  c a n   b e   d o n e   i n   p ar all el.    Alt er n a-
ti v el y,   as   p oi nt e d   o ut   b y   o n e  r e vi e  w er,   o n e   c a n   c o  m p ut e
k (X  (i) −  X  (j ))/ h )  f or  i, j  =  1  , . . . ,  T ,  a n d  t h e n  c o  m p uti n g
( 7)  o nl y  r e q uir es  t o  c al c ul at e  c u  m ul ati v e  s u  m s.    T h e  o v er all
c ost  b e c o  m es  O  (T 2 k e r n el   +  R T 2 ).   H o  w e v er, t his  r e q uir es  a
m e  m or y  all o c ati o n  of  O  (T 2 p  +  T 2 R  ).

III.    T H  E  O  R  Y

I n  t his  s e cti o n    w e  pr o v e  t h at  t h e  c h a n g e  p oi nt  esti  m at or
M  N P r et ur n e d b y   Al g orit h  m 1 is c o nsist e nt b as e d o n t h e   m o d el
d es cri b e d i n   Ass u  m pti o n  1,  u n d er t h e  p ar a  m et er  s c ali n g

κ p + 2 ∆  l o g1  + ξ (T  ),

f or  a n y  ξ  >  0 ;  s e e    T h e or e  m   1.  I n  a d diti o n,    w e  s h o  w  i n
L e  m  m a   2  t h at   n o   c o n sist e nt   esti  m at or   e xists  if  t h e   a b o v e
s c ali n g  c o n diti o n  is   n ot  s atis fi e d,   u p  t o  a   p ol y-l o g arit h  mi c
f a ct or.  Fi n all y, i n   L e  m  m a  3,   w e  d e  m o nstr at e t h at t h e l o c ali z a-
ti o n  r at e  r et ur n e d  b y  t h e    M  N P  pr o c e d ur e  is  n e arl y    mi ni  m a x
r at e- o pti  m al.

A.   O pti  m al   C h a n g e   P oi nt  L o c aliz ati o n

We  b e gi n  b y  st ati n g  s o  m e  ass u  m pti o n s  o n  t h e  k er n el  k (·)
us e d t o  c o  m p ut e t h e  k er n el  d e nsit y  esti  m at ors i n v ol v e d i n t h e
d e fi niti o n  of t h e   m ulti v ari at e  n o n p ar a  m etri c   C  U S  U  M  st atisti c.

Ass u  m pti o n  2  ( T h e   K er n el   F u n cti o n):  L et  k  :  R p →  R  b e
a  k er n el  f u n cti o n   wit h  k ∞ ,  k 2 <  ∞  s u c h t h at,

(i)  t h e  cl ass  of  f u n cti o ns

F k ,[l,∞  ) =  k
x  − ·

h
:  x  ∈  X  ,  h ≥  l

fr o  m R p t o R  is s e p ar a bl e i n L ∞ (R p ), a n d is a  u nif or  ml y
b o u n d e d    V  C- cl ass    wit h   di  m e nsi o n  ν ,  i. e.  t h er e  e xist
p o siti v e  n u  m b er s  A  a n d  ν  s u c h  t h at,  f or  e v er y  p ositi v e
m e as ur e  Q  o n  R p a n d f or  e v er y  u  ∈  ( 0 ,  k ∞ ), it   h ol d s
t h at

N  (F k ,[l,∞  ) ,  L2 (Q  ),  u)  ≤
A  k ∞

u

ν

;

(ii)   f or  a  fi x e d  m  >  0 ,

∞

0

tp −  1 s u p
x  ≥  t

|k (x )|m dt    <  ∞  .

(iii)  t h er e  e xists  a  c o n st a nt  C k >  0  s u c h t h at

R p

k (z )  z  d z  ≤  C k .

Ass u  m pti o n 2 (i) a n d (ii) c orr e s p o n d t o   Ass u  m pti o n s 4 a n d 3
i n    Ki  m  et   al.  [ 3 2]   a n d   ar e   f airl y   st a n d ar d   c o n diti o n s
us e d  i n  t h e  n o n p ar a  m etri c  d e nsit y  esti  m ati o n  lit er at ur e,  s e e
Gi n é  a n d   G uill o u [ 2 2],   Gi n é  a n d   G uill o u [ 2 3],  Sri p er u  m b u d ur
a n d   St ei n  w art   [ 4 8].    T h e y   h ol d   f or    m o st   c o  m  m o nl y   u s e d
k er n els, s u c h  as  u nif or  m,   E p a n e c h ni k o v a n d   G a ussi a n  k er n els.
Ass u  m pti o n  2  (iii)  is  a    mil d  i nt e gr a bilit y  ass u  m pti o n  o n  t h e
k er n el.

N e xt,   w e r e q uir e t h e f oll o  wi n g si g n al-t o- n ois e  c o n diti o n  o n
t h e  p ar a  m et ers  of  t h e    m o d el  i n  or d er  t o  g u ar a nt e e  t h at  t h e
M  N P  esti  m at or is  c o n sist e nt.

Ass u  m pti o n  3:  Ass u  m e t h at  f or  a  gi v e n  ξ  >  0 , t h er e  e xists
a n  a b s ol ut e  c o n st a nt  C S  N  R >  0  s u c h t h at

κ p + 2 ∆  >  C S  N  R l o g1  + ξ (T  ). ( 9)

Ass u  m pti o n   3   c a n   b e   r el a x e d   b y   o nl y   r e q uiri n g   t h at
κ p + 2 ∆  >  C S  N  R l o g (T  )e T ,  f or  a n y  ar bitr ar y  s e q u e n c e  { e T }
di v er gi n g  t o  i n fi nit y,  as  T  g o e s  u n b o u n d e d.   As    w e    will  s e e
l at er,  t h e  a b o v e  s c ali n g  is  n ot  o nl y  s uf fi ci e nt  f or  c o n sist e nt
l o c ali z ati o n  b ut  al  m ost  n e c ess ar y, asi d e f or  a  p ol y-l o g arit h  mi c
f a ct or i n T  ; s e e   L e  m  m a 2.   T his i  m pli es t h at t h e   M  N P esti  m at or
is  c o nsist e nt  f or  n e arl y  all  p ar a  m et er  s c ali n gs  f or    w hi c h  t h e
l o c ali z ati o n t as k is  p ossi bl e.

T h e o r e  m  1:  Ass u  m e t h at t h e s e q u e n c e  { X t }
T
t = 1 s atis fi es t h e

m o d el  d es cri b e d i n   Ass u  m pti o n  1  a n d t h e si g n al-t o- n ois e r ati o
c o n diti o n   Ass u  m pti o n  3.   L et  k (·)  b e  a  k er n el  f u n cti o n  s atis-
f yi n g   Ass u  m pti o n  2.   T h e n, t h er e  e xist  p o siti v e  u ni v er s al  c o n-
st a nts  C R , c τ, 1 , c τ, 2 a n d  c h , s u c h t h at if   Al g orit h  m 1 is a p pli e d
t o t h e s e q u e n c e { X t }

T
t = 1 u si n g a n y c oll e cti o n  { (α r ,  βr )} R

r = 1 ⊂
{ 1 , . . . ,  T }  of  r a n d o  m  ti  m e  i nt er v als    wit h  e n d p oi nts  dr a  w n
i n d e p e n d e ntl y  a n d  u nif or  ml y fr o  m { 1 , . . . ,  T }  wit h

m a x
r = 1  ,...,  R

(β r −  α r )  ≤  C R ∆  al  m o st  s ur el y,   ( 1 0)

t u ni n g  p ar a  m et er τ  s atisf yi n g

c τ, 1 m a x  h −  p / 2 l o g1 / 2 (T  ),  h∆ 1 / 2 ≤  τ  ≤  c τ, 2 κ ∆ 1 / 2

( 1 1)

a n d  b a n d  wi dt h  h  gi v e n  b y

h  =  c h κ, ( 1 2)

t h e n t h e  r es ulti n g  c h a n g e  p oi nt  esti  m at or  { η̂ k }
ˆK
k = 1 s atis fi es

P  K  =  K  a n d k =  |η̂ k −  η k |  ≤ C  κ −  2
k κ −  p l o g (T  ),

∀ k  =  1  , . . . ,  K

≥  1  −  3 T −  c −  e x p  l o g
T

∆
−

R  ∆

4 C R T
,

f or  u ni v er s al  p o siti v e  c o n st a nts  C a n d  c .
T h e  c o nst a nts i n   T h e or e  m  1  ar e   w ell- d e fi n e d  pr o vi d e d t h at

t h e  c o n st a nt  C S  N  R i n  t h e  si g n al-t o- n ois e  r ati o    Ass u  m pti o n  3
is  s uf fi ci e ntl y  l ar g e.   T h eir  d e p e n d e n c e  c a n  b e  tr a c k e d  i n  t h e
pr o of  of  t h e    T h e or e  m  1,  gi v e n  i n   S e cti o n    B.  I n  p arti c ul ar,

it    m u st  h ol d  t h at  c τ, 1 m a x  { 1 ,  c
−  p / 2
h }  <  c τ, 2 .    We    w o ul d  li k e

t o  p oi nt  o ut  t h at  t h e  c h oi c e  h  =  c h κ  is    m er el y  t o  pr o  m pt
t h e or eti c al  o pti  m alit y  o n l o c ali z ati o n  err or  r at e.    We  dis c u ss  a
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wi d er r a n g e  of  c h oi c es  o n  h  a n d t h eir t h e or eti c al i  m pli c ati o n s
i n   S e cti o n  III-  B.   Pr a cti c al   g ui d a n c e  o n  t h e  c h oi c e  of  h  is
c oll e ct e d i n  S e cti o n  I  V.

It  is    w ort h  e  m p h asi zi n g  t h at    w e  pr o vi d e  i n di vi d u al  l o c al-
i z ati o n  err ors k ,  o n e  f or  e a c h  tr u e  c h a n g e  p oi nt,  i n  or d er  t o
a v oi d  f als e  p ositi v es  i n  t h e  it er ati v e  s e ar c h  of  c h a n g e  p oi nts
i n   Al g orit h  m  1.   Usi n g  ( 1)  a n d  s etti n g

=  m a x
k = 1  ,...,  K

k ,

o ur  r e s ult  f urt h er  yi el d s  t h e  g e n er al  l o c ali z ati o n  c o nsist e n c y
g u ar a nt e e  d e fi n e d i n  ( 4)  si n c e,  as  T  →  ∞  ,

∆
≤  C

l o g (T  )

∆  κ p + 2
≤

C

C S  N  R

l o g (T  )

l o g1  + ξ (T  )
→  0 ,

w h er e  t h e  s e c o n d i n e q u alit y  f oll o  ws  fr o  m t h e  d e fi niti o n  of  κ
i n  ( 3),  a n d  c o n v er g e n c e f oll o  ws fr o  m   Ass u  m pti o n  3.

T h e  t u ni n g  p ar a  m et er  τ  pl a y s  t h e  r ol e  of  a  t hr e s h ol d  f or
d et e cti n g   c h a n g e   p oi nts  i n    Al g orit h  m   1.  I n   p arti c ul ar,  f or
t h e  ti  m e   p oi nts    wit h    m a xi  m al    C  U S  U  M   st atisti cs,   if  t h eir
C  U S  U  M  st atisti c   v al u es   e x c e e d  τ ,  t h e n  t h e y   ar e  i n cl u d e d
i n  t h e  c h a n g e  p oi nt  esti  m at ors.    T his    m e a n s  t h at,    wit h  l ar g e
pr o b a bilit y,  t h e  u p p er  b o u n d  i n  ( 1 1)  o u g ht  b e  s  m all er  t h a n
t h e  s  m all est  p o p ul ati o n   C  U S  U  M  st atisti cs  at  t h e  tr u e  c h a n g e
p oi nts,  a n d t h e l o  w er  b o u n d i n  ( 1 1)  s h o ul d  b e l ar g er t h a n t h e
l ar g est  s a  m pl e    C  U S  U  M  st atisti cs    w h e n  t h er e  ar e  n o  c h a n g e
p oi nts. I n  d et ail, t h e  u p p er  b o u n d is  d et er  mi n e d i n   L e  m  m a  1 0,
a n d t h e l o  w er  b o u n d  c o  m es fr o  m   L e  m  m as  7  a n d  8.   L e  m  m a  7
is  d e di c at e d t o t h e  v ari a n c e  of t h e  k er n el  d e n sit y  esti  m at ors  at
t h e  o bs er v ati o ns,   w h er e as   L e  m  m a  8  f o c us es  o n  t h e  d e vi a n c e
b et  w e e n t h e s a  m pl e  a n d  p o p ul ati o n   m a xi  m a.   L astl y, t h e s et  of
v al u es  f or  τ  is  n ot  e  m pt y,  b y t h e i n e q u aliti es

c τ, 1 h −  p / 2 l o g1 / 2 (T  ) ≤  c τ, 1 c
−  p / 2
h κ −  p / 2 l o g1 / 2 (T  ) < c τ, 2 κ ∆ 1 / 2

a n d

c τ, 1 m a x  { 1 ,  c
−  p / 2
h }  <  c τ, 2 .

T h e l o  w er  b o u n d  o n t h e  pr o b a bilit y i n  ( 1) t e n ds t o  1,  as  T
gr o  ws  u n b o u n d e d,  pr o vi d e d  t h at  t h e   n u  m b er  R  of  r a n d o  m
i nt er v als (α r ,  βr )  is  s u c h t h at

R
T

∆
l o g

T

∆
.

Wit h  t his,   w e  r e  m ar k t h at t h e  c o  m p ut ati o n al  c o  m pl e xit y is
t h er ef or e of or d er O  (  ∆ 2 ·T / ∆  ·l o g (T / ∆)  ·k er n el ),  b y  n oti ci n g
t h at t h e i nt er v al l e n gt hs ar e  u p p er b o u n d e d b y C R ∆  .  Si n c e t h e
pr o c e d ur es i n  r a n d o  m i nt er v als  ar e  p ar all el a bl e,  o n e   m a y  r u n
Al g orit h  m  1  i n  p ar all el  a n d  t h e  c o  m p ut ati o n al  c o  m pl e xit y  is
of  or d er  O  (  ∆ 2 · k er n el ).

T h e  ass u  m pti o n  ( 1 0)  is  i  m p os e d  t o  g u ar a nt e e t h at  e a c h  of
t h e  r a n d o  m  i nt er v als  u s e d  i n  t h e    M  N P  pr o c e d ur e  c o nt ai ns  a
b o u n d e d  n u  m b er  of  c h a n g e  p oi nts.   T h u s,  if  K  =  O  ( 1 ),  t his
ass u  m pti o n  c a n  b e  dis c ar d e d.   M or e  g e n er all y, it is  p ossi bl e t o
dr o p  t his  ass u  m pti o n  e v e n    w h e n  ∆  =  o (T  ),  i n    w hi c h  c as e
t h e    M  N P  esti  m at or    w o ul d  still  yi el d  c o n sist e nt  l o c ali z ati o n,
al b eit   wit h  a l o c ali z ati o n  err or i n fl at e d  b y  a  p ol y n o  mi al f a ct or
i n  T / ∆  ,   u n d er   a   str o n g er   si g n al-t o- n ois e   r ati o   c o n diti o n.
Ass u  m pti o n s  of t his  n at ur e ar e  c o  m  m o nl y  u s e d i n t h e  a n al y sis

of  t h e    W  B S   pr o c e d ur e.   F or   a   dis c ussi o n   o n  t h e   n e c essit y
of   ass u  m pti o n   ( 1 0)  i n   or d er  t o   d eri v e   o pti  m al   r at es,   s e e
P a dill a  et  al.  [ 4 0].

R e  m ar k   2  (  W h e n  κ  =  0  ):  T h e or e  m   1   b uil d s   u p o n  t h e
ass u  m pti o n  t h at  κ  >  0 ,    w hi c h  i  m pli es  t h at  t h er e  e xists  at
l e ast  o n e  c h a n g e  p oi nt.  I n  f a ct,  a n  i  m  m e di at e  c o ns e q u e n c e
of  St e p  1 i n t h e  pr o of  of   T h e or e  m  1 is t h e  c o n sist e n c y f or t h e
si  m pl er t as k  of   m er el y  d e ci di n g  if  t h er e  ar e  c h a n g e  p oi nts  or
n ot.   T o  b e  s p e ci fi c,  if  t h er e  ar e  n o  tr u e  c h a n g e  p oi nts,  t h e n
wit h t h e  b a n d  wi dt h  a n d t u ni n g  p ar a  m et er  s atisf yi n g

h  >  (l o g (T  )/ T  ) 1 / p

a n d

τ  ≥  c τ, 1 m a x  h −  p / 2 l o g1 / 2 (T  ),  h  T 1 / 2 ,

it  h ol d s t h at

P { K  =  0  }  →  1 ,

as  T  g o e s  u n b o u n d e d.

B.   C h a n g e   P oi nt  L o c aliz ati o n   Vers u s   D e nsit y   Esti  m ati o n

We  n o  w  dis c uss  h o  w t h e  c h a n g e  p oi nt l o c ali z ati o n  pr o bl e  m
r el at es t o t h e  cl assi c al t as k  of  o pti  m al  d e n sit y  esti  m ati o n.  F or
si  m pli cit y,  ass u  m e  e q u all y-s p a c e d  c h a n g e  p oi nts,  s o  t h at  t h e
d at a  c o nsist  of  K  i n d e p e n d e nt  s a  m pl es  of  si z e  ∆  fr o  m  e a c h
of t h e  u n d erl yi n g  distri b uti o n s.

If   w e  k n e  w t h e l o c ati o n s  of t h e  c h a n g e  p oi nts  –  or,  e q ui v a-
l e ntl y, t h e  n u  m b er  of  c h a n g e  p oi nts  – t h e n   w e  c o ul d  c o  m p ut e
K  k er n el  d e n sit y  esti  m at ors,  o n e  f or  e a c h  s a  m pl e.   R e c alli n g
t h at    w e  ass u  m e  t h e  u n d erl yi n g  d e nsiti es  t o  b e   Li ps c hit z  a n d
usi n g    w ell- k n o  w n  r es ults  a b o ut    mi ni  m a x  d e nsit y  esti  m ati o n,
c h o o si n g t h e  b a n d  wi dt h t o  b e  of  or d er

h 1
l o g (  ∆)

∆

1 / ( p + 2 )

w o ul d yi el d  K  k er n el d e nsit y esti  m at ors t h at ar e   mi ni  m a x r at e-
o pti  m al i n t h e  L ∞ - n or  m f or  e a c h  of t h e  u n d erl yi n g  d e nsiti es.
I n  c o ntr a st, t h e  c h oi c e  of t h e  b a n d  wi dt h f or t h e  c h a n g e  p oi nt
d et e cti o n t as k is

h o p t κ,

as  gi v e n i n ( 1 2). I n li g ht  of t h e   mi ni  m a x r es ults  est a blis h e d i n
t h e  n e xt s e cti o n, s u c h  a  c h oi c e  of h o p t f urt h er  g u ar a nt e es t h at
t h e l o c ali z ati o n r at e  aff or d e d  b y t h e    M  N P  al g orit h  m is  al  m o st
mi ni  m a x r at e- o pti  m al.

I n  virt u e  of   Ass u  m pti o n  3  a n d t h e  b o u n d e d n e ss a ss u  m pti o n
o n t h e  d e n siti es, it  h ol d s t h at

h 1 h o p t .

T h e  c h oi c e  of  b a n d  wi dt h f or  o pti  m al  c h a n g e  p oi nt l o c ali z a-
ti o n  i n  t h e  pr es e nt  pr o bl e  m is  n o  s  m all er  t h a n  t h e  c h oi c e  f or
o pti  m al  d e n sit y  esti  m ati o n.  I n   p arti c ul ar, t h e  t  w o  b a n d  wi dt h
c oi n ci d es,  i. e.  h 1 h o p t ,    w h e n  t h e   si g n al-t o- n ois e  r ati o
is  s  m all est,  i. e.    w h e n    Ass u  m pti o n  3  is  a n  e q u alit y.    As    w e
will  s e e  b el o  w  i n   L e  m  m a  2,  c h a n g e  p oi nt  l o c ali z ati o n  is  n ot
p o ssi bl e    w h e n  t h e  si g n al-t o- n ois e  r ati o    Ass u  m pti o n  3  f ails,
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u p t o  a  sl a c k f a ct or t h at is  p ol y-l o g arit h  mi c i n  T  .   As  a r es ult,
h 1 a n d  h o p t l o gξ (  ∆)  ar e  of  t h e  s a  m e  or d er  ( u p  t o  a  p ol y-
l o g arit h  mi c t er  m i n T  )  o nl y  u n d er ( n e arl y) t h e   w or st  p o ssi bl e
c o n diti o n f or l o c ali z ati o n.   O n t h e  ot h er  h a n d, if  κ  is  v a nis hi n g
i n  T  at  a  r at e  sl o  w er  t h a n  (l o g (  ∆)/ ∆) 1 / ( p + 2 ) (  w hil e  still
f ul filli n g    Ass u  m pti o n  3),  t h e n  c h a n g e  p oi nt  l o c ali z ati o n  c a n
b e  s ol v e d  o pti  m all y  u si n g  k er n el  d e n sit y  esti  m at ors  t h at  ar e
s u b o pti  m al  f or  d e nsit y  esti  m ati o n,  si n c e  t h e y  ar e  b as e d  o n
b a n d  wi dt h s t h at ar e l ar g er t h a n t h e  o n es  n e e d e d f or  o pti  m alit y.
T h u s   w e  c o n cl u d e t h at t h e  o pti  m al  s a  m pl e  c o  m pl e xit y f or t h e
l o c ali z ati o n  pr o bl e  m is  stri ctl y  b ett er t h a n t h e  o pti  m al  s a  m pl e
c o  m pl e xit y  n e e d e d f o r  esti  m ati n g  all t h e  u n d erl yi n g  d e nsiti es,
u nl ess  t h e   dif fi c ult y   of  t h e  c h a n g e  l o c ali z ati o n   pr o bl e  m  is
m a xi  m al, i n   w hi c h  c as e t h e y  c oi n ci d e.   At t h e  o p p osit e  e n d  of
t h e  s p e ctr u  m, if  κ  is  b o u n d e d  a  w a y  fr o  m 0 , t h e n t h e  o pti  m al
c h a n g e  p oi nt  l o c ali z ati o n  c a n  still  b e  a c hi e v e d  u si n g  bi as e d
k er n el d e nsit y esti  m at ors   wit h  b a n d  wi dt h s b o u n d e d a  w a y fr o  m
z er o.

M or e  g e n er all y, a n d  q uit e i nt er esti n gl y,  o ur  a n al ysis r e v e als
t h at  t h er e  is  a  r at h er  si  m pl e  a n d  i nt uiti v e    w a y  of  d es cri bi n g
h o  w t h e  dif fi c ult y  of  d e nsit y  esti  m ati o n  pr o bl e  m r el at es t o t h e
dif fi c ult y  of  c o nsist e nt  c h a n g e  p oi nt  l o c ali z ati o n,  at  l e ast  i n
o ur  pr o bl e  m. I n d e e d, it  f oll o  ws  fr o  m t h e  pr o of  of   T h e or e  m  1
(s e e  als o  ( 1 1)  i n  t h e  st at e  m e nt  of   T h e or e  m  1)  t h at,  i n  or d er
f or    M  N P t o  r et ur n  a  c o n sist e nt  –  a n d,  as   w e   will  s e e  s h ortl y,
n e arl y    mi ni  m a x  o pti  m al  –  esti  m at or  of  t h e  c h a n g e  p oi nt,  t h e
f oll o  wi n g  s h o ul d  h ol d:

κ
√

∆  γ A +  γ B h −  p / 2 l o g1 / 2 (T  )  + h
√

∆  .  ( 1 3)

Ass u  mi n g  f or  si  m pli cit y  l o g (  ∆)  l o g (T  ),  t h e  ri g ht  h a n d
si d e   of  t h e   pr e vi o u s   e x pr e ssi o n   di vi d e d   b y

√
∆  pr e cis el y

c orr e s p o n d s t o  t h e  s u  m  of  t h e    m a g nit u d e s  of  t h e  bi a s  a n d  of
t h e  r a n d o  m  fl u ct u ati o n  f or  t h e  k er n el  d e nsit y  esti  m at or  o v er
e a c h  s u b-i nt er v al,  b ot h   m e as ur e d i n  t h e  L ∞ - n or  m.  Fr o  m t his
w e  i  m  m e di at el y  s e e  t h at  t h e    M  N P   pr o c e d ur e    will  esti  m at e
t h e   c h a n g e   p oi nts   o pti  m all y   pr o vi d e d  t h at  κ ,  t h e  s  m all est
m a g nit u d e  of  t h e  distri b uti o n al  c h a n g e  at  t h e  c h a n g e  p oi nt,
is l ar g er t h a n t h e L ∞ err or i n  esti  m ati n g t h e  u n d erl yi n g  d e n-
siti es  vi a  k er n el  d e n sit y  esti  m ati o n,  a ss u  mi n g  f ull  k n o  wl e d g e
of t h e  c h a n g e  p oi nt l o c ati o n s.  T h o u g h si  m pl e,   w e  b eli e v e t h at
t his  c h ar a ct eri z ati o n  is  n o n-tri vi al  a n d  ill ustr at es  ni c el y  t h e
diff er e n c es  b et  w e e n  t h e  t as k  of  d e n sit y  esti  m ati o n  of  t h at  of
c h a n g e  p oi nt l o c ali z ati o n.

We  c o n cl u d e t his  s e cti o n  b y  pr o vi di n g s o  m e r ati o n al e  as t o
w h y t h e  o pti  m al  c h oi c e  of  h  f or t h e  p ur p o s e  of  c h a n g e  p oi nt
l o c ali z ati o n  h a p p e n s t o  b e κ ,   w hi c h i n  li g ht  of t h e i n e q u alit y
( 1 3), is t h e l ar g est  v al u e h  is all o  w e d t o t a k e i n  or d er f or   M  N P
t o  b e  c o nsist e nt.    We  off er t  w o  diff er e nt  p ers p e cti v es.

• ( L o c ali z ati o n  err or).  It   c a n   b e  s e e n  i n    L e  m  m a   1 5   or
i n  i n e q u alit y  ( 6 9)  i n  t h e  pr o of  of    T h e or e  m  1  t h at  t h e
l o c ali z ati o n  err or is  s u c h t h at

k
γ 2

A

κ 2
k

=
l o g (T  )

κ 2
k h p

,  k ∈  {  1 , . . . ,  K} .

T h er ef or e, t h e l ar g er t h e  b a n d  wi dt h  h  is, t h e  s  m all er t h e
l o c ali z ati o n  err or.

• ( Si g n al-t o- n ois e  r ati o).   Si n c e    w e  r e q uir e  γ A κ
√

∆  ,
it  n e e ds t o  h ol d t h at

κ 2 h p ∆  l o g (T  );

si n c e i n  ( 3 0) i n t h e  pr o of  of   L e  m  m a  8   w e  r e q uir e

κ k C  l o g (T  )V 2
p κ −  2

k κ −  p ≤  γ B ,

w h er e  V p =  π p / 2 ( Γ(p / 2  +  1 )) −  1 i s t h e  v ol u  m e  of  a  u nit
b all i n  R p , it  n e e ds t o  h ol d t h at

κ p h 2 ∆  l o g (T  ).

T h er ef or e,  t h e  l ar g er  t h e  b a n d  wi dt h  h  is,  t h e  s  m all er  κ
a n d  ∆  c a n  b e.

C.    Mi ni  m a x  L o  w e r   B o u n d s

F or t h e   m o d el  gi v e n i n   Ass u  m pti o n  1,   w e   will  d es cri b e l o  w
si g n al-t o- n ois e  r ati o  p ar a  m et er  s c ali n gs  f or    w hi c h  c o nsist e nt
l o c ali z ati o n is  n ot f e asi bl e.   T h es e s c ali n gs  ar e  c o  m pl e  m e nt ar y
t o  t h e   o n es  i n    Ass u  m pti o n   3,    w hi c h,   b y    T h e or e  m   1,   ar e
s uf fi ci e nt  f or  c o n sist e nt l o c ali z ati o n.

L e  m  m a  2:  L et  { X  (t)} T
t = 1 b e  a s e q u e n c e  of r a n d o  m  v e ct ors

s atisf yi n g   Ass u  m pti o n  1   wit h  o n e  a n d  o nl y  o n e  c h a n g e  p oi nt
a n d l et  P T

κ,  ∆ d e n ot e t h e c orr e s p o n di n g j oi nt  distri b uti o n.   T h e n,
t h er e  e xist  u ni v er s al  p o siti v e  c o n st a nts C 1 , C 2 a n d  c  <  l o g ( 2 )
s u c h t h at,  f or  all  T  l ar g e  e n o u g h,

i nf
η̂

s u p
P  ∈  Q

E P η̂  −  η (P  )  ≥  ∆  / 4 ,

w h er e

Q  =  Q  (C 1 ,  C2 , c)  =

P T
κ,  ∆ :  ∆ <  T /  2 ,  κ  <  C1 ,  κp + 2 ∆  ≤  c,   C Li p ≤  C 2 ,

t h e  q u a ntit y  η (P  )  d e n ot e s  t h e  tr u e  c h a n g e  p oi nt  l o c ati o n  of
P  ∈  Q  a n d t h e i n fi  m u  m is  o v er  all  p o ssi bl e  esti  m at or s  of t h e
c h a n g e  p oi nt l o c ati o n.

T h e a b o v e r es ult off ers a n i nf or  m ati o n t h e or eti c l o  w er b o u n d
o n  t h e    mi ni  m al  si g n al-t o- n ois e  r ati o  r e q uir e d  f or  l o c ali z ati o n
c o n sist e n c y.  It  i  m pli es  t h at    Ass u  m pti o n  3  u s e d  b y  t h e    M  N P
pr o c e d ur e,  is,   s a v e  f or   a   p ol y-l o g arit h  mi c  t er  m  i n  T  ,  t h e
w e a k est  p o ssi bl e  s c ali n g  c o n diti o n  o n  t h e    m o d el  p ar a  m et ers
a n y  al g orit h  m  c a n  aff or d.    T h us,    L e  m  m a  2  a n d    T h e or e  m  1
t o g et h er r e v e al  a  p h as e tr a n siti o n  o v er t h e  p ar a  m et er s c ali n g s,
s e p ar ati n g  t h e  i  m p o ssi bilit y  r e gi  m e  i n    w hi c h  n o  al g orit h  m  is
c o nsist e nt  fr o  m  t h e  o n e  i n    w hi c h    M  N P  a c c ur at el y  esti  m at es
t h e  c h a n g e  p oi nt l o c ati o n s.   We  c o nj e ct ur e t h at t h e l o g arit h  mi c
g a p  is  d u e  t o  a  l o o s e  l o  w er  b o u n d  a n d  t h e  u p p er  b o u n d  is
ti g ht.  It  r e  m ai ns  a n  o p e n  pr o bl e  m t o  cl os e t his  g a p.

O ur  n e xt  r es ult  s h o  ws  t h at  t h e  l  o c ali z ati o n  r at e  a c hi e v e d
b y    Al g orit h  m   1,   u n d er  t h e  t u ni n g   p ar a  m et ers  s p e ci fi e d  i n
T h e or e  m  1, is i n d e e d  al  m ost   mi ni  m a x  o pti  m al,  asi d e  p ossi bl y
f or   a   p ol y-l o g arit h  mi c  f a ct or,   o v er   all   s c ali n gs  f or    w hi c h
c o n sist e nt l o c ali z ati o n is  p o ssi bl e.

L e  m  m a  3:  L et  { X  (t)} T
t = 1 b e  a s e q u e n c e  of r a n d o  m  v e ct ors

s atisf yi n g   Ass u  m pti o n  1   wit h  o n e  a n d  o nl y  o n e  c h a n g e  p oi nt
a n d   l et  P T

κ,  ∆ d e n ot e  t h e   c orr e s p o n di n g  j oi nt   distri b uti o n.

A ut h ori z e d li c e n s e d u s e li mit e d t o: U C L A Li br ar y. D o w nl o a d e d o n J a n u ar y 1 0, 2 0 2 4 at 2 3: 4 0: 4 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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T h e n, t h er e  e xist  u ni v er s al  p o siti v e  c o n st a nts  C 1 a n d  C 2 s u c h
t h at,  f or  a n y  s e q u e n c e { ζ T }  s atisf yi n g  li  mT  →  ∞ ζ T =  ∞  ,

i nf
η̂

s u p
P  ∈  Q

E P η̂  −  η (P  )  ≥  m a x  1 ,
1

4

1

V 2
p κ p + 2

e −  2 ,

w h er e  V p =  π p / 2 ( Γ(p / 2  +  1 )) −  1 i s t h e  v ol u  m e  of  a  u nit  b all
i n R p ,

Q  =  Q  (C 1 ,  C2 , { ζ T } )  =

P T
κ,  ∆ :  ∆ <  T /  2 ,  κ  <  C1 ,  κp + 2 V 2

p ∆  ≥  ζ T ,  CLi p ≤  C 2 ,

t h e  q u a ntit y  η (P  )  d e n ot e s  t h e  tr u e  c h a n g e  p oi nt  l o c ati o n  of
P  ∈  Q  a n d t h e i n fi  m u  m is  o v er  all  p o ssi bl e  esti  m at or s  of t h e
c h a n g e  p oi nt l o c ati o n s.

T h e pr e vi o us r es ult d e  m o nstr at es t h at t h e p erf or  m a n c e of t h e
M  N P  pr o c e d ur e is ess e nti all y  n o n-i  m pr o v a bl e, e x c e pt p o ssi bl y
f or   a   p ol y-l o g arit h  mi c  t er  m   i n  T  .   I n   p arti c ul ar,   a d a pti n g
c h o o si n g t h e  b a n d  wi dt h i n  a   w a y  t h at  d e p e n d  o n  t h e l e n gt h s
of  t h e    w or ki n g  i nt er v als  is   n ot   g oi n g  t o   bri n g  si g ni fi c a nt
i  m pr o v e  m e nts  o v er  a  fi x e d  c h oi c e.

I  V.    C H  OI  C  E   O F T U  NI  N  G P A  R  A  M  E  T  E  R S  I  N P R  A  C  T I  C  E

I n  t his  s e cti o n,    w e  dis c u ss  t h e  c h oi c e  of  t h e  t u ni n g  p ar a-
m et ers  i n v ol v e d  i n    Al g orit h  m  1.    T h e  first  t u ni n g  p ar a  m et er
is  R  ,  t h e  n u  m b er  of  r a n d o  m  i nt er v als.   B as e d  o n   T h e or e  m  1,
w e  s h o ul d  c h o o s e  R T

∆ l o g T
∆ .  If  ∆  T  t h e n  t his

b e c o  m es  R  1 .   H o  w e v er,  b ot h ∆  a n d t h e  c o n st a nts i n t h e s e
i n e q u aliti es  ar e  u n k n o  w n.  I n  all  of  o ur  e x p eri  m e nts    w e  s et
R  =  5 0  a n d  n oti c e  t h at    Al g orit h  m  1  is  n ot  s e n siti v e  t o  R
f or  t h e  e x a  m pl es  c o nsi d er e d  h er e.    H o  w e v er,  g ui d e d  b y  o ur
t h e or y,  f or  pr o bl e  m s    w h er e  T  i n cr e as es  o n e    mi g ht    wis h  t o
c h o o s e  R  as  a li n e ar f u n cti o n  of  T  ,  ass u  mi n g t h at ∆  =  O  ( 1 ).
F urt h er  m or e,  it  is    w ort h  t o  a d dr ess  t h at  i n cr e asi n g  R  o nl y
h el ps  t h e  p erf or  m a n c e  a n d  h e n c e  a  c o ns er v ati v e  c h oi c e  is  t o
c h o os e  l ar g e  R  ,  if  c o  m p ut ati o n al  r es o ur c es  p er  mit.    O n c e  R
is  fi x e d,    w e  i n d e p e n d e ntl y  dr a  w  α r u nif or  ml y  fr o  m  t h e  s et
{ 1 , . . . ,  T }  f or  r  =  1  , . . . ,  R.   T h e n   w e  g e n er at e β r u nif or  ml y
fr o  m  { α r , . . . ,  T }  f or  r  =  1  , . . . ,  R.

Wit h r e g ar d s t o t h e ot h er i  m pl e  m e nt ati o n d et ails of t h e   M  N P
m et h o d  d es cri b e d i n   Al g orit h  m  1,   w e  u s e t h e   G a ussi a n  k er n el
a n d  s et  h  =  5  ×  ( 3 0 l o g(T  )/ T  ) 1 / ( p + 2 ) .   T h e  i nt uiti o n  b e hi n d
t his  c h oi c e c o  m es fr o  m   T h e or e  m  1.   As st at e d t h er e,  o n e  n e e ds
t o  c h o o s e h  κ .   H o  w e v er,  b y   Ass u  m pti o n  3   w e  r e q uir e κ
(l o g (T  )  / ∆) 1 / ( p + 2 ) =  ( 3 0 l o g(  T  )  / T  ) 1 / ( p + 2 ) if  ∆  ≈  T / 3 0 .
H er e, t h e  c o n st a nts  3 0  a n d  5  ar e  a d- h o c t h at   w e  fi n d t o   w or k
w ell i n  pr a cti c e.

Wit h   fi x e d  h ,    w e  t h e n  r u n    Al g orit h  m  1    wit h  τ  =  0  t o
pr o d u c e  a   bi n ar y  tr e e    w h er e  e v er y   n o d e  c orr e s p o n d s  t o   a
p ot e nti al c h a n g e  p oi nt.   T his is  u s ef ul si n c e t h e n f or a n y  τ  >  0
w e  c a n  r u n   Al g orit h  m  1  b y  si  m pl y  pr u ni n g t h e tr e e.    We t h e n
c h o o s e  m  =  3 0  a n d s e q u e n c e  of  v al u es  of  τ  c orr e s p o n di n g t o
t h e  m  l ar g est   C  U S  U  M  st atisti cs  i n  t h e  tr e e.   T his  pr o d u c es  a
s e q u e n c e  of  n est e d  s ets

S 0 =  ∅  ⊂  S 1 ⊂  . . . ⊂  S m ,

c orr e s p o n di n g  t o  t h e   diff er e nt   v al u es   of  τ .    We  t h e n   b or-
r o  w   s o  m e   i ns pir ati o n   fr o  m   t h e   s el e cti o n   pr o c e d ur e   i n
P a dill a  et  al.  [ 4 0].  S p e ci fi c all y,   w e  st art fr o  m  S i ,   wit h i =  m  ,

a n d  f or  e v er y  η̂  ∈  S i \ S i−  1 w e  d e ci d e   w h et h er  η̂  is  a  c h a n g e
p oi nt  or  n ot.  If  at l e ast  o n e  el e  m e nt  η̂  ∈  S i \ S i−  1 i s  d e cl ar e d
a s  a  c h a n g e  p oi nt, t h e n   w e  st o p  a n d  s et  C  =  S i a s t h e  s et  of
esti  m at e d  c h a n g e  p oi nts.    Ot h er  wis e,    w e  s et  i  =  m  −  1  a n d
r e p e at  t h e  s a  m e  pr o c e d ur e.    We  c o nti n u e  it er ati v el y  u ntil  t h e
pr o c e d ur e  st o p s,  or  i  =  0  i n    w hi c h  c as e  C  =  ∅ .   T h e  o nl y
r e  m ai ni n g  i n gr e di e nt  is  h o  w  t o  d e ci d e  if  η̂  ∈  S i \ S i−  1 i s  a
c h a n g e  p oi nt  or  n ot.   T o  t h at  e n d,    w e  l et  η̂ ( 1 ) , η̂ ( 2 ) ∈  S i−  1 ,
s u c h t h at

η̂  ∈  [ ˆη ( 1 ) , η̂ ( 2 ) ]  a n d  ( η̂ ( 1 ) , η̂ ( 2 ) ) ∩  S i−  1 =  ∅ .

If  η̂  <  η̂  ( ̂η  >  η̂  )  f or  all  η̂  ∈  S i−  1 ,  t h e n  w e  s et  ̂η ( 1 ) =  1
( ̂η ( 2 ) =  T  ).   T h e n,   w e  i n d e p e n d e ntl y  dr a  w  v l u nif or  ml y  fr o  m
{ v  ∈  R p :  v  =  1  }  f or  l  =  1  , . . . ,  N ,  a n d    w e  c al c ul at e
t h e    K ol  m o g or o v – S  mir n o v  (  K S)   st atisti c   (f or  i n st a n c e,   s e e
P a dill a  et  al.  [ 4 0])

a l =  K S(  { v l X  (t)} η̂
η̂ (  1 ) + 1 , { v l X  (t)}

η̂ (  2 )

η̂ + 1 ) ,

a n d  t h e  c orr e s p o n di n g  p - v al u e    w hi c h    w e  c o  m p ut e  as  P l =
e x p( −  2 a 2

l ).  N e xt  w e  s ort  { P l }  as  P ( 1 ) ≤  P ( 2 ) ≤  . . .  ≤
P ( N  ) .  I n s pir e d  b y   B e nj a  mi ni  a n d   H o c h b er g [ 5],   w e  d e cl ar e  ̂η
a s  c h a n g e  p oi nt if t h er e  e xists  k  ∈  {  1 , . . . ,  N }  s u c h t h at

P ( k ) ≤
k

N
α, ( 1 4)

wit h  α  =  0  .0 0 0 5 .   T h e  c h oi c e α  =  0  .0 0 0 5  is  d u e  t o  t h e  f a ct
t h at    w e  d o    m ulti pl e  t ests  f or  diff er e nt  v al u es  of  τ  a n d  t h eir
c orr es p o n di n g  esti  m at e d  c h a n g e  p oi nts.   T h e  n u  m b er  of  t ests
is  i n   pri n ci pl e  r a n d o  m.    We  c h o o s e  t h e   v al u e  0 .0 0 0 5  si n c e
( 1  −  0 .0 0 0 5 ) 2 0 ≈  0 .9 9 ,  a n d    w e  u s e  as  a n  a d- h o c  r ul e  t h at
t h er e  ar e  at   m ost 2 0  c h a n g e  p oi nts.   Als o, i n  o ur  e x p eri  m e nts,
w e s et  N  =  2 0 0  .    We  a c k n o  wl e d g e t h at   w h e n p  is l ar g e,  b ett er
w a y s  of  c h o o si n g  N  mi g ht  b e  n e c ess ar y,  as  t h er e  ar e    m or e
dir e cti o n s t o  c h o o s e  fr o  m f or l ar g er  p .

F urt h er  m or e,  it  is    w ort h   p oi nti n g   o ut  t h at   o ur   a p pr o a c h
a b o v e,   b as e d   o n   f als e   dis c o v er y   r at e   usi n g   i d e as   fr o  m
B e nj a  mi ni   a n d    H o c h b er g  [ 5],   is   h e uristi c   a n d   d o e s   n ot
h a v e   st atisti c al   g u ar a nt e es.   I n   f a ct,   t h e  t est   st atisti cs   t h at
w e  c al c ul at e  ar e  n ot  i n d e p e n d e nt,  h e n c e  t h e  r ul e  i n  ( 1 4)  is
n ot t h e or eti c all y j usti fi e d,  e v e n t h o u g h t h e  r es ulti n g  a p pr o a c h
w or ks   w ell i n  pr a cti c e  as it  c a n  b e  s e e n i n t h e  n e xt  s e cti o n.

Fi n all y, if  n e c ess ar y, o n e   m a y f urt h er i  m pr o v e t h e  n u  m eri c al
p erf or  m a n c e  b y  cr oss- v ali d ati o n  o n  a  gri d  of  h .

V.   E X P  E  RI  M  E  N  T S

I n  t his  s e cti o n    w e   d es cri b e  s e v er al  c o  m p ut ati o n al  e x p er-
i  m e nts  ill u str ati n g  t h e  eff e cti v e n ess  of  t h e    M  N P   pr o c e d ur e
f or   esti  m ati n g   c h a n g e   p oi nt  l o c ati o ns   a cr oss   a   v ari et y   of
s c e n ari o s.    We  or g a ni z e  o ur  e x p eri  m e nts i nt o t  w o  s u bs e cti o ns,
o n e  c o n sisti n g  of  e x a  m pl es   wit h  si  m ul at e d  d at a  a n d t h e  ot h er
b as e d  o n  a r e al  d at a  e x a  m pl e.   C o d e i  m pl e  m e nti n g  o ur   m et h o d
c a n  b e  f o u n d i n t h e   R  (  R   C or e   Te a  m  [ 4 5])  p a c k a g e  a v ail a bl e
at  htt p s:// git h u b. c o  m/ h er n a n  m p/  R  M  N  C P.

A.  Si  m ul ati o n s

We   st art   o ur   e x p eri  m e nts  s e cti o n   b y   ass essi n g  t h e   p er-
f or  m a n c e   of    Al g orit h  m   1   i n   a    wi d e   r a n g e   of   sit u ati o n s.
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We  c o  m p ar e  o ur    M  N P  pr o c e d ur e  a g ai n st  t h e  e n er g y  b as e d
m et h o d  ( E  M  N  C P)  fr o  m    M att es o n  a n d  J a  m es  [ 3 6],  t h e  s p ar-
si fi e d   bi n ar y   s e g  m e nt ati o n   ( S  B S)    m et h o d   fr o  m    C h o   a n d
Fr y zl e  wi c z  [ 1 4],  t h e   d o u bl e    C  U S  U  M   bi n ar y   s e g  m e nt ati o n
e sti  m at or (  D  C  B S) fr o  m   C h o [ 1 3],  a n d t h e  k er n el c h a n g e  p oi nt
d et e cti o n pr o c e d ur e (  K  C P A)(  C eliss e  et al.  [ 8];   Arl ot et al.  [ 3]).

As  a    m e as ur e  of  p erf or  m a n c e    w e  us e  t h e  a bs ol ut e  err or
|K  −  K  |,  a v er a g e d  o v er  1 0 0    M o nt e   C arl o  si  m ul ati o n s,   w h er e
K  is  t h e   esti  m at e d   n u  m b er   of   c h a n g e   p oi nts  r et ur n e d   b y
t h e  esti  m at or s.  I n  a d diti o n,    w e  u s e  t h e  o n e- si d e d    H a u s d orff
dist a n c e

d (C| C )  =  m a x
η ∈ C

mi n
x  ∈  C

|x  −  η |,

w h er e  C  =  { η 1 , . . . ,  ηK }  is  t h e  s et   of  tr u e  c h a n g e  p oi nts
a n d  C  is  t h e  s et  of  esti  m at e d  c h a n g e  p oi nts.    We  r e p ort  t h e
m e di a n s  of  b ot h  d (C| C )  a n d  d (C| C )  o v er  1 0 0    M o nt e    C arl o
si  m ul ati o n s.   We  u s e t h e c o n v e nti o n t h at   w h e n C  =  ∅ ,  w e  d e fi n e
d (C| C )  =  ∞  a n d  d (C| C )  =  −  ∞  .

Wit h   r e g ar d s   t o   t h e   i  m pl e  m e nt ati o n   of   t h e    E  M  N  C P
m et h o d,    w e   us e   t h e    R   (  R    C or e    Te a  m   [ 4 5])   p a c k a g e
e c p  (J a  m es   a n d    M att es o n   [ 2 9]).    T h e   c al c ul ati o n   of   t h e
c h a n g e   p oi nts  is   d o n e   vi a  t h e   f u n cti o n  e . d i v i s i v e ( )
wit h   its   d ef a ult   c h oi c e   of   t u ni n g   p ar a  m et ers.   F urt h er-
m or e,  t h e    m et h o d s   S  B S   a n d    D  C  B S    m et h o d s    w e   u s e  t h e
R  (  R   C or e   Te a  m  [ 4 5])  p a c k a g e  h d b i n s e g  vi a t h e  f u n cti o n s
s b s . a l g ( )  a n d  d c b s . a l g ( ) .  F urt h er  m or e, f or   K  C P A   w e
us e  t h e    R  (  R    C or e    Te a  m  [ 4 5])  p a c k a g e  K e r n S e g  a n d  t h e
f u n cti o n  K e r n S e g _ M u l t i D ( )  wit h  t h e  c h oi c es  K  m a x  =
2 0  (  m a xi  m u  m  n u  m b er  of  p oi nts),  mi n. si z e  =  2  (  mi ni  m u  m
si z e   b et  w e e n   c h a n g e   p oi nts),   a n d    wit h  t h e   c h oi c e   of  t h e
G a ussi a n   K er n el.

As  f or  t h e    M  N P    m et h o d  d es cri b e d  i n   Al g orit h  m  1   w e  us e
t h e t u ni n g  p ar a  m et ers  as  d es cri b e d i n  S e cti o n  I  V.

T o e v al u at e t h e q u alit y of t h e c o  m p eti n g esti  m at ors,   w e c o n-
str u ct  s e v er al  c h a n g e  p oi nt    m o d els.  I n  e a c h  c as e,    w e    m a k e
c h oi c e  of  K  a n d  c o nsi d er  T  ∈  {  1 5 0 , 3 0 0 }  a n d  p  ∈  {  1 0 , 2 0 } .

a)  S c e n a ri o  1:  We  g e n er at e  d at a  as

X  (t)  =  µ (t)  +  (t),  t ∈  {  1 , . . . ,  T } ,

w h  er e  (t)  ∼  N  ( 0 , Ip )  a n d  I p is  t h e  p  ×  p  i d e ntit y    m atri x.
M or e o v er, t h e   m e a n  v e ct ors  s atisf y

µ (t)  =
v ( 0 ) t ∈  A 1 ∪  A 3 ,

v ( 1 ) ot h er  wis e,

w h er e  A 1 = [ 1  ,  T / 3  ], A 3 = [ 1  +  2 T / 3  ,  T ], v ( 0 ) =  0  ∈  R p ,

a n d  v
( 1 )
j =  1  f or  j  ∈  {  1 , . . . ,  p /2 }  a n d  v

( 1 )
j =  0  ot h er  wis e.

b)  S c e n a ri o   2.:  We   d e fi n e  A j =  [ 1  +  (  j  −
1 )  T / 7  , j  T / 7  ] f or j  =  1  , . . . , 6  a n d  A 7 = [ 1  + 6  T / 7  ,  T ].
T his  gi v es  s e v e n r o u g hl y  e v e nl y  s p a c e d  s e g  m e nts t h at   w e  us e
t o  g e n er at e  d at a  as

X  (t)  =  µ (t)  +  (t),  t ∈  {  1 , . . . ,  T } ,

w h er e

µ (t)  =
0  t ∈  A j ,  f or  j  o d d ,

v ( 1 ) ot h er  wis e,

Fi g.  1.   Fr o  m l eft t o ri g ht  a n d fr o  m t o p t o  b ott o  m, t h e  first  fi v e  pl ots ill ustr at e
r a  w  d at a  g e n er at e d  fr o  m  S c e n ari os  1  t o  5,  r es p e cti v el y,    wit h  o n e  r e ali z ati o n
e a c h.  I n  e a c h  c as e,  T  =  3 0 0  a n d  p  =  2 0  ,    wit h  t h e  x- a xis  r e pr es e nti n g  t h e
ti  m e  h ori z o n,  a n d t h e  y- a xis t h e  v al u es  of  e a c h   m e as ur e  m e nt.   Diff er e nt  c ur v es
i n  e a c h  pl ot  ar e  ass o ci at e d   wit h  diff er e nt  c o or di n at es  of t h e  v e ct or  X  ( t) .  T h e
ri g ht  p a n el  i n  t h e  t hir d  r o  w  ill ustr at es  t h e  r a  w  d at a  a n d  esti  m at e d  c h a n g e
p oi nts  b y    M  N P  f or t h e  e x a  m pl e  i n  S e cti o n   V-  B.

wit h  v ( 1 ) =  ( 0  .2 , . . . , 0 .2 )  ∈  R p .   F urt h er  m or e,  t h e  err ors

s atisf y
√

3  ( 1 ), . . . ,
√

3  (T  )
i.i. d.
∼  Mt (  I p , 3 ) ,  w h er e Mt(  I p , 3 )

is t h e   m ulti v ari at e t- distri b uti o n   wit h  t h e  s c al e   m atri x  I p a n d
t h e  d e gr e es  of  fr e e d o  m t hr e e.

c)  S c e n ari o  3:  We  g e n er at e  o b s er v ati o n s fr o  m t h e   m o d el

X  (t)
i.i. d.
∼  N  ( 0 , Σ(  t)),  t ∈  {  1 , . . . ,  T } ,

w h er e

Σ(  t)  =

⎧
⎪⎨

⎪⎩

0 .1 I p +  0  .9 1 1  t ∈  A 1 ∪  A 4 ∪  A 6 ,

2 I p +  0  .8 1 1  t ∈  A 2 ∪  A 7 ,

I p t ∈  A 3 ∪  A 5 ,

wit h  A 1 =  [ 1  ,  T / 7  ], A 2 =  [  T / 7  +  1  ,  T / 7  +  T / 1 4  ],
A 3 = [  T / 7  +  T / 1 4  + 1  ,  T / 7  + 3  T / 1 4  ], A 4 = [  T / 7  +
3  T / 1 4  + 1  ,  T / 7  + 4  T / 1 4  ], A 5 = [  T / 7  + 4  T / 1 4  + 1  ,
T / 7  +  6  T / 1 4  ],  A 6 =  [  T / 7  +  6  T / 1 4  +  1  , 6  T / 7  ],

a n d  A 7 =  [ 6  T / 7  +  1  ,  T ].   T h us,  t h e  s e g  m e nts  b et  w e e n  t h e
c h a n g e p oi nts ar e of si z e r o u g hl y  T / 7 , T / 1 4 , T / 7 , T / 1 4 , T / 7 ,
2 T / 7  a n d  T / 7 .

d)  S c e n a ri o   4:  L et  A 1 [ 1,  T / 3  ],  A 2 =  [  T / 3  +
1 , 2  T / 3  ],  a n d A 3 = [ 2  T / 3  +  1  ,  T ].   T h e n t h e  o b s er v ati o n s

ar e  c o nstr u ct e d  as  X  (t)
i.i. d.
∼  N  ( 0 , 1 .2 5 I p )  f or  t  ∈  A 1 ∪  A 3 ,

a n d  f or  t ∈  A 2 w e  h a v e

X  (t)| {u t =  1  }
i.i. d.
∼  N  ( 0 .5  · 1 , Ip )
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Fi g.  2.    D e nsiti es  t a k e n  fr o  m  P a dill a  et  al.  [ 3 8]  a n d  us e d i n  S c e n ari o  5.

T A  B L E  I

S C  E  N  A  R I  O 1

a n d

X  (t)| {u t =  2  }
i.i. d.
∼  N  (−  0 .5  · 1 , Ip ),

w h er e  t h e  i.i. d.  r a n d o  m  v ari a bl es  { u t }  s atisf y  P (u t =  1 )  =
P (u t =  2 )  =  1  / 2 .

e)  S c e n ari o  5:  T h e  v e ct or  X  (t)  s atis fi es  X j (t)  ∼  g 1 f or
t ∈  A 1 ∩  A 3 a n d f or  all  j  ∈  {  1 , . . . ,  p} .  I n  c o ntr ast, if t ∈  A 2

w e  h a v e t h at

X j (t)  ∼
g 2 ,  j ∈  {  1 , 2 } ,

g 1 ,  ot h er  wis e.

H er e  g 1 a n d  g 2 ar e t h e  d e n siti es  s h o  w n i n t h e l eft  a n d ri g ht
p a n els i n  Fi g ur e 2, r es p e cti v el y.   M or e o v er, t h e s ets  A 1 , A 2 a n d
A 3 ar e t h e  s a  m e  as i n  S c e n ari o  4.

Fi g ur e  1  ill u str at es  e x a  m pl es  of  d at a  g e n er at e d  fr o  m  e a c h
of  t h e  s c e n ari o s  t h at    w e  c o nsi d er.   T his  is  c o  m pl e  m e nt e d  b y
t h e  r es ults  i n    Ta bl es  I –  V.  S p e cifi c all y,    w e  o bs er v e  t h at  f or
S c e n ari o  1,  a  s etti n g    wit h    m e a n  c h a n g es,  t h e  b est    m et h o ds
s e e  m t o  b e    M  N P,   D  C  B S  a n d   E  M  N  C P.

I nt er esti n gl y,  fr o  m   Ta bl e  II,    w e  s e e  t h at    K  C P A  a n d    M  N P
o ut p erf or  m t h e  ot h er    m et h o ds.   T his  s etti n g  pr es e nts  a  bi g g er
c h all e n g e t h a n  S c e n ari o  1,  as it i n v ol v es  a  h e a v y-t ail e d  distri-
b uti o n  of t h e  err ors  a n d  s  m all er  c h a n g es i n   m e a n.

S c e n ari o   3   p o ss es   a   sit u ati o n    w h er e  t h e    m e a n  r e  m ai n s
c o nst a nt a n d t h e c o v ari a n c e str u ct ur e c h a n g es.  Fr o  m   Ta bl e III,
w e  o b s er v e  t h at    M  N P  tt ai n s  t h e  b est  p erf or  m a n c e,  f oll o  w e d
b y   E  M  N  C P.

T A  B L E  II

S C  E  N  A  R I  O 2

T A  B L E  III

S C  E  N  A  R I  O 3

I n   Ta bl e I  V,   w e  als o s e e t h e  a d v a nt a g e  of t h e   M  N P   m et h o d
w hi c h  is  t h e  b e st  at  e sti  m ati n g  t h e  n u  m b er  of  c h a n g e  p oi nts.
T his  is  i n  t h e  c o nt e xt   of   S c e n ari o   4    w h er e  t h e    m e a n  a n d
c o v ari a n c e  r e  m ai n  u n c h a n g e d  a n d  t h e  j u  m ps  h a p p e n  i n  t h e
s h a p e  of t h e  distri b uti o n.

Fi n all y,  S c e n ari o  5 is  a n  e x a  m pl e  of  a   m o d el t h at  d o es  n ot
b el o n g t o  a  u s u al  p ar a  m etri c  f a  mil y.  I n  s u c h  s etti n g,   Ta bl e   V
s h o  ws t h at    M  N P,   K  C P A  a n d   E  M  N  C P  s e e  m  t o  pr o vi d e  b ett er
e sti  m ati o n  of t h e  n u  m b er  of  c h a n g e  p oi nts  a n d t h eir l o c ati o n s
as  c o  m p ar e d t o t h e  ot h er t  w o   m et h o ds.

O v er all,    w e  c a n  s e e  t h at   S  B S  a n d    D  C  B S,  t  w o    m et h o ds
d esi g n e d  f or    m e a n  c h a n g e  p oi nt  d et e cti o n,  ar e  n ot  r o b u st  i n
t h e  c as es    w h er e  t h e  c h a n g es  ar e  n ot  i n    m e a n  or  t h e  n ois e  is
n ot s u b-  G a ussi a n.   M  N P,   E  M  N  C P a n d   K  C P A ar e, ar g u a bl y, t h e
b est  p erf or  mi n g   m et h o ds.   K  C P A  a n d   E  M  N  C P  ar e  c o  m p etiti v e
a n d  s o  m eti  m es  o ut p erf or  m    M  N P.
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T A  B L E  I  V

S C  E  N  A  R I  O 4

T A  B L E   V

S C  E  N  A  R I  O 5

B.   R e al   D at a   E x a  m pl e

T h e  e x p eri  m e nts  s e cti o n  c o n cl u d es   wit h  a n  e x a  m pl e  u si n g
fi n a n ci al   d at a.   S p e ci fi c all y,   o ur   d at a   c o nsist   of   t h e   d ail y
cl o s e  st o c k  pri c e,  fr o  m  J a n- 1- 2 0 1 6  t o    A u g- 1 1- 2 0 1 9,  of  t h e
2 0   c o  m p a ni es    wit h   hi g h est   a v er a g e   st o c k   pri c e   fr o  m  t h e
S  & P 5 0 0   m ar k et.   T h e  d at a  c a n  b e  d o  w nl o a d e d fr o  m   Mi cr os oft
C or p.   (  M S F T)   [ 3 7].    O ur   fi n al   d at as et   is   t h e n   a    m atri x
X  ∈  R T  ×  p ,   wit h T  =  9 0 7  a n d  p  =  2 0  .

We t h e n r u n   M  N P,   K  C P A,  a n d  pr o c e d ur e  a n d t h e  esti  m at or
fr o  m   M att es o n a n d J a  m es [ 3 6].   T h e i  m pl e  m e nt ati o n a n d d et ails
ar e  t h e  s a  m e  as  t h os e  i n  S e cti o n    V-  A.    O ur  g o al  is  t o  d et e ct
p ot e nti al   c h a n g e   p oi nts  i n  t h e   p eri o d   af or e  m e nti o n e d   a n d
d et er  mi n e if t h e y   mi g ht  h a v e  a  fi n a n ci al   m e a ni n g.

We  fi n d  t h at  o ur  esti  m at or  l o c ali z es  c h a n g e  p oi nts  at  t h e
d at es    M a y- 1 7- 2 0 1 6,    M ar- 2- 2 0 1 7,   A u g- 7- 2 0 1 7,   D e c- 2 1- 2 0 1 7,
J u n- 1- 2 0 1 8  a n d  J a n- 2 4- 2 0 1 9.   T h e  fir st  c h a n g e  p oi nt  s e e  m s t o

c orr e s p o n d   wit h  t h e    m o  m e nt   w h e n  Pr e si d e nt   D o n al d   Tr u  m p,
w hil e  still  a  pr esi d e nti al  c a n di d at e,  o utli n e d  his  pl a n  f or  t h e
U S  A  v s.   C hi n a  tr a d e    w ar  (s e e  e. g.   B ur n s  et  al. ,  2 0 1 9).   T h e
s e c o n d  c h a n g e  p oi nt,  F e b- 2 1- 2 0 1 7,   mi g ht  b e  ass o ci at e d   wit h
Tr u  m p  si g ni n g  t  w o  e x e c uti v e  or d ers  i n cr e asi n g  t ariffs  o n  t h e
tr a d e   wit h   C hi n a; t h e  d at e   A u g- 7- 2 0 1 7 c o ul d c orr e s p o n d t o t h e
bi p artit e a gr e e  m e nt o n J ul- 1 9  2 0 1 7 t o r e d u c e   U S  A  d e fi cit   wit h
C hi n a; t h e  d at e   D e c- 2 1- 2 0 1 7 c o ul d  b e e x pl ai n e d b y t h e t hr e ats
a n d t ariffs i  m p os e d b y   Mr.   Tr u  m p t o   C hi n a i n J a n u ar y of 2 0 1 8.
T h e  ot h er t  w o  d at es ar e als o r el ati v el y cl o s e t o i  m p ort a nt d at es
i n t h e   U S  A  v s.   C hi n a tr a d e   w ar ti  m e-li n e.   T h e r a  w  d at a, s c al e d
t o  t h e  i nt er v al [ 0, 1] ,  a n d  t h e  esti  m at e d  c h a n g e  p oi nts  c a n  b e
s e e n i n t h e  ri g ht  p a n el i n t h e t hir d  r o  w i n  Fi g ur e  1.

As  f or   E  M  N  C P,    w e  fi n d  a  t ot al  of  2 2  c h a n g e  p oi nts   wit h
s p a ci n gs  b et  w e e n  3 0  a n d  5 8  u nits  of ti  m e.   T his   mi g ht s u g g est
t h at  s o  m e  of  t h e  c h a n g e  p oi nt  ar e  s p uri o u s  a s  t h e    mi ni  m u  m
s p a ci n g   p ar a  m et er   of  t h e  f u n cti o n  e . d i v i s i v e ( )  is   b y
d ef a ult  s et t o  3 0.

Fi n all y,    w h e n  c o  m p ari n g    wit h    K  C P A,    w e  n oti c e  t h at  t h e
s c or es t h at t h e f u n cti o n K e r n S e g _ M u l t i D ( )  o ut p uts d o  n ot
h a v e a n i n fl e cti o n p oi nt.   We  s us p e ct t h at t his c o ul d b e a v oi d e d
wit h  a  b ett er  c h oi c e  of  t h e  t u ni n g  p ar a  m et ers.    N e v ert h el ess,
w e  l o o k  at  t h e    m o d el  pr o vi d e d  b y    K  C P A  c o n sisti n g  of  si x
c h a n g e  p oi nts,  t h e  s a  m e  n u  m b er  of  c h a n g e  p oi nts  t h at    M  N P
pr o d u c e d.   T h e  si x  c h a n g e  p oi nts  esti  m at e d  b y    K  C P A  c orr e-
s p o n d s  t o  t h e  d at e s  J u n- 2 9- 2 0 1 6,    A pr- 2 7- 2 0 1 7,    O ct- 5- 2 0 1 7,
J a n- 1 0- 2 0 1 8, J u n- 1- 2 0 1 8, a n d   M ar- 1 4- 2 0 1 9.  T h e s e ar e r o u g hl y
si  mil ar  t o  t h e  d at es  esti  m at e d  b y    M  N P    wit h  a n  e x a ct    m at c h
o n  J u n- 1- 2 0 1 8.

VI.    D I S  C  U S SI  O  N S

I n t his  p a p er,   w e t a c kl e a   m ulti v ari at e n o n p ar a  m etri c c h a n g e
p oi nt  d et e cti o n  pr o bl e  m,   w hi c h  ai  ms  t o  pr o vi d e   wit h  c h a n g e
p oi nt  esti  m at ors  r o b ust  a g ai n st    m o d el    mis-s p e ci fi c ati o n.   T h e
c o  m p ut ati o n al- ef fi ci e nt   m et h o d   w e  pr o p os e  h as   m at c h e d   mi n-
i  m a x  l o  w er   b o u n ds,   off   b y  l o g arit h  m  f a ct ors,  i n  t er  ms   of
b ot h  t h e  si g n al-t o- n ois e  r ati o  c o n diti o n  a n d  t h e  l o c ali z ati o n
r at e.    T h e  l o  w er   b o u n ds   ar e   als o   pr es e nt e d  i n  t his   p a p er,
w hi c h  is  s elf- c o nt ai n e d.   T h e  t h e or eti c al  fi n di n gs  ar e  b a c k e d
u p  b y  e xt e nsi v e  n u  m eri c al  e x p eri  m e nts, i n cl u di n g  a  r e al  d at a
e x a  m pl e.

T h e distri b uti o n s i n t his p a p er ar e ass u  m e d t o h a v e   L e b es g u e
d e n siti es.  F or  distri b uti o n s  of  dis cr et e  d at a,  o n e   m a y  c o n si d er
u si n g   ot h er   k er n els   d esi g n e d  t o   esti  m at e   dis cr et e   distri b u-
ti o n s  ( e. g.    R aj a g o p al a n  a n d    L all  [ 4 6]  a n d    K o k o n e n dji  a n d
Ki ess e  [ 3 3]).    T h e   al g orit h  ms   d e v el o p e d  i n  t his   p a p er   c a n
b e  str ai g htf or  w ar dl y  e xt e n d e d t o  t h e  dis cr et e  distri b uti o n s  b y
u si n g  t h es e  k er n els,  b ut  t h e  t h e or eti c al  r es ults   w o ul d  r el y  o n
diff er e nt t e c h ni q u es fr o  m t h os e i n  S e cti o n   A.

A n ot h er  p ossi bl e e xt e nsi o n  of t his t his  p a p er is t o  c h ar a ct er-
i z e  c h a n g e  p oi nts  b y  ot h er    m e as ur es, i nst e a d  of  t h e  s u pr e  m e
n or  m  of  t h e  d e nsit y  f u n cti o n  diff er e n c es.   Diff er e nt    m e as ur es
w o ul d r e q uir e diff er e nt   m et h o ds, t h e al g orit h  mi c ef fi ci e n c y a n d
t h e or eti c al  o pti  m alit y  ar e  r e  m ai n e d i nt er esti n g  a n d  o p e n.

Fi n all y,    w e    w o ul d  li k e  t o  r eit er at e  t h at  t h e   p ur p o s e   of
t his  p a p er  is  t o  esti  m at e  t h e  l o c ati o n s  of  t h e  c h a n g e  p oi nts
a c c ur at el y.  If   o n e   o nl y    wis h es  t o   esti  m at e  t h e   n u  m b er   of
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c h a n g e  p oi nts  a c c ur at el y,    w it h o ut  r e q uirin g  u p p er  b o u n di n g
t h e  l o c ali z ati o n  err ors,  t h e n  this  c a n  b e  f or  m e d  as  a  t esti n g
pr o bl e  m, f or   w hi c h   w e  c o nj e ct ur e t h at  a  c o nsist e nt r es ult   m a y
h ol d  u n d er  a   w e a k er  si g n al-t o- n ois e r ati o  c o n diti o n.

A P P  E  N  D I  X A
L A  R  G  E P R  O  B  A  BI  L I  T  Y E V  E  N  T S

I n t his  s e cti o n,   w e  d e al   wit h  all t h e l ar g e  pr o b a bilit y  e v e nts
o c c urr e d  i n  t h e   pr o of   of    T h e or e  m   1.    L e  m  m a   4  is   al  m o st
i d e nti c al  t o    T h e or e  m  2. 1  i n    B o us q u et  [ 6]  a n d  t h er ef or e    w e
o  mit t h e  pr o of.   L e  m  m a  5  is  a n  a d a pt ati o n  of   T h e or e  m  2. 3 i n
B o us q u et  [ 6]  a n d  Pr o p ositi o n  8  i n    Ki  m  et  al.  [ 3 2],  b ut    w e
all o  w  f or  n o n-i.i. d.  c as es.    L e  m  m a  6  is  a   n o n-i.i. d.  v ersi o n
of   Pr o p ositi o n  2. 1  i n    Gi n é  a n d    G uill o u  [ 2 3].    L e  m  m a   7  is
t o  c o ntr ol  t h e  d e vi a n c e  b et  w e e n  t h e  s a  m pl e  a n d  p o p ul ati o n
q u a ntiti es  a n d  pr o vi d es  a n l o  w er  b o u n d  o n  a l ar g e  pr o b a bilit y
e v e nt.   L e  m  m a  8 is t o  pr o vi d e  a l o  w er  b o u n d o n t h e  pr o b a bilit y
of t h e e v e nt t h at t h e d at a c a n  r e a c h t h e   m a xi  m a cl os el y e n o u g h.
L e  m  m a   9  is  i d e nti c al  t o    L e  m  m a   1 3  i n    Wa n g  et   al.  [ 5 4],
c o ntr olli n g t h e  r a n d o  m i nt er v als  s el e ct e d i n   Al g orit h  m  1.

L e  m  m a 4:  L et  D  b e t h e  σ - fi el d g e n er at e d b y { X  (i)} T
i= 1 , D t

T

b e t h e  σ - fi el d  g e n er at e d  b y  { X  (i)} T
i= 1 \ { X  (t)}  a n d  E t

T (·)  b e
t h e  c o n diti o n al  e x p e ct ati o n  gi v e n  D t

T ,  f or  all t  ∈  {  1 , . . . ,  T } .
L et  (Z,  Z 1 , . . . ,  ZT )  b e  a  s e q u e n c e  of  D  -  m e as ur a bl e  r a n d o  m
v ari a bl es,  a n d  { Z k } T

k = 1 b e  a  s e q u e n c e  of  r a n d o  m  v ari a bl es
s u c h t h at  Z k m e as ur a bl e   wit h r es p e ct t o  D k

T , f or  all k .   Ass u  m e
t h at  t h er e  e xists  u  >  0  s u c h  t h at  f or  all  k  =  1  , . . . ,  T ,  t h e
f oll o  wi n g i n e q u aliti es  h ol d

Z k ≤  Z  −  Z k a.s. ,  E k
T (Z k )  ≥  0  a n d  Z k ≤  u  a.s. .  ( 1 5)

L et  σ  b e  a  r e al  v al u e  s atisf yi n g  σ 2 ≥
T
k = 1 E k

T { (Z k ) 2 }
al  m ost  s ur el y  a n d l et  ν  =  ( 1  +  u )E  (Z  )  + σ 2 .  If

T

k = 1

(Z  −  Z k )  ≤  Z  a.s. , ( 1 6)

t h e n  f or  all x  >  0 ,

P  Z  ≥  E  (Z  )  +
√

2 ν x  +  x / 3  ≤  e −  x .

L e  m  m a  5:  Ass u  m e  t h at  { X  (i)} T
i= 1 s atisf y    Ass u  m pti o n  1.

L et  F  b e  a  cl ass  of  f u n cti o n s fr o  m  R p t o R  t h at is  s e p ar a bl e
i n  L ∞ (R p ).   S u p p o s e  all  f u n cti o n s  g  ∈  F  ar e    m e as ur a bl e
wit h  r es p e ct  t o  P η k

, k  ∈  {  1 , . . . ,  K +  1  } ,  a n d  t h er e  e xist B,
σ  >  0  s u c h t h at  f or  all  g  ∈  F

E P η k
{ g 2 }  −  (E P η k

{ g } ) 2 ≤  σ 2 a n d  g ∞ ≤  B.

L et  Z  =  s u p g ∈  F
T
i = 1 w i [g (X  (i))−  E P i { g (X  (i))} ] ,   wit h

T
i= 1 w 2

i =  1  a n d  m a x i= 1  ,...,  T |w i | =  w  .   T h e n f or  a n y ε  >  0
,  w e  h a v e

P  Z  ≥  E  (Z  )  + 2 { ( 1   + w  B  )E  (Z  )  + σ 2 } x  +  x / 3  ≤  e −  x .

P r o of:  F or  all  k  ∈  {  1 , . . . ,  T } ,  d e fi n e

Z k =  s u p
g ∈  F

i =  k

w i [g (X  (i)) −  E P i { g (X  (i))} ]

a n d

Z k =

T

i = 1

w i [g k (X  (i)) −  E P i { g k (X  (i))} ]  −  Z k ,

w h er e  g k d e n ot e s  t h e  f u n cti o n  f or    w hi c h  t h e  s u pr e  m u  m  is
o bt ai n e d i n  Z k .  We t h e n  h a v e

Z k ≤  Z  −  Z k

≤ |
T

i= 1
w i [g 0 (X  (i)) −  E P i { g 0 (X  (i))} ]|  −

|
i=  k

w i [g 0 (X  (i)) −  E P i { g 0 (X  (i))} ]|

≤ |  w k [g 0 (X  (k )) −  E P k
{ g 0 (X  (k ))} ]|  ≤ w  B  a.s. ,

w h er e  g 0 is t h e  f u n cti o n f or   w hi c h t h e  s u pr e  m u  m is  o bt ai n e d
i n Z  .    M or e o v er,   w e  h a v e

E k
T (Z k )  ≥

T

i= 1

E k
T { w i (g k (X  (i)) −  E P i { g k (X  (i))} )}  −  Z k

=  0  ,

w hi c h  c o n cl u d e s t h e  pr o of  of  ( 1 5)   wit h  u  =  B  .  I n  a d diti o n,

(T  −  1 ) Z  =

T

k = 1  i =  k

w i [g 0 (X  (i)) −  E P i { g k (X  (i))} ]

≤
T

k = 1  i =  k

w i [g 0 (X  (i)) −  E P i {g k (X  (i))} ] ≤
T

k = 1

Z k ,

w hi c h l e a d s t o  ( 1 6).  Fi n all y,  si n c e

T

k = 1
E k

T (Z k ) 2 ≤
T

k = 1
V a r k

T w k g k (X  (k ))

≤  m a x
k

s u p
g

V a r  { g (X  (k ))}

≤  σ 2 ,

it  f oll o  ws  d u e t o   L e  m  m a  4 t h at

P  Z  ≥  E  (Z  )  + 2 { ( 1   + w  B  )E  (Z  )  + σ 2 } x  +  x / 3  ≤  e −  x ,

f or  all  x  >  0 .
L e  m  m a   6:  L et  F  b e  a   u nif or  ml y  b o u n d e d    V  C  cl ass   of

f u n cti o ns,   a n d    m e as ur a bl e    wit h   r es p e ct  t o   all  P η k
,  k  =

1 , . . . ,  K +  1  .  S u p p o s e

s u p
g ∈  F

V a r P η k
( g )  ≤  σ 2 ,  s u p

g ∈  F
g ∞ ≤  B,  a n d  0  <  σ  ≤  B.

T h e n  t h er e  e xist  p o siti v e  c o n st a nts  A  a n d  ν  d e p e n di n g  o n
F  b ut  n ot  o n  { P η k

} K  + 1
k = 1 or  T  ,  s u c h t h at f or  all T  ∈  N  ,

s u p
g ∈  F

E
T

i = 1

w i { g (X i ) −  E  (g (X i ))}

≤  C  ν  w  B  l o g ( 2A  w  B / σ  )  +
√

ν σ  l o g ( 2A  w  B / σ  )  ,

w h er e  C  is   a   u ni v er s al   c o n st a nt,
T
i= 1 w 2

i =  1  a n d
m a x i= 1  ,...,  T |w i | =  w  .

T h e   pr o of   of    L e  m  m a   6   is   al  m ost  i d e nti c al  t o   t h at   of
Pr o p osti o n  2. 1 i n   Gi n é  a n d   G uill o u  [ 2 3],  e x c e pt  n oti ci n g t h at

T
i= 1 w 2

i =  1  .
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F or  a n y  x  ∈  R p , 0  ≤  s  < t  <  e  ≤  T  a n d  h  >  0 ,  d e fi n e

f s, e
t,  h (x )  =

e  −  t

(e  −  s )(t −  s )

t

j =  s + 1
f j,  h (x )−

t −  s

(e  −  s )(e  −  t)

e

j =  t + 1
f j,  h (x ),  ( 1 7)

w h er e

f j,  h (x )  =  h −  p E  k
x  −  X  (j )

h

a n d t h e e x p e ct ati o n is t a k e n   wit h r es p e ct t o t h e  distri b uti o n  P j .
L e  m  m a  7:  D e fi n e t h e  e v e nts

A 1 (γ,  h )

= m a x
0 ≤  s  < t −  h −  p < t  +  h −  p < e  ≤  T

s u p
z ∈  R p

Y s, e
t (z ) −  f s, e

t,  h (z )  ≤  γ

a n d

A 2 (γ,  h )  =

m a x
0 ≤  s  < t −  h −  p < t  +  h −  p < e  ≤  T

s u p
z ∈  R p

1
√

e  −  s

e

j =  s + 1

f̂ j,  h (z )−

f j,  h (z )  ≤  γ  .

U n d er   Ass u  m pti o n s  1  a n d  2,   w e  h a v e t h at

P  A 1 C h −  p / 2 l o g (T  ),  h  ≥  1  −  T −  c

a n d

P  A 2 C h −  p / 2 l o g (T  ),  h  ≥  1  −  T −  c ,

w h er e  C, c    >  0  ar e  a b s ol ut e  c o n st a nts  d e p e n di n g  o n  k ∞ ,
A  a n d  ν .

We   r e  m ar k   t h at   t h e   pr o of   h er e   is   a n   a d a pt ati o n   of
T h e or e  m  1 2 i n  Ki  m  et  al.  [ 3 2].

P r o of:  F or  a n y  fi x e d  x  ∈  R p , it  h ol d s t h at

Y s, e
t (x ) −  f s, e

t,  h (x )  =
e

j =  s + 1

w j h −  p k
x  −  X  (j )

h
−  E  h −  p k

x  −  X  (j )

h
,

( 1 8)

w h er e

w j =

⎧
⎨

⎩

e −  t
( e −  s ) ( t −  s ) ,  j =  s  +  1  , . . . , t,

− t −  s
( e −  s ) ( e −  t ) ,  j =  t +  1  , . . . , e,

s atisf yi n g t h at

e

j =  s + 1

w 2
j =  1  a n d  m a x

j =  s + 1  ,..., e
|w j |  ≤ h p / 2 .

St e p  1.  L et  K x,  h :  R p →  R  b e  K x,  h (·)  =  k (h −  1 x  −  h −  1 ·)
a n d

F k ,  h =  { h −  p K x,  h :  x  ∈  X }

b e  a  cl ass  of  n or  m ali z e d  k er n el  f u n cti o ns  c e ntr e d  o n  X  a n d
b a n d  wi dt h  h .  It  f oll o  ws fr o  m  ( 1 8) t h at,  f or  e a c h s, t, e ,

s u p
x  ∈  X

Y s, e
t (x ) −  f s, e

t,  h (x )  =

s u p
g ∈  F k ,  h

e

j =  s + 1
w j g (X  (j )) −  E  { g (X  (j ))}  =  W s, t, e .

It is i  m  m e di at e t o  c h e c k t h at  f or  a n y  g  ∈  F k ,  h ,

g ∞ ≤  h −  p k ∞ .

D u e t o t h e ar g u  m e nts us e d i n   T h e or e  m 1 2 i n   Ki  m  et  al.  [ 3 2]
a n d    Ass u  m pti o n  2  (i),  f or  e v er y  pr o b a bilit y    m e as ur e  Q  o n
R p a n d  f or  e v er y  ζ  ∈  ( 0 ,  h−  p k ∞ ),  t h e  c o v eri n g  n u  m b er
N  (F k ,  h ,  L2 (Q  ), ζ)  is  u p p er  b o u n d e d  as

s u p
Q

N  (F k  ,  h ,  L2 (Q  ), ζ)  ≤
2 A p  k ∞

h p ζ

ν + 2

.

U n d er   Ass u  m pti o n  2,  d u e t o   L e  m  m a  1 1 i n   Ki  m  et  al.  [ 3 2],
it  h ol d s t h at  f or  a n y j  =  1  , . . . ,  T ,

E  h −  p K x,  h (X  (j ))
2

≤  C 1 h −  p ,

w h er e  C 1 is  a n  a b s ol ut e  c o n st a nt.
It  f oll o  ws fr o  m   L e  m  m a  5 t h at  f or  a n y  x  >  0 ,

P  W s, t, e <  E  (W s, t, e )  +

2 { ( 1   + h −  p / 2 k ∞ )E  (W s, t, e )  + C 1 h −  p } x  +  x / 3

≥  1  −  e −  x . ( 1 9)

St e p  2.  We  t h e n  n e e d  t o  b o u n d  E  (W s, t, e ),   w h er e t h e  e x p e c-
t ati o n  is  t a k e n  o n  t h e  pr o d u ct  of  P 1 ⊗  . . . ⊗  P T .  L et ˇF  =
{ g  −  a  :  g  ∈  F k ,  h ,  a  ∈  [−  h −  p k ∞ ,  h−  p k ∞ ]} .   T h e n  f or
a n y  a  ∈  [−  h −  p k ∞ ,  h−  p k ∞ ], it f oll o  ws fr o  m t h e  pr o of  of
T h e or e  m  3 0 i n  Ki  m  et  al.  [ 3 2] t h at

s u p
P

N  ( ˇF  ,  L2 (P  ),  a)  ≤  ( 2 A h −  p k ∞ / a ) ν + 1 .

A p pl yi n g   L e  m  m a  6,   w e  h a v e

E  (W s, t, e )  ≤  C  (ν  +  1 )
k ∞

h p / 2
l o g

8 A h −  p / 2 k ∞

C
1 / 2
1 h −  p / 2

+

h −  p / 2 (ν  +  1 ) l o g
8 A h −  p / 2 k ∞

C
1 / 2
1 h −  p / 2

.

( 2 0)

St e p  3.  We  n o  w  pl u g  ( 2 0)  i nt o  ( 1 9)  a n d  t a k e  x  = l o g (  T m ),
wit h  m  >  4 ,  r es ulti n g i n

P  W s, t, e <  C 2 h −  p / 2 l o g1 / 2 (T  )  ≥  1  −  C 3 T −  m ,

w h er e  C 2 ,  C3 >  0  ar e a b s ol ut e c o n st a nts  d e p e n di n g o n  k ∞ ,
A  a n d  ν .   T h e  fi n al cl ai  ms f oll o  w   wit h a  u ni o n b o u n d ar g u  m e nt
o v er  s, t, e .

L e  m  m a  8:  U n d er   Ass u  m pti o n s  1,  2  a n d  3,  f or  s  <  t  <  e ,
d e fi n e

z ∗
s, e, t ∈  a r g   m a x

z ∈  R p

f s, e
t (z )  .
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Wit h  h  =  c h κ ,  d e fi n e t h e  e v e nt

B  (γ )  =  m a x
0  ≤  s  < t  <  e  ≤  T

e −  s ≤  C R ∆

m a x
j = 1  ,...,  T

f s, e
t,  h (X  (j ))  −

f s, e
t,  h (z ∗

s, e, t ) ≤  γ,  (s, e )  s atis fi es   C o n diti o n  S E  ,

w h er e   C o n diti o n  S E  is  d e fi n e d  as  f oll o  ws:  t h e  i nt er v al  (s, e )
is  s u c h t h at  eit h er

( a)  t h er e is  n o tr u e  c h a n g e  p oi nt i n  (s, e );  or
( b)  t h er e  e xists  at  l e ast  o n e tr u e  c h a n g e  p oi nt i n  η k ∈  (s, e )

s atisf yi n g

mi n  mi n
η k > s

{ η k −  s } ,  mi n
η k < e

{ e  −  η k }  >  c 1 ∆  ,

f or  s o  m e  c 1 >  0 ;
( c)  t h er e  e xists  o n e  a n d  o nl y  o n e  c h a n g e  p oi nt  η k ∈  (s, e )

s atisf yi n g

mi n  { η k −  s,  e  −  η k }  ≤  C  l o g (T  )V 2
p κ −  p κ −  2

k ;

or
( d)  t h er e  e xist  e x a ctl y  t  w o  c h a n g e  p oi nts  η k ,  ηk + 1 ∈  (s, e )

wit h  η k <  η k + 1 s atisf yi n g

η k −  s  ≤  C  l o g (T  )V 2
p κ −  p κ −  2

k ,  a n d

e  −  η k + 1 ≤  C  l o g (T  )V 2
p κ −  p κ −  2

k .

T h e n  f or

γ  =  C γ h
√

∆  , ( 2 1)

wit h

C γ >  2 C Li p C R , ( 2 2)

it  h ol d s t h at

P  { B (γ )}  ≥  1  −  T 3 e x p  −
∆

8

c γ

4
√

C R ∆  C Li p

p + 1

V p ,

f or  s o  m e  c o n st a nt  c  >  0 .
P r o of:  Fi x  0  ≤  s  < t  <  e  ≤  T  wit h  e −  s  ≤  C R ∆  .

F or  c as e  ( a), it  h ol ds t h at  f s, e
t,  h (x )  =  0 ,  f or  all x  ∈  R p ,  a n d

t h e  cl ai  m  h ol d s  c o n s e q u e ntl y.

F or  c as e  ( b), if  f s, e
t,  h (z ∗

s, e, t )  <  γ  , t h e n  b y t h e  d e fi niti o n  of

z ∗
s, e, t ,  w e  h a v e t h at

m a x
j = 1  ,...,  T

f s, e
t,  h (X  (j ))  −  f s, e

t,  h (z ∗
s, e, t )

=  f s, e
t,  h (z ∗

s, e, t )  −  m a x
j = 1  ,...,  T

f s, e
t,  h (X  (j ))

≤  f s, e
t,  h (z ∗

s, e, t )  <  γ,

w hi c h i  m pli es t h at

P  m a x
j = 1  ,...,  T

f s, e
t,  h (X  (j ))  −  f s, e

t,  h (z ∗
s, e, t ) >  γ  =  0  .  ( 2 3)

If  f s, e
t,  h (z ∗

s, e, t )  >  γ  , t h e n

γ  <  f s, e
t,  h ( z ∗

s, e, t )  ≤  2  mi n
√

t −  s,
√

e  −  t  m a x
j = 1  ,...,  T

|f j,  h ( z ∗
s, e, t ) |,

( 2 4)

t h er e  e xists j 0 ∈  {  1 , . . . ,  K +  1  }  s u c h t h at

f η j 0
( z ∗

s, e, t )  ≥  f η j 0 ,  h(z
∗
s, e, t ) −  C Li p h

≥
γ

2  mi n
√

t −  s,
√

e  −  t
−  C Li p h

≥
c γ

2  mi n
√

t −  s,
√

e  −  t
,  ( 2 5)

w h er e  0  <  c  <  1  is  a n  a b s ol ut e  c o n st a nt,  t h e  first  i n e q u alit y
f oll o  ws  fr o  m  ( 3 4),  t h e  s e c o n d  i n e q u alit y  f oll o  ws  fr o  m  ( 2 4),
a n d  t h e  l ast  i n e q u alit y  f oll o  ws  fr o  m    Ass u  m pti o n  3  a n d  t h e
c h oi c e  of  γ .

As  f or  t h e  f u n cti o n  f s, e
t,  h (·),  f or  a n y  x 1 ,  x2 ∈  R p ,  it  h ol d s

t h at

f s, e
t,  h (x 1 ) −  f s, e

t,  h (x 2 )

=
e  −  t

(e  −  s )(t −  s )

t

j =  s + 1 R p

k (y )  f j (x 1 −  h y )−

f j (x 2 −  h y )  d y  −

t −  s

(e  −  s )(e  −  t)

e

j =  t + 1 R p

k (y )  f j (x 1 −  h y )−

f j (x 2 −  h y )  d y

≤  2  mi n {
√

e  −  t,
√

t −  s } C Li p x 1 −  x 2 ,  ( 2 6)

w h er e   t h e   l ast   i n e q u alit y   f oll o  ws   fr o  m    Ass u  m pti o n   1.
As  a  r es ult,  t h e  f u n cti o n  f s, e

t,  h (·)  is    Li p s c hit z    wit h  c o n st a nt

2  mi n {
√

e  −  t,
√

t −  s } C Li p .  F urt h er  m or e,  d e fi ni n g

d j 0 = j  ∈  {  η j 0 −  1 +  1  , . . . ,  ηj 0 }  :  X  (j ) −  z ∗
s, e, t

≤
γ

2  mi n {
√

t −  s,
√

e  −  t} C Li p

,

a n d  n oti ci n g t h at

d j 0 ∼  Bi n o  mi al  η j 0 + 1 −  η j 0 ,
B  ( z ∗

s ,  e , t , a)

f η j 0
( z ) d z  ,

w h er e

a  :  =
γ

2  mi n {
√

t −  s,
√

e  −  t} C Li p

,

w e  arri v e  at

P  m a x
j = 1  ,...,  T

f s, e
t,  h (X  (j ))  −  f s, e

t,  h (z ∗
s, e, t ) >  γ

=  P  mi n
j = 1  ,...,  T

f s, e
t,  h (X  (j )) −  f s, e

t (z ∗
s, e, t )  >  γ

≤  P  mi n
j = 1  ,...,  T

X  (j ) −  z ∗
s, e, t >

γ

2  mi n {
√

e −  t,
√

t −  s } C Li p

≤  P { d j 0 =  0  } , ( 2 7)

w h er e  t h e  i d e ntit y  f oll o  ws  fr o  m  t h e  d e fi niti o n  of  z ∗
s, e, t ,  t h e

fir st  i n e q u alit y  f oll o  ws  fr o  m  ( 2 6)  a n d  t h e  s e c o n d  i n e q u alit y
f oll o  ws fr o  m t h e  d e fi niti o n  of  d j 0 .
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I n  a d diti o n,   w e  h a v e t h at

B  z ∗
s ,  e , t , γ

2  m i  n  {
√

t −  s ,
√

e  −  t }  C Li  p

f η j 0
( z ) d z

≥
B  z ∗

s ,  e , t , c  γ

4  m i  n  {
√

t −  s ,
√

e  −  t }  C Li  p

f η j 0
( z ) d z

≥
B  z ∗

s ,  e , t , c  γ

4  m i  n  {
√

t −  s ,
√

e  −  t }  C Li  p

f η j 0
( z ∗

s, e, t )−

c γ

4  mi n {
√

t −  s,
√

e  −  t} C Li p

d z

≥
c γ

4  mi n {
√

t −  s,
√

e  −  t} C Li p

p + 1

V p ,  ( 2 8)

w h er e t h e l ast i n e q u alit y is  d u e t o  ( 2 5).   T h er ef or e,

P { d j 0 =  0  }

≤  P  d j 0 ≤
∆

2

c γ

4  mi n {
√

t −  s,
√

e  −  t} C Li p

p + 1

V p

≤  P  d j 0 ≤
(η j 0 −  η j 0 −  1 )

2 B ( z ∗
s ,  e , t ,  a)

f η j 0
( z ) d z

≤  e x p  −
(η j 0 −  η j 0 −  1 )

8 B ( z ∗
s ,  e , t ,  a)

f η j 0
( z ) d z

≤  e x p  −
∆

8

c γ

4
√

C R ∆  C Li p

p + 1

V p , ( 2 9)

w h er e t h e  s e c o n d  a n d t h e  f o urt h i n e q u alit y f oll o  w  fr o  m  ( 2 8),
a n d  t h e t hir d  b y t h e   C h er n off  b o u n d  ( e. g.    Mit z e n  m a c h er  a n d
U pf al [ 3 8]).   C o  m bi ni n g ( 2 3),  ( 2 7)  a n d  ( 2 9) r e s ults i n

P  m a x
j = 1  ,...,  T

f s, e
t,  h (X  (j ))  −  f s, e

t,  h (z ∗
s, e, t ) >  γ

≤  e x p  −
∆

8

c γ

4
√

C R ∆  C Li p

p + 1

V p .

T h e  c o n cl u si o n f oll o  ws fr o  m  a  u ni o n  b o u n d.
C as es  ( c)  a n d  ( d)  ar e  si  mil ar,  a n d   w e  o nl y  d e al    wit h  c as e

( c)  h er e.   N ot e t h at

f s, e
t (z ∗

s, e, t )  ≤  κ k C  l o g (T  )V 2
p κ −  2

k κ −  p ≤  γ,  ( 3 0)

w h er e t h e  first i n e q u alit y f oll o  ws fr o  m   L e  m  m a  1 3 (i)  a n d t h e
s e c o n d f oll o  ws fr o  m   Ass u  m pti o n  3.   T h e  fi n al  cl ai  m  h ol ds  d u e
t o t h e  f a ct t h at f s, e

t,  h i s  a  s  m o ot h e d  v er si o n  of f s, e
t .

We  i n d e p e n d e ntl y  s el e ct  at  r a n d o  m  fr o  m  { 1 , . . . ,  T }  t  w o
s e q u e n c es { α m } M 1

m  = 1 , { β m } M 1
m  = 1 , t h e n   w e  k e e p t h e p airs   w hi c h

s atisf y  β m −  α m ≤  C R ∆  ,    wit h  C R ≥  3 / 2 .  F or  n ot ati o n al
si  m pli cit y,   w e l a b el t h e  m  as  { α r } R

r = 1 , { β r } R
r = 1 .  L et

M  =
K

k = 1

α r ∈  S k ,  βr ∈  E k , f or  s o  m e  r  ∈  {  1 , . . . ,  R}  ,

( 3 1)

w h er e  S k = [  η k −  3  ∆ / 4 ,  ηk −  ∆  / 2]  a n d  E k = [  η k +  ∆  / 2 ,  ηk +
3  ∆ / 4] , k  =  1  , . . . ,  K.  I n  t h e  l e  m  m a  b el o  w,   w e  gi v e  a  l o  w er
b o u n d  o n t h e  pr o b a bilit y  of  M  .

L e  m  m a  9:  F or t h e  e v e nt  M  d e fi n e d i n  ( 3 1),   w e  h a v e

P (M  )  ≥  1  −  e x p  l o g
T

∆
−

R  ∆

4 C R T
.

S e e    L e  m  m a   S. 2 4  i n    Wa n g  et   al.  [ 5 5]  f or  t h e   pr o of   of
L e  m  m a  9.

A P P  E  N  D I  X B
C H  A  N  G  E P OI  N  T D E  T  E  C  T I  O  N L E  M  M  A S   A  N  D

T  H  E P R  O  O F   O F T H  E  O  R  E  M 1

L e  m  m a  1 0  b el o  w  pr o vi d e s  a l o  w er  b o u n d  o n t h e   m a xi  m u  m
of  t h e  p o p ul ati o n   C  U S  U  M  st atisti c    w h e n  t h er e  e xists  a  tr u e
c h a n g e p oi nt.   L e  m  m a 1 1 s h o  ws t h at t h e   m a xi  m a of t h e p o p ul a-
ti o n   C  U S  U  M st atisti c  ar e t h e tr u e c h a n g e  p oi nts.   L e  m  m a  1 3 is
a  c oll e cti o n  of r es ults  o n t h e  p o p ul ati o n  q u a ntiti es.   L e  m  m a  1 4
pr o vi d es  a n  i niti al   u p p er   b o u n d  f or  t h e  l o c ali z ati o n   err or.
L e  m  m a  1 5 is t h e  k e y l e  m  m a t o  pr o vi d e t h e  fi n al l o c ali z ati o n
r at e.   T h e  pr o of  of   T h e or e  m  1  is  c oll e ct e d  at  t h e  e n d  of  t his
s e cti o n.

I n t h e  r est  of t his  s e cti o n,   w e   will  a d o pt t h e  n ot ati o n

f s, e
t (x )  =

e  −  t

(e  −  s )(t −  s )

t

j =  s + 1
f j (x )−

t −  s

(e  −  s )(e  −  t)

e

j =  t + 1
f j (x ),

f or  all  0  ≤  s  < t  <  e  ≤  T  a n d  x  ∈  R p .
L e  m  m a 1 0:  U n d er   Ass u  m pti o n s  1- 3, l et  (s, e ) b e a n i nt er v al

s u c h  t h at  e −  s  ≤  C R ∆  a n d  t h er e  e xists  a  tr u e  c h a n g e  p oi nt
η k ∈  (s, e )  wit h

mi n  { η k −  s,  e  −  η k }  >  c 1 ∆  ,

w h er e  c 1 >  0  is  a l ar g e  e n o u g h c o n st a nt,  d e p e n di n g  o n  all t h e
ot h er  a b s ol ut e  c o n st a nts.   T h e n  f or  a n y  h  s u c h t h at

(l o g (T  )/ ∆) 1 / p ≤  h  ≤
c 1

C R C Li p C k
κ,  ( 3 2)

it  h ol d s t h at

m a x
s +  h −  p < t  < e  −  h −  p

s u p
z ∈  R p

f s, e
t,  h (z )  ≥

c 1 κ ∆

4
√

e  −  s
.

P r o of:  L et  z 1 ∈  a r g   m a x z ∈  R p f η k
( z ) −  f η k  +  1

( z )  .  D u e t o
Ass u  m pti o n  1,   w e  h a v e t h at

f η k
( z 1 ) −  f η k  +  1

( z 1 )  ≥  κ k ≥  κ.

T h e n  b y t h e  ar g u  m e nt i n   L e  m  m a  2. 4  of   Ve n k atr a  m a n [ 5 1],
w e  h a v e t h at

m a x
t ∈ {  η k +  c 1 ∆  / 2 , ηk −  c 1 ∆  / 2 }

f s, e
t (z 1 )  ≥

c 1 κ ∆

2
√

e  −  s
.  ( 3 3)

N e xt,  f or  a n y  x  ∈  R p , h  >  0  a n d  j  ∈  {  1 , . . . ,  T } ,  w e  h a v e

f j (x ) −  f j,  h (x )

=
R p

1

h p
k (y / h ){ f j (x  −  y ) −  f j (x )}  d y

≤
C Li p

h p
R p

k (y / h )  y  d y

≤  h  C Li p
R p

k (z )  z  d z  ≤  C Li p C k h,  ( 3 4)
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w h er e  t h e  l ast  i n e q u alit y  f oll o  ws  fr o  m    Ass u  m pti o n  2  (iii).
H e n c e,  f or  t ∈  {  η k +  c 1 ∆  / 2 ,  ηk −  c 1 ∆  / 2 }

f s, e
t,  h (z 1 ) −  f s, e

t (z 1 )  ≤  C Li p C k h
(e  −  t)(t −  s )

e  −  s

≤ (e  −  s )C Li p C k h

≤
c 1 κ ∆

4
√

e  −  s
, ( 3 5)

w hi c h f oll o  ws fr o  m ( 3 2).  Fi n all y, t h e cl ai  m f oll o  ws c o  m bi ni n g
( 3 3)  a n d  ( 3 5).

L e  m  m a   1 1:  U n d er    Ass u  m pti o n   1,   f or   a n y   i nt er v al
(s, e )  ⊂  ( 0 ,  T )  s atisf yi n g

η k −  1 ≤  s  ≤  η k ≤  . . . ≤  η k +  q ≤  e  ≤  η k +  q + 1 ,  q ≥  0 .

L et

b  ∈  a r g   m a x
t =  s + 1  ,..., e

s u p
x  ∈  R p

f s, e
t,  h (x )  .

If

h  ≤
κ

4 C Li p C k
,

t h e n b  ∈  {  η 1 , . . . ,  ηK } .
F or   a n y   fi x e d  z  ∈  R p ,  if  f s, e

t,  h (z )  >  0  f or   s o  m e

t  ∈  (s, e ),  t h e n  f s, e
t,  h (z )  is   eit h er   stri ctl y    m o n ot o ni c   or

d e cr e as es   a n d   t h e n   i n cr e as es    wit hi n   e a c h   of   t h e   i nt er v al
(s, η k ), (η k ,  ηk + 1 ), . . . , (η k +  q , e).

P r o of:  We   pr o v e   b y   c o ntr a di cti o n.    Ass u  m e   t h at  b  /∈

{ η 1 , . . . ,  ηK } .  L et  z 1 ∈  a r g   m a x x  ∈  R p f s, e
b,  h (x )  .    D u e  t o  t h e

d e fi niti o n  of  b ,  w e  h a v e

b  ∈  a r g   m a x
t =  s + 1  ,..., e

f s, e
t,  h (z 1 )  .

It  is  e as y  t o  s e e  t h at  t h e  c oll e cti o n  of  t h e  c h a n g e  p oi nts
of  { f t,  h (z 1 )} e

t =  s + 1 i s   a   s u b s et   of   t h e   c h a n g e   p oi nts   of
{ f t,  h }

e
t =  s + 1 .  I n  a d diti o n,  d u e t o  ( 3 4), it  h ol d s t h at

mi n
k = 1  ,...,  K + 1

f η k ,  h −  f η k  −  1 ,  h  ∞ ≥  κ  −  2 C Li p C k h  ≥  κ / 2 ,

w hi c h   i  m pli es   t h at   t h e   c oll e cti o n   of   t h e   c h a n g e   p oi nts
of  { f t,  h }

e
t =  s + 1 i s  t h e   c oll e cti o n   of  t h e   c h a n g e   p oi nts   of

{ f t }
e
t =  s + 1 .

It  f oll o  w s fr o  m   L e  m  m a  2. 2 i n   Ve n k atr a  m a n [ 5 1] t h at

f s, e
b,  h (z 1 )  <  m a x

j ∈ {  k,..., k +  q }
f s, e

η j ,  h(z 1 )  ≤  m a x
t =  s + 1  ,..., e

s u p
x  ∈  R p

f s, e
t,  h (x )  ,

w hi c h is  a  c o ntr a di cti o n.
R e c all  t h at  i n    Al g orit h  m   1,    w h e n  s e ar c hi n g  f or   c h a n g e

p oi nts  i n  t h e  i nt er v al  (s, e ),    w e   a ct u all y  r estri ct  t o   v al u es
t  ∈  (s  +  h −  p , e −  h −  p ).    We   n o  w  s h o  w  t h at  f or  i nt er v als
s atisf yi n g  c o n diti o n  S E  fr o  m   L e  m  m a  8, t a ki n g t h e   m a xi  m u  m
of t h e   C  U S  U  M  st atisti c  o v er  (s +  h −  p , e −  h −  p )  is  e q ui v al e nt
t o   s e ar c hi n g   o n  (s, e ),    w h e n   t h er e   ar e   c h a n g e   p oi nts   i n
(s  +  h −  p , e −  h −  p ).

L e  m  m a  1 2:  S u p p o s e  t h at    Ass u  m pti o n s  1  a n d  3  h ol d,  a n d
t h e  e v e nts A 1 (γ A )  a n d  B  (γ γ B )  h a p p e n s   w h er e

γ A =  C h −  p / 2 l o g (T  ),  a n d  γ B =  C γ h
√

∆

wit h  C  as i n   L e  m  m a  7,  a n d  C γ a s i n ( 2 1).   L et  (s, e )  ⊂  ( 0 ,  T )
s atisf y  e  −  s  ≤  C R ∆  .    Ass u  m e  t h at    C o n diti o n  S E  fr o  m
L e  m  m a  8  h ol d s,  a n d t h at

η k −  1 ≤  s  ≤  η k ≤  . . . ≤  η k +  q ≤  e  ≤  η k +  q + 1 ,  q ≥  0 .

T h e n

a r g   m a x
t =  s +  h −  p ,..., e−  h −  p

s u p
x  ∈  R p

f s, e
t,  h (x )  =  a r g  m a x

t =  s + 1  ,..., e
s u p
x  ∈  R p

f s, e
t,  h (x )  ,

( 3 6)

a n d

a r g   m a x t =  s +  h −  p ,..., e−  h −  p m a x
j = 1  ,...,  T

Y s, e
t (X  (j ))

=  a r g  m a x t =  s + 1  ,..., e m a x
j = 1  ,...,  T

Y s, e
t (X  (j ))  .  ( 3 7)

P r o of:  Fir s  n oti c e  t h at,  d u e  t o    L e  m  m a  1 0,  t h er e  e xists
η k ∈  (s, e )  s u c h t h at

s u p
z ∈  R p

f s, e
η k ,  h(z )  ≥

c 1 κ ∆

4
√

e  −  s
.

F urt h er  m or e, if

t ∈  (s, e )\ (s  +  m a x  { h −  p ,  C  l o g (T  )V 2
p κ −  2

k κ −  p } , e−

m a x  { h −  p ,  C  l o g (T  )V 2
p κ −  2

k κ −  p } ),  ( 3 8)

t h e n

s u p
z ∈  R p

f s, e
t,  h (z )

≤  2 mi n  { e  −  t,  t −  s }  m a x t =  ,1 ...,  T s u p
z ∈  R p

|f t,  h (z )|

≤  2  m a x  h −  p / 2 ,  C  l o g (T  )V 2
p κ −  2

k κ −  p ·

m a x t =  ,1 ...,  T s u p
z ∈  R p

|f t,  h (z )| <
c 1 κ ∆

3 2
√

e  −  s
,

w h er e  t h e  l ast  i n e q u alit y  f oll o  ws  fr o  m   Ass u  m pti o n  3.   T h er e-
f or e, ( 3 6)  f oll o  ws.

As  f or  ( 3 7),   w e  n oti c e t h at

m a x
j = 1  ,...,  T

Y s, e
η k

( X  (j ))  ≥  s u p
z ∈  R p

f s, e
η k ,  h (z )  −  γ A −

γ B

≥
c 1 κ ∆

4
√

e  −  s
−  γ A −  γ B

≥
c 1 κ ∆

8
√

e  −  s
.

M or e o v er, f or  t  s atisf yi n g  ( 3 8),   w e  h a v e

m a x j = 1  ,...,  T Y s, e
t (X  (j ))

≤  s u p z  ∈  R p f s, e
t,  h (z )  +  γ A +  γ B

≤  2  mi n  { e  −  t,  t −  s }  m a x t = 1  ,...,  T s u p z ∈  R p |f t,  h (z )|+

γ A +  γ B

≤  2  m a x  h −  p / 2 ,  C  l o g (T  )V 2
p κ −  2

k κ −  p ·

m a x t = 1  .,...,  T s u p z ∈  R p |f t,  h (z )| +  γ A +  γ B

<
c 1 κ ∆

1 6
√

e  −  s
,

a n d t h e  cl ai  m  f oll o  ws  o n c e  a g ai n  usi n g   Ass u  m pti o n  3.
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L e  m  m a   1 3:  U n d er    Ass u  m pti o n s   1   a n d   2,  t h e  f oll o  wi n g
st at e  m e nts  h ol d.

(i)   If  η k is t h e  o nl y  c h a n g e  p oi nt i n (s, e ), t h e n  f or  a n y h ,

s u p
x  ∈  R p

f s, e
η k ,  h (s )  ≤  κ k mi n

√
s  −  η k ,

√
e  −  η k .  ( 3 9)

(ii)   S u p p o s e  e −  s  ≤  C R ∆  ,  w h er e  C R >  0  is  a n  a b s ol ut e
c o n st a nt,  a n d t h at

η k −  1 ≤  s  ≤  η k ≤  . . . ≤  η k +  q ≤  e  ≤  η k +  q + 1 ,  q ≥  0 .

( 4 0)

D e n ot e

κ s, e
m a x =  m a x  s u p

x  ∈  R p

f η p ( x ) −  f η p  −  1 ( x )  :  k  ≤  p  ≤  k +  q  .

T h e n  f or  a n y  k  −  1  ≤  p  ≤  k  +  q , it  h ol d s t h at

s u p
x  ∈  R p

1

e  −  s

e

i=  s + 1

f i,  h (x ) −  f η p ,  h(x )  ≤  C R κ s, e
m a x .  ( 4 1)

(iii)    Ass u  m e  ( 4 0)  a n d  q  ≥  1 .  If

η k −  s  ≤  c 1 ∆  , ( 4 2)

f or  c 1 >  0 , t h e n  f or  a n y h ,

s u p
z ∈  R p

|f s, e
η k ,  h (z )|  ≤

√
c 1 s u p z ∈  R p |f s, e

η k  +  1 ,  h( z )|

+  2  κ k

√
η k −  s

+  4
√

η k −  s  C Li p C k h,  ( 4 3)

w h er e  C k >  0  is  a n  a b s ol ut e  c o n st a nt  o nl y  d e p e n di n g  o n
t h e  k er n el f u n cti o n.

(i v)    Ass u  m e  ( 4 0)  a n d  q  =  1  , t h e n

m a x t =  s + 1  ,..., e s u p z ∈  R p f s, e
t,  h (z )

≤  2
√

e  −  η k κ k + 1 +  2
√

η k −  s κ k +

4
√

η k −  s  C Li p C k h  +  4
√

e  −  η k C Li p C k h.

P r o of:  N ot e t h at  f or (i),

s u p x  ∈  R p f s, e
η k ,  h(x )

=
(e  −  η k )(η k −  s )

e  −  s
s u p x  ∈  R p

R p

k (y )  f η k
( x  −  h y )−

f η k  +  1
( x  −  h y )  d y

≤  κ k mi n
√

s  −  η k ,
√

e  −  η k .

T h e  cl ai  m  (ii)  f oll o  ws  fr o  m  t h e  s a  m e  ar g u  m e nts  u s e d  i n
s h o  wi n g  (i)  a n d   L e  m  m as  1 7  a n d  1 9  i n    Wa n g  et  al.  [ 5 4].  F or
t h e  cl ai  m  (iii),   w e   d e fi n e

g s, e
t,  h =

f η k  +  1 ,  h ,  t =  s  +  1  , . . . ,  ηk ,

f t,  h ,  t =  η k +  1  , . . . , e.

T h u s,

f s, e
η k ,  h ≤  g s, e

η k ,  h +
(e  −  η k )(η k −  s )

e  −  s
(f η k  +  1 ,  h −  f η k ,  h )

≤
(η k −  s )(e  −  η k + 1 )

(η k + 1 −  s )(e  −  η k )
g s, e

η k  +  1 ,  h +

(e  −  η k )(η k −  s )

e  −  s
(f η k  +  1 ,  h −  f η k ,  h )

≤
√

c 1 g s, e
η k  +  1 ,  h +

(e  −  η k )(η k −  s )

e  −  s
(f η k  +  1 ,  h −  f η k ,  h )

≤
√

c 1 f s, e
η k  +  1 ,  h +  2

(e  −  η k )(η k −  s )

e  −  s
(f η k  +  1 ,  h −  f η k ,  h)

≤
√

c 1 f s, e
η k  +  1 ,  h +  2

√
η k −  s κ k +  4

√
η k −  s  C Li p C k h,

w h er e t h e  first, s e c o n d  a n d f o urt h i n e q u aliti es f oll o  w fr o  m t h e
d e fi niti o n  of  g s, e

t,  h ,  t h e  s e c o n d  f oll o  ws  fr o  m  ( 4 2)  a n d  t h e  l ast
f oll o  ws fr o  m  ( 3 4).

As  f or  (i v),   w e  d e fi n e

q s, e
t,  h =

f η k ,  h ,  t =  s  +  1  , . . . ,  ηk ,

f t ,  t =  η k +  1  , . . . , e.

F or  a n y  t ≥  η k , it  h ol d s t h at

f s, e
t,  h −  q s, e

t,  h =
e  −  t

(e  −  s )(t −  s )
(η k −  s )(f η k ,  h −  f η k  −  1 ,  h) .

T h er ef or e, f or  t ≥  η k ,

m a x t =  s + 1  ,..., e |f s, e
t,  h |

≤  m a x  {| f s, e
η k ,  h |, |f

s, e
η k  +  1 ,  h| }   ≤ m a x t =  s + 1  ,..., e |q s, e

t,  h |

+  2
√

η k −  s κ k +  4
√

η k −  s  C Li p C k h

≤  2
√

e  −  η k κ k + 1 +  2
√

η k −  s κ k

+  4
√

η k −  s  C Li p C k h  +  4
√

e  −  η k C Li p C k h.

L e  m  m a  1 4:  L et  z 0 ∈  R p , (s, e )  ⊂  ( 0 ,  T ).  S u p p o s e t h at t h er e
e xits  a tr u e  c h a n g e  p oi nt  η k ∈  (s, e )  s u c h t h at

mi n  { η k −  s,  e  −  η k }  ≥  c 1 ∆  ,  ( 4 4)

a n d

f s, e
η k ,  h(z 0 )  ≥  (c 1 / 4 )

κ ∆
√

e  −  s
,  ( 4 5)

w h er e  c 1 >  0  is  a  s uf fi ci e ntl y  s  m all  c o n st a nt.  I n  a d diti o n,
ass u  m e t h at

m a x
t =  s + 1  ,..., e

f s, e
t,  h (z 0 )  −  f s, e

η k ,  h (z 0 )  ≤  c 2 ∆ 4 (e  −  s ) −  7 / 2 κ,

( 4 6)

w h er e  c 2 >  0  is  a  s uf fi ci e ntl y  s  m all  c o n st a nt.
T h e n f or  a n y  d  ∈  (s, e )  s atisf yi n g

|d  −  η k |  ≤ c 1 ∆  / 3 2 , ( 4 7)

it  h ol d s t h at

f s, e
η k ,  h (z 0 )  −  f s, e

d,  h (z 0 )  >  c  |d  −  η k |∆  f s, e
η k ,  h(z 0 )  (e  −  s ) −  2 ,

w h er e  c  >  0  is  a  s uf fi ci e ntl y  s  m all  c o n st a nt,  d e p e n di n g  o n  all
t h e  ot h er  a b s ol ut e  c o n st a nts.

P r o of:  Wit h o ut l oss  of  g e n er alit y,   w e  ass u  m e t h at  d  ≥  η k

a n d  f s, e
η k ,  h(z 0 )  ≥  0 .  F oll o  wi n g t h e  ar g u  m e nts i n   L e  m  m a  2. 6 i n

Ve n k atr a  m a n [ 5 1], it s uf fi c es t o c o nsi d er t  w o c as es: (i)  η k + 1 >
e  a n d  (ii)  η k + 1 ≤  e .

A ut h ori z e d li c e n s e d u s e li mit e d t o: U C L A Li br ar y. D o w nl o a d e d o n J a n u ar y 1 0, 2 0 2 4 at 2 3: 4 0: 4 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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C a s e  (i).  N ot e t h at

f s, e
η k ,  h (z 0 )  =

(e  −  η k )(η k −  s )

e  −  s
f η k ,  h(z 0 ) −  f η k  +  1 ,  h ( z 0 )

a n d

f s, e
d,  h (z 0 )  = (η k −  s )

e −  d

(e −  s )(d −  s )
f η k ,  h (z 0 ) −  f η k  +  1 ,  h ( z 0 )  .

T h er ef or e, it  f oll o  ws fr o  m  ( 4 4) t h at

f s, e
η k ,  h(z 0 ) −  f s, e

d,  h (z 0 )  =  1  −
(e  −  d )(η k −  s )

(d  −  s )(e  −  η k )
f s, e

η k ,  h(z 0 )

≥  c ∆  |d  −  η k |(e  −  s ) −  2 f s, e
η k ,  h (z 0 ).

T h e  i n e q u alit y  f oll o  ws  fr o  m  t h e  f oll o  wi n g  ar g u  m e nts.   L et
u  =  η k −  s , v  =  e  −  η k a n d  w  =  d  −  η k .  T h e n

1  −
(e  −  d )(η k −  s )

(d  −  s )(e  −  η k )
−  c ∆  |d  −  η k |(e  −  s ) 2

= 1  −
(v  −  w  )u

(u  +  w  )v
−  c

∆  w

(u  +  v ) 2

=
w  (u  +  v )

(u  +  w  )v (  (v  −  w  )u  +  (u  +  w  )v )
−  c

∆  w

(u  +  v ) 2
.

T h e  n u  m er at or  of t h e  a b o v e  e q u als

w  (u  +  v ) 3 −  c ∆  w  (u  +  w  )v  −  c ∆  w  u v (u  +  w  )(v  −  w  )

≥  2 c 1 ∆  w  (u  +  v ) 2 −
c (u  +  w  )v

2 c 1
−

c u v (u  +  w  )(v  −  w  )

2 c 1

≥  2 c 1 ∆  w  ( 1 −  c / ( 2 c 1 ))(u  +  v ) 2 −  2 −  1 / 2 c / c 1 u v  >  0 ,

as l o n g  as

c  <

√
2 c 1

4  +  1 / (
√

2 c 1 )
.

C a s e  (ii).  L et  g  =  c 1 ∆  / 1 6 .    We  c a n   writ e

f s, e
η k ,  h (z 0 )  =  a

e  −  s

(η k −  s )(e  −  η k )
,

f s, e
η k +  g,  h (z 0 )  =  a  +  g θ

e  −  s

(e  −  η k −  g )(η k +  g  −  s )
,

w h er e

a  =

η k

j =  s + 1

⎧
⎨

⎩
f j,  h (z 0 ) −

1

e  −  s

e

j =  s + 1

f j,  h (z 0 )

⎫
⎬

⎭
,

θ  =
a (η k +  g  −  s )(e  −  η k −  g )

g

1

(η k −  s )(e  −  η k )
−

1

(η k +  g  −  s )(e  −  η k −  g )
+

b

a
√

e  −  s
,

a n d  b  =  f s, e
η k +  g,  h (z 0 ) −  f s, e

η k ,  h(z 0 ).
T o  e a s e  n ot ati o n, l et  d  −  η k =  l ≤  g / 2 , N 1 =  η k −  s  a n d

N 2 =  e  −  η k −  g .  We  h a v e

E l =  f s, e
η k ,  h(z 0 ) −  f s, e

d,  h (z 0 )  =  E 1 l ( 1   + E 2 l )  + E 3 l ,  ( 4 8)

w h er e

E 1 l =
al (g  −  l)

√
e  −  s

N 1 (N 2 +  g )  (N 1 +  l)(g  +  N 2 −  l)
·

1

(N 1 +  l)(g  +  N 2 −  l)  +  N 1 (g  +  N 2 )

E 2 l =
(N 2 −  N 1 )(N 2 −  N 1 −  l)

(N 1 +  l)(g  +  N 2 −  l)  +  (N 1 +  g )N 2

·

1

N 1 (g  +  N 2 )  +  (N 1 +  g )N 2

,

a n d

E 3 l =  −
bl

g

(N 1 +  g )N 2

(N 1 +  l)(g  +  N 2 −  l)
.

N e xt,   w e  n oti c e t h at  g −  l ≥  c 1 ∆  / 3 2 . It  h ol d s t h at

E 1 l ≥  c 1 l |d  −  η k |∆  f s, e
η k ,  h(z 0 )(e  −  s ) −  2 ,  ( 4 9)

w h er e  c 1 l >  0  is  a  s uf fi ci e ntl y  s  m all  c o n st a nt  d e p e n di n g  o n
c 1 .  As  f or E 2 l ,  d u e t o  ( 4 7),   w e  h a v e

E 2 l ≥  −  1 / 2 . ( 5 0)

As  f or  E 3 l ,  w e  h a v e

E 3 l ≥  −  c 3 l,1 b |d  −  η k |(e  −  s )  ∆ −  2

≥  −  c 3 l,2 b |d  −  η k |∆ −  3 (e  −  s ) 3 / 2 f s, e
η k ,  h (z 0 )κ −  1

≥  −  c 1 l / 2 |d  −  η k |∆  f s, e
η k ,  h (z 0 )(e  −  s ) −  2 ,

w h er e  t h e  s e c o n d  i n e q u alit y  f oll o  ws  fr o  m  ( 4 5)  a n d  t h e  t hir d
i n e q u alit y  f oll o  ws  fr o  m  ( 4 6),  c 3 l,1 , c3 l,2 >  0  ar e  s uf fi ci e ntl y
s  m all  c o n st a nts,  d e p e n di n g  o n  all t h e  ot h er a b s ol ut e c o n st a nts.

C o  m bi ni n g ( 4 8),  ( 4 9),  ( 5 0)  a n d  ( 5 1),   w e  h a v e

f s, e
η k ,  h (z 0 ) −  f s, e

d,  h (z 0 )  ≥  c |d −  η k |∆  f s, e
η k ,  h(z 0 )(e −  s ) −  2 ,  ( 5 1)

w h er e  c  >  0  is  a  s uf fi ci e ntl y  s  m all  c o n st a nt.
I n  vi e  w  of  (  B)  a n d  ( 5 1), t h e  pr o of is  c o  m pl et e.

L e  m  m a  1 5:  U n d er   Ass u  m pti o n s  1,  2  a n d  3, l et  (s 0 , e0 )  b e
a n  i nt er v al   wit h  e 0 −  s 0 ≤  C R ∆  a n d  c o nt ai ni n g  at  l e ast  o n e
c h a n g e  p oi nt  η l s u c h t h at

η l−  1 ≤  s 0 ≤  η l ≤  . . . ≤  η l+  q ≤  e 0 ≤  η l+  q + 1 ,  q ≥  0 .

S u p p o s e t h at t h er e  e xists  k  s u c h t h at

mi n  η k −  s 0 ,  e0 −  η k ≥  ∆  / 1 6 .

L et

κ m a x
s 0 , e0 =  m a x  κ p :  mi n{ η p −  s 0 ,  e0 −  η p }  ≥  ∆  / 1 6  .

C o nsi d er  a n y  g e n eri c  (s, e )  ⊂  (s 0 , e0 ),  s atisf yi n g

mi n
l: η l ∈  ( s, e )

mi n  { η l −  s 0 , e0 −  η l }  ≥  ∆  / 1 6 .

L et

b  ∈  a r g   m a x
t =  s +  h −  p ,..., e−  h −  p

m a x
j = 1  ,...,  T

Y s, e
t (X  (j ))  .
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Ass u  m e
h  ≤

κ

1 6 C R C Li p C k
, ( 5 2)

w h er e  C k >  0  is  a n  a b s ol ut e  c o n st a nt  d e p e n di n g  o nl y  o n t h e
k er n el f u n cti o n.  F or  s o  m e  c 1 >  0  a n d  γ  >  0 ,  s u p p o s e t h at

m a x
j = 1  ,...,  T

Y s 0 , e0
b ( X  (j ))  ≥  c 1 κ m a x

s, e

√
∆  .  ( 5 3)

T h e n  o n  t h e  e v e nt  A 1 (γ A ) ∩  A 2 (γ A ) ∩  B  (γ B ),  d e fi n e d  i n
L e  m  m as  7  a n d   8,   w h er e

m a x  { γ A ,  γB }  ≤  c 2 κ
√

∆  , ( 5 4)

wit h  a  s uf fi ci e ntl y  s  m all  c o n st a nt  0  <  c 2 <  c 1 / 4 , t h er e  e xists
a  c h a n g e  p oi nt  η k ∈  (s, e )  s u c h t h at

mi n  { e  −  η k ,  ηk −  s }  ≥  ∆  / 4  a n d  |η k −  b |  ≤ C κ −  2
k γ 2

A ,

w h er e  C  >  0  is  a  s uf fi ci e ntl y l ar g e  c o n st a nt  d e p e n di n g  o n  all
t h e  ot h er  a b s ol ut e  c o n st a nts.

P r o of:  L et  z 1 ∈  a r g   m a x z ∈  R p f s, e
b,  h (z )  .    Wit h o ut  l o ss  of

g e n er alit y,  ass u  m e  t h at  f s, e
b,  h (z 1 )  >  0  a n d  t h at  f s, e

b,  h (z 1 )  as  a
f u n cti o n  of t  is l o c all y  d e cr e asi n g  at b .   O bs er v e t h at t h er e  h as
t o  b e  a  c h a n g e  p oi nt  η k ∈  (s, b ),  or  ot h er  wis e  f s, e

b,  h (z 1 )  >

0  i  m pli es  t h at  f s, e
t,  h (z 1 )  is  d e cr e asi n g,  as  a  c o ns e q u e n c e  of

L e  m  m a  1 1.
T h u s, t h er e  e xists  a  c h a n g e  p oi nt  η k ∈  (s, b )  s atisf yi n g t h at

s u p z ∈  R p f s, e
η k ,  h (z )  ≥  f s, e

η k ,  h(z 1 )  >  f s, e
b,  h (z 1 )

≥  m a x j = 1  ,...,  T f s, e
b,  h (X  (j ))  −  γ B

≥  m a x j = 1  ,...,  T Y s, e
b (X  (j ))  −  γ A −  γ B

≥  c κ k

√
∆  ,

w h er e  t h e  s e c o n d  i n e q u alit y  f oll o  ws  fr o  m    L e  m  m a   1 1,  t h e
t hir d  a n d  f o urt h  i n e q u aliti es  h ol d  o n  t h e  e v e nts  A 1 (γ A ,  h) ∩
A 2 (γ A ,  h) ∩  B  (γ B ),  a n d c  >  0  is  a n  a b s ol ut e  c o n st a nt.

O b s er v e   t h at  e  −  s  ≤  e 0 −  s 0 ≤  C R ∆  a n d   t h at
(s, e )  h a s  t o  c o nt ai n  at  l e a st  o n e  c h a n g e  p oi nt  or  ot h er  wis e
s u p z ∈  R |f s, e

η k ,  h (z )| =  0  w hi c h  c o ntr a di cts ( 5 5).
St e p  1.  I n t his  st e p,   w e  ar e t o  s h o  w t h at

mi n  { η k −  s,  e  −  η k }  ≥  mi n  { 1 , c21 } ∆  / 1 6 .  ( 5 5)

S u p p o s e  t h at  η k is  t h e  o nl y  c h a n g e  p oi nt  i n  (s, e ).  T h e n
( 5 5)   m u st  h ol d  or  ot h er  wis e it  f oll o  ws fr o  m  ( 3 9) t h at

s u p
z ∈  R p

f s, e
η k ,  h(z )  ≤  κ k

c 1

√
∆

4
,

w hi c h  c o ntr a di cts ( 5 5).
S u p p o s e  (s, e )  c o nt ai ns  at  l e ast  t  w o  c h a n g e  p oi nts.    T h e n

ar g ui n g  b y  c o ntr a di cti o n, if  η k −  s  <  mi n  { 1 ,  c21 } ∆  / 1 6 , it  m u st
b e  t h e  c ast  t h at  η k is  t h e  l eft    m o st  c h a n g e  p oi nt  i n  (s, e ).
T h er ef or e

s u p z ∈  R p f s, e
η k ,  h (z )

≤  c 1 / 4 s u p z ∈  R p |f s, e
η k  +  1 ,  h( z )|+

2 κ k

√
η k −  s  +  4

√
η k −  s  C Li p C k h

<  c 1 / 4  m a x
s +  h −  p < t  < e  −  h −  p

s u p z ∈  R p |f s, e
t,  h (z )|

+

√
∆

2
c 1 κ k

≤  c 1 / 4  m a x s +  h −  p < t  < e  −  h −  p m a x j = 1  ,...,  T |f s, e
t,  h (X  (j ))|+

c 1 / 4 γ B +

√
∆

2
c 1 κ k

≤  c 1 / 4  m a x s +  h −  p < t  < e  −  h −  p m a x j = 1  ,...,  T Y s, e
t (X  (j ))  +

c 1 / 4 γ A +  c 1 / 4 γ B +

√
∆

2
c 1 κ k

≤  m a x j = 1  ,...,  T Y s, e
b (X  (j ))  −  γ A −  γ B ,

w h er e t h e  first i n e q u alit y f oll o  ws fr o  m ( 4 3), t h e s e c o n d f oll o  ws
fr o  m  ( 5 2),  t h e  t hir d  fr o  m  t h e  d e fi niti o n  of  t h e  e v e nt  B  ,  t h e
f o urt h fr o  m t h e d e fi niti o n of t h e e v e nt A  a n d t h e l ast fr o  m ( 5 3).
T h e l a st  dis pl a y  c o ntr a di cts ( 5 5), t h u s ( 5 5)   m u st  h ol d.
St e p  2.  L et

z 0 ∈  a r g   m a x
z ∈  R p

f s, e
η k ,  h (z )  .

It  f oll o  ws  fr o  m   L e  m  m a  1 4  t h at  t h er e  e xits  d  ∈  (η k ,  ηk +
c 1 ∆  / 3 2 )  s u c h t h at

f s, e
η k ,  h (z 0 ) −  f s, e

d,  h (z 0 )  ≥  2 γ A +  2  γ B .  ( 5 6)

We  cl ai  m t h at  b  ∈  (η k ,  d)  ⊂  (η k ,  ηk +  c 1 ∆  / 1 6 ) .   B y  c o ntr a-
di cti o n,  s u p p o s e t h at  b  ≥  d .  T h e n

f s, e
b,  h (z 0 )  ≤  f s, e

d,  h (z 0 )

≤  m a x s  < t  < e s u p z ∈  R p f s, e
t,  h (z )  −  2 γ A −  2 γ B

≤  m a x j = 1  ,...,  T Y s, e
b (X  (j ))  −  γ A −  γ B ,

w h er e t h e  first i n e q u alit y f oll o  ws fr o  m   L e  m  m a  1 1, t h e s e c o n d
f oll o  ws fr o  m ( 5 6)  a n d t h e t hir d f oll o  ws fr o  m t h e  d e fi niti o n  of
t h e  e v e nt  A 1 (γ A ,  h)  ∩  A 2 (γ A ,  h)  ∩  B  (γ B ).    N ot e  t h at  (  B)  is
a   c o ntr a di cti o n  t o   t h e   b o u n d  i n   ( 5 5),   t h er ef or e    w e   h a v e
b  ∈  (η k ,  ηk +  c 1 ∆  / 3 2 ) .
St e p  3.  L et

j ∗ ∈  a r g   m a x j = 1  ,...,  T Y s, e
b (X  (j ))  ,

f s, e =  (  f s + 1  ,  h (X  (j
∗ )), . . . ,  fe,  h (X  (j ∗ )))  ∈  R ( e −  s )

a n d

Y s, e

=
1

h p
k

X  ( j ∗ ) −  X  ( s )

h
, . . . ,

1

h p
k

X  ( j ∗ ) −  X  ( e )

h
∈  R ( e −  s ) .

B y t h e  d e fi niti o n  of  b , it  h ol d s t h at

Y s, e −  P s, e
b (Y s, e )

2

≤  Y s, e −  P s, e
η k

( Y s, e )
2

≤  Y s, e −  P s, e
η k

( f s, e )
2
,

w h er e   t h e   o p er at or  P s, e
· (·)  is   d e fi n e d   i n    L e  m  m a   2 0   i n

Wa n g  et  al.  [ 5 4].  F or  t h e  s a k e  of  c o ntr a di cti o n,  t hr o u g h o ut
t h e  r e st  of  t his  ar g u  m e nt  s u p p o s e  t h at,  f or  s o  m e  s uf fi ci e ntl y
l ar g e  c o n st a nt C 3 >  0  t o  b e  s p e ci fi e d,

η k +  C 3 γ 2
A κ −  2

k <  b. ( 5 7)

We   will  s h o  w t h at t his l e a ds t o t h e  b o u n d

Y s, e −  P s, e
b (Y s, e )

2
>  Y s, e −  P s, e

η k
( f s, e )

2
,  ( 5 8)
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w hi c h is  a  c o ntr a di cti o n. If   w e  c a n  s h o  w t h at

2  Y s, e −  f s, e , P s, e
b Y s, e −  P s, e

η k
f s, e

<  f s, e −  P s, e
b f s, e 2

−  f s, e −  P s, e
η k

f s, e 2
,  ( 5 9)

t h e n  ( 5 8)  h ol d s.
T o  d eri v e ( 5 9) fr o  m ( 5 7),   w e  fir st  n ot e t h at  mi n  { e −  η k ,  ηk −

s }  ≥  mi n  { 1 , c21 } ∆  / 1 6  a n d t h at  |b −  η k |  ≤ c 1 ∆  / 3 2  i  m pli es t h at

mi n  { e  −  b, b  −  s }  ≥  mi n  { 1 , c21 } ∆  / 1 6  −  c 1 ∆  / 3 2

≥  mi n  { 1 , c21 } ∆  / 3 2 .

As  f or t h e  ri g ht- h a n d  si d e  of  ( 5 9),   w e  h a v e

f s, e −  P s, e
b f s, e 2

−  f s, e −  P s, e
η k

f s, e 2

=  f s, e
η k ,  h (X  (j

∗ ))
2

−  f s, e
b,  h (X  (j ∗ ))

2

≥  f s, e
η k ,  h (X  (j

∗ )) −  f s, e
b,  h (X  (j ∗ ))  f s, e

η k ,  h (X  (j
∗ ))  .

O n t h e  e v e nt  A 1 (γ A ,  h) ∩  A 2 (γ A ,  h) ∩  B  (γ B ),  w e  ar e t o  u s e
L e  m  m a  1 4.   N ot e t h at  ( 4 5)  h ol ds  d u e t o t h e  f a ct t h at  h er e   w e
h a v e

f s, e
η k ,  h (X  (j

∗ ))  ≥  f s, e
b,  h (X  (j ∗ ))

≥  Y s, e
b (X  (j ∗ ))  −  γ A

≥  c 1 κ k

√
∆  −  γ A ≥  (c 1 )/ 2 κ k

√
∆  ,  ( 6 0)

w h er e  t h e  first  i n e q u alit y  f oll o  ws  fr o  m  t h e  f a ct  t h at  η k is  a
tr u e c h a n g e  p oi nt, t h e s e c o n d i n e q u alit y  h ol d s  d u e t o t h e e v e nt
A 1 (γ A ,  h), t h e t hir d i n e q u alit y f oll o  ws fr o  m ( 5 3), a n d t h e  fi n al
i n e q u alit y f oll o  ws fr o  m ( 5 4).   T o  w ar d s t his e n d, it f oll o  ws fr o  m
L e  m  m a  1 4 t h at

f s, e
η k ,  h (X  (j

∗ ))  −  f s, e
b,  h (X  (j ∗ ))

>  c  |b −  η k |∆  f s, e
η k ,  h (X  (j

∗ )))  (e  −  s ) −  2 .  ( 6 1)

C o  m bi ni n g ( 6 0),  ( 6 0)  a n d  ( 6 1),   w e  h a v e

f s, e −  P s, e
b f s, e 2

−  f s, e −  P s, e
η k

f s, e 2

≥
c c 2

1

4
∆ 2 κ k A 1 (γ A ,  h) 2 (e  −  s ) −  2 |b −  η k |.  ( 6 2)

T h e l eft- h a n d  si d e  of  ( 5 9)  c a n  b e  d e c o  m p os e d  as  f oll o  ws.

2  Y s, e −  f s, e , P s, e
b Y s, e −  P s, e

η k
f s, e

=  2  Y s, e −  f s, e , P s, e
b Y s, e −  P s, e

b f s, e +

2  Y s, e −  f s, e , P s, e
b f s, e −  P s, e

η k
f s, e

=  (  I )  +

2

⎛

⎝
η k −  s

i = 1

+

b −  s

i =  η k −  s + 1

+

e −  s

i =  b −  s + 1

⎞

⎠ Y s, e −  f s, e
i
·

P s, e
b f s, e −  P s, e

η k
f s, e

i

=  (  I )  + (I I. 1 )   + ( I I. 2 )   + ( I I. 3 ) .

As  f or t h e t er  m  (I),   w e  h a v e

(I )  ≤  2 γ 2
A . ( 6 3)

A s  f or t h e t er  m  (II. 1),   w e  h a v e

(I I. 1 )   =  2
√

η k −  s
1

√
η k −  s

η k −  s

i = 1

Y s, e −  f s, e
i

1

b  −  s

b −  s

i = 1

(f s, e ) i −
1

η k −  s

η k −  s

i = 1

(f s, e ) i .

I n  a d diti o n, it  h ol d s t h at

1

b −  s

b −  s

i = 1

(f s, e ) i −
1

η k −  s

η k −  s

i = 1

(f s, e ) i

=
b −  η k

b −  s
−

1

η k −  s

η k −  s

i = 1

f i,  h (X  (j
∗ ))   + f η k  +  1 ,  h( X  (j

∗ ))

≤
b −  η k

b −  s
(C R +  1 )  κ m a x

s 0 , e0 ,

w h er e   t h e   i n e q u alit y   f oll o  ws   fr o  m   ( 4 1).    C o  m bi ni n g    wit h
L e  m  m a  7, it l e a ds t o t h at

(I I. 1 )  ≤  2
√

η k −  s
b −  η k

b −  s
(C R +  1 )  κ m a x

s 0 , e0 γ A

≤  2
4

mi n  { 1 ,  c21 }
∆ −  1 / 2 γ A |b −  η k |(C R +  1 )  κ m a x

s 0 , e0 .

( 6 4)

A s  f or t h e t er  m  (II. 2), it  h ol ds t h at

(I I. 2 )  ≤  2 |b −  η k |γ A ( 2 C R +  3 )  κ m a x
s 0 , e0 .  ( 6 5)

A s  f or t h e t er  m  (II. 3), it  h ol ds t h at

(I I. 3 )  ≤  2
4

mi n  { 1 ,  c21 }
∆ −  1 / 2 γ A |b −  η k |(C R +  1 )  κ m a x

s 0 , e0 .

( 6 6)

T h er ef or e,  c o  m bi ni n g  ( 6 2),  ( 6 3),  ( 6 3),  ( 6 4),  ( 6 5)  a n d  ( 6 5),
w e  h a v e t h at  ( 5 9)  h ol d s if

∆ 2 κ 2
k (e  −  s ) −  2 |b −  η k |

m a x  γ 2
A , ∆ −  1 / 2 γ A |b  −  η k |κ k ,  |b −  η k |γ A κ k .

T h e s e c o n d i n e q u alit y  h ol d s  d u e t o   Ass u  m pti o n  3, t h e t hir d
i n e q u alit y   h ol d s   d u e  t o  ( 5 7)   a n d  t h e   first  i n e q u alit y  is   a
c o n s e q u e n c e  of t h e t hir d i n e q u alit y  a n d   Ass u  m pti o n  3.

P r o of  of  T h e o r e  m  1:  L et k =  C  l o g1  + ξ (T  )κ −  2
k κ −  p ≤

=  C l o g1  + ξ (T  )κ −  ( p + 2 ) .  Si n c e  is  t h e   u p p er  b o u n d  of
t h e l o c ali z ati o n  err or,  b y i n d u cti o n, it  s uf fi c es t o  c o nsi d er  a n y
i nt er v al (s, e )  ⊂  ( 0 ,  T )  t h at  s atis fi es

η k −  1 ≤  s  ≤  η k ≤  . . . ≤  η k +  q ≤  e  ≤  η k +  q + 1 ,  q ≥  −  1 ,

a n d

m a x  mi n  { η k −  s,  s  −  η k  −  1 } , mi n  { η k  +  q + 1 −  e,  e  −  η k  +  q }  ≤  ,

w h er e  q  =  −  1  i n di c at es t h at t h er e is n o c h a n g e p oi nt c o nt ai n e d
i n (s, e ).

B y   Ass u  m pti o n  3,  it  h ol d s  t h at  ≤  ∆  / 4 .  It  h as  t o  b e  t h e
c as e t h at f or  a n y  c h a n g e  p oi nt  η k ∈  ( 0 ,  T ),  eit h er |η k −  s |  ≤
or  |η k −  s |  ≥  ∆  −  ≥  3  ∆ / 4 .  T his  m e a n s  t h at  mi n  {| η k −
s |, |η k −  e | }   ≤  i n di c at es t h at η k i s  a  d et e ct e d  c h a n g e  p oi nt
i n  t h e  pr e vi o u s  i n d u cti o n  st e p,  e v e n  if  η k ∈  (s, e ).    We  r ef er
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t o  η k ∈  (s, e )  a n  u n d et e ct e d  c h a n g e  p oi nt  if  mi n  {| η k −  s |,
|η k −  e | }   ≥ 3  ∆ / 4 .

I n  or d er t o  c o  m pl et e t h e i n d u cti o n  st e p, it  s uf fi c es t o  s h o  w
t h at   w e (i)   will  n ot  d et e ct  a n y  n e  w  c h a n g e  p oi nt i n (s, e )  if  all
t h e  c h a n g e  p oi nts i n t h at i nt er v al  h a v e  b e e n  pr e vi o us  d et e ct e d,
a n d  (ii)   will  fi n d  a  p oi nt  b  ∈  (s, e ),  s u c h  t h at |η k −  b |  ≤  if
t h er e  e xists  at l e ast  o n e  u n d et e ct e d  c h a n g e  p oi nt i n  (s, e ).

D e fi n e

S  =

K

k = 1

α s ∈  [η k −  3  ∆ / 4 ,  ηk −  ∆  / 2] ,

β s ∈  [η k +  ∆  / 2 ,  ηk +  3  ∆  / 4] ,  f or  s o  m e  s  =  1  , . . . ,  S  .

T h e r est  of t h e  pr o of ass u  m es t h e e v e nt  A 1 (γ A ) ∩  A 2 (γ A ) ∩
B  (γ B ) ∩  M  ,   wit h

γ A =  C γ A h −  p / 2 l o g (T  )  a n d  γ B =  C γ B h
√

∆  ,

a n d  C γ A ,  Cγ A >  0  ar e  a b s ol ut e  c o n st a nts.   T h e  pr o b a bilit y  of
t h e  e v e nt A 1 (γ A ) ∩  A 2 (γ A ) ∩  B  (γ B ) ∩  M  is  l o  w er  b o u n d e d
i n   L e  m  m as  7,  8  a n d  9.

St e p  1.  I n t his  st e p,   w e   will  s h o  w t h at   w e   will  c o n sist e ntl y
d et e ct   or  r ej e ct  t h e   e xist e n c e   of   u n d et e ct e d   c h a n g e   p oi nts
wit hi n  (s, e ).  L et a r , b r a n d  r ∗ b e  d e fi n e d  as i n   Al g orit h  m  1.
S u p p o s e  t h er e  e xists  a  c h a n g e  p oi nt  η k ∈  (s, e )  s u c h  t h at
mi n  { η k −  s,  e  −  η k }  ≥  3  ∆ / 4 .  I n t h e  e v e nt S  , t h er e  e xists  a n
i nt er v al (α r ,  βr ) s el e ct e d s u c h t h at α r ∈  [η k −  3  ∆ / 4 ,  ηk −  ∆  / 2]
a n d  β r ∈  [η k +  ∆  / 2 ,  ηk +  3  ∆  / 4] .  F oll o  wi n g    Al g orit h  m  1,
[s r , er ]  = [α r ,  βr ]∩  [s, e ].  We  h a v e t h at mi n  { η k −  s r , er −  η k }  ≥
( 1 / 4 )  ∆  a n d  [s r , er ] c o nt ai n s  at   m o st  o n e tr u e  c h a n g e  p oi nt.

It f oll o  ws fr o  m   L e  m  m a  1 0,   L e  m  m a  1 2,  a n d   Ass u  m pti o n  3,
wit h  c 1 t h er e  c h o s e n t o  b e 1 / 4 , t h at

m a x
s r +  h −  p < t  < e r −  h −  p

s u p
z ∈  R p

f s, e
t,  h (z )  ≥

κ ∆

1 6
√

e  −  s
.

T h er ef or e

a r =  m a x s r +  h −  p < t  < e r −  h −  p m a x j = 1  ,...,  T Y s r , er
t ( X  (j ))

≥  m a x s r +  h −  p < t  < e r −  h −  p m a x j = 1  ,...,  T f s r , er
t,  h (X  (j ))  −

γ A

≥  m a x s r +  h −  p < t  < e r −  h −  p s u p
z ∈  R p

f s r , er
t,  h (z )  −

γ A −  γ B ≥
κ ∆

1 6
√

e  −  s
−  γ A −  γ B ,

w h er e  γ A a n d  γ B ar e  t h e  s a  m e  a s  i n  ( 5 4).    T h u s  f or  a n y
u n d et e ct e d  c h a n g e  p oi nt  η k ∈  (s, e ), it  h ol d s t h at

a m ∗ =  s u p
1 ≤  m  ≤  S

a m ≥
κ ∆

1 6
√

e  −  s
−  γ A −  γ B ≥  c τ, 2 κ ∆ 1 / 2 ,

( 6 7)

w h er e  c τ, 2 >  0  is  a c hi e v a bl e   wit h  a  s uf fi ci e ntl y  l ar g e  C S  N  R

i n    Ass u  m pti o n   3.    T his    m e a ns    w e   a c c e pt  t h e   e xist e n c e   of
u n d et e ct e d  c h a n g e  p oi nts.

S u p p os e t h at t h er e is  n o a n y  u n d et e ct e d c h a n g e  p oi nt   wit hi n
(s, e ),  t h e n  f or  a n y  (s r , er )  =  (α r ,  βr )  ∩  (s, e ),  o n e  of  t h e
f oll o  wi n g  sit u ati o n s   m u st  h ol d.

( a)    T h er e is  n o  c h a n g e  p oi nt   wit hi n  (s r , er );
( b)  t h er e  e xists  o nl y  o n e  c h a n g e  p oi nt  η k ∈  (s r , er )  a n d

mi n  { η k −  s r , er −  η k }  ≤ k ;  or
( c)  t h er e  e xist  t  w o  c h a n g e  p oi nts  η k ,  ηk + 1 ∈  (s r , er )  a n d

η k −  s r ≤ k , e r −  η k + 1 ≤ k + 1 .

O b s er v e t h at if  ( a)  h ol ds, t h e n   w e  h a v e

m a x s r +  h −  p < t  < e r −  h −  p m a x j = 1  ,...,  T Y s r , er
t ( X  (j ))

≤  m a x s r +  h −  p < t  < e r −  h −  p s u p z ∈  R p f s r , er
t,  h (z )  +  γ A +  γ B

=  γ A +  γ B .

C as es ( b) a n d ( c) c a n  b e  d e alt   wit h  usi n g si  mil ar  ar g u  m e nts.
We   will  o nl y   w or k  o n ( c)  h er e. It f oll o  ws fr o  m   L e  m  m a  1 3 (i v)
t h at

m a x s r +  h −  p < t  < e r −  h −  p m a x j = 1  ,...,  T Y s r , er
t ( X  (j ))

≤  m a x s r < t  < e r s u p z ∈  R p f s r , er
t,  h (z )  +  γ A +  γ B

≤  2
√

e  −  η k κ k + 1 +  2
√

η k −  s κ k +  8
√

η k −  s  C Li p C k h +

γ A +  γ B ≤  2 ( γ A +  γ B ).

U n d er ( 1 1),   w e   will  al  w a ys  c orr e ctl y r ej e ct t h e  e xist e n c e  of
u n d et e ct e d  c h a n g e  p oi nts.

St e p  2.  Ass u  m e t h at t h er e  e xists  a  c h a n g e  p oi nt  η k ∈  (s, e )
s u c h t h at  mi n  { η k −  s, η k −  e }  ≥  3  ∆ / 4 .  L et s r , e r a n d  r ∗ b e
d e fi n e d  as  i n    Al g orit h  m  1.   T o  c o  m pl et e  t h e  pr o of  it  s uf fi c es
t o  s h o  w t h at, t h er e  e xists  a  c h a n g e  p oi nt η k ∈  (s r ∗ , er ∗ )  s u c h
t h at mi n  { η k −  s r ∗ ,  ηk −  e r ∗ }  ≥  ∆  / 4  a n d  |b r ∗ −  η k |  ≤  .

T o  t his   e n d,    w e   ar e  t o   e n s ur e  t h at  t h e   a ss u  m pti o n s   of
L e  m  m a  1 5  ar e  v eri fi e d.   N ot e t h at ( 5 3) f oll o  ws fr o  m  ( 6 7),  a n d
( 5 4) f oll o  ws fr o  m   Ass u  m pti o n  3.

T h u s,   all   t h e   c o n diti o n s   i n    L e  m  m a   1 5   ar e    m et,   a n d
w e  t h er ef or e  c o n cl u d e  t h at  t h er e  e xists  a  c h a n g e  p oi nt  η k ,
s atisf yi n g

mi n  { e r ∗ −  η k ,  ηk −  s r ∗ }  >  ∆  / 4  ( 6 8)

a n d

|b r ∗ −  η k |  ≤ C κ −  2
k γ 2

A ≤  , ( 6 9)

w h er e  t h e  l ast  i n e q u alit y  h ol d s  fr o  m  t h e  c h oi c e  of  γ A a n d
Ass u  m pti o n  3.

T h e  pr o of  is  c o  m pl et e  b y  n oti ci n g  t h e  f a ct  t h at  ( 6 8)  a n d
(s r ∗ , er ∗ )  ⊂  (s, e )  i  m pl y t h at

mi n  { e  −  η k ,  ηk −  s }  >  ∆  / 4  >  .

As  dis c u ss e d  i n  t h e  ar g u  m e nt  b ef or e  St e p  1 ,  t his  i  m pli es
t h at η k m u st  b e  a n  u n d et e ct e d  c h a n g e  p oi nt.

A P P  E  N  D I  X C
P R  O  O F S   O F L E  M  M  A S 2 A  N  D 3

P r o of  of  L e  m  m a  3:  C o n si d er  distri b uti o n s  F  a n d  G  i n R p

wit h  d e n siti es  f  a n d  g ,  r es p e cti v el y,  c o nstr u ct e d  as  f oll o  ws.
T h e  d e n sit y  f  is  a  t e st  f u n cti o n, t h u s it  h a s  c o  m p a ct  s u p p ort
a n d it is i n fi nit el y  diff er e nti a bl e.   N ot e  als o t h at   w e  c a n t a k e  f

c o n st a nt i n  B  ( 0 ,  V
−  1 / p

p 2 −  1 / p ),   wit h f ( 0 )   =  1 / 2 ,  a n d   wit h

m a x  {  f ∞ , m a x
x

∇  f (x )  }    ≤
1

2
.  ( 7 0)

A ut h ori z e d li c e n s e d u s e li mit e d t o: U C L A Li br ar y. D o w nl o a d e d o n J a n u ar y 1 0, 2 0 2 4 at 2 3: 4 0: 4 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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T h e n,  b y c o n str u cti o n,  f  is 1 - Li p s c hit z.   L et c 1 b e a c o n st a nt
s u c h t h at

0  <  c 1 <  V −  1 / p
p 2 −  1 −  1 / p , ( 7 1)

f or  all  p ,    w hi c h  is  p ossi bl e  si n c e  V
−  1 / p

p 2 p −  1 −  1 / p →  ∞  as
p  →  ∞  .   T h e n  d e fi n e g  as

g (x )  =

⎧
⎪⎨

⎪⎩

1
2 +  κ  −  c −  1

1 x  −  p 1 if  x  −  p 1 <  κ c 1

1
2 −  κ  +  c −  1

1 x  −  p 2 if  x  −  p 2 <  κ c 1

f (x ) ot h er  wis e.

w h er e  p 1 =  (  V
−  1 / p

p 2 −  1 / p −  1 , 0 , . . . , 0 )  ∈  R p a n d  p 2 =

(−  V
−  1 / p

p 2 −  1 / p −  1 , 0 , . . . , 0 )  ∈  R p .    N oti c e   t h at  g  is    w ell

d e fi n e d  si n c e  ( 7 1) i  m pli es  κ c 1 ≤  C 1 c 1 <  V
−  1 / p

p 2 −  1 −  1 / p .
F urt h er  m or e,   b y   t h e   tri a n gl e   i n e q u alit y   a n d   ( 7 0),  g  is

C  - Li p s c hit z  f or  a  u ni v er s al  c o n st a nt  C  .    M or e o v er,

s u p
z ∈  R p

|f (z ) −  g (z )|  =  κ.

L et  P 1 d e n ot e  t h e  j oi nt   distri b uti o n   of  t h e  i n d e p e n d e nt
r a n d o  m  v ari a bl es  { X  (t)} T

t = 1 ,  w h er e

X  ( 1 ), . . . ,  X(  ∆)
i. i. d.
∼  F  a n d  X  (  ∆   + 1 ), . . . ,  X(T  )

i. i. d.
∼  G  ;

a n d,  si  mil arl y, l et  P 0 b e t h e j oi nt  distri b uti o n  of t h e i n d e p e n-
d e nt r a n d o  m  v ari a bl es  { Z  (t)} T

t = 1 s u c h t h at

Z  ( 1 ), . . . ,  Z(  ∆   + ξ )
i. i. d.
∼  F,  a n d

Z  (  ∆   + ξ  +  1 )  , . . . ,  Z(T  )
i. i. d.
∼  G,

w h er e  ξ  is  a  p o siti v e i nt e g er  n o l ar g er t h a n n  −  1  −  ∆  .
O b s er v e   t h at  η (P 0 )  =  ∆  a n d  η (P 1 )  =  ∆  +  ξ .

B y    L e    C a  m’s    L e  m  m a  ( e. g.    Yu   [ 6 0])   a n d    L e  m  m a   2. 6  i n
T s y b a k o v [ 5 0], it  h ol d s t h at

i nf
η̂

s u p
P  ∈  Q

E P |η̂  −  η |  ≥  ξ  1  −  d T  V (P 0 ,  P1 )

≥
ξ

2
e x p ( −  K L(  P 0 ,  P1 )) .  ( 7 2)

Si n c e

K L(  P 0 ,  P1 )  =
i∈ {  ∆  + 1  ,...,∆  +  ξ }

K L(  P 0 i ,  P1 i )  =  ξ K L(  F,   G ).

H o  w e v er,

K L(  F,   G )

=
1

2 B  ( p 1 ,  κ c1 )

l o g
1 / 2

1
2 +  κ  −  c −  1

1 x  −  p 1

d x  +

1

2 B  ( p 2 ,  κ c1 )

l o g
1 / 2

1
2 −  κ  +  c −  1

1 x  −  p 2

d x

=  −
1

2 B  ( 0 ,  κ c1 )

l o g  1  +  2 κ  −  2 c −  1
1 x  d x  −

1

2 B  ( 0 ,  κ c1 )

l o g  1  −  2 κ  +  2 c −  1
1 x  d x

=  −
1

2 B  ( 0 ,  κ c1 )

l o g  1  −  ( 2 κ  −  2 c −  1
1 x  ) 2 d x

≤  4 κ 2 V p (κ c 1 ) p ≤  4 κ p + 2 V p ,

b y  t h e  i n e q u alit y  −  l o g( 1  −  x )  ≤  2 x  f or  x  ∈  [ 0, 1 / 2] .
T h er ef or e,

i nf
η̂

s u p
P  ∈  Q

E P |η̂  −  η |  ≥
ξ

2
e x p  −  4 ξ κ p + 2 V p ( 7 3)

N e xt, s et  ξ  =  mi n  { 1
4 V p κ p  +  2 ,  T −  1  −  ∆  } .   B y t h e  ass u  m p-

ti o n  o n  ζ T ,  f or  all  T  l ar g e  e n o u g h    w e    m u st  h a v e  t h at  ξ  =
1

4 V 2
p κ 2 (  p  +  1 ) .

P r o of  of  L e  m  m a  2:  St e p  1.  L et  f 1 ,  f2 : R p →  R + b e t  w o
d e n siti es  s u c h t h at

f 1 (x )  =

⎧
⎪⎨

⎪⎩

λ  −  κ  +  x  −  x 1  2 ,  x ∈  B  (x 1 ,  κ),

λ, x  ∈  B  (x 2 ,  κ),

g (x ), ot h er  wis e ,

f 2 (x )  =

⎧
⎪⎨

⎪⎩

λ  −  κ  +  x  −  x 2  2 ,  x ∈  B  (x 2 ,  κ),

λ, x  ∈  B  (x 1 ,  κ),

g (x ), ot h er  wis e .

w h er e  g  is a f u n cti o n s u c h t h at f 1 a n d  f 2 ar e d e n sit y f u n cti o ns,
λ  is  a  c o n st a nt,  a n d  κ  is  a    m o d el  p ar a  m et er  t h at  c a n  c h a n g e
wit h  T  .   N ot e t h at f or  s  m all  e n o u g h κ  a n d  λ ,

B  ( x 1 ,  κ)

f 1 (x ) d x  ≤  1 .

S et  x 1 −  x 2 ≥  2 κ  t o  b e  a n y t  w o  fi x e d  p oi nts.   T h e  e x c ess
pr o b a bilit y   m ass c a n  b e  pl a c e at  (B  (x 1 ,  κ) ∪  B  (x 2 ,  κ)) c .  Si n c e
f 1 =  f 2 i n t his r e gi o n, it  d o es  n ot aff e ct K  L  (f 1 ,  f2 )  n o   m att er
h o  w t h e  f u n cti o n s  ar e  d e fi n e d i n t his  r e gi o n.

O b s er v e  t h at,  b y  i nt e gr ati n g  i n  p ol ar  c o or di n at e  a n d  u si n g
s y  m  m etr y

K L(  f 1 ,  f2 )  =  2 p V p

κ

0

λ  l o g
λ

λ  −  κ  +  r
r p −  1

+ (  λ  −  κ  +  r ) l o g
λ  −  κ  +  r

λ
r p −  1 d r

=  2 p V p

κ

0

(κ  −  r ) l o g
λ

λ  −  κ  +  r
r p −  1 d r

≤  2 p V p

κ

0

(κ  −  r )
κ  −  r

λ  −  κ  +  r
r p −  1 d r

≤  2 p V p

κ

0

(κ  −  r )
κ  −  r

λ  −  κ  +  r
r p −  1 d r

≤  2 p V p κ 2 λ −  1
κ

0

r p −  1 d r  ≤  C p κ p + 2

St e p   2.  D e fi n e  P 1
T t o   b e   t h e   j oi nt   d e n sit y   of

(X  ( 1 ), . . . ,  X(T  ))  s u c h  t h at  X  ( 1 ), . . . ,  X(  ∆)
i.i. d.
∼  f 1 a n d

X  (  ∆   +  1 ), . . . ,  X(T  )
i.i. d.
∼  f 2 .  D e fi n e  P 2

T t o   b e  t h e  j oi nt
d e n sit y   of  (X  ( 1 ), . . . ,  X(T  ))  s u c h  t h at  X  ( 1 ), . . . ,  X(T  −

∆  −  1 )
i.i. d.
∼  f 2 a n d  X  (T  −  ∆)  , . . . ,  X(T  )

i.i. d.
∼  f 1 .  We  h a v e

t h at

i nf
η̂

s u p
P n

E  {| η  −  η (P  )| }   ≥ (T  −  2  ∆) d T  V (P 1
T , P 2

T )

≥  (T / 4 ) e x p {  − K L(  P 1
T , P 2

T )} .

N ot e t h at

K L(  P 1
T , P 2

T )  ≤  2  ∆ K L  (f 1 ,  f2 )  =  C p κ p + 2 ∆  .

A ut h ori z e d li c e n s e d u s e li mit e d t o: U C L A Li br ar y. D o w nl o a d e d o n J a n u ar y 1 0, 2 0 2 4 at 2 3: 4 0: 4 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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T A  B L E   VI

V A  L  U  E S   O F κ F  O  R   T  H  E D I F F  E  R  E  N  T S C  E  N  A  R I  O S   A  N  D

I N S  T  A  N  C  E S C O  N S I  D  E  R  E  D I  N   T  H  E P A P  E  R

Si n c e  ∆  κ p + 2 ≤  c  <  l o g ( 2 ),  w e  h a v e

e x p( −  K L(  P 1
T , P 2

T ))  ≥  e x p( −  c )  ≥  1 / 2

s e e  e. g.   Ts y b a k o v  [ 5 0].  I n  a d diti o n,  n oti ci n g  t h at  ∆  <  T /  2 ,
w e  r e a c h t h e  fi n al  cl ai  m.

A P P  E  N  D I  X D
P A  R  A  M  E  T  E  R κ F  O  R D I F F  E  R  E  N  T S C  E  N  A  RI  O S

We  n o  w dis pl a y i n   Ta bl e   VI t h e  v al u e  of  κ  f or e a c h s c e n ari o
a n d   i nst a n c e   of   t h e   e x p eri  m e nts   s e cti o n.   I n   t h e   diff er e nt
s c e n ari o s,   w e  e v al u at e t h e pr o b a bilit y d e n sit y f u n cti o n s b ef or e
a n d  aft er  e a c h  c h a n g e  p oi nt i n  a s et  c o nsisti n g  of  2 0 0 0  p oi nts,
wit h  1 0 0 0  s a  m pl es  dr a  w n fr o  m  e a c h  distri b uti o n.   T his  all o  ws
u s t o  c o  m p ut e  κ .

R E F  E  R  E  N  C  E S
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