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Optimal Nonparametric Multivariate Change
Point Detection and Localization

Oscar Hernan Madrid Padilla“, Yi Yu, Daren Wang, and Alessandro Rinaldo

Abstract— We study the multivariate nonparametric change
point detection problem, where the data are a sequence of inde-
pendent p-dimensional random vectors whose distributions are
piecewise-constant with Lipschitz densities changing at unknown
times, called change points. We quantify the size of the distribu-
tional change at any change point with the supremum norm of the
difference between the corresponding densities. We are concerned
with the localization task of estimating the positions of the change
points. In our analysis, we allow for the model parameters to
vary with the total number of time points, including the minimal
spacing between consecutive change points and the magnitude
of the smallest distributional change. We provide information-
theoretic lower bounds on both the localization rate and the
minimal signal-to-noise ratio required to guarantee consistent
localization. We formulate a novel algorithm based on kernel
density estimation that nearly achieves the minimax lower bound,
save possibly for logarithm factors. We have provided extensive
numerical evidence to support our theoretical findings.

Index Terms— Multivariate, nonparametric, kernel density
estimation, CUSUM, binary segmentation.

I. INTRODUCTION

E STUDY the nonparametric multivariate change point

detection problem, where we are given a sequence of
independent random vectors {X (t)}7_; C R? with unknown
distributions { P }T_; such that, for an unknown sequence of
change points {mx} , C {2,...,T} with 1 =ny < m <
co.<nrg =T <nry1 =T + 1, we have

P, # P, ifandonly if ¢ e {m,. 1)

Our goal is to accurately estimate the number of change
points K and their locations.

Change point localization problems of this form arise in
a variety of application areas, including finance [1] and [2],
economics [18], neuroscience [9] and [35], climatology [15],
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biology [16] and [34], medical sciences [25] and [28], to name
but a few. As a concrete example, we consider stock price
data, ranging from Jan-1-2016 to Aug-11-2019 and consisting
of 20 companies with highest average stock prices from the
S&P500 market. Applying the change point detection method
to be proposed in this paper, we are able to detect a number of
change points, all of which correspond to some key dates in
the US-China trade war. For instance, the date Dec-21-2017 is
a detected change point and it is close to Jan 2018, when Mr.
Trump imposed threats and tariffs to China. For more details
about this data analysis, see Section V-B.

Due to the high demand from real-life applications, change
point detection is a well-established topic in statistics with a
rich literature. Some early efforts include seminal works by
Wald [53], Yao [57], Yao and Au [59], Yao and Davis [58].
More recently, the change point detection literature has been
brought back to the spotlight due to significant method-
ological and theoretical advances, including Aue et al. [4],
Killick et al. [31], Fryzlewicz [20], Frick et al. [19],
Cho [13], Wang and Samworth [56], Wang et al. [55], Verze-
len et al. [52], among many others, in different aspects of para-
metric change point detection problems. See Wang et al. [54]
for a more comprehensive review.

Most of the exiting results in the change point localization
literature rely on parametric assumptions on the underlying
distributions and on the nature of their changes. Despite
the popularity and applicability of parametric change point
detection methods, it is also important to develop more gen-
eral and flexible change point localization procedures that
are applicable over larger, possibly nonparametric, classes
of distributions. Several efforts in this direction have been
recently made for univariate data. Pein ef al. [43] proposed
a version of the SMUCE algorithm (Frick ef al. [19]) that
is sensitive to mean changes, but robust to changes in vari-
ance; Zou ef al. [62] introduced a nonparametric estimator
that can detect general distributions shifts; as an extension
of Zou et al. [62], Haynes ef al. [27] simplified the loss
function in Zou et al. [62] and adopted the pruned exact
linear time algorithm (Killick ef al. [31]) to improve the
computational efficiency; Padilla ef al. [39] considered a
nonparametric procedure for sequential change point detec-
tion; Fearnhead and Rigaill [17] focused on univariate mean
change point detection constructing an estimator that is
robust to outliers; Jula Vanegas ef al. [30] proposed an
estimator for detecting changes in pre-specified quantiles
of the generative model; and Padilla ef al. [39] devel-
oped a nonparametric version of binary segmentation (e.g.
Scott and Knott [47]) based on the Kolmogorov—Smirnov
statistic.
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In multivariate nonparametric settings, the literature on
change point analysis is comparatively limited. Arlot ef al. [3]
considered a penalized kernel least squares estimator, origi-
nally proposed by Harchaoui and Cappé [26], for multivariate
change point problems and derive an oracle inequality. Garreau
and Arlot [21] obtained an upper bound on the localization
rate afforded by this method, which is further improved
computationally in Celisse ef al. [8]. We remark that this
method is a very convenient and general nonparametric change
point detection method. The theoretical guarantees are shown
based on a transformation of the original data into a univariate
mean change point detection, with the jump size corresponding
to the maximum mean discrepancy (e.g. Gretton et al. [24]),
therefore the nonparametric and multivariate complexity of the
problems are not directly shown. In addition, as pointed out in
Garreau and Arlot [21], the success relies on a proper choice
of the embedding. Matteson and James [36] also proposed
a methodology for multivariate nonparametric change point
localization and show that it can consistently estimate the
change points. Zhang et al. [61] provided a computationally-
efficient algorithm, based on a pruning routine based on
dynamic programming. Chen [10] proposed a multivariate
change point testing method based on a graph-based testing
technique (e.g. Chen and Zhang [11] and Chen et al. [12]),
focusing on the limiting distribution of a test statistic in an
asymptotic sense.

In this paper we investigate the multivariate change point
localization problem in fully nonparametric settings where the
underlying distributions are only assumed to have piecewise
and uniformly (in 7", the total number of time points) Lipschitz
continuous densities and the magnitudes of the distributional
changes are measured by the supremum norm of the dif-
ferences between the corresponding densities. We formally
introduce our model next.

Assumption 1 (Model Setting): Let {X ()}, C RP be a
sequence of independent vectors satisfying (1). Assume that,
for each t = 1,...,T, the distribution P; has a bounded
Lebesgue density function f; : RP — R such that

;—I?MT“‘(Sl) — fu(s2)] < Cuiplls1 — sal|, )
for all 51,82 € A, where X C RP is the union of the supports
of all the density functions f;, || - || represents the £s-norm,
and CLip > 0 is an absolute constant. We let

A=, min Am—m1}<T
denote the minimal spacing between any two consecutive
change points. For each k =1,..., K, we set
wk = sup | fn, (2) = fru-1(2)| = e — Fr—1lloo
zERP

as the size of the change at the kth change point. Finally,
we let
Kk =

(3)

min kg >0,
k=1,...K
be the minimal such change.

The uniform Lipschitz condition (2) is a rather mild require-
ment on the smoothness of the underlying densities. The use
of the supremum distance is a natural choice in nonparametric
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density estimation settings (e.g. Tsybakov [49]). If we assume
the domain X' to be compact, then the supremum distance
is stronger than the L, distance (total variation distance).
Thus, If the domain A" is compact, then without any further
assumptions on the function f(-), it holds that

1£1l1 < Vol(X)||flloo,

while a reverse inequality with constants independent of f(-)
is not available. Due to this observation, we see that if one
assumes | fi|]| = &k, then it always holds that |[f|le =
k/Vol(X'). One can just simply apply our theory and the
results follow.

Comparing the supremum  distance  with  the
Kolmogorov—Smirnov distance, we notice that the latter is not
yet widely used in the theoretical and applied literature. In the
multivariate goodness-of-fit literature, Polonik [44] pointed
out that the multivariate Kolmogorov—Smirnov distance “is
not enough to a goodness-of-fit test to be consistent against
all (or at least a large class) of alternatives”. As for the
goodness-of-fit test, Polonik [44] argued that the right choice
of a test statistic should be based on the level sets, which is
in turn based on the supremum distance.

The model parameters A and « are allowed to change with
the total number of time points T". This modeling choice allows
us to consider change point models for which it becomes
increasingly difficult to identify and estimate the change point
locations accurately as we acquire more data. For simplicity,
we will not explicitly express the dependence of A and
on T in our notation. The dimension p is instead treated as
a fixed constant, as is customary in nonparametric literature.
We will refer to any relationship among A and & that holds
as T tends to infinity as a parameter scaling of the model in
Assumption 1.

The change point localization task can be formally stated
as follows. We seek to construct change point estimators 1 <
1 < ...<hz < T of the true change points {7}, such
that, with probability tending to 1 as T — oc,

K=K and

where € = €(T', A, k). We say that the change point estimators
{7k} | are consistent if the above holds with

)

We refer to € as the localization error and to the sequence
{e/A} as the localization rate.

Tll_lgoe/A =0.

A. Summary of the Results

The contributions of this paper are as follows.

+ We show that the difficulty of the localization task can
be completely characterized in terms of the signal-to-
noise ratio kPT2A. Specifically, the space of the model
parameters (7', A, k) can be separated into an infeasible
region, characterized by the scaling

kPPPA<] (5)

and where no algorithm is guaranteed to produce consis-
tent estimators of the change points (see Lemma 2), and
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a feasible region, in which
KPTZA > log!T$(T), for any £ > 0. (6)

Under the feasible scaling, we develop the MNP (mul-
tivariate nonparametric) change point estimator, given in
Algorithm 1, that is provably consistent. The gap between
(5) and (6) is a poly-logarithmic factor in 7', which
implies that our procedure is consistent under nearly all
scalings for which this task is feasible.

+ We show that the localization error achieved by the
MNP procedure is of order log(T)x~P*2?) across the
entire feasibility region given in (6); see Theorem 1.
We verify that this rate is nearly minimax optimal by
deriving an information-theoretic lower bound on the
localization error, showing that if kPt2A > (r, for any
sequence {(r} satisfying limr_. o, {7 = oo, then the
localization error is larger than £~ (P+2), up to constants;
see Lemma 3. Interestingly, the dependence on the dimen-
sion p is exponential, and matches the optimal depen-
dence in the multivariate density estimation problems
assuming Lipschitz-continuous densities. We elaborate
on this point further in Section III-B. The numerical
experiments in Section V confirm the good performance
of our algorithm.

+« The MNP estimator is a procedure for nonparametric
change point localization in multivariate settings that runs
in polynomial time and can be considered a multivari-
ate nonparametric extension of the binary segmentation
methodology (Scott and Knott [47]) and its, variant wild
binary segmentation (Fryzlewicz [20]). The MNP estima-
tor deploys a version of the CUSUM statistic (Page [41])
based on kernel density estimators. We remark that some
of our auxiliary results on consistency of kernel density
estimators are obtained through non-trivial adaptation of
existing techniques that allow for non-i.i.d. data and may
be of independent interest.

The rest of the paper is organized as follows. In Section II
we introduce the MNP procedure and in Section III we study
its consistency and optimality. Section I'V presents a discussion
of choice of tuning parameters in practice. Simulation exper-
iments demonstrating the effectiveness of the MNP algorithm
and its competitive performance relative to existing procedures
are reported in Section V. The proofs and technical details are
left in the Appendices.

II. METHODOLOGY

Our procedures for change point detection and localization
is a nonparametric extension of the traditional CUSUM statis-
tic and it relies on kernel density estimators.

Definition 1 (Multivariate Nonparametric CUSUM): Let
{X (i)}L, be a sample in RP. For any integer triplet (s, , €)
satisfying 0 < s < ¢t < e < T and any = € RP, the
multivariate nonparametric CUSUM statistic is defined as the
function

zcRP—

i“;ts,e(x) _ w {fs-l,-l,t,,h(-'z) — _ft-l,-l,e,h(:c)} ’

€ 5
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Algorithm 1 Multivariate Nonparametric Change Point Detec-

tion. MNP ((Sv B)., {(a?‘: )87‘) }§=11 7, h)

INPUT: Sample {X(¢)}7_, C RP, collection of intervals
{(ar, By)}2,, tuning parameter 7 > 0 and bandwidth
h > 0.
forr=1,...,R do

(sr,er) < [s,e] N [ar, Br]
if e, — s, > 2h7P 4 1 then _
by — argmaXg 4 p-r<t<e.—h—P Yr,sr’er
Ap +— }’bi"’e"
else
ar — —1
end if
end for
r’ - argmax,_;  par
if a,« > 7 then
add b,« to the set of estimated change points
MNP((s, by.), {(ar, Br)} 2oy, 7)
MNP((br + 1, €), {(ar, Br) Hiy, 7)
end if
OUTPUT: The set of estimated change points.

where

R | A~ z— X(i)
foen(@) == D & (T) ™)
i=s+1
and £(-) is a kernel function (see e.g. Parzen, 1962). In addi-
tion, define

v = Y, (X (@)

. (®)

=1,...T
Remark 1: The statistic ﬁs’e can be seen as an estimator of

Y2 (:)

sup
zER?P
Algorithm 1 below presents a multivariate nonparametric
version of the univariate nonparametric change point detec-
tion method proposed in Padilla et al. [40], wild binary
segmentation (Fryzlewicz [20]) and binary segmentation (BS)
(e.g. Scott and Knott [47]). The resulting procedure consists
of repeated application of the BS algorithm over random time
intervals and using the multivariate nonparametric CUSUM
statistic in Definition 1. The inputs of Algorithm 1 are a
sequence {X (f)};—1,.  of random vectors in RP, a tuning
parameter 7 > 0 and a bandwidth & > 0. Detailed theoretical
requirements on the values of 7 and h are discussed below
in Section III, and Section IV offers guidance on how to
select them in practice. In particular, the lengths of the sub-
intervals are of order at least h—P, where h > 0 is the value of
the bandwidth used to define the multivariate nonparametric
CUSUM statistic. This is to ensure that each sub-interval will
contain enough points to yield a reliable density estimator.
Furthermore, in Algorithm 1 we scan through all time points
between s, +h 7P and e, — h P in the interval (s,, e,.). This is
done for technical reasons, to avoid working with intervals that
have insufficient data, which would be the case when e, — s,
is small.
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Finally, the computational cost of the algorithm is of order
O(T?R - kernel), where R is the number of random intervals
and “kernel” stands for the computational cost of calculating
the value of the kernel function evaluated at one data point.
The dependence on the dimension p is only through the
evaluation of the kernel function. Additionally, Algorithm 1
has the worst-case memory consumption of order O(T?R).
We highlight that our method is indeed computationally
intensive which can be a problem in practice. One possible
way to overcome this is to use parallel computing, as the
calculations of {Y;*“} can be done in parallel. Alterna-
tively, as pointed out by one reviewer, one can compute
k(X(i) —X(4))/h) fori,57 =1,...,T, and then computing
(7) only requires to calculate cumulative sums. The overall
cost becomes O(T?kernel + RT?). However, this requires a
memory allocation of O(T?p + T?R).

III. THEORY

In this section we prove that the change point estimator
MNP returned by Algorithm 1 is consistent based on the model
described in Assumption 1, under the parameter scaling

RPT2A 2 logé(T),

for any £ > 0; see Theorem 1. In addition, we show in
Lemma 2 that no consistent estimator exists if the above
scaling condition is not satisfied, up to a poly-logarithmic
factor. Finally, in Lemma 3, we demonstrate that the localiza-
tion rate returned by the MNP procedure is nearly minimax
rate-optimal.

A. Optimal Change Point Localization

We begin by stating some assumptions on the kernel £(-)
used to compute the kernel density estimators involved in the
definition of the multivariate nonparametric CUSUM statistic.

Assumption 2 (The Kernel Function): Let £ : RP — R be
a kernel function with ||k ||, ||£||2 < oo such that,

(i) the class of functions

Fe o) = {&("ET_) crEX,h> e}

from R? to R is separable in L., (R?), and is a uniformly
bounded VC-class with dimension v, i.e. there exist
positive numbers A and v such that, for every positive
measure () on RP and for every u € (0, ||£]|« ), it holds
that

Wy, A oo v
N( f_‘,[f,oo),LQ(Q)’u) < (M) :
(ii) for a fixed m > 0,

oo
b
0

(iii) there exists a constant C; > 0 such that

/ ()=l d= < C.
BP

L sup |k(z)|™dt < oc.
[E(p2
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Assumption 2 (i) and (ii) correspond to Assumptions 4 and 3
in Kim ef al [32] and are fairly standard conditions
used in the nonparametric density estimation literature, see
Giné and Guillou [22], Giné and Guillou [23], Sriperumbudur
and Steinwart [48]. They hold for most commonly used
kernels, such as uniform, Epanechnikov and Gaussian kernels.
Assumption 2 (iii) is a mild integrability assumption on the
kernel.

Next, we require the following signal-to-noise condition on
the parameters of the model in order to guarantee that the
MNP estimator is consistent.

Assumption 3: Assume that for a given £ > 0, there exists
an absolute constant Csyg > 0 such that

kPH2A > Csnr log ™ (T). )

Assumption 3 can be relaxed by only requiring that
kPY2A > Csng log(T)er, for any arbitrary sequence {er}
diverging to infinity, as 7' goes unbounded. As we will see
later, the above scaling is not only sufficient for consistent
localization but almost necessary, aside for a poly-logarithmic
factor in T'; see Lemma 2. This implies that the MNP estimator
is consistent for nearly all parameter scalings for which the
localization task is possible.

Theorem 1: Assume that the sequence { X, }7_; satisfies the
model described in Assumption 1 and the signal-to-noise ratio
condition Assumption 3. Let £(-) be a kernel function satis-
fying Assumption 2. Then, there exist positive universal con-
stants Cr, ¢r 1, ¢7,2 and ¢y, such that if Algorithm 1 is applied
to the sequence { X, } L, using any collection {(a, 5,)}E,
{1,...,T} of random time intervals with endpoints drawn
independently and uniformly from {1,...,7} with

(Br — ar) < CrA almost surely, (10)

r=1,...,R
tuning parameter T satisfying
Cr,1max {h‘plz loglm(T), hAle} <7< 61—12.“5‘&1/2
(11)
and bandwidth h given by
(12)

h = epk,

then the resulting change point estimator {7 }‘:":1 satisfies
[P{I? =K and e = |fix — m| < Cery 26 Plog(T),

‘v‘kzl,...,K}

> 1—3T_c—exp{]0g (%) —%},
R

for universal positive constants C, and c.

The constants in Theorem 1 are well-defined provided that
the constant Cgng in the signal-to-noise ratio Assumption 3
is sufficiently large. Their dependence can be tracked in the
proof of the Theorem 1, given in Section B. In particular,
it must hold that ¢, ; max{1, ¢,”/*} < ¢, 5. We would like
to point out that the choice h = c¢pk is merely to prompt
theoretical optimality on localization error rate. We discuss a
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wider range of choices on h and their theoretical implications
in Section III-B. Practical guidance on the choice of h is
collected in Section IV.

It is worth emphasizing that we provide individual local-
ization errors €, one for each true change point, in order to
avoid false positives in the iterative search of change points
in Algorithm 1. Using (1) and setting

our result further yields the general localization consistency
guarantee defined in (4) since, as T' — oo,

€ log(T") Ce  log(T)
< Ce < —
AkPT2 = Csnr log' (T

A=
where the second inequality follows from the definition of &
in (3), and convergence follows from Assumption 3.

The tuning parameter 7 plays the role of a threshold for
detecting change points in Algorithm 1. In particular, for
the time points with maximal CUSUM statistics, if their
CUSUM statistic values exceed 7, then they are included
in the change point estimators. This means that, with large
probability, the upper bound in (11) ought be smaller than
the smallest population CUSUM statistics at the true change
points, and the lower bound in (11) should be larger than the
largest sample CUSUM statistics when there are no change
points. In detail, the upper bound is determined in Lemma 10,
and the lower bound comes from Lemmas 7 and 8. Lemma 7
is dedicated to the variance of the kernel density estimators at
the observations, whereas Lemma 8 focuses on the deviance
between the sample and population maxima. Lastly, the set of
values for 7 is not empty, by the inequalities

3

1:1-__1;‘1_17/2 lc»gl/2 (T)< CT‘I1c§.:p/2.«c_p/2 loglﬂ(T) <cr_.;mA1/2
and
cr,1 max{l, cgpﬂ} < €r 2.

The lower bound on the probability in (1) tends to 1, as T’
grows unbounded, provided that the number R of random
intervals (e, 3y) is such that

Rz % log (%) .

With this, we remark that the computational complexity is
therefore of order O(A2.T/A-log(T/A)-kernel), by noticing
that the interval lengths are upper bounded by C'rA. Since the
procedures in random intervals are parallelable, one may run
Algorithm 1 in parallel and the computational complexity is
of order O(A? - kernel).

The assumption (10) is imposed to guarantee that each of
the random intervals used in the MNP procedure contains a
bounded number of change points. Thus, if K = O(1), this
assumption can be discarded. More generally, it is possible to
drop this assumption even when A = o(T"), in which case
the MNP estimator would still yield consistent localization,
albeit with a localization error inflated by a polynomial factor
in T/A, under a stronger signal-to-noise ratio condition.
Assumptions of this nature are commonly used in the analysis

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

of the WBS procedure. For a discussion on the necessity
of assumption (10) in order to derive optimal rates, see
Padilla ef al. [40].

Remark 2 (When k = 0): Theorem 1 builds upon the
assumption that x > 0, which implies that there exists at
least one change point. In fact, an immediate consequence
of Step 1 in the proof of Theorem 1 is the consistency for the
simpler task of merely deciding if there are change points or
not. To be specific, if there are no true change points, then
with the bandwidth and tuning parameter satisfying

h > (log(T)/T)"/
and
T > ¢rqmax {h—P/? log'/2(T), h TW} ,
it holds that
P{K =0} — 1,

as T" goes unbounded.

B. Change Point Localization Versus Density Estimation

We now discuss how the change point localization problem
relates to the classical task of optimal density estimation. For
simplicity, assume equally-spaced change points, so that the
data consist of K independent samples of size A from each
of the underlying distributions.

If we knew the locations of the change points — or, equiva-
lently, the number of change points — then we could compute
K kernel density estimators, one for each sample. Recalling
that we assume the underlying densities to be Lipschitz and
using well-known results about minimax density estimation,
choosing the bandwidth to be of order

(log(A) ) 1/(p+2)
hl =

A

would yield K kernel density estimators that are minimax rate-
optimal in the L.-norm for each of the underlying densities.
In contrast, the choice of the bandwidth for the change point
detection task is

hopt = K,

as given in (12). In light of the minimax results established in
the next section, such a choice of hop; further guarantees that
the localization rate afforded by the MNP algorithm is almost
minimax rate-optimal.

In virtue of Assumption 3 and the boundedness assumption
on the densities, it holds that

hy < hopt.

The choice of bandwidth for optimal change point localiza-
tion in the present problem is no smaller than the choice for
optimal density estimation. In particular, the two bandwidth
coincides, i.e. hiy = hgpt, when the signal-to-noise ratio
is smallest, i.e. when Assumption 3 is an equality. As we
will see below in Lemma 2, change point localization is not
possible when the signal-to-noise ratio Assumption 3 fails,
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up to a slack factor that is poly-logarithmic in 7. As a result,
hi and hepglog®(A) are of the same order (up to a poly-
logarithmic term in T") only under (nearly) the worst possible
condition for localization. On the other hand, if  is vanishing
in T at a rate slower than (]og(A)/A)I/(pH) (while still
fulfilling Assumption 3), then change point localization can
be solved optimally using kernel density estimators that are
suboptimal for density estimation, since they are based on
bandwidths that are larger than the ones needed for optimality.
Thus we conclude that the optimal sample complexity for the
localization problem is strictly better than the optimal sample
complexity needed for estimating all the underlying densities,
unless the difficulty of the change localization problem is
maximal, in which case they coincide. At the opposite end of
the spectrum, if x is bounded away from 0, then the optimal
change point localization can still be achieved using biased
kernel density estimators with bandwidths bounded away from
ZEro.

More generally, and quite interestingly, our analysis reveals
that there is a rather simple and intuitive way of describing
how the difficulty of density estimation problem relates to the
difficulty of consistent change point localization, at least in
our problem. Indeed, it follows from the proof of Theorem 1
(see also (11) in the statement of Theorem 1) that, in order
for MNP to return a consistent — and, as we will see shortly,
nearly minimax optimal — estimator of the change point, the
following should hold:

KVA > v 4+ = b P21og!/?(T) + hV/A. (13)

Assuming for simplicity log(A) = log(T"), the right hand
side of the previous expression divided by /A precisely
corresponds to the sum of the magnitudes of the bias and of
the random fluctuation for the kernel density estimator over
each sub-interval, both measured in the L..-norm. From this
we immediately see that the MNP procedure will estimate
the change points optimally provided that x, the smallest
magnitude of the distributional change at the change point,
is larger than the L., error in estimating the underlying den-
sities via kernel density estimation, assuming full knowledge
of the change point locations. Though simple, we believe that
this characterization is non-trivial and illustrates nicely the
differences between the task of density estimation of that of
change point localization.

We conclude this section by providing some rationale as to
why the optimal choice of h for the purpose of change point
localization happens to be x, which in light of the inequality
(13), is the largest value h is allowed to take in order for MNP
to be consistent. We offer two different perspectives.

o (Localization error). It can be seen in Lemma 15 or
in inequality (69) in the proof of Theorem 1 that the
localization error is such that

ke{l,... K}

Therefore, the larger the bandwidth h is, the smaller the
localization error.
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 (Signal-to-noise ratio). Since we require 74 < KVA,
it needs to hold that
kZhPA > log(T);

since in (30) in the proof of Lemma 8 we require

iy Celog(T)V2ky kP < 7,

where V,, = 7P/2(T'(p/2 + 1))~! is the volume of a unit
ball in RP, it needs to hold that

KPR2A > log(T).

Therefore, the larger the bandwidth k is, the smaller &
and A can be.

C. Minimax Lower Bounds

For the model given in Assumption 1, we will describe low
signal-to-noise ratio parameter scalings for which consistent
localization is not feasible. These scalings are complementary
to the ones in Assumption 3, which, by Theorem 1, are
sufficient for consistent localization.

Lemma 2: Let {X (t)}I_, be a sequence of random vectors
satisfying Assumption 1 with one and only one change point
and let PT , denote the corresponding joint distribution. Then,
there exist universal positive constants C;, Cy and ¢ < log(2)
such that, for all T" large enough,

inf sup Ep (| — n(P)|) = A/4,
1 PeQ
where

Q:Q(Cl,cg,c):
{PEA : A <T/2, k< Cy, KPT2A < ¢, Cpip < Ca},

the quantity 17(P) denotes the true change point location of
P € Q and the infimum is over all possible estimators of the
change point location.

The above result offers an information theoretic lower bound
on the minimal signal-to-noise ratio required for localization
consistency. It implies that Assumption 3 used by the MNP
procedure, is, save for a poly-logarithmic term in 7', the
weakest possible scaling condition on the model parameters
any algorithm can afford. Thus, Lemma 2 and Theorem 1
together reveal a phase transition over the parameter scalings,
separating the impossibility regime in which no algorithm is
consistent from the one in which MNP accurately estimates
the change point locations. We conjecture that the logarithmic
gap is due to a loose lower bound and the upper bound is
tight. It remains an open problem to close this gap.

Our next result shows that the localization rate achieved
by Algorithm 1, under the tuning parameters specified in
Theorem 1, is indeed almost minimax optimal, aside possibly
for a poly-logarithmic factor, over all scalings for which
consistent localization is possible.

Lemma 3: Let {X (t)}]_, be a sequence of random vectors
satisfying Assumption 1 with one and only one change point
and let PT, denote the corresponding joint distribution.
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Then, there exist universal positive constants Cy and C5 such
that, for any sequence {(r} satisfying limp_, o, {7 = oo,

. . 1 1 _
L?ifﬁ‘é%]EPU"?_ﬂ(P)l) 2 mﬂ{lai[w]e 2}:

where V, = 7/2(T(p/2 + 1))~ ! is the volume of a unit ball
in RP,

Q - Q(Ola 021 {CT}) =
{Pia: A<T/2, 8 <Cr, kPP2VIA > (1, Cuip < Ca},

the quantity 77(P) denotes the true change point location of
P € Q and the infimum is over all possible estimators of the
change point locations.

The previous result demonstrates that the performance of the
MNP procedure is essentially non-improvable, except possibly
for a poly-logarithmic term in 7. In particular, adapting
choosing the bandwidth in a way that depend on the lengths
of the working intervals is not going to bring significant
improvements over a fixed choice.

IV. CHOICE OF TUNING PARAMETERS IN PRACTICE

In this section, we discuss the choice of the tuning para-
meters involved in Algorithm 1. The first tuning parameter
is R, the number of random intervals. Based on Theorem 1,
we should choose R > Llog(%). If A =< T then this
becomes R 2 1. However, both A and the constants in these
inequalities are unknown. In all of our experiments we set
R = 50 and notice that Algorithm 1 is not sensitive to R
for the examples considered here. However, guided by our
theory, for problems where T" increases one might wish to
choose R as a linear function of 7', assuming that A = O(1).
Furthermore, it is worth to address that increasing R only
helps the performance and hence a conservative choice is to
choose large R, if computational resources permit. Once R
is fixed, we independently draw «, uniformly from the set
{1,...,T} for r =1,..., R. Then we generate (3, uniformly
from {ep,..., T} forr=1,...,R.

With regards to the other implementation details of the MNP
method described in Algorithm 1, we use the Gaussian kernel
and set b = 5 x (301og(T)/T)'/(P+2). The intuition behind
this choice comes from Theorem 1. As stated there, one needs
to choose h = k. However, by Assumption 3 we require x 2
(log(T) /A)Y/®P+2) = (301og(T) /T)/®+2) if A ~ T/30.
Here, the constants 30 and 5 are ad-hoc that we find to work
well in practice.

With fixed h, we then run Algorithm 1 with 7 = 0 to
produce a binary tree where every node corresponds to a
potential change point. This is useful since then for any 7 > 0
we can run Algorithm 1 by simply pruning the tree. We then
choose m = 30 and sequence of values of T corresponding to
the m largest CUSUM statistics in the tree. This produces a
sequence of nested sets

So=0cCc S cC...C 8y,

corresponding to the different values of . We then bor-
row some inspiration from the selection procedure in
Padilla et al. [40]. Specifically, we start from S;, with i = m,
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and for every 7 € S;\S;_1 we decide whether 7 is a change
point or not. If at least one element 7 € S;\S;_1 is declared
as a change point, then we stop and set C = S; as the set of
estimated change points. Otherwise, we set ¢ = m — 1 and
repeat the same procedure. We continue iteratively until the
procedure stops, or 2 = 0 in which case C = (). The only
remaining ingredient is how to decide if 7 € S;\S;_1 is a
change point or not. To that end, we let 71y, 7j2) € Si—1,
such that

7l € [y, fiz)] and (), fi)) N Si—1 = 0.

If <7 (§>7') for all i € S;_4, then we set 7j;1) = 1
(7jc2y = T'). Then, we independently draw v; uniformly from
{v eRP : |v| =1} for Il = 1,...,N, and we calculate
the Kolmogorov—Smirnov (KS) statistic (for instance, see
Padilla et al. [40])

a = KS({v] X(1)}7

Ay +1° {'UITX(t)}mz} )s

f+1

and the corresponding p-value which we compute as P,
exp(—2a?). Next we sort {P;} as Py < Py <
P(ny. Inspired by Benjamini and Hochberg [5], we declare 7
as change point if there exists k € {1,..., N} such that

A

Py < 2o, (14)

N
with @ = 0.0005. The choice o« = 0.0005 is due to the fact
that we do multiple tests for different values of T and their
corresponding estimated change points. The number of tests
is in principle random. We choose the value 0.0005 since
(1 — 0.0005)%° =~ 0.99, and we use as an ad-hoc rule that
there are at most 20 change points. Also, in our experiments,
we set N = 200. We acknowledge that when p is large, better
ways of choosing N might be necessary, as there are more
directions to choose from for larger p.

Furthermore, it is worth pointing out that our approach
above, based on false discovery rate using ideas from
Benjamini and Hochberg [5], is heuristic and does not
have statistical guarantees. In fact, the test statistics that
we calculate are not independent, hence the rule in (14) is
not theoretically justified, even though the resulting approach
works well in practice as it can be seen in the next section.

Finally, if necessary, one may further improve the numerical
performance by cross-validation on a grid of h.

V. EXPERIMENTS

In this section we describe several computational exper-
iments illustrating the effectiveness of the MNP procedure
for estimating change point locations across a variety of
scenarios. We organize our experiments into two subsections,
one consisting of examples with simulated data and the other
based on a real data example. Code implementing our method
can be found in the R (R Core Team [45]) package available
at https://github.com/hernanmp/RMNCP.

A. Simulations

We start our experiments section by assessing the per-
formance of Algorithm 1 in a wide range of situations.
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We compare our MNP procedure against the energy based
method (EMNCP) from Matteson and James [36], the spar-
sified binary segmentation (SBS) method from Cho and
Fryzlewicz [14], the double CUSUM binary segmentation
estimator (DCBS) from Cho [13], and the kernel change point
detection procedure (KCPA)(Celisse ef al. [8]; Arlot ef al. [3]).

As a measure of performance we use the absolute error
|K — K|, averaged over 100 Monte Carlo simulations, where
K is the estimated number of change points returned by
the estimators. In addition, we use the one-sided Hausdorff
distance

d(C)|C) = maxmin |z — 7|,
neC pel
where C = {m,...,mi} is the set of true change points
and C is the set of estimated change points. We report the
medians of both d(C|C) and d(C|C) over 100 Monte Carlo
simulations. We use the convention that when C = (), we define
d(C|C) = oo and d(C|C) = —oo.

With regards to the implementation of the EMNCP
method, we use the R (R Core Team [45]) package
ecp (James and Matteson [29]). The calculation of the
change points is done via the function e.divisive()
with its default choice of tuning parameters. Further-
more, the methods SBS and DCBS methods we use the
R (R Core Team [45]) package hdbinseg via the functions
sbs.alg() and dcbs.alg (). Furthermore, for KCPA we
use the R (R Core Team [45]) package KernSeg and the
function KernSeg_MultiD() with the choices Kmaz =
20 (maximum number of points), min.size = 2 (minimum
size between change points), and with the choice of the
Gaussian Kernel.

As for the MNP method described in Algorithm 1 we use
the tuning parameters as described in Section IV.

To evaluate the quality of the competing estimators, we con-
struct several change point models. In each case, we make
choice of K and consider T" € {150,300} and p € {10, 20}.

a) Scenario 1: We generate data as

X(8) = p(t) +e(t), te{l,....T},
where €(t) ~ N(0,I,) and I, is the p x p identity matrix.

Moreover, the mean vectors satisfy

(f) B L‘(D) te Ay UA3,
=90 otherwise,

where A; = [1, |T/3]], Az = [1+ L2T/3A,T], v(® =0 e Rp,
and 1;;1) =1forje{l,...,p/2} and vj.l = 0 otherwise.

b) Scenario 2.: We define A; = [1 + (j —
)|T/7],3|T/7]]forj=1,...,6 and A7 = [1+6|T/7|,T].
This gives seven roughly evenly spaced segments that we use
to generate data as

X(t)=p(t) +et), te{l,...,T}

u(t) = {Sm

where

te Aj, for j odd,
otherwise,
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Time Time

Fig. 1. From left to right and from top to bottom, the first five plots illustrate
raw data generated from Scenarios 1 to 5, respectively, with one realization
each. In each case, T' = 300 and p = 20, with the x-axis representing the
time horizon, and the y-axis the values of each measurement. Different curves
in each plot are associated with different coordinates of the vector X (). The
right panel in the third row illustrates the raw data and estimated change
points by MNP for the example in Section V-B.

with v = (0.2,...,0.2)T € RP. Furthermore, the errors
satisfy v3e(), ..., V3e(T) "5 Mt(1,, 3), where Mt(I,, 3)
is the multivariate ¢-distribution with the scale matrix I, and
the degrees of freedom three.

c) Scenario 3: We generate observations from the model

X " N, =), tefl,....T},

where
0.11, +0.9117 ¢t € A; U Ay U Ag,
L(t)=¢2[,+08117 te AyU Ay,
I, te Az U As,

with Ay = [1, [T/7]}, Az = [[T/7) + 1, |T/7) + |T/14]],
As =[|T/7|+|T /14|41, |T/7]|+3|T/14|], Aa = [|T/7 |+
3|T/14| 41, |T/7]|+4|T/14)], As = [|T/7| +4|T/14]| +1,
\T/7) + 6[T/14]], A¢ = [IT/7] + 6/T/14) + 1,6[T/7]],
and Ay = [6|T/7] + 1,T]. Thus, the segments between the
change points are of size roughly T'/7,T/14,T/7,T /14, T /7,
2T /7 and T'/7.

d) Scenario 4: Llet A1[1,|T/3]], A2 = [|T/3] +
1,2|T/3]], and A3 = [2|T/3| + 1, T]. Then the observations

are constructed as X (¢) iLd. N(0,1.251;) for t € A; U As,
and for t € A; we have
X () {ue = 1} "X N0.5-1,1,)
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Fig. 2. Densities taken from Padilla er al. [38] and used in Scenario 5.
TABLE 1
SCENARIO 1
Method ~ Metric T =300 T =300 T=150 T =150
p=20 p=10 p=20 p=10
MNP |K — K| 0.0 0.0 0.0 0.0
EMNCP |K — K| 0.1 0.0 0.0 0.0
KCPA |K — K| 1.4 0.9 1.3 1.0
SBS |K - K| 2.0 2.0 2.0 2.0
DCBS |K — K| 0.0 0.0 0.0 0.1
MNP  d(C[C) 1.0 2.0 1.0 2.0
EMNCP  d(C|C) 0.0 1.0 0.0 0.0
KCPA  d(Clc) 1750 1190 60.0 62.0
SBS  d(C|C) 00 00 00 00
DCBS  d(C|C) 1.0 1.0 1.0 3.0
MNP  d(C[C) 1.0 2.0 1.0 2.0
EMNCP  d(C|C) 0.0 1.0 0.0 0.0
KCPA  d(C|C) 1.0 19 1.0 13.0
SBS  d(C|C) —00 —o00 —o00 —00
DCBS  d(C|C) 1.0 1.0 1.0 3.0
and
iid.

X (t)[{ue = 2} K N(—05-1,1,),

where the i.i.d. random variables {u.} satisfy P(u; = 1) =
Plus =2)=1/2.

e) Scenario 5: The vector X (t) satisfies X ;(t) ~ g1 for
te Ay Az and forall j € {1,...,p}. In contrast, if £ € A3

we have that
g2, J € JL]-:v 2}1
X;(t) ~ { :
g1, otherwise.

Here g; and go are the densities shown in the left and right
panels in Figure 2, respectively. Moreover, the sets A;, As and
Az are the same as in Scenario 4.

Figure 1 illustrates examples of data generated from each
of the scenarios that we consider. This is complemented by
the results in Tables I-V. Specifically, we observe that for
Scenario 1, a setting with mean changes, the best methods
seem to be MNP, DCBS and EMNCP.

Interestingly, from Table II, we see that KCPA and MNP
outperform the other methods. This setting presents a bigger
challenge than Scenario 1, as it involves a heavy-tailed distri-
bution of the errors and smaller changes in mean.

Scenario 3 posses a situation where the mean remains
constant and the covariance structure changes. From Table III,
we observe that MNP ttains the best performance, followed
by EMNCP.
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TABLE 11

SCENARIO 2
Method  Metric T =300 T =300 T=150 T =150
p=20 p=10 p=20 p=10
MNP |K - K| 34 2.1 57 48
EMNCP |K — K| 35 4.7 5.9 59
KCPA |K — K| 4.9 4.6 5.0 5.1
SBS |K — K| 6.0 6.0 6.0 6.0
DCBS |K — K| 6.0 6.0 6.0 59
MNP  d(C|C)  160.0 45 00 85
EMNCP  d(C|C)  167.0 00 00 00
KCPA  d(Clc) 2120 225 107 1110
SBS d(aC) o0 o0 o0 o0
DCBS d(C|C) %) o0 00 00
MNP  d(C|C) 12.0 18.0 —00 3.0
EMNCP  d(C|C) 3.0 —0 —o0 —o0
KCPA  d(C|C) 4.0 17 3.0 4.0
SBS  d(C|C) —00 —00 —00 —00
DCBS d(C|C) —00 —00 —00 —00

TABLE III

SCENARIO 3
Method  Metric T =300 T=2300 T=150 T =150
p=20 p=10 p=20 p=10
MNP |K — K| 45 4.6 5.4 5.2
EMNCP |K — K| 45 49 5.8 5.7
KCPA |K — K| 6.0 6.0 6.0 59
SBS |K - K| 6.0 6.0 6.0 6.0
DCBS |K — K| 6.0 6.0 6.0 6.0
MNP  d(C|C) 2080  208.0 103 104
EMNCP  4(C|C) 2100 2100 00 00
KCPA d(C|C) 0 o0 00 00
SBS d(aC) 0 0 00 00
DCBS d(C|C) 0 00 00 00
MNP  d(C[C) 1.0 2.0 2.0 2.0
EMNCP  d(C|C) 1.0 1.0 —o0 —00
KCPA d(C|C) —00 —00 —00 —00
SBS d(C|C) —00 -0 —00 —00
DCBS d(C|C) —00 —00 —00 —00

In Table IV, we also see the advantage of the MNP method
which is the best at estimating the number of change points.
This is in the context of Scenario 4 where the mean and
covariance remain unchanged and the jumps happen in the
shape of the distribution.

Finally, Scenario 5 is an example of a model that does not
belong to a usual parametric family. In such setting, Table V
shows that MNP, KCPA and EMNCP seem to provide better
estimation of the number of change points and their locations
as compared to the other two methods.

Overall, we can see that SBS and DCBS, two methods
designed for mean change point detection, are not robust in
the cases where the changes are not in mean or the noise is
not sub-Gaussian. MNP, EMNCP and KCPA are, arguably, the
best performing methods. KCPA and EMNCP are competitive
and sometimes outperform MNP.
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TABLE IV

SCENARIO 4
Method ~ Metric T =300 T=300 T=150 T =150
p=20 p=10 p=20 p=10
MNP |K — K| 0.7 0.9 11 1.4
EMNCP |K — K| 1.8 1.8 2.0 1.8
KCPA |K — K| 12 1.1 1.4 12
SBS |K - K| 2.0 2.0 2.0 2.0
DCBS |K — K| 2.0 2.0 1.9 2.0
MNP  d(C[C) 38.0 68.0 43.0 65.0
EMNCP  d(C|C) 00 00 00 00
KCPA  d(C|C) 990 1120 72.0 81.0
SBS d(C|C) 0 o0 00 00
DCBS  d(C|c) o ) ) oo
MNP  d(C|C) 36.0 33.0 7.0 6.0
EMNCP  d(C|C) —00 —00 —c0 00
KCPA  d(C|C) 3.0 34 1.0 22.0
SBS d(C|E) —00 —00 —00 —00
DCBS d(C|6) —00 —00 —00 -0

TABLE V

SCENARIO 5
Method ~ Metric T =300 T =300 T=150 T =150
p=20 p=10 p=20 p=10
MNP |K — K| 0.8 0.7 13 1.0
EMNCP |K — K| 1.4 0.8 1.6 12
KCPA |K — K| 1.1 1.2 1.1 1.1
SBS |K - K| 2.0 2.0 2.0 2.0
DCBS |K — K| 2.0 2.0 2.0 1.9
MNP  d(C[C) 26 46.0 50.0 49.0
EMNCP  d(C|C) 00 22.0 00 66.0
KCPA  d(Clc) 1700  156.0 69 55.0
SBS d(C|C) 0 o0 0o 00
DCBS  d(C|c) o ) ) oo
MNP  d(C|C) 26 34.0 6.0 9.0
EMNCP  d(C|C) —00 1.0 —00 1.0
KCPA  d(C|C) 41.0 8.0 17 3.0
SBS d(C|E) —00 —00 —00 —00
DCBS d(C|6) —00 —00 —00 -0

B. Real Data Example

The experiments section concludes with an example using
financial data. Specifically, our data consist of the daily
close stock price, from Jan-1-2016 to Aug-11-2019, of the
20 companies with highest average stock price from the
S&P500 market. The data can be downloaded from Microsoft
Corp. (MSFT) [37]. Our final dataset is then a matrix
X € RT*P_ with T = 907 and p = 20.

We then run MNP, KCPA, and procedure and the estimator
from Matteson and James [36]. The implementation and details
are the same as those in Section V-A. Our goal is to detect
potential change points in the period aforementioned and
determine if they might have a financial meaning.

We find that our estimator localizes change points at the
dates May-17-2016, Mar-2-2017, Aug-7-2017, Dec-21-2017,
Jun-1-2018 and Jan-24-2019. The first change point seems to
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correspond with the moment when President Donald Trump,
while still a presidential candidate, outlined his plan for the
USA vs. China trade war (see e.g. Burns et al., 2019). The
second change point, Feb-21-2017, might be associated with
Trump signing two executive orders increasing tariffs on the
trade with China; the date Aug-7-2017 could correspond to the
bipartite agreement on Jul-19 2017 to reduce USA deficit with
China; the date Dec-21-2017 could be explained by the threats
and tariffs imposed by Mr. Trump to China in January of 2018.
The other two dates are also relatively close to important dates
in the USA vs. China trade war time-line. The raw data, scaled
to the interval [0, 1], and the estimated change points can be
seen in the right panel in the third row in Figure 1.

As for EMNCP, we find a total of 22 change points with
spacings between 30 and 58 units of time. This might suggest
that some of the change point are spurious as the minimum
spacing parameter of the function e.divisive() is by
default set to 30.

Finally, when comparing with KCPA, we notice that the
scores that the function KernSeg_MultiD () outputs do not
have an inflection point. We suspect that this could be avoided
with a better choice of the tuning parameters. Nevertheless,
we look at the model provided by KCPA consisting of six
change points, the same number of change points that MNP
produced. The six change points estimated by KCPA corre-
sponds to the dates Jun-29-2016, Apr-27-2017, Oct-5-2017,
Jan-10-2018, Jun-1-2018, and Mar-14-2019. These are roughly
similar to the dates estimated by MNP with an exact match
on Jun-1-2018.

VI. DISCUSSIONS

In this paper, we tackle a multivariate nonparametric change
point detection problem, which aims to provide with change
point estimators robust against model mis-specification. The
computational-efficient method we propose has matched min-
imax lower bounds, off by logarithm factors, in terms of
both the signal-to-noise ratio condition and the localization
rate. The lower bounds are also presented in this paper,
which is self-contained. The theoretical findings are backed
up by extensive numerical experiments, including a real data
example.

The distributions in this paper are assumed to have Lebesgue
densities. For distributions of discrete data, one may consider
using other kernels designed to estimate discrete distribu-
tions (e.g. Rajagopalan and Lall [46] and Kokonendji and
Kiesse [33]). The algorithms developed in this paper can
be straightforwardly extended to the discrete distributions by
using these kernels, but the theoretical results would rely on
different techniques from those in Section A.

Another possible extension of this this paper is to character-
ize change points by other measures, instead of the supreme
norm of the density function differences. Different measures
would require different methods, the algorithmic efficiency and
theoretical optimality are remained interesting and open.

Finally, we would like to reiterate that the purpose of
this paper is to estimate the locations of the change points
accurately. If one only wishes to estimate the number of
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change points accurately, without requiring upper bounding
the localization errors, then this can be formed as a testing
problem, for which we conjecture that a consistent result may
hold under a weaker signal-to-noise ratio condition.

APPENDIX A
LARGE PROBABILITY EVENTS

In this section, we deal with all the large probability events
occurred in the proof of Theorem 1. Lemma 4 is almost
identical to Theorem 2.1 in Bousquet [6] and therefore we
omit the proof. Lemma 5 is an adaptation of Theorem 2.3 in
Bousquet [6] and Proposition 8 in Kim ef al. [32], but we
allow for non-i.i.d. cases. Lemma 6 is a non-i.i.d. version
of Proposition 2.1 in Giné and Guillou [23]. Lemma 7 is
to control the deviance between the sample and population
quantities and provides an lower bound on a large probability
event. Lemma 8 is to provide a lower bound on the probability
of the event that the data can reach the maxima closely enough.
Lemma 9 is identical to Lemma 13 in Wang ef al. [54],
controlling the random intervals selected in Algorithm 1.

Lemma 4: Let D be the o-field generated by { X (i) }7_;, D%
be the o-field generated by {X (i)} \ {X (¢)} and E%.(-) be
the conditional expectation given D%, for all t € {1,...,T}.
Let (Z,Z%,...,Z}) be a sequence of D-measurable random
variables, and {Z;}Z_, be a sequence of random variables
such that Z; measurable with respect to D%, for all k. Assume
that there exists « > 0 such that for all k = 1,...,T, the
following inequalities hold

Z, < Z —Zyas.,, EE(Z;)>0 and Z, <u as.. (15)
Let o be a real value satisfying o2 > Yr_ EX{(Z})?}
almost surely and let v = (1 + u)E(Z) + o2. If

T
N(Z-2Zy)<Z as,

k=1

(16)

then for all = > 0,
P{Z > E(Z)+ V2vz +z/3} < e ".

Lemma 5: Assume that {X (i)}, satisfy Assumption 1.
Let F be a class of functions from R? to R that is separable
in L. (RP). Suppose all functions g € JF are measurable
with respect to P, , k € {1,..., K + 1}, and there exist B,
o > 0 such that for all g € F

Er, {9’} — (Ep, {9})* <o® and |g] < B

T , - )

Let Z = supycr | > imq wilg(X (1)) —Ep,{g(X(9))}]|. with
23;1 w? = 1 and max;—1, 7 |w;| = w. Then for any £ > 0
, we have

P {z > E(Z) + V2{(1 + wB)E(Z) + 0%}z + I/3} <e

Proof: For all k € {1,...,T}, define

Z = sup [ wilg(X (i) — Ep{g(X(i))}]

9€F |izk
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and

T
Zi = | wilgr(X () — Ep{gx (X (0)}]| — Zr,

i=1
where g denotes the function for which the supremum is
obtained in Z;. We then have

ZL<Z— 2
T :
<130, wilao(X() — Er {ao(X @)}
13", wilao(X (@)~ Er {oo(X (i)}
< |wklgo(X (k) — Ep {go(X (k))}]| < wB  as.,

where gp is the function for which the supremum is obtained
in Z. Moreover, we have

T
Er(Zi) = | ) Ef{wi(ge(X () — Er{gr(X (@)1} — Za
i=1

:0,

which concludes the proof of (15) with u = B. In addition,

T
(T =12 =33 wilao(X(5)) — Er, {gx(X ()}]

k=1 i#k
T T
<31 wilao(X 6) ~Erdan(X N[ <Y 2k,
k=1|i#k =1

which leads to (16). Finally, since

ZZZIE’%{(Z:Z)?} < Z:Zl Vark {wygr(X (k))}
= mgXS‘;PVar{g(X ()}

< o?

¥

it follows due to Lemma 4 that
P {z > E(Z) + V2{(1+ wB)E(Z) + 0%}z + I/3} <e®,

for all = > 0. O

Lemma 6: Let F be a uniformly bounded VC class of
functions, and measurable with respect to all P, , k =
1,...,K + 1. Suppose

sup Varp, (g) < o2, sup|lgllec <B, and 0<o < B.
geF geF

Then there exist positive constants A and » depending on
F but not on {P,, } <! or T, such that for all T € N,

T
D wi{g(Xi) — E(g(Xy))}
i=1
<C {wa log(2AwB/0) + \/;U\/log@AwB/o)} :

. : T
where C' is a universal constant, > . w? =

max=1,...T |wi| = w.
The proof of Lemma 6 is almost identical to that of
Propostion 2.1 in Giné and Guillou [23], except noticing that

T
Diet w? =L

sup E
geF

1 and
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Foranyz e RP, 0 <s<t<e<T and h > 0, define

TEEL N e—t t () —
31;;(5) = mZJZEH fin(z)

t—s

mzj=t+1 Fin(z),

o) = e e (2]

and the expectation is taken with respect to the distribution P;.
Lemma 7: Define the events

17)

where

Al (FY'.! h’)
_ \FE,e _ rs.e <
{Dgs{t—h—?ﬁ-h—P{egT o= Yo @) = fin(2)] < 7}
and
A‘Z (FT: h) =

-4

> (Fin(2)—

Jj=s+1

su

1
max P
{Ufs{t—h—i’{t—l—h—i’{egTzeRp VE— 8§

<}

Under Assumptions 1 and 2, we have that

]P{Al (Oh—mm, h)} >1-T°¢

fin(2))

and
]11'{,42 (C‘h‘pf?\/log(T),h)} >1-T,

where C, ¢ > 0 are absolute constants depending on ||£|| .
A and v.
We remark that the proof here is an adaptation of
Theorem 12 in Kim et al. [32].
Proof: For any fixed = € RP, it holds that

Y4 (x) — () =

2 e () e ()
as)

where

1!’7(3_2)_&_3): j=s+1,...,t,
wy =

- ZQTE)_TthT" j:t+1,...,8,
satisfying that

e

> wi=1 and

max |w;| < kP2,
j=s+1 e

j=sa+1,...

Step 1. Let %3 p, :
and

RP — R be % p(-) = k(A 1z — h1))

Fen=1{h"P%op: € X}

1933

be a class of normalized kernel functions centred on A and
bandwidth h. It follows from (18) that, for each s,t, e,

sup|V;*(2) — fii(@)] =

> wilaX )~ ElgX G| = W

sup
g€Fin

It is immediate to check that for any g € F £hs
1glloo < R7P|[Klloo-

Due to the arguments used in Theorem 12 in Kim ef al. [32]
and Assumption 2 (i), for every probability measure @) on
R? and for every ( € (0,hP||k||~), the covering number
N(Fg n, La(Q), ¢) is upper bounded as

2Ap||Kl \ "
hP¢ ’

Under Assumption 2, due to Lemma 11 in Kim et al. [32],
it holds that for any j =1,...,T,

E{(h"%n(X(3))"} < Cih7,

where C; is an absolute constant.
It follows from Lemma 5 that for any = > 0,

]P{Ws,t,e. < ]E(Ws,t,e,)+

VAU + hP2 [k )E(We ) + Crh P} +2/3)
>1—e "

sup V(P 1a(@).0) < (

(19)

Step 2. We then need to bound E(W,; .), where the expec-
tation is taken on the product of Py ® ... ® Pr. Let F =
{9—a: g€ Fenae |[—hP|k|ls, hP||k]lcc]}- Then for
any a € [—h7P||&||c, 2P| K| o) it follows from the proof of
Theorem 30 in Kim ef al. [32] that

sup N (F, La(P),a) < (2AR7P||k]|o0/a)" T
P

Applying Lemma 6, we have
—p/2

E(Ws,,t,.e) SC{(V +1)

hr/2 011/2h—p/2
8AR—P/2||k]|
h (v+1)log ( Ollﬂh—P/? .

(20)

Step 3. We now plug (20) into (19) and take = = log(T™),
with m > 4, resulting in

P {Ws‘.t,e < Cyh~P/? 1og1f?(T)} >1—CT™™,

where Cy, C3 > 0 are absolute constants depending on ||£|| .
A and v. The final claims follow with a union bound argument
over s,t,e.
O
Lemma 8: Under Assumptions 1, 2 and 3, for s <t < e,
define

fi* ()

*
Zget € argmax
zeRP
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With h = ¢k, define the event

By = {max& ax|Fex|-

e—s<Cp

j=1

f:}f (z:,e,t)

<7, (s, e) satisfies Condition .SE},

where Condition S is defined as follows: the interval (s, e€)

is such that either

(a) there is no true change point in (s, e); or

(b) there exists at least one true change point in 7, € (s, €)
satisfying

min {%;rt{nk — s}, wl}'ﬁl.l{ré{e — 7};;}} > 1A,

for some ¢1 > 0;
(c) there exists one and only one change point 7 € (s,€)
satisfying

min{ng — s, e =} < Ce log(T)szn_pn;:z;

or
(d) there exist exactly two change points ng, r+1 € (s, €)
with 7 < mp41 satisfying

m—s < Celog(T)V, k™ Pk

—P
Kk, “, and

e —Mks1 < Celog(T)V2sPr; .

k
Then for
v = C,hVA, 1)
with
O’Y = 20]_,113\.-" Ch, (22)
it holds that
A ey p+1
P{B >1-T3 v,
JL (7)} exp{ (4mOLlp) P 3

for some constant ¢ > 0.
Proof: Fix 0 < s <t <e<T with e—s < CrA.
For case (a), it holds that f, (z) = 0, for all z € R?, and
the claim holds consequently.
For case (b), if )E’:(Z;e,s)‘ < 7, then by the definition of
Zg ¢.1» We have that

max Fin (e
= |Fer(eten)] - e x|
< |Fnres)| <,
which implies that
P max, |Fer x| - [Fri 0] | > 7} =0 @
If | [ (25 e0)| > 7, then
7 < | B ()| < 2min{VE=s, Ve max [f;n(ze)l

(24)
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there exists jo € {1,..., K + 1} such that

fnjo (z;,e.,t) Z f“’i‘jg,h (z;,e.,t) -
= Qmi_n{\ft — 5, \e— t}
cy
= Qmi_n{\ft — 5, \e— t} ’

where 0 < ¢ < 1 is an absolute constant, the first inequality
follows from (34), the second inequality follows from (24),
and the last inequality follows from Assumption 3 and the
choice of ~. _

As for the function fz}f(-), for any 1, x5 € RP, it holds
that

Criph

— Criph

(25)

i) — Foi)
m;‘z&;l/ k—-(y){fj(-ﬂl_h‘y)—
fi(za—hy)}dy —

s Z / k@) f5(z1—hy)—

(e—s)(e—t) 3 T

fi(za—hy)} dy

< 2min{ve —t, vVt — s}Cuip||z1 — 2|,

where the last inequality follows from Assumption 1.

As a result, the function f, (-) is Lipschitz with constant
2min{\/e — t, \/t — s}CLip. Furthermore, defining

(26)

djy = Hg € (Mot + Ly eosmpe} £ 1K) = el

Y
<
T 2min{yt — s,ve — t}OLip H,

and noticing that

d.fo ~ Binomial (n.‘fo-i-l - nj‘m/ fﬂjo (z)dz) )
B z;,c:f,‘.a
where
_ gl
2min{v/t — s,\e — t}CLip
we arrive at
p{ |, max, |Fr0eG)| - i >
—p{ min_ |FE00G) - G| > )
<]P> m_m HX(]) EM tH> 7
ST 2min{y/e—t, V/t—s}CLip
< P(ds, — 0, @1
where the identity follows from the definition of =z ,, the

first inequality follows from (26) and the second 1nequa11ty
follows from the definition of d,.
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In addition, we have that

[

~
#:€:t7 2min{+/t—a, ve—t}CLip

= /B(zt

) fﬂjo(z) dz

ey
#:€:t" 4amin{+/t—a, ve—t}CLip

3/
B(z" -

g,8,tY 4 min{+/t—a,

) fnjo (2)dz

) {f‘”?jg (z:,.e,t)_

e—t}CLip

}dz

cy
4dmin{\/t — s, Ve — t}CLip

Vo, (28)

p+1
- oy
- (4mjn{\£t — s, \e— t}CLip)
where the last inequality is due to (25). Therefore,

P{dj, =0}

<P{d;, < = A

p+1
(4m1n{\/t—s ve—t }C'Llp) Vo)
< ]P{djg < w S fnyo () dz }

- n.‘fo—l)

< exp{ _ (5 . " Fso (2) dz }

scf.’a'

<exp{_é(7m{ )pHV}
- 8 4\£CRAOLip P

where the second and the fourth inequality follow from (28),
and the third by the Chernoff bound (e.g. Mitzenmacher and
Upfal [38]). Combining (23), (27) and (29) results in

A ey p+1
< - —— Vo 5.
=P { 8 (4\/ORACLip) ?

The conclusion follows from a union bound.
Cases (c) and (d) are similar, and we only deal with case
(c) here. Note that

(29)

Fer(X()| - | Fer )

(30)

(zs e, t)

< .«:k\/O log(T)V2kz 2k < v,

where the first inequality follows from Lemma 13 (i) and the
second follows from Assumption 3. The final clalm holds due
to the fact that ft 5 is a smoothed version of foe. O

We mdependently select at random from {1,...,T} two
sequences {am 1ML {Bm }ML |, then we keep the pairs which

satisfy B — am < CgrA, with Cr > 3/2. For notational

simplicity, we label them as {a, }2 |, {3} ;. Let
K
M= ﬂ{ar € Sk, Br € E, for some r € {1,..., R}},
k=1
(31)

where Sg = [ —3A/4, . — A/2] and & = [ + A/2, 1+
3A/4], k =1,...,K. In the lemma below, we give a lower
bound on the probability of M.

1935

Lemma 9: For the event M defined in (31), we have

a2 1o {ion (1) - 221

See Lemma S.24 in Wang ef al. [55] for the proof of
Lemma 9.

APPENDIX B
CHANGE POINT DETECTION LEMMAS AND
THE PROOF OF THEOREM 1

Lemma 10 below provides a lower bound on the maximum
of the population CUSUM statistic when there exists a true
change point. Lemma 11 shows that the maxima of the popula-
tion CUSUM statistic are the true change points. Lemma 13 is
a collection of results on the population quantities. Lemma 14
provides an initial upper bound for the localization error.
Lemma 15 is the key lemma to provide the final localization
rate. The proof of Theorem 1 is collected at the end of this
section.

In the rest of this section, we will adopt the notation

e—t t
o) Zpmert 1)

t—s e
(e—s)(e—1) Zj=t+1 fi(@),
foral0<s<t<e<T and z = RP.
Lemma 10: Under Assumptions 1-3, let (s, ) be an interval
such that e—s < CrA and there exists a true change point
Nk € (s, €e) with

o) =

min{ng — s, € — Nk} > 1,

where ¢y > 0 is a large enough constant, depending on all the
other absolute constants. Then for any h such that

1 (5]
it holds that
ci1kA
o sup || 2 =

Proof: Let z; € argmax, gy |fm (2) = foesa (z)| Due to
Assumption 1, we have that

| fo (21) = frpsr (21)] = Bk > K.

Then by the argument in Lemma 2.4 of Venkatraman [51],
we have that

te it erd /2 —erA 2} 1)‘ - 2\8/1£ G
Next, forany x €« RP, h > 0 and j € {1,...,T}, we have
| f(x) — m(a:)l
—| [ k@i - - )|
< Cin / €(y/h) 1yl dy
< hCuip /R K(2)lzlldz < CripOch, (34)
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where the last inequality follows from Assumption 2 (iii).
Hence, for t € {m +c1A/2,mr — a1 A/2}

= = e—t)(t—s
Feeten) = F(en)] < CuapCety [E =22
S \ (8 - S)CLipCE_h
ci1kA
< — 35
which follows from (32). Finally, the claim follows combining
(33) and (35). O
Lemma 11: Under Assumption 1, for any interval

(s,e) C (0,T) satisfying
Me-1 <8<k < ... < Mktq < € < Mygr1, g=0.

Let

For@).

b € argmax sup
t=s+1,....e zCRP

If

he
- 4OLipOE_1

then b € {n1,...,nx }. B

For any fixed z € RP, if fr(z) > 0 for some
t € (s,e), then fr(z) is either strictly monotonic or
decreases and then increases within each of the interval

(S': nk)a (nka nk-i-l)a ey ("?k+q= B).
Proof: We prove by contradiction. Assume that b ¢

{m,....nx}. Let 2y € argmax, g, |_)?;g,f(x)). Due to the
definition of b, we have

Fen(z)

b € argmax
t=s+1,....e

It is easy to see that the collection of the change points
of {ftn(21)}i_,y; is a subset of the change points of
{ft.n}§=c41- In addition, due to (34), it holds that

it nen = Fo_ynlloo 2 & = 2C1ipCeh 2 #/2,
which implies that the collection of the change points
of {fi.n}f=ey1 is the collection of the change points of

{ft}§=s+1'

It follows from Lemma 2.2 in Venkatraman [51] that

e,

max fs’.eh z1) < max sup
{k,....k+q} " H* t=8+1,....e gemp

fon(z1) <
1 je

which is a contradiction. O

Recall that in Algorithm 1, when searching for change
points in the interval (s,e), we actually restrict to values
t € (s+ h7P,e — h™P). We now show that for intervals
satisfying condition SE from Lemma 8, taking the maximum
of the CUSUM statistic over (s +h P, e — h™P) is equivalent
to searching on (s,e), when there are change points in
(s+h™P,e—h7P).

Lemma 12: Suppose that Assumptions 1 and 3 hold, and
the events A;(v,4) and B(~,,) happens where

4 = Ch™P/%\/10g(T), and ~p = C,hVA
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with C as in Lemma 7, and C,, as in (21). Let (s,e) C (0,T")
satisfy e — s < CRrA. Assume that Condition SE from
Lemma 8 holds, and that

Me—1 =85 = ... < Mrtq = € = Nrtgy1, q=0.
Then
arg max sup jﬂ?’:(x) = argmax sup }E}f(:c)) ,
t=s+h—P,..,e—h-PxcRr! t=s+1,...,e TERP
(36)
and
ArgmaX, gy s, e n-e  max |V5(X ()
= argmax,yy, . max [TOUXG)[. (D

Proof: Firs notice that, due to Lemma 10, there exists
Nk € (s, e) such that

sup f;ﬁh(z)

zZERP

c kA
>
4

ve—s

Furthermore, if
t € (s,e)\(s+max{h™?,Cclog(T)V, rk; *k P}, e—
max{h~?, Cclog(T)V; r;, *s™7}), (38)

then
fin(z)

< 2\/min{e —t,t— s}max;— 1.7 sup |fi.n(2)]
zERP

sup
zeRP

< 2max {h™?/2,[C.log(T) V@i s} -
ci1kA
maxi—1....T SUp [fe.n(2)] < s
where the last inequality follows from Assumption 3. There-

fore, (36) follows.
As for (37), we notice that

j:nllfi{,T ‘?;QE(X(JD‘ > ZS;R;L ‘};‘;;eh(z)

— A

B
c1kA

_ﬁ—’m—m

- c1kA

~ 8/e—s

Moreover, for t satisfying (38), we have

V(X ()|

fin(2)

< 2y/min{e — t, t — sy max;—y 1 Sup, cgs | f1,n(2) |+
YA+ B

< 2max {h—m, \/ C. 1og(T)Vp2n;2m—p} :

max;—i,.. T

< supz < RP +94 +9B

max;—1...7SUP,cpe | ft,n(2)| +74 +7B

and the claim follows once again using Assumption 3. O
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Lemma 13: Under Assumptions 1 and 2, the following
statements hold.

(i) If ny is the only change point in (s, €), then for any £,
< nkmi_n{\fs — Nk, VeE— 7};;} .

(ii) Suppose e—s < CgrA, where Cr > 0 is an absolute
constant, and that

sup }F"U;;fh (s) (39)
€R?

Me—1 <8< = ... g = 0.

(40)

< Mktg = € = Mhtgtls

Denote
Hs e o =IMax sup |fﬂp(£) fﬂp 1(.1:)| k<p < k-l—q}

Then for any £ — 1 < p < k + ¢, it holds that

(=3
sup D fin(@) = fapn(@)| < Crigin. (41)
zcrp (€ — S i—et1
(iii) Assume (40) and ¢ = 1. If
e — s < a1y, (42)
for ¢; > 0, then for any h,
5 |F554(2)] < Versupeno |35, (o)
z
+ 2KV — 8
+ 4\/ e — SOLipCE_h, (43)

where C; > 0 is an absolute constant only depending on
the kernel function.
(iv) Assume (40) and g = 1, then

Fon(2)
< 2v/e — Nrkks1 + 2vmK — sket
4k — sCLipCeh + 4v/e — Nk CripCrh.
Proof: Note that for (i),

maXi—g41,...,e SUP, cgp

SUDgcRre fsfh(x))
\/(e - ’?;)_(Zk —s) Sup, s | /Rp k(W) { Fo(z — hy)—
f‘”?k+1("c - hy)} dy |

< Kg min{\/s — Nk, Ve — T.-'k} .

The claim (ii) follows from the same arguments used in
showing (i) and Lemmas 17 and 19 in Wang et al. [54]. For
the claim (iii), we define

~g,e f“’i‘k+1sh1 t=s+1,...,7,
o fen, t=m+1,...,€
Thus,
(e - T?k)(??k s)
f;keh gnk \/ (f?’?k+1 h — fﬂk,h)

—~sg.€
Me+1,0

o [k = s)(e — Met1)
“V (k1 —s)(e—mk)

1937

\/(6 nk)("}k )(fml, — fon)
gﬂk+1s ) + \/m(fnk“ n— fm,n)

= ‘/_ mc+1, |+2\/M(fnk+ls fnk,h)
<Velf; s, h| + 2/ — skx +4y/k — sCLipCrh,

where the first, second and fourth inequalities follow from the
definition of g gt h, the second follows from (42) and the last
follows from (34)

As for (iv), we define

f-s,le_{fnk:ha t:3+1,...

< valg

s Mk

q., =
b fta t:"?k‘f‘l:---:e

For any t > n, it holds that

- e—1t
on —don = m(ﬂk — ) (o — Sy )
Therefore, for ¢ > ny,
maxt=s+1 € |};8f|
< max{| n| |fm+1 pl} < maxe—si1,. e |a?,f|
—+ Q\an — 8Kk —|—4\£’T,.'k — SOLijE_h
< 2ve — Mrkgy1 + 2k — sk

+ 44/ Mg — SCLipOE_h +4d+/e — nkCLipOE_h-

O
Lemma 14: Let zy € RP, (s,e) C (0,T). Suppose that there
exits a true change point 7 € (s, e) such that

mlﬂ{nk - S € nk} Z C]_A., (44)

> (e1/4) (45)

‘”?k h(zu)

where ¢; > 0 is a sufficiently small constant. In addition,
assume that

s, 78, 4 —7/2
max | Fi(eo)| = |Fta(e0)| < catdie - )72k,
(46)
where c3 > 0 is a sufficiently small constant.
Then for any d € (s, e) satisfying
|d —m| < c1A/32, (47)
it holds that
Fotn(z0)| = | (o) frez0)| (e — )72,

where ¢ > 0 is a sufficiently small constant, depending on all
the other absolute constants.

Proof Without loss of generality, we assume that d = 1,
and f n(z0) = 0. Following the arguments in Lemma 2.6 in
Venkatraman [51], it suffices to consider two cases: (i) nx+1 >
e and (ii) x41 < e.
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Case (i). Note that

nk,h(z )= \/W {fmc n(z0) — fmc+1,h(z0)}

and

E:;(zﬂ):(ﬂk—s)q/ m { Foen(20) = Fruia,n(20) } -

Therefore, it follows from (44) that

N N e—d -8
Fre.n(20) = faln(20) = (1 B %

> cAld — k(e — 5)2F2%, (20)-

T?k,h-( 20)
The inequality follows from the following arguments. Let
u=mn—8 v=e—mn and w =d — ng. Then

_ )= dlm =) A e o2
L [T — cld = mel(e =)

1 (v—w)u_c Aw

\i (u+ww  (u+wv)?
_ w(u+ v) . Aw
Vutwpu(y/v—wu+/(lu+wp) (utv)?

The numerator of the above equals

w(u +v)? — cAw(u + w)v — cAwy/uv(u + w)(v — w)
- ey/uv(u +w)(v — w) }

c(u +w)v
281

ZQClAw{(U—i—U)Z— 2
c1

>2c1Aw {(1 —¢/(2e1))(u +v)? — 2_1/2c/cl'tw} > 0,

as long as
V2ei
< —
4+ 1/(V2e1)
Case (ii). Let g = ¢;A/16. We can write

€— 8

(e — s)(e —mk)’
;k+§ n(20) = (a+99)\/

m h(zu)

€— 8

(e—m—g)m+g—3s)

where
e
a= Y 4 fin(z0) - )
j=s+1 j=s+1
GZG\/(HkJrQ—S)(G—??k—Q){ 1 a
9 (e — s)(e — k)
1 N b }
(T?k+9—8)(6— m—g) ave—s)’
and b= £, ; 1.(20) = f"(20)-

To ease notation, let d —mp =1 < ¢/2, Ny = — s and
Ny = e —n — g. We have

Ei = fyh(20) — fin(20) = Bu(1+ E2) + Ba,  (48)
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where
By = al(g —l)ve—s .
VNi(N2 + 9)y/ (N +D)(g + N2 - 1)
1
(VN + Do + N2~ D) + VNilg + Vo))
By — (N2 — N1)(Na — N1 1) _
(VN +D(g+ N =D + VNi + 9) Vs
1
(VNig+ M) + Vi +9)Ns)
and

py - B[ Mt
g i+ g+ N2 - 1)

Next, we notice that g—I > ¢;A/32. It holds that
By > culd — mk|Afy 4 (20) (e — 5) 7%,

where cy; > 0 is a sufficiently small constant depending on
c1. As for Ey;, due to (47), we have

By > —1/2.

(49)

(50)
As for Es;, we have
Es > —eap1b|ld — ni|(e — s)A~2
> —cg2bld — | A3 (e — 8)3/2F2C, (20)K
> —cu/2|d — | AFrS, (20) (€ — 8) 72,

where the second inequality follows from (45) and the third

inequality follows from (46), c3;,1,c3,2 > 0 are sufficiently

small constants, depending on all the other absolute constants.
Combining (48), (49), (50) and (51), we have

n(z0) = fan(20) = cld—me| Af%,(20)(e— )72, (51)
where ¢ > 0 is a sufficiently small constant.
In view of (B) and (51), the proof is complete.
O

Lemma 15: Under Assumptions 1, 2 and 3, let (sp,ep) be
an interval with ep — sp < CrA and containing at least one
change point »; such that

M1 =80 =M= ... < Migqg = € = Miggy1, q=0.
Suppose that there exists k&’ such that
m_in{'qkr — 8p, €9 — nk’} > A/16.
Let
Koo = max{kp : min{n, — so, €0 — 7p} > A/16}.

Consider any generic (s, e) C (so, ep), satisfying

min min{n — sp,ep — M} > A/16.

Ime(s,e)
Let
be argma.x max_ YS e(X(J)))
t=s+h—P,...e—h— p J=1,...y
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Assume
K

-
h= lﬁOROLipOﬁ’

where C¢ > 0 is an absolute constant depending only on the
kernel function. For some ¢; > 0 and « > 0, suppose that

(32)

max_ |V, (X (5))] = eisfVA.
j=1,...,T

Then on the event Ay(v.4) N Aa(v.4) N B(yp), defined in
Lemmas 7 and 8, where

(33)

(54)
with a sufficiently small constant 0 < ¢z < ¢;1/4, there exists
a change point 7, € (s, e) such that

max{’yA, FTB} S CZH\/E:

min{e — mi, 7 — s} > A/4 and |nx —b| < Cr A7,
where C' > 0 is a sufficiently large constant depending on all
the other absolute constants. _

Proof: Let z; € argmaxzem,,| f f(z)| Without loss of
generality, assume that f,";(z1) > 0 and that f’;(z1) as a
function of ¢ is locally decreasing at b. Observe thq[ there has
to be a change point nx € (s,b), or otherwise f,(z1) >
0 implies that f; (21) is decreasing, as a consequence of
Lemma 11. ,

Thus, there exists a change point 7y, € (s,b) satisfying that

)fb n(21)
r|Fer(X ()| -5
[T (XG)| ~ a7

SUp; cre f;,fn (2)| = mc n(zl)

Z maxj=1,..,

Z maxj=1,..T
Z CREV Aa

where the second inequality follows from Lemma 11, the

third and fourth inequalities hold on the events A;(vy4,h) N

Aa(y4,h) N B(ys), and ¢ > 0 is an absolute constant.
Observe that € — s < ey — sp < CrA and that

(s,€) has to contain at least one change point or otherwise

sup,cg | f;.°% (2)| = 0 which contradicts (55).

Step 1. In this step, we are to show that

min{n, — s, e — 7k} > min{1,¢{}A/16.  (55)

Suppose that 7, is the only change point in (s,e). Then
(55) must hold or otherwise it follows from (39) that

Cl\/z
4 3

Fe.e
sup | 742,(2)] <
Lemp Mesh

which contradicts (55).

Suppose (s, e) contains at least two change points. Then
arguing by contradiction, if nx—s < min{1, ¢?}A/16, it must
be the cast that 7 is the left most change point in (s,e€).
Therefore

m. h.(z)

< c1/4sup,cpe | k+1 n(2)|+
Qﬁk\/nk — 5+ 4\/?};‘- — SCLipOE_h
<ci/d SUPzcpe |ftsf(z)|

sup,cge |,

max
st+h—P<t<e—h—P
VA

+ ?Cl"‘ik

1939

<c1/dmaxg p-reice p—r MAXj=1, T |

FEX (G))+
c1/4vB + %ka

<c1/4dmax, p-roicep—» MAXj=1 T

VA
c1/dva + e /4y + —5 C1Kk
[T (X @) — 74— 78,

where the first inequality follows from (43), the second follows
from (52), the third from the definition of the event I3, the
fourth from the definition of the event .4 and the last from (53).
The last display contradicts (55), thus (55) must hold.

Step 2. Let

< maxj=1,..T

zp € arg max

n(2)]
zcR ‘”?Jc 4

It follows from Lemma 14 that there exits d € (e, me +
c1A/32) such that
Fan(zo0) > 2ya + 278 (56)

We claim that b € (nx,d) C (&, nx +c1A/16). By contra-
diction, suppose that b > d. Then

for(z0) < fan(zo)

< MaXg<t<e SUP,cpe

nk h.(zo)

i)
Ve x (i)

where the first inequality follows from Lemma 11, the second
follows from (56) and the third follows from the definition of
the event Aj(v.4,h) N Az(v4, k) N B(7g). Note that (B) is
a contradiction to the bound in (55), therefore we have
be (T}k, M + 61A/32).

Step 3. Let

— 294 — 28

< maxj=1,..T —7A — VB,

-
J €argmax;_;

€= (foqrr,n(X(F)),---, fe,h(X(j*)))T c R(e—2)
and

Yy s:€

(L (XK@Y L (XED=XO)) oo

By the definition of b, it holds that
”Ys,e. o P;_.e YS,E)HZ

< ||Ys N pse Y e)” < ||Ys N p;},f(fs,.e

where the operator P¢(.) is defined in Lemma 20 in
Wang et al. [54]. For the sake of contradiction, throughout
the rest of this argument suppose that, for some sufficiently
large constant C3 > 0 to be specified,

e + Cayikg 2 < b. (57)
We will show that this leads to the bound
e = Pperee)|* > yee - 5®)
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which is a contradiction. If we can show that
2(}/3,& _ fs,e., p;,e (YS"B) _ p;},‘e (fs,e.))
&8.e 8.E 8,E 2 8,8 8.E 8,8 2
<|lr=e=ppe(r=)l = £ =P (FI

then (58) holds.
To derive (59) from (57), we first note that min{e—ng, 7 —
s} > min{1,c?}A/16 and that |b—mny| < ¢;A/32 implies that

(39)

min{e — b,b — s} > min{1,c}}A/16 — c; A/32
> min{1,c}A/32.

As for the right-hand side of (59), we have
e = = e = Pae (s
—_— 2
(FeaxG) - (Feix™))
> (Fara(X (") = B (XG) [FafaX G-

On the event A;(y4, h)NAz(v.4, R)NB(yB), we are to use
Lemma 14. Note that (45) holds due to the fact that here we
have

> | Fon(XG))
> %X G|~
> c1krVA — 4 > (c1)/266VA,

(60)

where the first inequality follows from the fact that n is a
true change point, the second inequality holds due to the event
Aji(v4, k), the third inequality follows from (53), and the final
inequality follows from (54). Towards this end, it follows from
Lemma 14 that

Focn fon(X(5%)
FrtaX(@)))| (e —5)72. (61)
Combining (60), (60) and (61), we have
722 =P () * = 2 =P (72|
2
> %A%Mlm, h)%(e — s)"2[b — k. (62)

The left-hand side of (59) can be decomposed as follows.

Y — foe, P;’e (Ys,,e) . Ip:;;le (fs,e.))
= (Y= — foe, 'Pbs"e (Ys,e.) . p;,e. (fs,,e”_’_

2(Ye — foe, ’p§se(f3.~9) _ Ap;;ce(fs,e))
=) +

Me—=&

Z+Z >

i=1 i=n—a+1 i=b—s+1
(PE(£°4) =P (£°9)),
=(I) +(I1.1)+ (I1.2) + (IL.3).

(Ys,e. _ fs,e)i_

As for the term (I), we have

(I) <2434 (63)
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As for the term (II.1), we have

M —#&
(11.1):2m{mz (Yoo — o) }

Me—#
{ Z(f”)a——Z(f”)a}-

In addition, it holds that

1 b—s Me—8
SZ(F’& i ),
i=1
b—m | M —s
- b—s Mk — Z f‘h‘(X(J ))+fnk+1,h(X(J ))
< 5 Mk (O + 1)

where the inequality follows from (41). Combining with
Lemma 7, it leads to that

bh—
(I1.1) < 2V = 55— (Cr + R, 14
4
<2——— —A"V2y b — x| (Cr+1
< 2y ATl — el Cr o DR
(64)

As for the term (I1.2), it holds that

(I1.2) < 2v/|b — mk|7A(2CR + 3)kgy e - (65)

As for the term (I1.3), it holds that
4

b)) <2—
W3 <2t @

A_1/27A|b nk |(OR + ]‘)H’So ep”
(66)

Therefore, combining (62), (63), (63), (64), (65) and (65),
we have that (59) holds if

A%k2(e — s)72|b — my

2 max {7 A7 yalb — milwe, V/Ib = el |

The second inequality holds due to Assumption 3, the third
inequality holds due to (57) and the first inequality is a
consequence of the third inequality and Assumption 3. O

Proof of Theorem 1: Let e = C; ]og1+E(T).«;;2n_p <
€ = C.log'™$(T)k—P+2)_ Since € is the upper bound of
the localization error, by induction, it suffices to consider any
interval (s,e) C (0,T) that satisfies

nk—lSsSnkS---Snk+qSBSnk+q+h QZ—la

and

max{min{n — s, s — Mk—1}, Mn{Nktqt1 —€, € —M+q}} < ¢,

where ¢ = —1 indicates that there is no change point contained
in (s, €).

By Assumption 3, it holds that e < A/4. It has to be the
case that for any change point 7, € (0,T"), either | —s| < €
or | — s| = A — e = 3A/4. This means that min{|n; —
s|, |me — €|} < € indicates that 7, is a detected change point
in the previous induction step, even if 7y € (s,€e). We refer
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to mp € (s,e) an undetected change point if min{|n. — s,
Ik — el} > 3A/4.

In order to complete the induction step, it suffices to show
that we (i) will not detect any new change point in (s, €) if all
the change points in that interval have been previous detected,
and (ii) will find a point b € (s, e), such that g — b| < e if
there exists at least one undetected change point in (s, €).

Define

K
5= (N {or < ln—38/0m - a7,
k=1

Bs € [mk + A2,k + 3A /4], for some s = 1,...,5’}.

The rest of the proof assumes the event A; (y4)N.Az(v4)N
B(yg) N M, with

a4 =Cy, h7P2/log(T) and 45 = C, hVA,

and C, ,,C,, > 0 are absolute constants. The probability of
the event A;(v.4) N .A2(v4) N B(ys) N M is lower bounded
in Lemmas 7, 8 and 9.

Step 1. In this step, we will show that we will consistently
detect or reject the existence of undetected change points
within (s, e). Let a,, b, and r* be defined as in Algorithm 1.
Suppose there exists a change point 7 € (s,e) such that
min{ng — s, e — N} > 3A/4. In the event S, there exists an
interval (a, 3;) selected such that o, € [nr—3A/4, nr—A/2]
and By € [m + A/2,me + 3A/4]. Following Algorithm 1,
[sr, er] = [ar, Br][s, €]. We have that min{nx—s,, e,—ng } >
(1/4)A and [s,, e;] contains at most one true change point.

It follows from Lemma 10, Lemma 12, and Assumption 3,
with ¢; there chosen to be 1/4, that

sp+h— Prgta?er—h P:gn?p f“}(z) - 16\/—
Therefore
Gr = mAX,, 4-p i<, nor WX, [T (X))
> ma,, n-r<oce,—nor maXjo,...r | I (X)) -
TA
Z MaXg, {h-r<t<e,—h—» SUP sr er( )‘ N
ZERP

KA
— - - —
where y4 and ~p are the same as in (54). Thus for any
undetected change point 7, € (s, €), it holds that

SUp G > — Y4 — VB = crakAY2,

1<m<S

kA
g+ — [ —
" 161/e — s
(67)
where ¢ 2 > 0 is achievable with a sufficiently large Csnr
in Assumption 3. This means we accept the existence of
undetected change points.
Suppose that there is no any undetected change point within
(s,€), then for any (s,,er) = (ar,Br) N (s,€), one of the
following situations must hold.

1941

(a) There is no change point within (s, e,);
(b) there exists only one change point nx € (s,,er) and
min{ng — Sr, ey — Mg} < €g; OF
(c) there exist two change points 7k, Mk+1 € (Sr,€r) and
Mk — Sr < €k, € — Mkt1 = €g11.
Observe that if (a) holds, then we have

maXg 4h-r<t<e,—h—p MaXj=1 T

Yo (X ()|
ae®

< maxX, {p-ret<e,—h—r SUP cre + 74 +78B
= YA TB.

Cases (b) and (c) can be dealt with using similar arguments.
We will only work on (c) here. It follows from Lemma 13 (iv)

that
Yoo (X ()

maXg 4 p-—retce,.—h—r MaXj=1 .. T

< maXg, . <t<e, SUP;cre | J; ;;er (2)| +74 +8

< 2ye — Mpkpyr + 24/ — skig + 8/ — sCLipCe b+

YA+ 78 < 2(va +8).

Under (11), we will always correctly reject the existence of
undetected change points.

Step 2. Assume that there exists a change point n, € (s, €)
such that min{nx — s, — e} = 3A/4. Let s,, e, and r* be
defined as in Algorithm 1. To complete the proof it suffices
to show that, there exists a change point n; € (Sy«, €rx) Such
that min{nx — sp+, Mk — €rs} = A/4 and |by. — mg| < €.

To this end, we are to ensure that the assumptions of
Lemma 15 are verified. Note that (53) follows from (67), and
(54) follows from Assumption 3.

Thus, all the conditions in Lemma 15 are met, and
we therefore conclude that there exists a change point 7,
satisfying
— s} > AJ4 (68)

min{ep — Mk Mk

and

|bre — me| < O*‘;;z'}ﬁ <€ (69)

where the last inequality holds from the choice of 74 and
Assumption 3.

The proof is complete by noticing the fact that (68) and
(Sr+,€px) C (s,€) imply that

min{e — ng, Mk — 5} > A4 > €.

As discussed in the argument before Step 1, this implies
that 7, must be an undetected change point. O

APPENDIX C
PROOFS OF LEMMAS 2 AND 3

Proof of Lemma 3: Consider distributions F' and G in RP
with densities f and g, respectively, constructed as follows.
The density f is a test function, thus it has compact support
and it is infinitely differentiable. Note also that we can take f
constant in B(0,V, /?2-1/?), with f(0) = 1/2, and with

1

max{| fl|oc, max||VF ()|} < 3 (70)
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Then, by construction, f is 1-Lipschitz. Let ¢; be a constant
such that

0< e <V, /romt=t/p, (71)

for all p, which is possible since V, /P2P=1-1/P _, o as

p — oo. Then define g as

ste—clle—pill ifllz—pill < ker

g(z) = {3 —r+ci 'tz —pa if]z— pol < Kkex
f(z) otherwise.
where p; = (V; /P2=1/P=10,....0) € RP and p; =

(—V, Y/P2=1/p=10,...,0) € RP. Notice that g is well

defined since (71) implies ke; < Cie; < Vp_1/p2—1—1/7’.
Furthermore, by the triangle inequality and (70), g is

C-Lipschitz for a universal constant C. Moreover,

sup |f(z) — g(2)| = &.
zERP

Let P; denote the joint distribution of the independent
random variables {X (t)}T_,, where

i.d.d.

LX(A)XYF and X(A+1),. v

X(1),.. LX(T) Y5 6

and, similarly, let F, be the joint distribution of the indepen-

dent random variables {Z(¢)}7_, such that
ZQ),...,Z(A+¢) 5" F, and
Z(A+€+1),...,Z(T) "% G,

where £ is a positive integer no larger than n — 1 — A.

Observe that n(FP) = A and n(P) = A + &
By Le Cam’s Lemma (e.g. Yu [60]) and Lemma 2.6 in
Tsybakov [50], it holds that

inf sup Ep (|7 —nl) = £{1 — drv (P, P1)}
T PeQ

> gexp (—KL(F, P1)). (72)
Since
KL(Py, P;) = Z KL( Py, Pi;) = EKL(F, G).
ie{A+1,...,A4+E}
However,
KL(F,G)

1 1/2
2 B(p1,ke1) 3 TE—¢ |z — pi]

l/ log 1/2 dx
2 B(pz,kc1) 3 _K‘"_Cl ||.1:—p2||

1
:——/ log (1 + 2k — 2¢7 '||z]|) dz —
2 B(0,ke1)

1
—/ log (1 — 2k + 2¢7 t||z||) dz
2 B(0,ke1)

1 —
= _5/ log (1 — (2k — 2¢1'||z|))?) da
B(0,ke1)

< 4%21’},(.‘501)75' < 4mp+2Vp,
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by the inequality —log(l — z) < 2z for z € [0,1/2].
Therefore,

i sup B — ) > e (~46V,)  (73)
Next, set £ = min{ [W] T —1— A}. By the assump-
tion on (r, for all T' large enough we must have that £ =
f‘;VPTéfm]- O
Proof of Lemma 2: Step 1. Let f1, fo : RP — R™ be two
densities such that

A—k+ ||z —z1]|2, =€ B(zi,k),

filz) =< A, z € B(zz, k),
g(z), otherwise,
A—k+ ||z —x2|2, =€ B(za, k),

fa(z) = { A, z € B(z1, k),
g(z), otherwise.

where g is a function such that f; and f> are density functions,
A is a constant, and x is a model parameter that can change
with 7. Note that for small enough x and A,

[ A@ds <1
B(zx1,K)

Set ||z1 —z2|| = 2k to be any two fixed points. The excess
probability mass can be place at (B(x1, k)UB(z2, k))°. Since
f1 = fa in this region, it does not affect K L( f1, f2) no matter
how the functions are defined in this region.

Observe that, by integrating in polar coordinate and using

symmetry
— " A -1

+(A—k+7)log (#) Tp_l}d'r

f A
— _ p—1
2p’|'/p/0 (k —1)log (/\_E T)r dr
& K
< 2p’|}'p/ (k —

'r)i_r P~ ldr
<2pV/ (k—

+
rp dr
§2prn2)\_ / P ldr SOpnp+2
0

Step 2.
(X(1),...
X(A+1),...,
density of (X(1),..
A1) £ oand X(T - A, ..
that

Define PL to be the joint density of
,X(T)) such that X(1),...,X(A) i1 ¢ and

X(T) iLd. fo. Define P2 to be the joint
.,X(T)) such that X(l) LX(T —

X(T) id fl We have

inf Sup E{|7—n(P)|} = (T —2A)drv(Pr, P7)
> (T/4) exp{—KL(Pr, P7)}.
Note that
KL(Pp, P7) < 2AKL (f1, f2) = CprPt2A.
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TABLE VI

VALUES OF K& FOR THE DIFFERENT SCENARIOS AND
INSTANCES CONSIDERED IN THE PAPER

Scenario K P
1 5.79 x 10~ 20
1 478 x 10738 10
2 0.17 20
2 0.33 10
3 7.53 x 10710 20
3 6.37 x 107° 10
4 390 x 10~ 20
4 1.23 x 107° 10
5 1.09 x 10~ % 20
5 2.58 x 10720 10

Since AxP+? < ¢ < log(2), we have

exp(—KL(PE, P2)) > exp(—c) > 1/2

see e.g. Tsybakov [50]. In addition, noticing that A < T'/2,
we reach the final claim. O

APPENDIX D
PARAMETER k FOR DIFFERENT SCENARIOS

We now display in Table VI the value of x for each scenario
and instance of the experiments section. In the different
scenarios, we evaluate the probability density functions before
and after each change point in a set consisting of 2000 points,
with 1000 samples drawn from each distribution. This allows
us to compute x.

(1

[10]

REFERENCES

R. Aggarwal, C. Inclan, and R. Leal, “Volatility in emerging stock
markets,” J. Financial Quant. Anal., vol. 34, no. 1, pp. 33-55, 1999.
[Online]. Available: http://'www.jstor.org/stable/2676245

E. Andreou and E. Ghysels, “Detecting multiple breaks in finan-
cial market volatility dynamics,” J. Appl. Econometrics, vol. 17,
no. 5, pp. 579-600, 2002. [Online]. Available: http://onlinelibrary.
wiley.com/doi/10.1002/jae.684/abstract

S. Arlot, A. Celisse, and Z. Harchaoui, “A kernel multiple change-point
algorithm via model selection,” J. Mach. Learn. Res., vol. 20, no. 162,
pp. 1-56, 2019.

A. Aue, S. Hiormann, L. Horvith, and M. Reimherr, “Break detection
in the covariance structure of multivariate time series models,” Ann.
Statist., vol. 37, no. 6B, pp. 40464087, Dec. 2009.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” J. Roy. Stat.
Soc. B, Methodol., vol. 57, no. 1, pp. 289-300, Jan. 1995.

O. Bousquet, “A Bennett concentration inequality and its application
to suprema of empirical processes,” Comptes Rendus Math., vol. 334,
no. 6, pp. 495-500, 2002.

D. Bumns, J. Ekblom, and A. Shalal. (2019). Timeline: Key Dates in
the U.S.-China Trade War. [Online]. Available: https://www.reuters.
comV/article/us-usa-trade-china-timeline/timeline-key-dates-in-the-us-
china-trade-war-idUSKCN1UZ24U

A. Celisse, G. Marot, M. Pierre-Jean, and G. J. Rigaill, “New efficient
algorithms for multiple change-point detection with reproducing ker-
nels,” Comput. Statist. Data Anal., vol. 128, pp. 200-220, Dec. 2018.
F. Chamroukhi, S. Mohammed, D. Trabelsii L. Oukhellou,
and Y. Amirat, “Joint segmentation of multivariate time series
with hidden process regression for human activity recogni-
tion,” Neurocomputing, vol. 120, pp. 633-644, Nov. 2013.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231213004086

H. Chen, “Change-point detection for multivariate and non-Euclidean
data with local dependency.” 2019, arXiv:1903.01598.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[21]
[22]

[23]

[24]

[25]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

1943

H. Chen and N. Zhang, “Graph-based change-point detection,” Ann.
Statist., vol. 43, no. 1, pp. 139-176, Feb. 2015.

H. Chen, X. Chen, and Y. Su, “A weighted edge-count two-sample test
for multivariate and object data,” J. Amer. Stat. Assoc., vol. 113, no. 523,
pp. 1146-1155, Jul. 2018.

H. Cho, “Change-point detection in panel data via double CUSUM
statistic,” Electron. J. Statist., vol. 10, no. 2, pp. 20002038, Jan. 2016.
H. Cho and P. Fryzlewicz, “Multiple-change-point detection for high
dimensional time series via sparsified binary segmentation,” J. Roy. Stat.
Soc. B, Stat. Methodol., vol. 77, no. 2, pp. 475-507, Mar. 2015.

1. B. Elsner, X. Niu, and T. H. Jagger, “Detecting shifts in hurricane
rates using a Markov chain Monte Carlo approach,” J. Climate, vol. 17,
no. 13, pp. 2652-2666, 2004.

C. Erdman and J. W. Emerson, “A fast Bayesian change point
analysis for the segmentation of microarray data,” Bioinformatics,
vol. 24, no. 19, pp. 2143-2148, Oct. 2008. [Online]. Available:
http://bioinformatics.oxfordjournals.org/content/24/19/2143.short

P. Fearnhead and G. Rigaill, “Changepoint detection in the presence of
outliers,” J. Amer. Stat. Assoc., vol. 114, pp. 1-15, Jan. 2018.

V. Fernandez, “The impact of major global events on volatility shifts:
Evidence from the Asian crisis and 9/11," Econ. Syst., vol. 30,
no. 1, pp. 79-97, 2006. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0939362506000094

K. Frick, A. Munk, and H. Sieling, “Multiscale change point inference,”
J. Roy. Stat. Soc. B, Stat. Methodol., vol. 76, no. 3, pp. 495-580,
Jun. 2014.

P. Fryzlewicz, “Wild binary segmentation for multiple change-point
detection,” Ann. Statist., vol. 42, no. 6, pp. 2243-2281, 2014.

D. Garreau and S. Arlot, “Consistent change-point detection with
kernels,” Electron. J. Statist., vol. 12, no. 2, pp. 4440-4486, Jan. 2018.
E. Giné and A. Guillou, “Laws of the iterated logarithm for censored
data.” Ann. Probab., vol. 27, no. 4, pp. 2042-2067, 1999.

E. Giné and A. Guillou, “On consistency of kernel density estimators
for randomly censored data: Rates holding uniformly over adaptive
intervals,” Annales de I'ITHP Probabilités et Statistiques, vol. 37, no. 4,
pp. 503-522, 2001.

A. Gretton et al., “Optimal kernel choice for large-scale two-sample
tests,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1205-1213.
S. W. Han, R. C. Mesquita, T. M. Busch, and M. E. Putt, “A method
for choosing the smoothing parameter in a semi-parametric model for
detecting change-points in blood flow,” J. Appl. Statist., vol. 41, no. 1,
pp. 2645, Jan. 2014.

Z. Harchaoui and O. Cappé, “Retrospective mutiple change-point esti-
mation with kernels,” in Proc. IEEE/SP 14th Workshop Stat. Signal
Process., Aug. 2007, pp. 768-772.

K. Haynes, P. Fearnhead, and 1. A. Eckley, “A computationally efficient
nonparametric approach for changepoint detection,” Statist. Comput.,
vol. 27, no. 5, pp. 1293-1305, Sep. 2017.

R. Henderson and J. N. S. Matthews, “An investigation of changepoints
in the annual number of cases of haemolytic uraemic syndrome,”
Appl. Statist., vol. 42, no. 3, pp. 461-471, 1993. [Online]. Available:
http://www.jstor.org/stable/2986325

N. A. James and D. S. Matteson, “ecp: An R package for non-
parametric multiple change point analysis of multivariate data,”
J. Stat. Softw., vol. 62, no. 7, pp. 1-25, 2014. [Online]. Available:
http:/fwww.jstatsoft.org/v62/i07/

L. J. Vanegas, M. Behr, and A. Munk, “Multiscale quantile segmenta-
tion,” J. Amer. Stat. Assoc., to be published.

R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of
changepoints with a linear computational cost,” J. Amer. Statist. Assoc.,
vol. 107, no. 500, pp. 1590-1598, 2012.

1. Kim, J. Shin, A. Rinaldo, and L. Wasserman, “Uniform convergence
rate of the kernel density estimator adaptive to intrinsic volume dimen-
sion,” 2018, arXiv:1810.05935.

C. C. Kokonendji and T. S. Kiesse, “Discrete associated kernels method
and extensions,” Stat. Methodol., vol. 8, no. 6, pp. 497-516, 2011.

D. Kwon, M. Vannucci, J. J. Song, J. Jeong, and R. M. Pfeiffer,
“A novel wavelet-based thresholding method for the pre-processing of
mass spectrometry data that accounts for heterogeneous noise,” Pro-
teomics, vol. 8, no. 15, pp. 3019-3029, Aug. 2008. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855839/

M. A. Lindquist, C. Waugh, and T. D. Wager, “Modeling state-related
fMRI activity using change-point theory.,” Neurolmage, vol. 35, no. 3,
pp. 1125-1141, Apr. 2007.

Authonzed licensed use limited to: UCLA Library. Downloaded on January 10,2024 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.



1944

[36] D. S. Matteson and N. A. James, “A nonparametric approach for
multiple change point analysis of multivariate data” J. Amer Stat.
Assoc., vol. 109, no. 505, pp. 334-345, 2014.

[37] Microsoft Corp. (MSFT). (2019). Yahoo! Finance. [Online]. Available:
https://finance.yahoo.com

[38] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ization and Probabilistic Technigues in Algorithms and Data Analysis.
Cambridge, U.K.: Cambridge Univ. Press, 2017.

[39] O. H. M. Padilla, A. Athey, A. Reinhart, and J. G. Scott, “Sequential
nonparametric tests for a change in distribution: An application to detect-
ing radiological anomalies,” J. Amer. Stat. Assoc., vol. 114, pp. 1-15,
Apr. 2018.

[40] O.H. M. Padilla, Y. Yu, D. Wang, and A. Rinaldo, “Optimal nonparamet-
ric change point detection and localization,” 2019, arXiv:1905.10019.

[41] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41,
nos. 1-2, pp. 100115, 1954.

[42] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Statist., vol. 33, no. 3, pp. 1065-1076, Sep. 1962.

[43] F. Pein, H. Sieling, and A. Munk, “Heterogeneous change point
inference,” J. Roy. Stat. Soc. B, Stat. Methodol., vol. 79, no. 4,
pp. 1207-1227, Sep. 2017.

[44] W. Polonik, “Concentration and goodness-of-fit in higher dimensions:

(Asymptotically) distribution-free methods,” Ann. Statist., vol. 27, no. 4,

pp. 1210-1229, 1999.

R Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing. Vienna, Austria.

Accessed: 2019. [Online]. Available: https:/www.R-project.org/

B. Rajagopalan and U. Lall, “A kernel estimator for discrete distribu-

tions,” J. Nonparam. Statist., vol. 4, no. 4, pp. 409-426, Jan. 1995.

[47] 1. A. Scott and M. Knott, “A cluster analysis method for grouping means

in the analysis of variance,” Biometrics, vol. 30, pp. 507-512, Sep. 1974.

“Consistency and rates for clustering with dbscan,” in Proc. Bharath

Sriperumbudur, Ingo Steinwart 15th Int. Conf. Artif. Intell. Statist., vol.

22. PMLR, 2012, pp. 1090-1098.

[49] A. B. Tsybakov, Introduction a I'Estimation Non-Paramétrigue. Berlin,
Germany: Springer, 2004.

[50] B. A. Tsybakov, Introduction to Nonparametric Estimation. New York,
NY, USA: Springer, 2009.

[51] E. S. Venkatraman, “Consistency results in multiple change-point prob-
lems,” Ph.D. dissertation, Dept. Statist., Stanford Univ., Stanford, CA,
USA, 1992.

[52] N. Verzelen, M. Fromont, M. Lerasle, and P. Reynaud-Bouret, “Optimal
change-point detection and localization,” 2020, arXiv:2010.11470.

[53] A. Wald, “Sequential tests of statistical hypotheses,” Ann. Math. Statist.,
vol. 16, no. 2, pp. 117-186, 1945.

[54] D. Wang, Y. Yu, and A. Rinaldo, “Univariate mean change point detec-
tion: Penalization, CUSUM and optimality,” 2018, arXiv:1810.09498.

[55] D. Wang, Y. Yu, and A. Rinaldo, “Optimal change point detection and
localization in sparse dynamic networks,” Ann. Statist., vol. 49, no. 1,
pp. 203-232, 2021.

[56] T. Wang and R. J. Samworth, “High dimensional change point estimation
via sparse projection,” J. Roy. Stat. Soc. B, Stat. Methodol., vol. 80, no. 1,
pp. 57-83, Jan. 2018.

[57]1 Y.-C. Yao, “Estimating the number of change-points via Schwarz’
criterion,” Statist. Probab. Lett., vol. 6, no. 3, pp. 181-189, Feb. 1988.

[58] Y. C. Yao and R. A. Davis, “The asymptotic behavior of the likelihood
ratio statistic for testing a shift in mean in a sequence of independent nor-
mal variates,” Sankhya, Indian J. Statist. A, vol. 48, no. 3, pp. 339-353,
Oct. 1986.

[59] Y.-C. Yao and S.-T. Au, “Least-squares estimation of a stop function,”
Sankhya, Indian J. Statist, Series A, vol. 51, no. 3, pp. 370-381,
Oct. 1989.

[45]

[46

[48

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

[60] B. Yu, “Festschrift for lucien le cam,” in Assouad, Fano, and Le Cam,
vol. 423. New York, NY, USA: Springer, 1997, p. 435.

[61] W.Zhang, N. A. James, and D. S. Matteson, “Pruning and nonparametric
multiple change point detection,” in Proc. IEEE Int. Conf. Data Mining
Workshops (ICDMW), Nov. 2017, pp. 288-295.

[62] C. Zou, G. Yin, L. Feng, and Z. Wang, “Nonparametric maximum
likelihood approach to multiple change-point problems,” Ann. Statist.,
vol. 42, no. 3, pp. 970-1002, 2014.

Oscar Hernan Madrid Padilla received the B.S. degree in mathematics
from the Universidad de Guanajuato, Mexico, in April 2013, and the Ph.D.
degree in statistics from The University of Texas at Austin in May 2017. From
July 2017 to June 2019, he was a Neyman Visiting Assistant Professor with
the Department of Statistics, University of California at Berkeley, Berkeley,
CA, USA. He is currently an Assistant Professor with the Department of
Statistics, University of California at Los Angeles, Los Angeles, CA. His
research interests include high-dimensional statistics, nonparametric statistics,
change point detection, causal inference, quantile regression, Bayesian and
empirical Bayes methodology, and graphical models.

Yi Yu received the Ph.D. degree in mathematical statistics from Fudan
University. She is currently a Reader in statistics at the Department of
Statistics, University of Warwick. Before joining the University of Warwick,
she was a Lecturer in statistical sciences at the School of Mathematics,
University of Bristol. Her main research interest includes various aspects of
high-dimensional statistics.

Daren Wang received the Ph.D. degree in statistics from Carnegie Mellon
University. He is currently an Assistant Professor with the Department of
ACMS, University of Notre Dame. Before joining the University of Notre
Dame, he was a Post-Doctoral Researcher with the Department of Statistics,
University of Chicago. His main research interests include time series analysis
and functional data analysis.

Alessandro Rinaldo received the Ph.D. degree in statistics from Carnegie
Mellon in 2005 under the supervision of Stephen E. Fienberg. He is currently
a Professor with the Department of Statistics and Data Science, Carnegie
Mellon University. His research interests include the theoretical properties
of statistical and machine learning models for high-dimensional data under
various structural assumptions, such as sparsity or intrinsic low dimensionality.
In his research work, he has investigated a broad range of issues related
to the feasibility of statistical inference in a variety of problems, including
high-dimensional regression, time series, privacy, categorical data analysis and
graphical modeling, statistical network analysis, algebraic statistics, density-
based clustering, topological and geometric data analysis, and change-point
detection. Though predominantly of theoretical nature, his research work
is motivated by highly practical problems in data science and has direct
methodological implications, as it aims at deriving theoretical guarantees in
support of existing methods and algorithm.

Authonzed licensed use limited to: UCLA Library. Downloaded on January 10,2024 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.



