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Abstract— Early detection of cognitive decline is essential to
study mild cognitive impairment and Alzheimer’s Disease in
order to develop targeted interventions and prevent or stop the
progression of dementia. This requires continuous and
longitudinal assessment and tracking of the related physiological
and behavioral changes during daily life. In this paper, we
present a low cost and low power wearable system custom
designed to track the trends in speech, gait, and cognitive stress
while also considering the important human factor needs such as
privacy and compliance. In the form factors of a wristband and
waist-patch, this multimodal, multi-sensor system measures
inertial signals, sound, heart rate, electrodermal activity and
pulse transit time. A total power consumption of 2.6 mW without
any duty cycling allows for more than 3 weeks of run time
between charges when 1500 mAh batteries are used.

Clinical Relevance— Much earlier detection of Alzheimer’s
disease and related dementias may be possible by continuous
monitoring of physiological and behavioral state using appli-
cation specific wearable sensors during the activities of daily life.

I. INTRODUCTION

Alzheimer’s disease and related dementias (ADRD) are
growing global concerns with significant negative
psychological, social, and economic impact, not only for the
patients but also their caregivers and social circles. These
health issues are often characterized by a progressing cognitive
decline that is reflected over other activities of daily life such
as gait and speech. The current methods used for quantification
of cognitive decline are based on expert observation in clinics
through a battery of cognitive tests. This temporary and
focused assessment may miss critical longitudinal day-to-day
variations. Being in a laboratory environment or interacting
with a medical professional may also obscure the symptoms.
There is a need to generate continuous and longitudinal data to
let the new developments in artificial intelligence and big-data
analysis to explore features that predict the onset of ADRD
especially during relatively complex dual activities of life such
as problem solving while talking, or talking while walking.

In current clinical ADRD assessment, patients’ cognitive
abilities, such as concentration, memory, and problem solving
are evaluated through a number of surveys and tests. In
parallel, their spatial awareness, motor function and language
skills are also recorded and evaluated. These are based on
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expert observations and scoring, causing the assessment to be
infrequent, invasive, subjective and costly. More recently,
biomedical instrumentation has been used during these tests to
collect quantitative data, for example, by measuring
electroencephalography, heart rate variability, electrodermal
activity, and inertial signals. There has been an emerging
interest in recording these signals outside the lab environment
and during the activities of daily life for passive, longitudinal
and continuous assessment of behavioral or physiological
decline. However, these efforts face important human factors
barriers such as user compliance to use these sensors all the
time and concerns related to privacy.

Recent developments in wearables allow the recording of
some of the related parameters such as voice or body
movement. The higher power consumption of these devices
require a need for daily charging of the batteries which may
cause compliance issues especially for a user population
potentially being challenged by decreased memory function.
Users of these devices may also find the recording of their
speech as concerning for their privacy and confidentiality.
Most of the available devices provide only a limited number
of sensors and are deployed generally only on the wrist region.
Therefore, early detection of ADRD needs new, cost effective,
user friendly, wear-and-ignore wearable devices that can
passively, longitudinally, and continuously generate data for
simultaneous assessment of speech impairment, gait decline
and cognitive stress during daily life activities.

Our team’s earlier work focused on the effect on aging in
speech, gait, and cognitive analysis using data collected during
clinical tests [1][8][14-18]. This paper reports our preliminary
effort to present a one-of-a-kind application specific wearable
system to move these assessments outside lab environments
(Fig.1). This custom designed system records physiological
and behavioral signals related to speech, gait, and cognitive
stress continuously and longitudinally using multiple sensors
and two body locations (wrist and waist). These include sound,
inertial measurements, heart rate variability, pulse transit time,
and electrodermal activity. This paper focuses on the hardware
design processes, where the future work will look at the data
collected with these devices in real-life environments, and
perform an artificial intelligence based machine-learning
analysis on the data for early detection of ADRD.
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Figure 1: (A) The application specific custom designed wearable
physiological and behavioral monitoring system for early detection of
ADRD consisting of a (B-C) waist-patch and (D) wristband. (Bottom)
System block diagram for both systems containing three subsystems
with the integrated circuits used in each (indicated in brown font). ECG
sensor is only on the waistband and the EDA on the wristband with all
the other parts all common for both.

II. MATERIALS AND METHODS

A. System Design Process

We performed three analyses to support the design
decisions for our system. The human studies were approved by
the NC State or UNC-Chapel Hill Institutional Review Board.

1) Cognitive Stress

Electrodermal activity (EDA) is a well-known indicator of
cognitive stress and included in the system. The pulse transit
time is a parameter known to be correlated to blood pressure
[2] and we performed an analysis of experimental data we
collected to indicate the blood pressure difference between
normal and cognitively impaired participants (age 61-85) who
were either diagnosed with a cognitive impairment such as
dementia or failed the Short Blessed Orientation-Memory-
Concentration Test with a score of 7 or higher [3]. Cognitively
normal participants were eligible to participate if they passed
the Short Blessed Orientation Memory Concentration test with
a score below 7. Cognitively normal participants visited the
lab once, while cognitively impaired participants visited the
lab twice with approximately 6 months between each visit. At
each lab visit, participants completed a computerized memory-
scan task. As participants are required to sustain engagement
throughout each level of the task, task difficulty increased as a
result of expended resources. Engagement of cognitive
resources requires the expenditure of cognitive effort, which
can be indexed through systolic blood pressure [4]. While
completing these tasks, cardiovascular responsivity was
assessed using a continuous noninvasive arterial blood
pressure device, CNAP Monitor 500 HD (CNSystems
Medizintechnik AG, Graz, Austria). Participants completed

four levels of the 30-item memory scan task, and some other
surveys while connected to the CNAP monitor.

2) Gait Detection

We performed a pilot experiment to gain preliminary
insight into the effect of sensor location on acceleration signals
during normal walking and walking with perturbations. We
collected data from 20 younger (age 19-25) and 4 older adults
(age 68-74) walking at their preferred overground speed (~ 1.3
m/s) on a dual-belt treadmill. The participants walked
normally at that speed for two minutes and while responding
to eight treadmill-induced slip perturbations per foot, delivered
at the instant of heel-strike, designed to elicit instability [5]—
[7]. During these, the 3D positions of retroreflective markers
placed on participants’ posterior sacrum (“waist”) and both
lateral humeri (“upper arms”) and ulnar styloid processes
(“wrists”) were recorded using a 16-camera motion capture
system. To emulate the signals from wearable accelerometers,
we calculated the second time derivative of each position time
series and calculated the vector magnitude from each 3D
acceleration signal.

3) Voice Analysis: Conversation Pause Detection

In our earlier work, we demonstrated that reducing audio
sampling rate to 750 Hz helps obfuscating users’ speech and
preserving their privacy when using a wearable device for
detecting certain characteristics in voice such as coughing [8].

To test the potential of this sampling frequency on voice
analysis for detecting changes in speech and language in
ADRD, we completed speech and lexical analyses of speech
samples from the TalkBank Pitt Corpus [9], [10]. We extracted
samples from 30 participants with probable ADRD during an
early stage of progression and 30 neurotypical participants
matched for sex, age, and education. The speech sample task
was to describe a line drawing (“the cookie theft picture”) that
is part of standardized aphasia assessment [11]. The audio-
recorded monologue was low-pass filtered at 350 Hz to
simulate a sampling rate of 750 Hz, then analyzed with a
custom Praat [12] script to determine the proportion of these
monologues that were composed of pauses.

B.  System Overview

The developed application specific system comprised two
devices to be worn on the wrist and the waist and to be in
contact with the skin (Fig.1). Each containing a separate
Bluetooth Low Energy (BLE) enabled system-on-chip (SoC),
these two devices were wirelessly connected to a central data
aggregator (the user’s smartphone). Due to the potential
variance in BLE packet timing, timestamps for all the collected
data were taken internally for each device and transmitted to
the data aggregator along with the raw data. Each device had
an onboard real time clock for precise time keeping and
synchronization. In parallel to the wireless enabled SoC, we
implemented a secondary, low-power, central processing unit
(CPU) to perform sensor measurements and aggregate these
into an alternating buffer for power conservation on both
devices. Upon filling this buffer, the primary CPU woke up
and transferred this collected data to the connected central
device using the onboard BLE radio. In a parallel
implementation, a Secure-Digital (SD) memory card was
included on-board to store the data locally until a BLE
connection automatically established with the smartphone.
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This system was designed to assess cognitive stress, detect
gait at various speeds and stillness, and tracking frequency of
silence within conversational speech as quantitative
biomedical parameters related to ADRD as follows:

1) Cognitive Stress Sensing

The wrist-device included three sensors for EDA,
photoplethysmography (PPG) and wrist skin temperature. The
waist-device also comprised a PPG and waist skin
temperature, in addition to three-electrode based
electrocardiogram (ECG). Measurement of PPG and ECG
simultaneously and at two different locations not only
improved the motion-artifact immunity [13] but also allowed
for the measurement of pulse-transit and pulse-arrival time
which are associated with blood pressure and cognitive stress.

The EDA circuit was based on the integrated circuit MIC
1557 (Microchip Technology Inc., Chandler, AZ) which
outputs an 8 kHz square wave signal. This signal was sent
through the skin via a pair of silver plated electrodes and the
attenuation was measured after passing through a second order
low pass filter circuit. 8 kHz frequency was chosen to
overcome the electrode-to-skin interface capacitance. The
voltage was subsequently measured by the SoC.

The PPG measurement was implemented in two different
ways. The first PPG system was designed using a proximity
detector SI1143 (Silicon Labs, Austin, TX) driving an 850 nm
LED and receiving the raw pulsed PPG signal with an
embedded implementation of a sample and hold circuit. The
second PPG system was based on the integrated circuit module
BW1.4 (Valencell Inc. Raleigh, NC). This module came with
an additional microcontroller with embedded software for
extracting heart rate along with other optically and motion
derived metrics including step counts, cadence, instantaneous
caloric burn rate, and maximal oxygen consumption (VO2
max) from the PPG signal.

A single lead three electrode ECG measurement was
performed by the front-end circuit AD8232 (Analog Devices,
Wilmington, MA). ECG circuit was connected to the external
analog to digital converter AD7142 (TI, Dallas, TX).

The temperature sensor on the wrist was exposed to the
environment and the one on the waist was under the garment.
The differential analysis of these can be correlated with users’
environmental conditions for a context aware sensing. The
temperature measurement was performed using the integrated
circuit AS6200C (AMS-OSRAM AG, Austria) located
directly next to the EDA electrodes to allow for minimal
distance to the skin.

The ECG, EDA and PPG were sampled at a rate of 100 Hz
and skin temperature and PPG derived metrics at 10 Hz.

2) Gait Sensing

To assess the walking activity of the users, the inertial
measurement units provided the motion activity of the wrist
and waist for a differential assessment. An IMU device we
generally use in our systems is ICM-20948 (Invense Inc., San
Josa, CA) with signals sampled at a rate of 100 Hz.

3) Speech Sensing

To delineate participant speech from ambient speech for
assessing fluency measures, a microphone was included both
on the wrist and waist locations for a differential assessment

of the user’s voice and sound of nearby people. We used a
standard integrated circuit microphone, VM 1000 (Vesper Inc.
Boston, MA), and a lower sampling rate to avoid
conversations to be intelligible for preserving the privacy of
the users and confidentiality of the information. As a measure
of fluency, we analyzed pause durations and frequency of
speech and silence for talking over a certain duration (such as
1 minute). We optimized the sampling rate to be low enough
to differentiate such fluency measures as the pauses and gaps
in the conversation but not the conversation content.

4) Ergonomic Enclosure Design

The wristband was designed as a wearable band using
standard interchangeable 26 mm silicone band styles (Fig.1).
The waist is a body location where it is relatively easy to install
devices without needing to undress. The waist-patch was
designed to either be attached to the waist skin using medical
grade double sided sticky tape or to be attached to a band
placed around the waist depending on user preference. Three
medical grade gel-electrodes were used to record ECG signals.
To prevent moisture damage and the degradation associated
with typical device usage, the printed circuit boards and
electronics were sealed using medical grade epoxy. Qi
compliant wireless charging was implemented using the
integrated circuit BQ51050b (TI, Dallas, TX ) and a custom-
designed charging receptacle ensuring the optimal alignment
of receiver and transmitter coils with minimal distance in-
between. For waterproofing, a Hall-effect based magnetic
on/off switch was included on the circuit. The charger case
contained a magnet inside its top lid to turn off the device upon
closing it during the charging process. This also acted as a
resetting mechanism if the devices experienced an error on the
embedded system code and needed a restart.

C.  Data Acquisition

We designed an iOS app for a smartphone collecting data
from both devices over BLE simultaneously. In compliance
with iOS BLE protocol, the maximum number of payload
bytes for a BLE message was 182 bytes. As our system collects
data from multiple sensors, in order to maximize the amount
of data within this number of bytes, only a single timestamp
was included which represented the last time of the last data
point in the array of data. Thanks to the samples having precise
timing, the app could extrapolate the rest of the timestamps for
a given packet. The aggregated data was saved on a Cloud
service (iCloud) as CSV files.

D. Experimental Evaluation

The main objective of this first step in research was to
show that simultaneous data collection could occur between
the two wearable devices and data streams relevant to both
gait, speech, and cognitive stress could be captured in a time
synchronous methodology. We assembled a prototype system
and ran a proof-of-concept study with a healthy subject to
demonstrate functionality of the system. For this, we used a
standard and basic dual-task (gait and speech) protocol. The
protocol included the following steps: (1) One minute of
sitting and resting on a chair, (2) sitting while telling the
children’s story “Cinderella”, (3) walking on a treadmill at 1.7
m/s without talking, and (4) walking on a treadmill at 1.7 m/s
while telling the “Cinderella” story. The subject wore our
system and also was tethered to a gold standard biomedical
instrumentation (Biopac) for PPG, ECG, and EDA recording.
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III. RESULTS

A. Design Process Analyses Results

Our analysis of blood pressure measurements between a
control (healthy) group, and a group of individuals with
ADRD demonstrated some detectable changes (Fig.2). These
graphs include our preliminary results looking at a first session
performed as a baseline (Wavel) and a follow up session 6
months later (Wave2) for two of the ADRD participants. The
trends of blood pressure over time are summarized by fitting a
piecewise linear spline (top plots). Histograms capturing the
changes in blood pressure were then computed from the splice
values (bottom plots). As shown, there was a clear trend
illustrating that the controls show higher changes in blood
pressure initially and over the entire session on average, and
the second largest change corresponds to the Wavel
participants. This shows a progression on blood pressure from
healthy participants to participants with more advanced
ADRD. Over the entire session (i.e., when taking the
difference between knot3 and knot0), the healthy individuals
demonstrated an increase in blood pressure while the Wave2
participants demonstrated an overall decrease in pressure.
These results are preliminary but support theory-driven
hypotheses that participants with more cognitive resources
exert more cognitive effort for longer periods of time.

Our analysis of the TalkBank Pitt Corpus showed that
percent pause time after 350 Hz low-pass filtering was highly
correlated with percent pause time for the full signal (Fig.3).
This encouraged us to design our embedded system to filter
out the higher frequency content and lower the sampling rate
of microphone outputs to preserve privacy and confidentiality,
while keeping sufficient potential to use the data to
differentiate a healthy user from a user with cognitive decline.

~~ Linear Spline Fit
g
=1
2
2
a
°
o
o
o
c
©
U
=
500 1000 1500 2000 500 1000 1500 2000
Time (seconds)
knot1-knot0 knot3-knot0
8 I 7
Wavel
7 Wave2 (o 6 [=
» 61 —@=Controls 5 5 20
f=
© [}
Q 5 L
2 ? 52
5 4 L1s S
o 3 ©w
a 3 10
= 10
2
2 F5
rs
1 1
0 ro
0 0
-40 =20 0 20 40 -40 =20 0 20 40

Change on Mean Blood Pressure

Figure 2: (Top) Illustration of the mean blood pressure data over time
for two ADRD participants. The blue curve shows the raw
measurements. The black line shows the piecewise linear spline fit on
the data used to summarize the trends. (Bottom) Trends of the
histograms of the changes in mean blood pressure over time. (Left) The
trend on the first portion of the line spline fit (i.e., the difference between
knotl and knot0). (Right) The overall change in blood pressure from the
start until the end of the session (i.e., the knot3 and knotO difference).
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Figure 3: Relationship between percent pause time calculated after low-
pass filtering at Nyquist frequency of 350 Hz (for 700 Hz) and from the
unfiltered signal (R2 = 0.70).

In terms of the most optimal location to detect walking
activity, independent of age, we found the highest average and
peak accelerations during normal walking at the wrist (Fig.
4C), each averaging roughly two-times larger than those
measured at the waist (Fig. 4A). Wrist-worn sensors could also
more effectively distinguish between-group differences in
acceleration signals during normal walking; with peak and
average wrist acceleration signals in older adults 28% and 38%
higher than those in younger participants, respectively,
compared to only 3% higher for both for a waist-worn sensor.
Wrist accelerations also detected the largest change due to
treadmill-induced slip perturbations, but only in young adults;
peak and average contralateral wrist accelerations in younger
adults were 91% and 36% higher than those measured during
normal walking. Conversely, this early evidence suggests that
a second (upper arm or waist) sensor may better detect age-
related vulnerability to gait instability — at least that elicited by
a slip. During perturbation responses, peak and average upper
arm accelerations averaged 108% and 97% (perturbed side)
and 81% and 51% (unperturbed side) higher in older adults
than in younger adults, compared to only 54% and 33%
(perturbed side) and 2% and 12% (unperturbed side) higher for
a wrist-worn sensor, respectively. These results indicate the
importance of a wrist sensor for walking detection, but with
improvements in perturbation detection with the introduction
of additional sensors on the waist or upper arm.
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Figure 4: Acceleration vector magnitudes derived from markers on
participants’ “waist” (A), and upper arms (B), and wrists (C) plotted over
an averaged gait cycle from heel-strike to heel-strike. Solid lines
(Normal Walking) provide comparison to dashed lines derived from
treadmill-induced slip perturbations. For both the perturbed and un-
perturbed, perturbation onset occurred at the instant of heel-strike (0%).
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B. System Evaluation Results

The electronic power consumption analysis of the
assembled system (Fig.1) demonstrated that the current draw
for each device is heavily dependent on the sensor selection
and can be optimized by duty cycling each sensor (Fig. 5).
Even with relatively high throughput over BLE, the
microcontroller power consumption often was a small
percentage of the overall power consumption. The wristband
had a total power consumption of 2.6 mW, which allows for
more than 3 weeks of continuous usage with a 1500 mAh
lithium-polymer (LiPo) battery. The waist node had a total
power consumption of 2.5 mW, allowing a similar continual
operation before needing a recharge. It should be noted that the
system can be duty-cycled to extend the battery duration and
put into sleep mode when the subjects are asleep. This can
easily extend the battery duration to one year. The
representative signal patterns of various sensors measured
during the walking and talking test are provided in Figure
6. The microphones were able to provide audible speech files
during both sitting and walking states. The audio files allow
for the analysis of pitch, tempo, and quantity of pauses (among
other speech metrics).
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Figure 6: Representative data collected from the sensors during a
walking and talking experiment to demonstrate the functionality of the
system.

presented work here describes the hardware system design and
demonstrates basic functionality. The future research will
explore predictive artificial intelligence methods to use the
data collected and the indices & metrics generated by the
system for assessment of speech impairment, gait decline and
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