
  

  

Abstract— Early detection of cognitive decline is essential to 

study mild cognitive impairment and Alzheimer’s Disease in 

order to develop targeted interventions and prevent or stop the 

progression of dementia. This requires continuous and 

longitudinal assessment and tracking of the related physiological 

and behavioral changes during daily life. In this paper, we 

present a low cost and low power wearable system custom 

designed to track the trends in speech, gait, and cognitive stress 

while also considering the important human factor needs such as 

privacy and compliance. In the form factors of a wristband and 

waist-patch, this multimodal, multi-sensor system measures 

inertial signals, sound, heart rate, electrodermal activity and 

pulse transit time. A total power consumption of 2.6 mW without 

any duty cycling allows for more than 3 weeks of run time 

between charges when 1500 mAh batteries are used. 

 
Clinical Relevance— Much earlier detection of Alzheimer’s 

disease and related dementias may be possible by continuous 

monitoring of physiological and behavioral state using appli-

cation specific wearable sensors during the activities of daily life. 

I. INTRODUCTION 

Alzheimer’s disease and related dementias (ADRD) are  
growing global concerns with significant negative 
psychological, social, and economic impact, not only for the 
patients but also their caregivers and social circles. These 
health issues are often characterized by a progressing cognitive 
decline that is reflected over other activities of daily life such 
as gait and speech. The current methods used for quantification 
of cognitive decline are based on expert observation in clinics 
through a battery of cognitive tests. This temporary and 
focused assessment may miss critical longitudinal day-to-day 
variations. Being in a laboratory environment or interacting 
with a medical professional may also obscure the symptoms. 
There is a need to generate continuous and longitudinal data to 
let the new developments in artificial intelligence and big-data 
analysis to explore features that predict the onset of ADRD 
especially during relatively complex dual activities of life such 
as problem solving while talking, or talking while walking.  

In current clinical ADRD assessment, patients’ cognitive 
abilities, such as concentration, memory, and problem solving 
are evaluated through a number of surveys and tests. In 
parallel, their spatial awareness, motor function and language 
skills are also recorded and evaluated. These are based on 
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expert observations and scoring, causing the assessment to be 
infrequent, invasive, subjective and costly. More recently, 
biomedical instrumentation has been used during these tests to 
collect quantitative data, for example, by measuring 
electroencephalography, heart rate variability, electrodermal 
activity, and inertial signals. There has been an emerging 
interest in recording these signals outside the lab environment 
and during the activities of daily life for passive, longitudinal 
and continuous assessment of behavioral or physiological 
decline. However, these efforts face important human factors 
barriers such as user compliance to use these sensors all the 
time and concerns related to privacy.  

Recent developments in wearables allow the recording of 
some of the related parameters such as voice or body 
movement. The higher power consumption of these devices 
require a need for daily charging of the batteries which may 
cause compliance issues especially for a user population 
potentially being challenged by decreased memory function. 
Users of these devices may also find the recording of their 
speech as concerning for their privacy and confidentiality. 
Most of the available devices provide only a limited number 
of sensors and are deployed generally only on the wrist region. 
Therefore, early detection of ADRD needs new, cost effective, 
user friendly, wear-and-ignore wearable devices that can 
passively, longitudinally, and continuously generate data for 
simultaneous assessment of speech impairment, gait decline 
and cognitive stress during daily life activities.  

Our team’s earlier work focused on the effect on aging in 
speech, gait, and cognitive analysis using data collected during 
clinical tests [1][8][14-18]. This paper reports our preliminary 
effort to present a one-of-a-kind application specific wearable 
system to move these assessments outside lab environments 
(Fig.1). This custom designed system records physiological 
and behavioral signals related to speech, gait, and cognitive 
stress continuously and longitudinally using multiple sensors 
and two body locations (wrist and waist). These include sound, 
inertial measurements, heart rate variability, pulse transit time, 
and electrodermal activity. This paper focuses on the hardware 
design processes, where the future work will look at the data 
collected with these devices in real-life environments, and 
perform an artificial intelligence based machine-learning 
analysis on the data for early detection of ADRD. 

J. Dieffenderfer, M.A. Noonan, A. Brewer, M. Smith, E. Lobaton, S.D. 

Neupert, T.M. Hess, S. Ghosh, V. Misra, and A. Bozkurt are with NC State 
University, Raleigh, NC 27695, USA. K.L. Haley and A. Jacks, are with the 

University of North Carolina (UNC) at Chapel Hill, Chapel Hill, NC 27599, 

USA. J. Franz and E. Eichenlaub are jointly affiliated with both UNC Chapel 
Hill and NC State University.  

A Wearable System for Continuous Monitoring and Assessment of 

Speech, Gait, and Cognitive Decline for Early Diagnosis of ADRD 

James Dieffenderfer, Alec Brewer*, Maxwell A. Noonan*, Madeline Smith, Emily Eichenlaub,            

Katarina L. Haley, Adam Jacks, Edgar Lobaton, Shevaun D. Neupert, Thomas M. Hess, Jason R. Franz,  

Sujit K. Ghosh, Veena Misra, Alper Bozkurt, Senior Member, IEEE 

 979-8-3503-2447-1/23/$31.00 ©2023 IEEE

20
23

 4
5t

h 
A

nn
ua

l I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

B
C

) |
 9

79
-8

-3
50

3-
24

47
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

EM
B

C
40

78
7.

20
23

.1
03

39
98

6

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on January 11,2024 at 06:09:45 UTC from IEEE Xplore.  Restrictions apply. 



  

II. MATERIALS AND METHODS 

A. System Design Process 

We performed three analyses to support the design 
decisions for our system. The human studies were approved by 
the NC State or UNC-Chapel Hill Institutional Review Board.  

1) Cognitive Stress 
Electrodermal activity (EDA) is a well-known indicator of 

cognitive stress and included in the system. The pulse transit 
time is a parameter known to be correlated to blood pressure 
[2] and we performed an analysis of experimental data we 
collected to indicate the blood pressure difference between 
normal and cognitively impaired participants (age 61–85) who 
were either diagnosed with a cognitive impairment such as 
dementia or failed the Short Blessed Orientation-Memory-
Concentration Test with a score of 7 or higher [3]. Cognitively 
normal participants were eligible to participate if they passed 
the Short Blessed Orientation Memory Concentration test with 
a score below 7. Cognitively normal participants visited the 
lab once, while cognitively impaired participants visited the 
lab twice with approximately 6 months between each visit. At 
each lab visit, participants completed a computerized memory-
scan task. As participants are required to sustain engagement 
throughout each level of the task, task difficulty increased as a 
result of expended resources. Engagement of cognitive 
resources requires the expenditure of cognitive effort, which 
can be indexed through systolic blood pressure [4]. While 
completing these tasks, cardiovascular responsivity was 
assessed using a continuous noninvasive arterial blood 
pressure device, CNAP Monitor 500 HD (CNSystems 
Medizintechnik AG, Graz, Austria). Participants completed 

four levels of the 30-item memory scan task, and some other 
surveys while connected to the CNAP monitor. 

2) Gait Detection 
We performed a pilot experiment to gain preliminary 

insight into the effect of sensor location on acceleration signals 
during normal walking and walking with perturbations. We 
collected data from 20 younger (age 19-25) and 4 older adults 
(age 68-74) walking at their preferred overground speed (~ 1.3 
m/s) on a dual-belt treadmill. The participants walked 
normally at that speed for two minutes and while responding 
to eight treadmill-induced slip perturbations per foot, delivered 
at the instant of heel-strike, designed to elicit instability [5]–
[7]. During these, the 3D positions of retroreflective markers 
placed on participants’ posterior sacrum (“waist”) and both 
lateral humeri (“upper arms”) and ulnar styloid processes 
(“wrists”) were recorded using a 16-camera motion capture 
system. To emulate the signals from wearable accelerometers, 
we calculated the second time derivative of each position time 
series and calculated the vector magnitude from each 3D 
acceleration signal. 

3) Voice Analysis: Conversation Pause Detection 
In our earlier work, we demonstrated that reducing audio 

sampling rate to 750 Hz helps obfuscating users’ speech and 
preserving their privacy when using a wearable device for 
detecting certain characteristics in voice such as coughing [8].  

To test the potential of this sampling frequency on voice 
analysis for detecting changes in speech and language in 
ADRD, we completed speech and lexical analyses of speech 
samples from the TalkBank Pitt Corpus [9], [10]. We extracted 
samples from 30 participants with probable ADRD during an 
early stage of progression and 30 neurotypical participants 
matched for sex, age, and education. The speech sample task 
was to describe a line drawing (“the cookie theft picture”) that 
is part of standardized aphasia assessment [11]. The audio-
recorded monologue was low-pass filtered at 350 Hz to 
simulate a sampling rate of 750 Hz, then analyzed with a 
custom Praat [12] script to determine the proportion of these 
monologues that were composed of pauses. 

B.  System Overview 

The developed application specific system comprised two 
devices to be worn on the wrist and the waist and to be in 
contact with the skin (Fig.1). Each containing a separate 
Bluetooth Low Energy (BLE) enabled system-on-chip (SoC), 
these two devices were wirelessly connected to a central data 
aggregator (the user’s smartphone). Due to the potential 
variance in BLE packet timing, timestamps for all the collected 
data were taken internally for each device and transmitted to 
the data aggregator along with the raw data. Each device had 
an onboard real time clock for precise time keeping and 
synchronization. In parallel to the wireless enabled SoC, we 
implemented a secondary, low-power, central processing unit 
(CPU) to perform sensor measurements and aggregate these 
into an alternating buffer for power conservation on both 
devices. Upon filling this buffer, the primary CPU woke up 
and transferred this collected data to the connected central 
device using the onboard BLE radio. In a parallel 
implementation, a Secure-Digital (SD) memory card was 
included on-board to store the data locally until a BLE 
connection automatically established with the smartphone.  

 
 
Figure 1: (A) The application specific custom designed wearable 

physiological and behavioral monitoring system for early detection of 

ADRD consisting of a (B-C) waist-patch and (D) wristband. (Bottom) 
System block diagram for both systems containing three subsystems 

with the integrated circuits used in each (indicated in brown font). ECG 

sensor is only on the waistband and the EDA on the wristband with all 
the other parts all common for both.  
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This system was designed to assess cognitive stress, detect 
gait at various speeds and stillness, and tracking frequency of 
silence within conversational speech as quantitative 
biomedical parameters related to ADRD as follows: 

1) Cognitive Stress Sensing 
The wrist-device included three sensors for EDA, 

photoplethysmography (PPG) and wrist skin temperature. The 
waist-device also comprised a PPG and waist skin 
temperature, in addition to three-electrode based 
electrocardiogram (ECG). Measurement of PPG and ECG 
simultaneously and at two different locations not only 
improved the motion-artifact immunity [13] but also allowed 
for the measurement of pulse-transit and pulse-arrival time 
which are associated with blood pressure and cognitive stress. 

The EDA circuit was based on the integrated circuit MIC 
1557 (Microchip Technology Inc., Chandler, AZ) which 
outputs an 8 kHz square wave signal. This signal was sent 
through the skin via a pair of silver plated electrodes and the 
attenuation was measured after passing through a second order 
low pass filter circuit. 8 kHz frequency was chosen to 
overcome the electrode-to-skin interface capacitance. The 
voltage was subsequently measured by the SoC. 

The PPG measurement was implemented in two different 
ways. The first PPG system was designed using a proximity 
detector SI1143 (Silicon Labs, Austin, TX) driving an 850 nm 
LED and receiving the raw pulsed PPG signal with an 
embedded implementation of a sample and hold circuit. The 
second PPG system was based on the integrated circuit module 
BW1.4 (Valencell Inc. Raleigh, NC). This module came with 
an additional microcontroller with embedded software for 
extracting heart rate along with other optically and motion 
derived metrics including step counts, cadence, instantaneous 
caloric burn rate, and maximal oxygen consumption (VO2 
max) from the PPG signal. 

A single lead three electrode ECG measurement was 
performed by the front-end circuit AD8232 (Analog Devices, 
Wilmington, MA). ECG circuit was connected to the external 
analog to digital converter AD7142 (TI, Dallas, TX ). 

The temperature sensor on the wrist was exposed to the 
environment and the one on the waist was under the garment. 
The differential analysis of these can be correlated with users’ 
environmental conditions for a context aware sensing. The 
temperature measurement was performed using the integrated 
circuit AS6200C (AMS-OSRAM AG, Austria) located 
directly next to the EDA electrodes to allow for minimal 
distance to the skin.  

The ECG, EDA and PPG were sampled at a rate of 100 Hz 
and skin temperature and PPG derived metrics at 10 Hz.  

2) Gait Sensing 
To assess the walking activity of the users, the inertial 

measurement units provided the motion activity of the wrist 
and waist for a differential assessment. An IMU device we 
generally use in our systems is ICM-20948 (Invense Inc., San 
Josa, CA) with signals sampled at a rate of 100 Hz.  

3) Speech Sensing 
To delineate participant speech from ambient speech for 

assessing fluency measures, a microphone was included both 
on the wrist and waist locations for a differential assessment 

of the user’s voice and sound of nearby people. We used a 
standard integrated circuit microphone, VM1000 (Vesper Inc. 
Boston, MA), and a lower sampling rate to avoid 
conversations to be intelligible for preserving the privacy of 
the users and confidentiality of the information. As a measure 
of fluency, we analyzed pause durations and frequency of 
speech and silence for talking over a certain duration (such as 
1 minute). We optimized the sampling rate to be low enough 
to differentiate such fluency measures as the pauses and gaps 
in the conversation but not the conversation content. 

4) Ergonomic Enclosure Design 
The wristband was designed as a wearable band using 

standard interchangeable 26 mm silicone band styles (Fig.1). 
The waist is a body location where it is relatively easy to install 
devices without needing to undress. The waist-patch was 
designed to either be attached to the waist skin using medical 
grade double sided sticky tape or to be attached to a band 
placed around the waist depending on user preference. Three 
medical grade gel-electrodes were used to record ECG signals. 
To prevent moisture damage and the degradation associated 
with typical device usage, the printed circuit boards and 
electronics were sealed using medical grade epoxy. Qi 
compliant wireless charging was implemented using the 
integrated circuit BQ51050b (TI, Dallas, TX ) and a custom-
designed charging receptacle ensuring the optimal alignment 
of receiver and transmitter coils with minimal distance in-
between. For waterproofing, a Hall-effect based magnetic 
on/off switch was included on the circuit. The charger case 
contained a magnet inside its top lid to turn off the device upon 
closing it during the charging process. This also acted as a 
resetting mechanism if the devices experienced an error on the 
embedded system code and needed a restart.  

C.  Data Acquisition  

We designed an iOS app for a smartphone collecting data 
from both devices over BLE simultaneously. In compliance 
with iOS BLE protocol, the maximum number of payload 
bytes for a BLE message was 182 bytes. As our system collects 
data from multiple sensors, in order to maximize the amount 
of data within this number of bytes, only a single timestamp 
was included which represented the last time of the last data 
point in the array of data. Thanks to the samples having precise 
timing, the app could extrapolate the rest of the timestamps for 
a given packet. The aggregated data was saved on a Cloud 
service (iCloud) as CSV files.  

D. Experimental Evaluation 

The main objective of this first step in research was to 
show that simultaneous data collection could occur between 
the two wearable devices and data streams relevant to both 
gait, speech, and cognitive stress could be captured in a time 
synchronous methodology. We assembled a prototype system 
and ran a proof-of-concept study with a healthy subject to 
demonstrate functionality of the system. For this, we used a 
standard and basic dual-task (gait and speech) protocol. The 
protocol included the following steps: (1) One minute of 
sitting and resting on a chair, (2) sitting while telling the 
children’s story “Cinderella”, (3) walking on a treadmill at 1.7 
m/s without talking, and (4) walking on a treadmill at 1.7 m/s 
while telling the “Cinderella” story. The subject wore our 
system and also was tethered to a gold standard biomedical 
instrumentation (Biopac) for PPG, ECG, and EDA recording.  
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III. RESULTS 

A. Design Process Analyses Results 

Our analysis of blood pressure measurements between a 
control (healthy) group, and a group of individuals with 
ADRD demonstrated some detectable changes (Fig.2). These 
graphs include our preliminary results looking at a first session 
performed as a baseline (Wave1) and a follow up session 6 
months later (Wave2) for two of the ADRD participants. The 
trends of blood pressure over time are summarized by fitting a 
piecewise linear spline (top plots). Histograms capturing the 
changes in blood pressure were then computed from the splice 
values (bottom plots). As shown, there was a clear trend 
illustrating that the controls show higher changes in blood 
pressure initially and over the entire session on average, and 
the second largest change corresponds to the Wave1 
participants. This shows a progression on blood pressure from 
healthy participants to participants with more advanced 
ADRD. Over the entire session (i.e., when taking the 
difference between knot3 and knot0), the healthy individuals 
demonstrated an increase in blood pressure while the Wave2 
participants demonstrated an overall decrease in pressure. 
These results are preliminary but support theory-driven 
hypotheses that participants with more cognitive resources 
exert more cognitive effort for longer periods of time.  

Our analysis of the TalkBank Pitt Corpus showed that 
percent pause time after 350 Hz low-pass filtering was highly 
correlated with percent pause time for the full signal (Fig.3). 
This encouraged us to design our embedded system to filter 
out the higher frequency content and lower the sampling rate 
of microphone outputs to preserve privacy and confidentiality, 
while keeping sufficient potential to use the data to 
differentiate a healthy user from a user with cognitive decline. 

In terms of the most optimal location to detect walking 
activity, independent of age, we found the highest average and 
peak accelerations during normal walking at the wrist (Fig. 
4C), each averaging roughly two-times larger than those 
measured at the waist (Fig. 4A). Wrist-worn sensors could also 
more effectively distinguish between-group differences in 
acceleration signals during normal walking; with peak and 
average wrist acceleration signals in older adults 28% and 38% 
higher than those in younger participants, respectively, 
compared to only 3% higher for both for a waist-worn sensor. 
Wrist accelerations also detected the largest change due to 
treadmill-induced slip perturbations, but only in young adults; 
peak and average contralateral wrist accelerations in younger 
adults were 91% and 36% higher than those measured during 
normal walking. Conversely, this early evidence suggests that 
a second (upper arm or waist) sensor may better detect age-
related vulnerability to gait instability – at least that elicited by 
a slip. During perturbation responses, peak and average upper 
arm accelerations averaged 108% and 97% (perturbed side) 
and 81% and 51% (unperturbed side) higher in older adults 
than in younger adults, compared to only 54% and 33% 
(perturbed side) and 2% and 12% (unperturbed side) higher for 
a wrist-worn sensor, respectively. These results indicate the 
importance of a wrist sensor for walking detection, but with 
improvements in perturbation detection with the introduction 
of additional sensors on the waist or upper arm.  

 
Figure 3: Relationship between percent pause time calculated after low-
pass filtering at Nyquist frequency of 350 Hz (for 700 Hz) and from the 

unfiltered signal (R2 = 0.70). 

 
Figure 2: (Top) Illustration of the mean blood pressure data over time 

for two ADRD participants. The blue curve shows the raw 

measurements. The black line shows the piecewise linear spline fit on 
the data used to summarize the trends. (Bottom) Trends of the 

histograms of the changes in mean blood pressure over time. (Left) The 

trend on the first portion of the line spline fit (i.e., the difference between 
knot1 and knot0). (Right) The overall change in blood pressure from the 

start until the end of the session (i.e., the knot3 and knot0 difference). 

 
Figure 4: Acceleration vector magnitudes derived from markers on 

participants’ “waist” (A), and upper arms (B), and wrists (C) plotted over 

an averaged gait cycle from heel-strike to heel-strike. Solid lines 
(Normal Walking) provide comparison to dashed lines derived from 

treadmill-induced slip perturbations. For both the perturbed and un-

perturbed, perturbation onset occurred at the instant of heel-strike (0%). 
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B. System Evaluation Results 

The electronic power consumption analysis of the 
assembled system (Fig.1) demonstrated that the current draw 
for each device is heavily dependent on the sensor selection 
and can be optimized by duty cycling each sensor (Fig. 5). 
Even with relatively high throughput over BLE, the 
microcontroller power consumption often was a small 
percentage of the overall power consumption. The wristband 
had a total power consumption of 2.6 mW, which allows for 
more than 3 weeks of continuous usage with a 1500 mAh 
lithium-polymer (LiPo) battery. The waist node had a total 
power consumption of 2.5 mW, allowing a similar continual 
operation before needing a recharge. It should be noted that the 
system can be duty-cycled to extend the battery duration and 
put into sleep mode when the subjects are asleep. This can 
easily extend the battery duration to one year. The 
representative signal patterns of various sensors measured 
during the walking and talking test are provided in Figure 
6.  The microphones were able to provide audible speech files 
during both sitting and walking states. The audio files allow 
for the analysis of pitch, tempo, and quantity of pauses (among 
other speech metrics).  

IV. FUTURE WORK AND CONCLUSIONS 

This paper presented the design process and the first steps 
towards a novel, one-of-a-kind, wear-and-ignore, passive, and 
continuous monitoring system for a longitudinal multimodal 
data collection to develop algorithms for early detection of 
ADRD. Placed on the wrist and waist, the system can measure 
sound, inertial measurements, heart rate variability, pulse 
transit time, and electrodermal activity as behavioral and 
physiological indicators of gait and speech decline, and 
cognitive stress. The design process focused on lowering the 
sampling rate of the voice recording to preserve privacy and 
on lowering the power consumption to improve compliance by 
eliminating the need for frequent charging of the devices. The 
presented work here describes the hardware system design and 
demonstrates basic functionality. The future research will 
explore predictive artificial intelligence methods to use the 
data collected and the indices & metrics generated by the 
system for assessment of speech impairment, gait decline and 
cognitive stress for ADRD diagnosis and management.  
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