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Abstract

Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb
solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo
reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of
temperature and relative humidity (RH) on whitening has not been well constrained, leading to
uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-
tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent
on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also
depends strongly on these conditions. The measured whitening rate of BrC is described well with
the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA,
within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model
of this whitening process, and we show that the lifetime of BrC is 1 day or less below approximately
1 km in altitude in the atmosphere but is often much longer than 1 day above this altitude. Including
this altitude dependence of the whitening rate in a chemical transport model causes a large change
in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and
temperature need to be considered to understand the role of BBOA in the atmosphere.

Significance Statement

Biomass burning organic aerosol (BBOA) has a significant direct effect on climate by absorbing
solar radiation. Understanding this effect is increasingly important as wildfires become more
prevalent in several regions across the globe. While transported in the atmosphere, BBOA can
react with atmospheric oxidants, leading to less-absorbing products, or whitening. We show that
this whitening is strongly influenced by relative humidity and temperature and, consequently,
vertical transport in the atmosphere. Implementing altitude-dependent whitening of BBOA in a
global atmospheric model indicates that the effects of changing environmental conditions need to
be included when simulating the direct climate effects of BBOA.

Main Text
Introduction

Biomass burning is a significant source of organic aerosol to the atmosphere, and the mass of this
aerosol is expected to increase in the future as forest fires increase in occurrence across diverse
regions due to climate change (1, 2). Biomass burning organic aerosol (BBOA) contains a
significant amount of light-absorbing material, referred to as brown carbon (BrC). This light-
absorbing material exerts a positive radiative effect on Earth’s climate, leading to a strong warming
effect, dictated in part by its lifetime in the atmosphere (3-5).

In the atmosphere, BrC is susceptible to a wide range of chemical aging processes, in
addition to dilution (6, 7), such as photolysis and heterogeneous oxidation with OH, O3, and NOs3,
which alter its light-absorption properties (8—13). After an initial period when darkening may occur
(13, 14), steady whitening (i.e., decreasing absorbance) of BrC occurs for some conditions found
in the troposphere (15-18). For example, in two studies, the light absorption of BrC was observed
to decrease exponentially with transport time with a timescale of about 1 day (15, 19), and this
evolution is associated with changes in composition, including an increase in the oxidation level of
BBOA (15, 20) and the degradation of small chromophores (21, 22), like nitrophenols (23, 24). On
the other hand, for BrC in a convection outflow at high altitude, no whitening was observed after
one day of subsequent aging (25).

Heat from biomass burning sources can enhance vertical transport by convection and
result in the formation of pyrocumulus and pyrocumulonimbus clouds (26, 27), such that BrC from
wildfires can be transported to the middle and upper troposphere and even the lower stratosphere
(25, 28-30). As BBOA is transported vertically, it is exposed to rapidly changing environmental

2



79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

conditions, signified by the lapse rate of -6.5 K km-'. Relative humidity (RH) also fluctuates with
altitude, although not uniformly. Overall, the effect of RH and temperature on the lifetime of BrC is
poorly constrained, leading to uncertainty when predicting the radiative effect of BrC on climate.
The phase state of organic aerosol is strongly dependent on temperature and RH (31-34).
Secondary organic aerosol (SOA) in particular is modelled to be in a glassy state across the globe
at altitudes greater than 5 km (35, 36), and primary BBOA will likely respond similarly to the rapidly
changing environmental conditions upon vertical transport. If BBOA is solid or highly viscous, slow
diffusion of organic species and oxidants within the particles will limit reactivity (37, 38). If BrC is
long-lived in the middle and upper troposphere, then its overall radiative effect may be larger than
previously expected (39, 40).

Here, we report complementary laboratory experiments, kinetic simulations, and global
model simulations to determine the effect of RH and temperature on the time scales for whitening
of BrC by heterogeneous reaction with ozone throughout the troposphere and to assess the impact
of BrC on Earth’s radiative balance. Water-soluble BBOA samples were generated by controlled
smoldering of wood. The whitening of the BrC component was investigated across a range of RH
and temperature conditions relevant to the free troposphere, from the planetary boundary layer
(PBL) at about 1 km to the tropopause, using a cooled flow tube, in which RH was precisely
controlled down to 253 K. The viscosity of the BBOA was investigated across a range of RH
conditions using the poke-flow technique (41), and the viscosity measurements were used to
develop a parameterization of viscosity as a function of RH and temperature. Based on this
parameterization, kinetic simulations of the experimental data provide insights into the mechanism
of the reaction, and they inform global chemical transport model simulations that were performed
to assess the direct radiative effect (DRE) of BrC on climate.

Results and Discussion

Whitening of BrC as a Function of RH and Temperature. BBOA contains a wide range of
phenolic molecules, originating from the thermal degradation of lignin, including species such as
sinapaldehyde and coniferaldehyde (42, 43). These representative species with exocyclic carbon-
carbon double bonds are reactive with ozone (44, 45) and exhibit marked visible-light absorption
(43). To determine the reactivity of BrC with ozone, laboratory-generated pine BBOA was extracted
into water and aerosolized, and the resulting submicron particles, with a geometric mean diameter
of about 100 nm, were exposed to ozone in a reaction flow tube, equipped with precise RH and
temperature control, as shown in Fig. S1 (see Materials and Methods).

The metric used for reactivity was relative absorption at 405 nm, measured for suspended
particles downstream of the flow tube using a photoacoustic spectrometer. Relative absorption was
quantified by comparing measurements of the absorption coefficient at 405 nm when ozone was
present to those when ozone was absent. A representative time series of the absorption coefficient
at 405 nm, shown in Fig. S2, at 273 K and 20, 40, and 60% RH depicts the appreciable and variable
extent of whitening that occurred due to exposure to ozone. In contrast to the absorption coefficient,
the size distribution did not change upon ozone exposure (e.g., Fig. S3). Throughout the flow-tube
experiments, there was no evidence of particle growth or volatilization. Consequently, the observed
decay in relative absorption was due to changes in the composition and absorptivity of the water-
soluble BBOA, rather than changes in the particle size.

To compare whitening across a broad range of temperature and RH conditions, the relative
absorption remaining after exposure to a high mixing ratio of ozone, 45 ppm, was measured at 253-
293 K and 5-80% RH, with a fixed aerosol residence time of 130 s. The results of these experiments
are summarized in Fig. 1A. For all temperatures, a strong dependence on RH was observed, with
the amount of whitening decreasing with RH. For example, at 293 K, the absorption decreases by
more than 40% at 60% RH but less than 5% at 5% RH. The amount of whitening was also strongly
dependent on temperature. For example, at 60% RH, the extent of whitening went from more than
40% at 293 K to about 30% at 273 K and less than 10% at 253 K. Furthermore, at the lowest
temperature, 253 K, and RH values less than or equal to 40%, the extent of whitening was too
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small to detect in our experiment, illustrating that whitening time scales can be long at low
temperature and low RH.

Relative absorption as a function of ozone mixing ratio was also measured for two
temperatures and two relative humidities, yielding the results shown in Fig. 1B. At the given
temperature and RH values, the relative absorption decreased as the ozone mixing ratio increased
from roughly 5 to 45 ppm. At low ozone mixing ratios, there is no indication of absorption
enhancement due to oxidation, associated with a relative absorption greater than one, so
heterogeneous ozone oxidation led only to the whitening of the water-soluble BBOA considered
here. Previously, exposure of BBOA extracts from the same source to aqueous OH radicals in bulk
solutions led to an initial absorption enhancement at 400 nm, followed by slower, steady whitening
(46). Similarly, exposure of whole suspended BBOA from the same source to gas-phase OH
radicals led to absorption enhancement followed by whitening (8). On the other hand, exposure of
whole suspended and filter-deposited BBOA from other sources to gas-phase ozone led only to
whitening (9, 47), as observed here. Together, these observations suggest that the distinct optical
evolution due to ozone relates to the identity of the oxidant rather than the composition of the BBOA
in which the reaction occurs. The light-absorbing molecules that react with ozone may include
sinapaldehyde, coniferaldehyde, and larger species with exocyclic carbon-carbon double bonds,
which will be fragmented by the addition of ozone across the double bond. Electron-rich aromatic
rings may also be reactive to ozone. Since whitening is observed without an accompanying change
in particle size, the mass fraction of these species may be small, although they contribute a
significant fraction of the total absorption.

The effects of RH and temperature, in addition to ozone mixing ratio, are also evident in
Fig. 1B. Most apparent, the decay in the relative absorption was much faster at 293 K than at 273
K. At 293 K, the relative absorption reached an asymptote of 50% of the initial absorption at an
ozone mixing ratio of 45 ppm, above which no additional whitening is expected. At 273 K, the
relative absorption was still decreasing at 45 ppm, approaching the same asymptote. Previously,
studies have suggested that a significant fraction of the light-absorbing species in whole BBOA
from pine needle litter was either unreactive with ozone or physically protected from ozone at room
temperature and 30% RH (9). The asymptote here similarly reflects the water-soluble BBOA
constituents that are recalcitrant with respect to ozone, which account for 50% of the initial
absorption.

Viscosity of BBOA as a Function of RH and Temperature. Reaction rates between organic
aerosol constituents and gas-phase oxidants, including ozone, are governed in part by the viscosity
of the particles (48). Viscosities of the water-soluble BBOA considered here were measured using
the poke-flow technique (see Materials and Methods), allowing estimates of diffusion coefficients
within the water-soluble BBOA and, in turn, insights into the reaction rates between BrC and ozone
in the atmosphere and in the laboratory (i.e., flow-tube) experiments. Micrographs from poke-flow
measurements for filter-collected BBOA extracted into water are shown in Fig. S4. Experiments
were performed at 294 K and 0-25% RH, and images from representative experiments at 0 and
25% RH are presented. Before being poked with a needle, the droplets were spherical in shape.
Upon being poked, they adopted a half-torus geometry. With the needle removed, the droplets
began to flow in order to decrease their surface energy, with a characteristic experimental recovery
time, zexp, fow. The experimental recovery time decreased significantly as RH increased, such that
it was on the order of 1000 s at 0% RH and 10 s at 25% RH, as shown in Fig. S5.

The viscosities determined from these experimental flow times using fluid dynamic
simulations are shown in Fig. 2A. The viscosity of the samples at 0% RH was approximately 1-2 x
10° Pa s. For reference, the viscosity of peanut butter is approximately 1 x 10% Pa s, and the
viscosity of tar pitch is approximately 1 x 108 Pa s (34). As the RH increased from 0% to 25%, the
viscosity decreased by approximately a factor of 100. A decrease in viscosity with an increase in
RH is expected since the water content of the BBOA is expected to increase, and water is known
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to be a plasticizer (i.e., the presence of water leads to a decrease in viscosity in highly viscous
material (34)).

The viscosity data above were used to develop a parameterization of viscosity as a function
of temperature and RH for BBOA (S| Appendix, section S1). The parameterization applies a mole-
fraction-based Arrhenius mixing rule to describe viscosity as a function of RH and the Vogel-
Folcher-Tamman equation to describe viscosity as a function of temperature, as has been done
previously (35, 36, 49). The viscosity as a function of RH and temperature determined with this
procedure is shown in Fig. 2B. Similar to the whitening experiments, a strong dependence on both
RH and temperature is observed.

Analysis of BrC Whitening Kinetics Using the Viscosity Parameterization. The rate of
whitening of BrC within the BBOA particles by ozone can be limited by several processes, including
surface and bulk reaction rates between reactive BrC and ozone, solubility of ozone within the
particles, and diffusion of ozone and BrC within the particles. The resistor model is a simple way to
understand and account for these processes. If the reaction between ozone and BrC is fast and
occurs in a thin layer near the surface, the reactivity of BrC within the particle can be described by
the following equation based on the resistor model (50):

[(BrCi®) _ ;| _ 3RTrog(p)HDogFz, (]
[BrClo 2a,/[BrCl,

where [BrCJo is the initial concentration of BrC, R is the gas constant, T is the temperature, n,, is
the concentration of ozone in the gas phase, H is Henry's law constant, D,, is the diffusion
coefficient of ozone within the particles, k2 is the second order rate coefficient for the ozonolysis of
BrC within the particles, a is the radius of the aerosol particles, and t is the time. Eq. 1 assumes
that BrC is uniform throughout the particles during ozonolysis. A time scale analysis using
estimated diffusion coefficients of BrC within the particles is consistent with this assumption (SI
Appendix, Section S2).

Eg. 1 can be rewritten in terms of ozone partial pressure, Py, (51), as shown in the SI
Appendix (section S3). The fraction of BrC that remains unreacted was assumed to be equivalent
to the absorption relative to the initial absorption, Abs./Abs,. Furthermore, Abs;/Abs, was forced to
be = 50% since the absorption of BrC never falls below approximately 50% of the initial value,
regardless of RH or temperature (Fig. 1). Rearrangement of Eq. 1 and these constraints lead to the
following equation:

2
Absy _ _ 3HDosks
e — 05 (1 i Post) +0.5 2]

Eq. 2 was fit to the experimental measurements of relative absorption of BrC as a function of RH
(Fig. 1A) and O3 mixing ratio (Fig. 1B) to obtain H(k2/[BrC],)"? at temperatures of 253, 273, and
293 K (Fig. S7). For t and a, values of 130 s and 143 nm were used, based on the residence time
and median volume radius of the particles used in the flow tube experiments. D,, was calculated
using the parameterization for viscosity as a function of RH and temperature and the fractional
Stokes-Einstein equation (52), as discussed in the SI Appendix (section S3). Shown in Fig. 1A are
the fits of Eq. 2 to the experimental data for the unreacted BrC fraction as a function of RH at 293,
273, and 253 K. For these experiments, P,,= 4.5 x 10-° atm (45 ppm). Shown in Fig. 1B are the fits
of Eq. 2 to the experimental data of Abs,/Abs, as a function of O3z mixing ratio at 293 and 273 K
and 60 and 80% RH.

The good agreement between the experimental data and the fits to Eq. 2 in Fig. 1 is
consistent with the reaction between O3z and BrC occurring in the bulk of the BBOA, within a thin
shell below the surface (50). Shown in Fig. S7 are the H(k2/[BrCJy)'? values determined from the
fits of Eq. 2 to the experimental data. There is not a strong dependence on temperature. A change
in the reaction rate constant k2 is expected, but it could be compensated for by a change in H.
Furthermore, the H(k2/[BrCJy)'? values determined from the fits are consistent with values
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estimated based on literature data (S| Appendix, Section S4). The line in Fig. S7 represents a linear
fit of the H(k2/[BrCJo)!? values as a function of temperature, and it was used when predicting the
lifetime of BrC in the atmosphere, together with Eq. 1 (see below).

In addition to the analysis above, we also investigated if other model representations
previously used to describe reactivity of particles were able to describe our experimental data well.
For example, we compared the experimental data in Fig. 1a to predictions using the resistor model
and assuming the reaction between Oz and BrC was limited by only diffusion of BrC within the
particles (SI Appendix, Section S5). In this case, the agreement between the experimental data
and the predictions was poor (S| Appendix, Section S5). In addition, we considered the resistor
model and assuming O3z and BrC were well-mixed throughout the particles (SI Appendix, Section
S6). In this case, good agreement between the experimental data and model representation was
only obtained if unrealistic values of H and k; are used (S| Appendix, Section S6). We conclude
that the model representation we used to describe our data (i.e., Eq. 1) is a reasonable
representation of our data since the data is described well by Eq. 1, the H(k2/[BrC]y)"? values
extracted from our fits are consistent with expectations, and two other model representations
previously used to describe reactive uptake do not describe our data well.

Predictions of Lifetime and Direct Radiative Impacts of BrC in the Atmosphere. The lifetime
of reactive BrC in the atmosphere due to this aging process influences its radiative effect and
environmental impact. From Eq. 1, the lifetime, 75,, can be expressed as the following:

. _ (1—%)2a1/[BrC]0
Brc 3HPo,/Doskz

To calculate 75, as a function of altitude and latitude in the atmosphere, first, annual
average temperature and RH values as a function of altitude and latitude in the atmosphere were
determined from MERRAZ2 data (40). Next, Dy, as a function of altitude and latitude in the
atmosphere was calculated using these temperature and RH fields, the fractional Stokes-Einstein
equation, and our parameterization of viscosity as a function of temperature and RH (Fig. 2B).
Finally, 75, was calculated as a function of altitude and latitude using the D, values as a function
of altitude and latitude, the derived values for H(k2/[BrCJy)"? (line in Fig. S7) and Eq. 3. For the latter
calculation, the following variables were used: a = 150 nm and P,, = 3.5 x 108 atm, i.e., 35 ppb of
ozone. The partial pressure of ozone was based on an average of measurements of tropospheric
ozone at surface level and at 10 km, multiplied by the atmospheric pressures at the same altitudes
(53-57). The radius was chosen based on volume size distributions of atmospheric BBOA (58—60).
H(k2/[BrCJo)"? was calculated at each temperature using the fit in Fig. S7, giving a value of
approximately 9 atm-' s-'/2 at all temperatures in the range evaluated.

Shown in Fig. 3A are the 75, values as a function of altitude and latitude calculated with
this approach, including the altitude corresponding to a 75, of 1 day. The zonally averaged altitude
for this lifetime is similar to the height of the PBL, i.e., very roughly 1 km. Throughout much of the
mid- and upper troposphere, the whitening lifetime via this process is considerably longer than a
typical particle residence time, which is often taken as roughly a week (61, 62). Indeed, for ozone,
a fraction of the BBOA BrC was recalcitrant to whitening.

What is the impact of this altitude-dependent whitening process of BBOA BrC on its global
concentration and DRE? To answer this question, a global three-dimensional chemical transport
model, GEOS-Chem, was coupled to the RRTMG radiative transfer model (63) in a configuration
known as GC-RT (64). The zonal concentration of BrC in the northern hemisphere (NH) and tropics
is highest below 2.5 km, while in the southern hemisphere (SH), it is highest in the upper
troposphere, as shown in Fig. 3C. As illustrated in Carter et al. (40), with no whitening included in
the model, the global annual mean top-of-the-atmosphere DRE of BrC is 0.29 W m-2 and drops to
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0.08 W m2 when including whitening with a lifetime of 1 day at all altitudes (Fig. 3B; also see Fig.
S8).

When a whitening lifetime (of 1 day) is included only at altitudes below 1 km, in agreement
with the current experimental results, the decrease in BrC concentration depends more strongly on
region, with a significant decrease only in the NH (Fig. 3C; also see Fig. S8). At high latitudes,
where the PBL in fire regions is nearly always below 1 km, emitted BrC is efficiently whitened within
the PBL, substantially decreasing BrC concentrations exported to the free troposphere. In the
tropics, a deeper PBL allows BrC to be lofted above the whitening zone, leading to overall less
efficient whitening. When limiting the whitening process to below 1 km, the decrease in the global
DRE is less pronounced, reaching about 0.17 W m-2, indicating that increased aerosol viscosity at
high altitudes enhances the warming effect of BrC.

Atmospheric Implications. This work uniquely combines measurements of aerosol reactivity and
viscosity with simulations of aerosol radiative effects to explore the critical impact of environmental
conditions on the whitening of BrC BBOA and its DRE. Together, the results demonstrate that the
timescale for whitening by ozone oxidation becomes longer than 1 day for altitudes greater than
roughly 1 km. We stress that the specific timescale and altitude threshold for whitening will depend
on a number of factors, including the size of the particles, environmental conditions, absorption
wavelengths, and the concentrations and identity of the oxidants. In this work, heterogeneous
oxidation by ozone of wood smoke was considered. Previous studies have shown that low
temperatures can also reduce the rate of BBOA chemical aging by hydroxyl radicals (33, 65);
although, the direct connection to the optical properties of the particles was not made in those
works. Low temperature NOs aging experiments have not yet been reported, nor have low
temperature photoreaction studies of BBOA; although, work using individual molecules (e.g.,
nitrophenols) has shown slower photodegradation rates in organic matrices (66). In addition, the
nature of the BBOA BrC material should be varied in subsequent studies, to explore how this
whitening phenomenon depends on composition, combustion conditions, and BrC water solubility.

Although the derived aging timescale of 24 hours at about 1 km altitude in the atmosphere
may vary somewhat as a function of environmental conditions, BBOA composition, and aging
mechanism, the overall behavior demonstrated in this study is expected to be universal. In
particular, it is expected that BrC aging processes will be slowest in regions of the atmosphere
where the environmental conditions lead to high BBOA viscosity, such as the mid- and upper
troposphere. As shown in this work, this will have significant effects on the DRE of BrC. Past models
that have assumed a uniform BrC aging timescale of 1 day throughout the troposphere are likely
underestimating the BrC DRE_(39, 40). Indeed, we note that the environmental conditions in much
of the mid- and upper troposphere lead to aging timescales of a week or more (Fig. 3A).

We finish by noting that the viscosity of BBOA may reach very high values, perhaps even
those of a glass, under some environmental conditions such as those in the upper troposphere
(Fig. 2B; see also Fig. S9 for a global distribution of viscosity and glass state of BBOA). The rates
of heterogeneous oxidation will be slower in more viscous particles, resulting in slower removal of
the BBOA particles via wet deposition. As well, previous results have shown that certain types of
glassy aerosol can act as ice nucleating particles and, hence, influence properties of clouds and
climate (67, 68). Since BBOA may be in a glassy state in the upper troposphere, studies are needed
to quantify the ice nucleation ability of glassy BBOA. Beyond effects on the DRE of BrC, which was
the main focus of this paper, this may be another mechanism by which environmental conditions
affect BBOA and its influence on climate.

Materials and Methods

BBOA Generation and Collection. Samples of BBOA were generated by controlled, low
temperature smoldering of untreated, commercial pine wood in a heated flow tube (46, 69, 70).
Clean air (Linde, Grade Zero 0.1) flowed through a quartz tube with an inner diameter of 2.2 cm at
a rate of 2.0 L min-'. A 30.5-cm length of the tube rested in a tube furnace (Thermo, Lindberg Blue
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M), and a 27.0-cm length extended downstream. Particles were collected on filters of borosilicate
glass bonded to PTFE (Pall, Emfab).

For a typical sample of BBOA, three rectangular chips of pine, with a total mass of about 6
g, were placed in the quartz tube, and the furnace temperature was ramped to 673 K. Filter
sampling began only after the wood had dried and once strong smoldering, with a distinct front,
was observed; care was taken to avoid flaming conditions. For filter sampling, typically about 100
mg of whole BBOA was collected.

Heterogeneous Ozone Oxidation. It was important to prepare the sample flow with the correct
RH at a specific temperature. To do this, the conditioned sample (S| Appendix, section S7) was
directed into a double-jacketed glass flow tube, called the RH-conditioner, as in Fig. S1. A
recirculating chiller filled with a mixture of ethylene glycol and water was connected to flow through
the inner jacket of this flow tube. RH was monitored at room temperature with a commercial probe
(VWR). For experiments conducted at 253 and 273 K, ultrapure water was added to the
conditioning flow tube, and its temperature was monitored continuously with a thermocouple. The
sample in the RH-conditioner is assumed to be at ice saturation (71), and the temperature was
adjusted such that the saturation vapor pressure of ice gave the desired RH once the sample was
directed into the adjacent reaction flow tube, also double-jacketed.

Near the inlet of the reaction flow tube, ozone was added to the sample, in a carrier gas
with a flow rate of 0.2 L min-1, to give a total flow rate of 1.0 L min-' through the flow tube. With the
reaction volume, the residence time in the flow tube was 130 + 10 s. The total aerosol mass loading
in the flow tube was about 1000 ug m=3. Ozone was generated by passing clean, dry air (Linde,
Grade Zero 0.1) through a small glass tube housing a Hg lamp at its center. The ozone mixing ratio
was varied by adjusting the shielding around the Hg lamp and was measured for the same total
flow rate using an ozone monitor (2B Technologies, 202). To allow as long a residence time as
possible in the flow tube and still provide sufficient aerosol absorption, ozone was not monitored
continuously. A second recirculating chiller filled with the same ethylene-water mixture was
connected to flow through the inner jacket of the reaction flow tube. The temperature was adjusted
and monitored with a second thermocouple, which was retracted from the flow tube once the Hg
lamp was turned on to introduce ozone. The RH in the reaction flow tube was calculated from its
temperature and the water content of the sample leaving the RH-conditioner.

Particle Viscosity Measurement. The viscosity of the aerosol particles nebulized and deposited
on a hydrophobic glass slide was determined using the poke-flow technique (32, 41, 72). During
the experiment, the slide and sample were placed inside a flow cell with both RH and temperature
control. The sample was conditioned overnight (>12 hr) at 294 + 1 K, and the poke-flow
measurement was performed at 2, 4, and 6 hr after conditioning (within the uncertainties of the
measurements, the viscosities did not depend on the conditioning time used, as shown in Fig. S10).
The glass slide was mounted in the flow cell with a hole at the top through which a needle could be
inserted. The droplet was poked using a sharp needle (Ted Pella Company, 13561-20) coated with
hydrophobic oil slip coating (Cytonix, OilSlip 110). The needle was attached to a micromanipulator
stage, which allowed it to move in the x, y, and z directions.

In a typical experiment, the needle tip was aligned above the center of the droplet, and it
was slowly lowered until it touched the particle and was then quickly raised, leaving a depression
in the droplet and a shape similar to a half-torus geometry. The droplet began to flow to reduce its
surface energy and eventually returned to the original spherical geometry. The change in
morphology as a function of time was recorded with a CCD camera connected to a microscope
(AmScope). The experimental flow (or recovery) time, texp, flow, Was defined as the time taken for
the equivalent area diameter of the hole to decrease to 50% of its original value. Fluid dynamic
simulations were performed as discussed in the S| Appendix (section S8).

Global Transport and Radiative Transfer Modelling. The BrC simulation employed GEOS-
Chem coupled to RRTMG (63) in a configuration known as GC-RT, v.12.3.0 (64), and was
compared to previous results from Carter et al. (40). Simulations were performed at 2.0 x 2.5 degree
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horizontal resolution with 47 vertical levels and were driven by MERRA-2 meteorology. GFED4s
was used to represent fire emissions. It was assumed that 100% of BBOA was brown or absorbing
and that this was the only source of BrC. Details on BrC emissions and non-absorbing organic
aerosol optical properties used in the model are provided elsewhere (39, 73). The BrC absorption
properties vary based on the BC-to-OA ratio (40), following Saleh, et al. (74). The lifetime for BrC
whitening was treated as constant, set to 1 day. The whitening parameterization does not allow
BrC absorptivity to drop below 25% of the starting value. The global whitening and non-whitening
simulations reported previously (40) are compared with the new simulation based on the laboratory
results, in which whitening occurs only below 1 km.
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Fig. 2. Panel (A) shows viscosities of the BBOA as a function of RH. Symbols show the averages
of the log(viscosity) values, with y-error bars representing the upper and lower limits at each RH
and x-error bars representing the uncertainty in RH. Data for both 10 mL and 50 mL water extracts
are shown (Fig. S6). Included at RH of 100% is the viscosity of pure water at a temperature of 294
K. The black dashed curve corresponds to a fit to the data using the parameterization (S| Appendix,
section S1). Panel (B) shows predicted viscosities of BBOA as a function of temperature and RH.
Viscosities above 102 Pa s correspond to a glass state and are cut off (hatched region) because
they are not modelled well by the Vogel-Fulcher-Tamman equation.
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Fig. 3. Panel (A) shows the predicted annual average lifetimes of water-soluble BrC in the
atmosphere as a function of altitude and latitude. The dashed blue line represents 1-day whitening
of BrC. Panel (B) shows the global mean all-sky top-of-atmosphere BrC direct radiative effect
(DRE) in 2018 for the schemes with no-whitening, 1-day whitening, and 1-day whitening only below
1 km. The third scheme is new to this study; the first two schemes are described in Carter et al.
(40). Panel (C) shows the simulated mean 2018 BrC mass concentrations by altitude for the
northern hemisphere (30-90°N), the tropics (30°N-30°S), and the southern hemisphere (30-90°S)
for the three schemes in panel (B). BrC mass concentrations are reported at standard conditions
of temperature and pressure (STP: 273K, 1 atm).
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