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Abstract 28 

Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb 29 
solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo 30 
reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of 31 
temperature and relative humidity (RH) on whitening has not been well constrained, leading to 32 
uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-33 
tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent 34 
on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also 35 
depends strongly on these conditions. The measured whitening rate of BrC is described well with 36 
the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA, 37 
within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model 38 
of this whitening process, and we show that the lifetime of BrC is 1 day or less below approximately 39 
1 km in altitude in the atmosphere but is often much longer than 1 day above this altitude. Including 40 
this altitude dependence of the whitening rate in a chemical transport model causes a large change 41 
in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and 42 
temperature need to be considered to understand the role of BBOA in the atmosphere.  43 

Significance Statement 44 

Biomass burning organic aerosol (BBOA) has a significant direct effect on climate by absorbing 45 
solar radiation. Understanding this effect is increasingly important as wildfires become more 46 
prevalent in several regions across the globe. While transported in the atmosphere, BBOA can 47 
react with atmospheric oxidants, leading to less-absorbing products, or whitening. We show that 48 
this whitening is strongly influenced by relative humidity and temperature and, consequently, 49 
vertical transport in the atmosphere. Implementing altitude-dependent whitening of BBOA in a 50 
global atmospheric model indicates that the effects of changing environmental conditions need to 51 
be included when simulating the direct climate effects of BBOA.  52 

 53 
 54 
Main Text 55 
 56 
Introduction 57 
 58 
Biomass burning is a significant source of organic aerosol to the atmosphere, and the mass of this 59 
aerosol is expected to increase in the future as forest fires increase in occurrence across diverse 60 
regions due to climate change (1, 2). Biomass burning organic aerosol (BBOA) contains a 61 
significant amount of light-absorbing material, referred to as brown carbon (BrC). This light-62 
absorbing material exerts a positive radiative effect on Earth’s climate, leading to a strong warming 63 
effect, dictated in part by its lifetime in the atmosphere (3–5).  64 
 In the atmosphere, BrC is susceptible to a wide range of chemical aging processes, in 65 
addition to dilution (6, 7), such as photolysis and heterogeneous oxidation with OH, O3, and NO3, 66 
which alter its light-absorption properties (8–13). After an initial period when darkening may occur 67 
(13, 14), steady whitening (i.e., decreasing absorbance) of BrC occurs for some conditions found 68 
in the troposphere  (15–18).  For example, in two studies, the light absorption of BrC was observed 69 
to decrease exponentially with transport time with a timescale of about 1 day (15, 19), and this 70 
evolution is associated with changes in composition, including an increase in the oxidation level of 71 
BBOA (15, 20) and the degradation of small chromophores (21, 22), like nitrophenols (23, 24). On 72 
the other hand, for BrC in a convection outflow at high altitude, no whitening was observed after 73 
one day of subsequent aging (25). 74 
 Heat from biomass burning sources can enhance vertical transport by convection and 75 
result in the formation of pyrocumulus and pyrocumulonimbus clouds (26, 27), such that BrC from 76 
wildfires can be transported to the middle and upper troposphere and even the lower stratosphere 77 
(25, 28–30). As BBOA is transported vertically, it is exposed to rapidly changing environmental 78 
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conditions, signified by the lapse rate of -6.5 K km-1. Relative humidity (RH) also fluctuates with 79 
altitude, although not uniformly. Overall, the effect of RH and temperature on the lifetime of BrC is 80 
poorly constrained, leading to uncertainty when predicting the radiative effect of BrC on climate. 81 
The phase state of organic aerosol is strongly dependent on temperature and RH (31–34). 82 
Secondary organic aerosol (SOA) in particular is modelled to be in a glassy state across the globe 83 
at altitudes greater than 5 km (35, 36), and primary BBOA will likely respond similarly to the rapidly 84 
changing environmental conditions upon vertical transport. If BBOA is solid or highly viscous, slow 85 
diffusion of organic species and oxidants within the particles will limit reactivity (37, 38). If BrC is 86 
long-lived in the middle and upper troposphere, then its overall radiative effect may be larger than 87 
previously expected (39, 40).  88 
 Here, we report complementary laboratory experiments, kinetic simulations, and global 89 
model simulations to determine the effect of RH and temperature on the time scales for whitening 90 
of BrC by heterogeneous reaction with ozone throughout the troposphere and to assess the impact 91 
of BrC on Earth’s radiative balance. Water-soluble BBOA samples were generated by controlled 92 
smoldering of wood. The whitening of the BrC component was investigated across a range of RH 93 
and temperature conditions relevant to the free troposphere, from the planetary boundary layer 94 
(PBL) at about 1 km to the tropopause, using a cooled flow tube, in which RH was precisely 95 
controlled down to 253 K. The viscosity of the BBOA was investigated across a range of RH 96 
conditions using the poke-flow technique (41), and the viscosity measurements were used to 97 
develop a parameterization of viscosity as a function of RH and temperature. Based on this 98 
parameterization, kinetic simulations of the experimental data provide insights into the mechanism 99 
of the reaction, and they inform global chemical transport model simulations that were performed 100 
to assess the direct radiative effect (DRE) of BrC on climate. 101 
 102 
 103 
Results and Discussion 104 
 105 
Whitening of BrC as a Function of RH and Temperature. BBOA contains a wide range of 106 
phenolic molecules, originating from the thermal degradation of lignin, including species such as 107 
sinapaldehyde and coniferaldehyde (42, 43). These representative species with exocyclic carbon-108 
carbon double bonds are reactive with ozone (44, 45) and exhibit marked visible-light absorption 109 
(43). To determine the reactivity of BrC with ozone, laboratory-generated pine BBOA was extracted 110 
into water and aerosolized, and the resulting submicron particles, with a geometric mean diameter 111 
of about 100 nm, were exposed to ozone in a reaction flow tube, equipped with precise RH and 112 
temperature control, as shown in Fig. S1 (see Materials and Methods). 113 

The metric used for reactivity was relative absorption at 405 nm, measured for suspended 114 
particles downstream of the flow tube using a photoacoustic spectrometer. Relative absorption was 115 
quantified by comparing measurements of the absorption coefficient at 405 nm when ozone was 116 
present to those when ozone was absent. A representative time series of the absorption coefficient 117 
at 405 nm, shown in Fig. S2, at 273 K and 20, 40, and 60% RH depicts the appreciable and variable 118 
extent of whitening that occurred due to exposure to ozone. In contrast to the absorption coefficient, 119 
the size distribution did not change upon ozone exposure (e.g., Fig. S3). Throughout the flow-tube 120 
experiments, there was no evidence of particle growth or volatilization. Consequently, the observed 121 
decay in relative absorption was due to changes in the composition and absorptivity of the water-122 
soluble BBOA, rather than changes in the particle size.  123 

To compare whitening across a broad range of temperature and RH conditions, the relative 124 
absorption remaining after exposure to a high mixing ratio of ozone, 45 ppm, was measured at 253-125 
293 K and 5-80% RH, with a fixed aerosol residence time of 130 s. The results of these experiments 126 
are summarized in Fig. 1A. For all temperatures, a strong dependence on RH was observed, with 127 
the amount of whitening decreasing with RH. For example, at 293 K, the absorption decreases by 128 
more than 40% at 60% RH but less than 5% at 5% RH. The amount of whitening was also strongly 129 
dependent on temperature. For example, at 60% RH, the extent of whitening went from more than 130 
40% at 293 K to about 30% at 273 K and less than 10% at 253 K. Furthermore, at the lowest 131 
temperature, 253 K, and RH values less than or equal to 40%, the extent of whitening was too 132 
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small to detect in our experiment, illustrating that whitening time scales can be long at low 133 
temperature and low RH.  134 

Relative absorption as a function of ozone mixing ratio was also measured for two 135 
temperatures and two relative humidities, yielding the results shown in Fig. 1B. At the given 136 
temperature and RH values, the relative absorption decreased as the ozone mixing ratio increased 137 
from roughly 5 to 45 ppm. At low ozone mixing ratios, there is no indication of absorption 138 
enhancement due to oxidation, associated with a relative absorption greater than one, so 139 
heterogeneous ozone oxidation led only to the whitening of the water-soluble BBOA considered 140 
here. Previously, exposure of BBOA extracts from the same source to aqueous OH radicals in bulk 141 
solutions led to an initial absorption enhancement at 400 nm, followed by slower, steady whitening 142 
(46). Similarly, exposure of whole suspended BBOA from the same source to gas-phase OH 143 
radicals led to absorption enhancement followed by whitening (8). On the other hand, exposure of 144 
whole suspended and filter-deposited BBOA from other sources to gas-phase ozone led only to 145 
whitening (9, 47), as observed here. Together, these observations suggest that the distinct optical 146 
evolution due to ozone relates to the identity of the oxidant rather than the composition of the BBOA 147 
in which the reaction occurs. The light-absorbing molecules that react with ozone may include 148 
sinapaldehyde, coniferaldehyde, and larger species with exocyclic carbon-carbon double bonds, 149 
which will be fragmented by the addition of ozone across the double bond. Electron-rich aromatic 150 
rings may also be reactive to ozone. Since whitening is observed without an accompanying change 151 
in particle size, the mass fraction of these species may be small, although they contribute a 152 
significant fraction of the total absorption. 153 

The effects of RH and temperature, in addition to ozone mixing ratio, are also evident in 154 
Fig. 1B. Most apparent, the decay in the relative absorption was much faster at 293 K than at 273 155 
K. At 293 K, the relative absorption reached an asymptote of 50% of the initial absorption at an 156 
ozone mixing ratio of 45 ppm, above which no additional whitening is expected. At 273 K, the 157 
relative absorption was still decreasing at 45 ppm, approaching the same asymptote. Previously, 158 
studies have suggested that a significant fraction of the light-absorbing species in whole BBOA 159 
from pine needle litter was either unreactive with ozone or physically protected from ozone at room 160 
temperature and 30% RH (9). The asymptote here similarly reflects the water-soluble BBOA 161 
constituents that are recalcitrant with respect to ozone, which account for 50% of the initial 162 
absorption. 163 
 164 
Viscosity of BBOA as a Function of RH and Temperature. Reaction rates between organic 165 
aerosol constituents and gas-phase oxidants, including ozone, are governed in part by the viscosity 166 
of the particles (48). Viscosities of the water-soluble BBOA considered here were measured using 167 
the poke-flow technique (see Materials and Methods), allowing estimates of diffusion coefficients 168 
within the water-soluble BBOA and, in turn, insights into the reaction rates between BrC and ozone 169 
in the atmosphere and in the laboratory (i.e., flow-tube) experiments. Micrographs from poke-flow 170 
measurements for filter-collected BBOA extracted into water are shown in Fig. S4. Experiments 171 
were performed at 294 K and 0-25% RH, and images from representative experiments at 0 and 172 
25% RH are presented. Before being poked with a needle, the droplets were spherical in shape. 173 
Upon being poked, they adopted a half-torus geometry. With the needle removed, the droplets 174 
began to flow in order to decrease their surface energy, with a characteristic experimental recovery 175 
time, τexp, flow. The experimental recovery time decreased significantly as RH increased, such that 176 
it was on the order of 1000 s at 0% RH and 10 s at 25% RH, as shown in Fig. S5.  177 

The viscosities determined from these experimental flow times using fluid dynamic 178 
simulations are shown in Fig. 2A. The viscosity of the samples at 0% RH was approximately 1‒2 × 179 
105 Pa s. For reference, the viscosity of peanut butter is approximately 1 × 103 Pa s, and the 180 
viscosity of tar pitch is approximately 1 × 108 Pa s (34). As the RH increased from 0% to 25%, the 181 
viscosity decreased by approximately a factor of 100. A decrease in viscosity with an increase in 182 
RH is expected since the water content of the BBOA is expected to increase, and water is known 183 
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to be a plasticizer (i.e., the presence of water leads to a decrease in viscosity in highly viscous 184 
material (34)). 185 

The viscosity data above were used to develop a parameterization of viscosity as a function 186 
of temperature and RH for BBOA (SI Appendix, section S1). The parameterization applies a mole-187 
fraction-based Arrhenius mixing rule to describe viscosity as a function of RH and the Vogel-188 
Folcher-Tamman equation to describe viscosity as a function of temperature, as has been done 189 
previously (35, 36, 49). The viscosity as a function of RH and temperature determined with this 190 
procedure is shown in Fig. 2B. Similar to the whitening experiments, a strong dependence on both 191 
RH and temperature is observed. 192 
 193 
Analysis of BrC Whitening Kinetics Using the Viscosity Parameterization. The rate of 194 
whitening of BrC within the BBOA particles by ozone can be limited by several processes, including 195 
surface and bulk reaction rates between reactive BrC and ozone, solubility of ozone within the 196 
particles, and diffusion of ozone and BrC within the particles. The resistor model is a simple way to 197 
understand and account for these processes. If the reaction between ozone and BrC is fast and 198 
occurs in a thin layer near the surface, the reactivity of BrC within the particle can be described by 199 
the following equation based on the resistor model (50): 200 
 201 

√
[BrC](𝑡)

[BrC]0
= 1 −

3𝑅𝑇𝑛𝑂3(𝑔)𝐻√𝐷𝑂3𝑘2

2𝑎√[BrC]0
𝑡     [1] 202 

where [BrC]0 is the initial concentration of BrC, R is the gas constant, T is the temperature, 𝑛𝑂3
 is 203 

the concentration of ozone in the gas phase, H is Henry’s law constant, 𝐷𝑂3
 is the diffusion 204 

coefficient of ozone within the particles, k2 is the second order rate coefficient for the ozonolysis of 205 
BrC within the particles, a is the radius of the aerosol particles, and t is the time. Eq. 1 assumes 206 
that BrC is uniform throughout the particles during ozonolysis. A time scale analysis using 207 
estimated diffusion coefficients of BrC within the particles is consistent with this assumption (SI 208 
Appendix, Section S2).  209 

Eq. 1 can be rewritten in terms of ozone partial pressure, 𝑃𝑂3
 (51), as shown in the SI 210 

Appendix (section S3). The fraction of BrC that remains unreacted was assumed to be equivalent 211 
to the absorption relative to the initial absorption, 𝐴𝑏𝑠𝑡/𝐴𝑏𝑠0. Furthermore, 𝐴𝑏𝑠𝑡/𝐴𝑏𝑠0 was forced to 212 
be ≥ 50% since the absorption of BrC never falls below approximately 50% of the initial value, 213 
regardless of RH or temperature (Fig. 1). Rearrangement of Eq. 1 and these constraints lead to the 214 
following equation: 215 
 216 

𝐴𝑏𝑠𝑡

𝐴𝑏𝑠0
= 0.5 (1 −

3𝐻√𝐷𝑂3𝑘2

2𝑎√[BrC]0
𝑃𝑂3

𝑡)
2

+ 0.5    [2] 217 

Eq. 2 was fit to the experimental measurements of relative absorption of BrC as a function of RH 218 
(Fig. 1A) and O3 mixing ratio (Fig. 1B) to obtain H(k2/[BrC]0)1/2 at temperatures of 253, 273, and 219 
293 K (Fig. S7). For t and a, values of 130 s and 143 nm were used, based on the residence time 220 
and median volume radius of the particles used in the flow tube experiments. 𝐷𝑂3

 was calculated 221 
using the parameterization for viscosity as a function of RH and temperature and the fractional 222 
Stokes-Einstein equation (52), as discussed in the SI Appendix (section S3). Shown in Fig. 1A are 223 
the fits of Eq. 2 to the experimental data for the unreacted BrC fraction as a function of RH at 293, 224 
273, and 253 K. For these experiments, 𝑃𝑂3

= 4.5 × 10-5 atm (45 ppm). Shown in Fig. 1B are the fits 225 
of Eq. 2 to the experimental data of 𝐴𝑏𝑠𝑡/𝐴𝑏𝑠0  as a function of O3 mixing ratio at 293 and 273 K 226 
and 60 and 80% RH.  227 

The good agreement between the experimental data and the fits to Eq. 2 in Fig. 1 is 228 
consistent with the reaction between O3 and BrC occurring in the bulk of the BBOA, within a thin 229 
shell below the surface (50). Shown in Fig. S7 are the H(k2/[BrC]0)1/2 values determined from the 230 
fits of Eq. 2 to the experimental data. There is not a strong dependence on temperature. A change 231 
in the reaction rate constant k2 is expected, but it could be compensated for by a change in H. 232 
Furthermore, the H(k2/[BrC]0)1/2 values determined from the fits are consistent with values 233 
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estimated based on literature data (SI Appendix, Section S4). The line in Fig. S7 represents a linear 234 
fit of the H(k2/[BrC]0)1/2 values as a function of temperature, and it was used when predicting the 235 
lifetime of BrC in the atmosphere, together with Eq. 1 (see below). 236 
 In addition to the analysis above, we also investigated if other model representations 237 
previously  used to describe reactivity of particles were able to describe our experimental data well.  238 
For example, we compared the experimental data in Fig. 1a to predictions using the resistor model 239 
and assuming the reaction between O3 and BrC was limited by only diffusion of BrC within the 240 
particles (SI Appendix, Section S5).  In this case, the agreement between the experimental data 241 
and the predictions was poor (SI Appendix, Section S5).  In addition, we considered the resistor 242 
model and assuming O3 and BrC were well-mixed throughout the particles (SI Appendix, Section 243 
S6).  In this case, good agreement between the experimental data and model representation was 244 
only obtained if unrealistic values of H and k2 are used (SI Appendix, Section S6).  We conclude 245 
that the model representation we used to describe our data (i.e., Eq. 1) is a reasonable 246 
representation of our data since the data is described well by Eq. 1, the H(k2/[BrC]0)1/2 values 247 
extracted from our fits are consistent with expectations, and two other model representations 248 
previously used to describe reactive uptake do not describe our data well. 249 

 250 
Predictions of Lifetime and Direct Radiative Impacts of BrC in the Atmosphere. The lifetime 251 
of reactive BrC in the atmosphere due to this aging process influences its radiative effect and 252 
environmental impact. From Eq. 1, the lifetime, 𝜏𝐵𝑟𝐶 , can be expressed as the following: 253 
 254 

𝜏𝐵𝑟𝐶 =
(1−

1

√𝑒
)2𝑎√[BrC]0

3𝐻𝑃𝑂3√𝐷𝑂3𝑘2
     [3] 255 

To calculate 𝜏𝐵𝑟𝐶  as a function of altitude and latitude in the atmosphere, first, annual 256 
average temperature and RH values as a function of altitude and latitude in the atmosphere were 257 
determined from MERRA2 data (40). Next, 𝐷𝑂3

 as a function of altitude and latitude in the 258 
atmosphere was calculated using these temperature and RH fields, the fractional Stokes-Einstein 259 
equation, and our parameterization of viscosity as a function of temperature and RH (Fig. 2B). 260 
Finally, 𝜏𝐵𝑟𝐶  was calculated as a function of altitude and latitude using the 𝐷𝑂3

 values as a function 261 
of altitude and latitude, the derived values for H(k2/[BrC]0)1/2 (line in Fig. S7) and Eq. 3. For the latter 262 
calculation, the following variables were used: a = 150 nm and 𝑃𝑂3

 = 3.5 × 10-8 atm, i.e., 35 ppb of 263 
ozone. The partial pressure of ozone was based on an average of measurements of tropospheric 264 
ozone at surface level and at 10 km, multiplied by the atmospheric pressures at the same altitudes 265 
(53–57). The radius was chosen based on volume size distributions of atmospheric BBOA (58–60). 266 
H(k2/[BrC]0)1/2 was calculated at each temperature using the fit in Fig. S7, giving a value of 267 
approximately 9 atm-1 s-1/2 at all temperatures in the range evaluated.  268 

Shown in Fig. 3A are the 𝜏𝐵𝑟𝐶  values as a function of altitude and latitude calculated with 269 
this approach, including the altitude corresponding to a 𝜏𝐵𝑟𝐶  of 1 day. The zonally averaged altitude 270 
for this lifetime is similar to the height of the PBL, i.e., very roughly 1 km.  Throughout much of the 271 
mid- and upper troposphere, the whitening lifetime via this process is considerably longer than a 272 
typical particle residence time, which is often taken as roughly a week  (61, 62). Indeed, for ozone, 273 
a fraction of the BBOA BrC was recalcitrant to whitening.  274 

What is the impact of this altitude-dependent whitening process of BBOA BrC on its global 275 
concentration and DRE? To answer this question, a global three-dimensional chemical transport 276 
model, GEOS-Chem, was coupled to the RRTMG radiative transfer model (63) in a configuration 277 
known as GC-RT (64). The zonal concentration of BrC in the northern hemisphere (NH) and tropics 278 
is highest below 2.5 km, while in the southern hemisphere (SH), it is highest in the upper 279 
troposphere, as shown in Fig. 3C. As illustrated in Carter et al. (40), with no whitening included in 280 
the model, the global annual mean top-of-the-atmosphere DRE of BrC is 0.29 W m-2 and drops to 281 
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0.08 W m-2 when including whitening with a lifetime of 1 day at all altitudes (Fig. 3B; also see Fig. 282 
S8).   283 

When a whitening lifetime (of 1 day) is included only at altitudes below 1 km, in agreement 284 
with the current experimental results, the decrease in BrC concentration depends more strongly on 285 
region, with a significant decrease only in the NH (Fig. 3C; also see Fig. S8). At high latitudes, 286 
where the PBL in fire regions is nearly always below 1 km, emitted BrC is efficiently whitened within 287 
the PBL, substantially decreasing BrC concentrations exported to the free troposphere. In the 288 
tropics, a deeper PBL allows BrC to be lofted above the whitening zone, leading to overall less 289 
efficient whitening. When limiting the whitening process to below 1 km, the decrease in the global 290 
DRE is less pronounced, reaching about 0.17 W m-2, indicating that increased aerosol viscosity at 291 
high altitudes enhances the warming effect of BrC. 292 
 293 
Atmospheric Implications. This work uniquely combines measurements of aerosol reactivity and 294 
viscosity with simulations of aerosol radiative effects to explore the critical impact of environmental 295 
conditions on the whitening of BrC BBOA and its DRE. Together, the results demonstrate that the 296 
timescale for whitening by ozone oxidation becomes longer than 1 day for altitudes greater than 297 
roughly 1 km. We stress that the specific timescale and altitude threshold for whitening will depend 298 
on a number of factors, including the size of the particles, environmental conditions, absorption 299 
wavelengths, and the concentrations and identity of the oxidants. In this work, heterogeneous 300 
oxidation by ozone of wood smoke was considered. Previous studies have shown that low 301 
temperatures can also reduce the rate of BBOA chemical aging by hydroxyl radicals (33, 65); 302 
although, the direct connection to the optical properties of the particles was not made in those 303 
works. Low temperature NO3 aging experiments have not yet been reported, nor have low 304 
temperature photoreaction studies of BBOA; although, work using individual molecules (e.g., 305 
nitrophenols) has shown slower photodegradation rates in organic matrices (66). In addition, the 306 
nature of the BBOA BrC material should be varied in subsequent studies, to explore how this 307 
whitening phenomenon depends on composition, combustion conditions, and BrC water solubility.  308 
 Although the derived aging timescale of 24 hours at about 1 km altitude in the atmosphere 309 
may vary somewhat as a function of environmental conditions, BBOA composition, and aging 310 
mechanism, the overall behavior demonstrated in this study is expected to be universal. In 311 
particular, it is expected that BrC aging processes will be slowest in regions of the atmosphere 312 
where the environmental conditions lead to high BBOA viscosity, such as the mid- and upper 313 
troposphere. As shown in this work, this will have significant effects on the DRE of BrC. Past models 314 
that have assumed a uniform BrC aging timescale of 1 day throughout the troposphere are likely 315 
underestimating the BrC DRE (39, 40). Indeed, we note that the environmental conditions in much 316 
of the mid- and upper troposphere lead to aging timescales of a week or more (Fig. 3A). 317 
 We finish by noting that the viscosity of BBOA may reach very high values, perhaps even 318 
those of a glass, under some environmental conditions such as those in the upper troposphere 319 
(Fig. 2B; see also Fig. S9 for a global distribution of viscosity and glass state of BBOA). The rates 320 
of heterogeneous oxidation will be slower in more viscous particles, resulting in slower removal of 321 
the BBOA particles via wet deposition.  As well, previous results have shown that certain types of 322 
glassy aerosol can act as ice nucleating particles and, hence, influence properties of clouds and 323 
climate (67, 68). Since BBOA may be in a glassy state in the upper troposphere, studies are needed 324 
to quantify the ice nucleation ability of glassy BBOA. Beyond effects on the DRE of BrC, which was 325 
the main focus of this paper, this may be another mechanism by which environmental conditions 326 
affect BBOA and its influence on climate.  327 

  328 
Materials and Methods 329 
 330 
BBOA Generation and Collection. Samples of BBOA were generated by controlled, low 331 
temperature smoldering of untreated, commercial pine wood in a heated flow tube (46, 69, 70). 332 
Clean air (Linde, Grade Zero 0.1) flowed through a quartz tube with an inner diameter of 2.2 cm at 333 
a rate of 2.0 L min-1. A 30.5-cm length of the tube rested in a tube furnace (Thermo, Lindberg Blue 334 
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M), and a 27.0-cm length extended downstream. Particles were collected on filters of borosilicate 335 
glass bonded to PTFE (Pall, Emfab).  336 

For a typical sample of BBOA, three rectangular chips of pine, with a total mass of about 6 337 
g, were placed in the quartz tube, and the furnace temperature was ramped to 673 K. Filter 338 
sampling began only after the wood had dried and once strong smoldering, with a distinct front, 339 
was observed; care was taken to avoid flaming conditions. For filter sampling, typically about 100 340 
mg of whole BBOA was collected.  341 
 342 
Heterogeneous Ozone Oxidation. It was important to prepare the sample flow with the correct 343 
RH at a specific temperature. To do this, the conditioned sample (SI Appendix, section S7) was 344 
directed into a double-jacketed glass flow tube, called the RH-conditioner, as in Fig. S1. A 345 
recirculating chiller filled with a mixture of ethylene glycol and water was connected to flow through 346 
the inner jacket of this flow tube. RH was monitored at room temperature with a commercial probe 347 
(VWR). For experiments conducted at 253 and 273 K, ultrapure water was added to the 348 
conditioning flow tube, and its temperature was monitored continuously with a thermocouple. The 349 
sample in the RH-conditioner is assumed to be at ice saturation (71), and the temperature was 350 
adjusted such that the saturation vapor pressure of ice gave the desired RH once the sample was 351 
directed into the adjacent reaction flow tube, also double-jacketed.  352 

Near the inlet of the reaction flow tube, ozone was added to the sample, in a carrier gas 353 
with a flow rate of 0.2 L min-1, to give a total flow rate of 1.0 L min-1 through the flow tube. With the 354 
reaction volume, the residence time in the flow tube was 130 ± 10 s. The total aerosol mass loading 355 
in the flow tube was about 1000 μg m-3. Ozone was generated by passing clean, dry air (Linde, 356 
Grade Zero 0.1) through a small glass tube housing a Hg lamp at its center. The ozone mixing ratio 357 
was varied by adjusting the shielding around the Hg lamp and was measured for the same total 358 
flow rate using an ozone monitor (2B Technologies, 202). To allow as long a residence time as 359 
possible in the flow tube and still provide sufficient aerosol absorption, ozone was not monitored 360 
continuously. A second recirculating chiller filled with the same ethylene-water mixture was 361 
connected to flow through the inner jacket of the reaction flow tube. The temperature was adjusted 362 
and monitored with a second thermocouple, which was retracted from the flow tube once the Hg 363 
lamp was turned on to introduce ozone. The RH in the reaction flow tube was calculated from its 364 
temperature and the water content of the sample leaving the RH-conditioner.  365 
 366 
Particle Viscosity Measurement. The viscosity of the aerosol particles nebulized and deposited 367 
on a hydrophobic glass slide was determined using the poke-flow technique (32, 41, 72). During 368 
the experiment, the slide and sample were placed inside a flow cell with both RH and temperature 369 
control. The sample was conditioned overnight (>12 hr) at 294 ± 1 K, and the poke-flow 370 
measurement was performed at 2, 4, and 6 hr after conditioning (within the uncertainties of the 371 
measurements, the viscosities did not depend on the conditioning time used, as shown in Fig. S10). 372 
The glass slide was mounted in the flow cell with a hole at the top through which a needle could be 373 
inserted. The droplet was poked using a sharp needle (Ted Pella Company, 13561-20) coated with 374 
hydrophobic oil slip coating (Cytonix, OilSlip 110). The needle was attached to a micromanipulator 375 
stage, which allowed it to move in the x, y, and z directions.  376 

In a typical experiment, the needle tip was aligned above the center of the droplet, and it 377 
was slowly lowered until it touched the particle and was then quickly raised, leaving a depression 378 
in the droplet and a shape similar to a half-torus geometry. The droplet began to flow to reduce its 379 
surface energy and eventually returned to the original spherical geometry. The change in 380 
morphology as a function of time was recorded with a CCD camera connected to a microscope 381 
(AmScope). The experimental flow (or recovery) time, τexp, flow, was defined as the time taken for 382 
the equivalent area diameter of the hole to decrease to 50% of its original value. Fluid dynamic 383 
simulations were performed as discussed in the SI Appendix (section S8). 384 
 385 
Global Transport and Radiative Transfer Modelling. The BrC simulation employed GEOS-386 
Chem coupled to RRTMG (63) in a configuration known as GC-RT, v.12.3.0 (64), and was 387 
compared to previous results from Carter et al. (40). Simulations were performed at 2.0 x 2.5 degree 388 
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horizontal resolution with 47 vertical levels and were driven by MERRA-2 meteorology. GFED4s 389 
was used to represent fire emissions. It was assumed that 100% of BBOA was brown or absorbing 390 
and that this was the only source of BrC. Details on BrC emissions and non-absorbing organic 391 
aerosol optical properties used in the model are provided elsewhere (39, 73). The BrC absorption 392 
properties vary based on the BC-to-OA ratio (40), following Saleh, et al. (74). The lifetime for BrC 393 
whitening was treated as constant, set to 1 day. The whitening parameterization does not allow 394 
BrC absorptivity to drop below 25% of the starting value. The global whitening and non-whitening 395 
simulations reported previously (40) are compared with the new simulation based on the laboratory 396 
results, in which whitening occurs only below 1 km. 397 
 398 
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Figures  597 
 598 

 599 
Fig. 1. Relative absorption at 405 nm remaining (A) after exposure to 45 ppm of ozone as a function 600 
of RH at 253, 273, and 293 K and (B) as a function of ozone mixing ratio at either 273 or 293 K and 601 
60 or 80% RH. The curves represent fits of Eq. 2 to the experimental data points. Error bars 602 
represent one standard deviation of four sets of datapoints. 603 
 604 
  605 



 

 

16 

 

 606 
Fig. 2. Panel (A) shows viscosities of the BBOA as a function of RH. Symbols show the averages 607 
of the log(viscosity) values, with y-error bars representing the upper and lower limits at each RH 608 
and x-error bars representing the uncertainty in RH. Data for both 10 mL and 50 mL water extracts 609 
are shown (Fig. S6). Included at RH of 100% is the viscosity of pure water at a temperature of 294 610 
K. The black dashed curve corresponds to a fit to the data using the parameterization (SI Appendix, 611 
section S1). Panel (B) shows predicted viscosities of BBOA as a function of temperature and RH. 612 
Viscosities above 1012 Pa s correspond to a glass state and are cut off (hatched region) because 613 
they are not modelled well by the Vogel-Fulcher-Tamman equation. 614 
 615 
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 617 
 618 

 619 
Fig. 3. Panel (A) shows the predicted annual average lifetimes of water-soluble BrC in the 620 
atmosphere as a function of altitude and latitude. The dashed blue line represents 1-day whitening 621 
of BrC. Panel (B) shows the global mean all-sky top-of-atmosphere BrC direct radiative effect 622 
(DRE) in 2018 for the schemes with no-whitening, 1-day whitening, and 1-day whitening only below 623 
1 km. The third scheme is new to this study; the first two schemes are described in Carter et al. 624 
(40). Panel (C) shows the simulated mean 2018 BrC mass concentrations by altitude for the 625 
northern hemisphere (30-90˚N), the tropics (30˚N-30˚S), and the southern hemisphere (30-90˚S) 626 
for the three schemes in panel (B). BrC mass concentrations are reported at standard conditions 627 
of temperature and pressure (STP: 273K, 1 atm). 628 
 629 
 630 
 631 


